1
|
Jiang B, Yang D, Peng H. Environmental toxins and reproductive health: unraveling the effects on Sertoli cells and the blood-testis barrier in animals†. Biol Reprod 2024; 111:977-986. [PMID: 39180724 DOI: 10.1093/biolre/ioae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental pollution is an inevitable ecological issue accompanying the process of socialization, with increasing attention to its impacts on individual organisms and ecological chains. The reproductive system, responsible for transmitting genetic material in animals, is one of the most sensitive systems to environmental toxins. Research reveals that Sertoli cells are the primary target cells for the action of environmental toxins. Different environmental toxins mostly affect the blood-testis barrier and lead to male reproductive disorders by disrupting Sertoli cells. Therefore, this article provides an in-depth exploration of the toxic mechanisms of various types of environmental toxins on the male testes. It reveals the dynamic processes of tight junctions in the blood-testis barrier affected by environmental toxins and their specific roles in the reconstruction process.
Collapse
Affiliation(s)
- Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
2
|
Wang G, Duan L, Du Y, Fu X, Liu B, Zhang X, Yu F, Zhou G, Ba Y. Serum calcium improves the relationship between fluoride exposure and hypothalamic-pituitary-testicular axis hormones levels in males-a cross-sectional study on farmers in the lower reaches of the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125084. [PMID: 39374768 DOI: 10.1016/j.envpol.2024.125084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Numerous studies have reported the toxicity of fluoride to the male reproductive system, but epidemiological evidence is limited. We conducted a cross-sectional study in Kaifeng City, Henan Province in 2011 to explore the association between fluoride exposure and hypothalamic-pituitary-testicular (HPT) axis hormones in men. Morning urinary fluoride (UF), serum HPT axis hormones and serum calcium (SC) concentrations were detected. Percent changes and 95% confidence intervals in HPT axis hormones associated with UF were estimated using adjusted linear regression models, and performed subgroup analysis based on SC levels. The restricted cubic spline model was used to fit nonlinear relationships. For every 10% increase in UF, the concentrations of serum GnRH, T, SHBG and TSI decreased by 2.13%, 2.39%, 2.19% and 1.96%, while E2 and FEI increased by 1.11% and 3.33%. Subgroup analysis showed that for every 10% increase in UF, the levels of GnRH, T, TSI and FTI decreased by approximately 3.15%, 5.49%, 4.47% and 5.14%, while the E2 level increased by 2.92% in low-serum-calcium group (LCG). The levels of GnRH and T decreased by approximately 2.97% and 1.82% in medium-serum-calcium group (MCG). In high-serum-calcium group (HCG), serum SHBG levels decreased by 4.70%, while FTI and FEI levels increased by 4.93% and 4.20% as UF concentration increased (P < 0.05, respectively). The non-linear relationship between serum GnRH and UF concentrations presented an approximately inverted U-shaped curve, with a turning point UF concentration of 1.164 mg/L (P < 0.001), and their nonlinear relationship in LCG and MCG were similar to that in the overall subjects. In conclusion, excessive exposure to fluoride can interfere with male serum HPT axis hormones, and a moderate increase in SC alleviates the effect of fluoride. Prospective cohort studies are essential to confirm the causality.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Leizhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuhui Du
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoli Fu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bin Liu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuanyin Zhang
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
3
|
Ma T, Cheng H, Kong L, Shen C, Jin H, Li H, Pan C, Liang J. Combined exposure of PS-MPs with NaF induces Sertoli cell death and dysfunction via ferroptosis and apoptosis. Toxicology 2024; 506:153849. [PMID: 38821197 DOI: 10.1016/j.tox.2024.153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The individual toxicity of sodium fluoride (NaF) and microplastics (MPs) has been extensively documented. Owing to their high specific surface area, widespread presence and durability, MPs can adsorb a broad spectrum of environmental contaminants into the organism. However, the combined toxicity of NaF and MPs has not been investigated. This study aimed to assess the effects of combined exposure to NaF and MPs on the function of testicular Sertoli cells (SCs) in male mice, and to investigate the underlying molecular mechanisms. The study revealed that combined exposure to NaF and MPs resulted in a decrease in the negative surface charge of MPs, along with an increase in the number of MPs entering the SCs. Through in vivo observation of the testicular pathological structure, spermatogenesis, and cell apoptosis in 180-day-old male mice, we discovered that combined exposure to NaF (80 mg/L) and MPs (10 mg/L) heightened reproductive toxicity compared to the individual exposure groups. This was evidenced by testicular structural defects, impaired spermatogenesis, and increased testicular cell apoptosis. Our in vitro studies showed that NaF (21 μg/mL) and MPs (100 μg/mL) synergistically induced SCs apoptosis and ferroptosis, leading to a reduction in SCs number and dysfunction. This ultimately resulted in structural and functional damage to the testes. Our findings demonstrate, for the first time, the synergistic effects of NaF and MPs on reproductive toxicity in mammals. These insights may provide valuable contributions to co-toxicity studies involving MPs and other environmental pollutants.
Collapse
Affiliation(s)
- Tan Ma
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Huixian Cheng
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu, Anhui 241001, China
| | - Liang Kong
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Chenghao Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Haibo Jin
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Chun Pan
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
4
|
Ommati MM, Sabouri S, Sun Z, Zamiri MJ, Retana-Marquez S, Nategh Ahmadi H, Zuo Q, Eftekhari A, Juárez-Rojas L, Asefi Y, Lei L, Cui SG, Jadidi MH, Wang HW, Heidari R. Inactivation of Mst/Nrf2/Keap1 signaling flexibly mitigates MAPK/NQO-HO1 activation in the reproductive axis of experimental fluorosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115947. [PMID: 38215664 DOI: 10.1016/j.ecoenv.2024.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Fluoride induced reprotoxicity through oxidative stress-mediated reproductive cell death. Hence, the current study evaluated the importance of the MST/Nrf2/MAPK/NQO-HO1 signaling pathway in fluorosis-induced reproductive toxicity. For this purpose, the reproductive toxicity of sodium fluoride (NaF) at physiological, biochemical, and intracellular levels was evaluated. In-vivo, NaF at 100 mg/L instigated physiological dysfunction, morphological, stereological, and structural injuries in the gut-gonadal axis of fluorosis mice through weakening the antioxidant signaling, Nrf2/HO-1/NQO1signaling pathway, causing the gut-gonadal barrier disintegrated via oxidative stress-induced inflammation, mitochondrial damage, apoptosis, and autophagy. Similar trends were also observed in-vitro in the isolated Leydig cells (LCs) challenging with 20 mg/L NaF. Henceforth, activating the cellular antioxidant signaling pathway, Nrf2/HO-1/NQO1, inactivating autophagy and apoptosis, or attenuating lipopolysaccharide (LPS) can be the theoretical basis and valuable therapeutic targets for coping with NaF-induced reproductive toxicity.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samira Sabouri
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | | | - Socorro Retana-Marquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Hassan Nategh Ahmadi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China; College of Animal Science and Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Qiyong Zuo
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey; Nanotechnology and Biochemical Toxicology (NBT) Center, Azerbaijan State University of Economics (UNEC), Baku AZ1001, Azerbaijan
| | - Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Yaser Asefi
- Department of Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Lina Lei
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Shu-Gang Cui
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mohammad Hasan Jadidi
- Comparative Medicine and Animal Resources Centre, McGill University, Montreal, Canada
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Omolaoye TS, Skosana BT, Ferguson LM, Ramsunder Y, Ayad BM, Du Plessis SS. Implications of Exposure to Air Pollution on Male Reproduction: The Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:64. [PMID: 38247488 PMCID: PMC10812603 DOI: 10.3390/antiox13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024] Open
Abstract
Air pollution, either from indoor (household) or outdoor (ambient) sources, occurs when there is presence of respirable particles in the form of chemical, physical, or biological agents that modify the natural features of the atmosphere or environment. Today, almost 2.4 billion people are exposed to hazardous levels of indoor pollution, while 99% of the global population breathes air pollutants that exceed the World Health Organization guideline limits. It is not surprising that air pollution is the world's leading environmental cause of diseases and contributes greatly to the global burden of diseases. Upon entry, air pollutants can cause an increase in reactive oxygen species (ROS) production by undergoing oxidation to generate quinones, which further act as oxidizing agents to yield more ROS. Excessive production of ROS can cause oxidative stress, induce lipid peroxidation, enhance the binding of polycyclic aromatic hydrocarbons (PAHs) to their receptors, or bind to PAH to cause DNA strand breaks. The continuous and prolonged exposure to air pollutants is associated with the development or exacerbation of pathologies such as acute or chronic respiratory and cardiovascular diseases, neurodegenerative and skin diseases, and even reduced fertility potential. Males and females contribute to infertility equally, and exposure to air pollutants can negatively affect reproduction. In this review, emphasis will be placed on the implications of exposure to air pollutants on male fertility potential, bringing to light its effects on semen parameters (basic and advanced) and male sexual health. This study will also touch on the clinical implications of air pollution on male reproduction while highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Lisa Marie Ferguson
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Bashir M. Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misratah P.O. Box 2478, Libya;
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| |
Collapse
|
6
|
Xiao Y, Liu R, Tang W, Yang C. Cantharidin-induced toxic injury, oxidative stress, and autophagy attenuated by Astragalus polysaccharides in mouse testis. Reprod Toxicol 2024; 123:108520. [PMID: 38056682 DOI: 10.1016/j.reprotox.2023.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Cantharidin (CTD) is a chemical constituent derived from Mylabris and has good antitumor effects, but its clinical use is restricted by its inherent toxicity. However, few researches have reported its reproductive toxicity and mechanisms. This study aims to assess CTD's toxicity on mouse testes and the protective effect of Astragalus polysaccharides (APS). Briefly, biochemical analysis, histopathology, transmission electron microscopy, immunohistochemistry, and Western blotting were used to evaluate the oxidative damage of mouse testicular tissue after exposure to CTD and treatment by APS. Our research suggests a dramatic decrease in testicular index and serum testosterone levels after CTD exposure. The testis showed obvious oxidative damage accompanied by an increase in mitochondrial autophagy, the Nfr2-Keap1 pathway was inhibited, and the blood-testis barrier was destroyed. Notably, these changes were significantly improved after APS treatment. The internal mechanisms of APS ameliorate CTD-induced testicular oxidative damage in mice may be closely connected to regulatory the Nrf2-Keap1 signaling pathway, restraining autophagy, and repairing the blood-testis barrier, providing theoretical support for further study on the reproductive toxicity mechanism of CTD and clinical treatments to ameliorate it.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Traditional Chinese medicine health preservation, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ruxia Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Changfu Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
7
|
Zeng Y, Yang Q, Ouyang Y, Lou Y, Cui H, Deng H, Zhu Y, Geng Y, Ouyang P, Chen L, Zuo Z, Fang J, Guo H. Nickel induces blood-testis barrier damage through ROS-mediated p38 MAPK pathways in mice. Redox Biol 2023; 67:102886. [PMID: 37742495 PMCID: PMC10520947 DOI: 10.1016/j.redox.2023.102886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Nickel (Ni) is an essential common environmental contaminant, it is hazardous to male reproduction, but the precise mechanisms are still unknown. Blood-testis barrier (BTB), an important testicular structure consisting of connections between sertoli cells, is the target of reproductive toxicity caused by many environmental toxins. In this study, ultrastructure observation and BTB integrity assay results indicated that NiCl2 induced BTB damage. Meanwhile, BTB-related proteins including the tight junction (TJ), adhesion junction (AJ) and the gap junction (GJ) protein expression in mouse testes as well as in sertoli cells (TM4) were significantly decreased after NiCl2 treatment. Next, the antioxidant N-acetylcysteine (NAC) was co-treated with NiCl2 to study the function of oxidative stress in NiCl2-mediated BTB deterioration. The results showed that NAC attenuated testicular histopathological damage, and the expression of BTB-related proteins were markedly reversed by NAC co-treatment in vitro and vivo. Otherwise, NiCl2 activated the p38 MAPK signaling pathway. And, NAC co-treatment could significantly inhibit p38 activation induced by NiCl2 in TM4 cells. Furthermore, in order to confirm the role of the p38 MAPK signaling pathway in NiCl2-induced BTB impairment, a p38 inhibitor (SB203580) was co-treated with NiCl2 in TM4 cells, and p38 MAPK signaling inhibition significantly restored BTB damage induced by NiCl2 in TM4 cells. These results suggest that NiCl2 treatment destroys the BTB, in which the oxidative stress-mediated p38 MAPK signaling pathway plays a vital role.
Collapse
Affiliation(s)
- Yuxin Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qing Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yanbin Lou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Lian Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| |
Collapse
|
8
|
Luo H, Liu R, Lang Y, Zhao J, Zhuang C, Wang J, Liang C, Zhang J. Melatonin alleviated fluoride-induced impairment of spermatogenesis and sperm maturation process via Interleukin-17A. Food Chem Toxicol 2023:113867. [PMID: 37269891 DOI: 10.1016/j.fct.2023.113867] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Fluoride-induced male reproductive failure is a major environmental and human health concern, but interventions are still lacking. Melatonin (MLT) has potential functions in regulating testicular damage and interleukin-17 (IL-17) production. This study aims to explore whether MLT can mitigate fluoride-induced male reproductive toxicity through IL-17A, and screen the potential targets. So the wild type and IL-17A knockout mice were employed and treated with sodium fluoride (100 mg/L) by drinking water and MLT (10 mg/kg.BW, intraperitoneal injection per two days starting from week 16) for 18 weeks. Bone F- concentrations, grade of dental damage, sperm quality, spermatogenic cells counts, histological morphology of testis and epididymis, and the mRNA expression of spermatogenesis and maturation, classical pyroptosis related and immune factor genes were detected respectively. The results revealed that MLT supplementations alleviated fluoride-induced impairment of spermatogenesis and maturation process, protecting the morphology of testis and epididymis through IL-17A pathway, and Tesk1 and Pten were identified as candidate targets from 29 regulation genes. Taken together, this study demonstrated a new physiological role for MLT in the protection against fluoride-induced reproductive injury and possible regulation mechanisms, which providing a useful therapeutic strategy for male reproductive function failure caused by fluoride or other environmental pollutants.
Collapse
Affiliation(s)
- Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jinhui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
9
|
Yildiz A, Ozhan O, Ulu A, Dogan T, Bakar B, Ugur Y, Taslidere E, Gokbulut I, Polat S, Parlakpinar H, Ates B, Vardi N. Effects of the apricot diets containing sulfur dioxide at different concentrations on rat testicles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27692-w. [PMID: 37204578 DOI: 10.1007/s11356-023-27692-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Due to its antioxidant and antimicrobial properties, sulfur dioxide (SO2) is widely used in foods and beverages to prevent the growth of microorganisms and to preserve the color and flavor of fruits. However, the amount of SO2 used in fruit preservation should be limited due to its possible adverse effects on human health. The present study was designed to investigate the effects of different SO2 concentrations in apricot diets on rat testes. Animals were randomly divided into six groups. The control group was fed a standard diet, and the other groups were fed apricot diet pellets prepared with (w/w) 10% dried apricots containing SO2 at different concentrations (1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, and 3500 ppm/kg) for 24 weeks. After sacrification, testicles were evaluated biochemically, histopathologically, and immunohistopathologically. Our results showed that an apricot diet containing 1500 ppm and 2000 ppm SO2 did not cause significant changes in testis. However, it was determined that tissue testosterone levels decreased as the amount of SO2 (2500 ppm and above) increased. Apricot diet containing 3500 ppm SO2 caused a significant increase in spermatogenic cell apoptosis, oxidative damage, and histopathological changes. In addition, a decrease in the expression of connexin-43, vimentin, and 3β-hydroxysteroid dehydrogenase (3β-HSD) was observed in the same group. In summary, the results show that sulfurization of apricot at high concentrations such as 3500 ppm may lead to male fertility problems in the long term through mechanisms such as oxidative stress, spermatogenic cell apoptosis, and inhibition of steroidogenesis.
Collapse
Affiliation(s)
- Azibe Yildiz
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey.
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Tugba Dogan
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Busra Bakar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Yilmaz Ugur
- Vocational School of Health Service, Inonu University, Malatya, Turkey
| | - Elif Taslidere
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Incilay Gokbulut
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280, Malatya, Turkey
| | - Seyhan Polat
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Nigar Vardi
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
10
|
Wu P, Yang K, Sun Z, Zhao Y, Manthari RK, Wang J, Cao J. Interleukin-17A knockout or self-recovery alleviated autoimmune reaction induced by fluoride in mouse testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163616. [PMID: 37086998 DOI: 10.1016/j.scitotenv.2023.163616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Fluoride (F) is usually treated as a hazardous material, and F-caused public health problem has attracted global attention. Previous studies demonstrate that interleukin-17A (IL-17A) plays a crucial role in F-elicited autoimmune orchitis and self-recovery reverses F-induced testicular toxicity to some extent, but these basic mechanisms remain unclear. Thus, we established a 180 d F exposure model of wild type (WT) mice and IL-17A knockout mice (C57BL/6 J background), and 60 d & 120 d self-recovery model based on F exposure model of WT mice, and used various techniques like qRT-PCR, western blot, immunohistochemistry and ELISA to further explore the mechanism of F-induced autoimmune reaction, the role of IL-17A in it and the reversibility of F-caused toxicity in testis. The results indicated that F exposure for 180 d caused the decreased sperm quality, the damaged testis histopathology, the enhanced mRNA and protein expression levels of inflammatory cytokines, the changes of autoantibody such as the appearance and increased content of anti-testicular autoantibodies in sera and the autoantibody deposition in testis, the alterations of autoimmune related genes containing the decreased mRNA and protein expressions of AIRE and FOXP3 with an increase of MHCII, and the reduced protein expressions of CTLA4, and the activation of IL-17A signaling cascade like the elevated mRNA and protein expressions of IL-17A, Act1, NF-κB, AP-1 and CEBPβ, and the increased protein expressions of IL-17RC, with a decrease of IκBα. After IL-17A knockout, 29 of 35 F-induced changes were alleviated. In two self-recovery models, all F-caused differences except fluorine concentration in femur were gradually restored in a time-dependent manner. This study concluded that IL-17A knockout or self-recovery attenuated F-induced testicular injury and decrease of sperm quality through alleviating autoimmune reaction which was involved with the activation of IL-17A pathway, the damage of self-tolerance and the enhancement of antigen presentation.
Collapse
Affiliation(s)
- Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Kaidong Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Department of Biotechnology, GITAM Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
11
|
Zhang F, Li H, Xu W, Song G, Wang Z, Mao X, Wei Y, Dai M, Zhang Y, Shen Q, Fu F, Tan J, Ge L, He X, Yin T, Yang S, Li S, Yang P, Jia P, Zhang Y. Sulfur dioxide may predominate in the adverse effects of ambient air pollutants on semen quality among the general population in Hefei, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161472. [PMID: 36638985 DOI: 10.1016/j.scitotenv.2023.161472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have reported potential adverse effects of exposure to ambient air pollutants on semen quality in infertile men, but studies on the general population have been limited and inconsistent, and the pollutants that play a major role remain unclear. This study aimed to explore the potential association between exposure to six air pollutants (PM2.5, PM10, NO2, SO2, O3 and CO) during different sperm development periods and semen quality among the general population, and to explore the interaction between different air pollutant exposures. We included 1515 semen samples collected from the Human Sperm Bank. We improved individuals' exposure level estimation by combining inverse distance weighting (IDW) interpolation with satellite remote sensing data. Multivariate linear regression models, restricted cubic spline functions and double-pollutant models were used to assess the relationship between exposure to six air pollutants and sperm volume, concentration, total sperm number and sperm motility. A negative association was found between SO2 exposure and progressive motility and total motility during 0-90 lag days and 70-90 lag days, and SO2 exposure during 10-14 lag days adversely affected sperm concentration and total sperm number. Sensitive analyses for qualified sperm donors and the double-pollutant models obtained similar results. Additionally, there were nonlinear relationships between exposure to PM, NO2, O3, CO and a few semen parameters, with NO2 and O3 exposure above the threshold showing negative correlations with total motility and progressive motility, respectively. Our study suggested that SO2 may play a dominant role in the adverse effects of ambient air pollutants on semen quality in the general population by decreasing sperm motility, sperm concentration and total sperm number. Also, even SO2 exposure lower than the recommended standards of the World Health Organization (WHO) could still cause male reproductive toxicity, which deserves attention.
Collapse
Affiliation(s)
- Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hang Li
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Wenting Xu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, Hubei, China
| | - Ge Song
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China
| | - Zhanpeng Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, Hubei, China
| | - Xiaohong Mao
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengyang Dai
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuying Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qunshan Shen
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Feifei Fu
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Jing Tan
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Lei Ge
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojin He
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, Hubei, China
| | - Siwei Li
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, China.
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, China; Hubei Luojia Laboratory, Wuhan, Hubei, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, Hubei, China; School of Public Health, Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Lv Y, Wang W, Yao L, He J, Bai G, Lin C, Tu C. Sodium Fluoride and Sulfur Dioxide Derivatives Induce TGF-β1-Mediated NBCe1 Downregulation Causing Acid-Base Disorder of LS8 Cells. Biol Trace Elem Res 2023; 201:828-842. [PMID: 35304687 DOI: 10.1007/s12011-022-03169-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
Abstract
The aim of the present work was to assess whether the combination of sodium fluoride (NaF) and sulfur dioxide derivatives (SO2 derivatives) affects the expression of the electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4), triggering an acid-base imbalance during enamel development, leading to enamel damage. LS8 cells was taken as the research objects and fluorescent probes, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and factorial analysis were used to clarify the nature of the fluoro-sulfur interaction and the potential signaling pathway involved in the regulation of NBCe1. The results showed that exposure to fluoride or SO2 derivatives resulted in an acid-base imbalance, and these changes were accompanied by inhibited expression of NBCe1 and TGF-β1; these effects were more significant after fluoride exposure as compared to exposure to SO2 derivatives. Interestingly, in most cases, the toxic effects during combined exposure were significantly reduced compared to the effects observed with fluoride or sulfur dioxide derivatives alone. The results also indicated that activation of TGF-β1 signaling significantly upregulated the expression of NBCe1, and this effect was suppressed after the Smad, ERK, and JNK signals were blocked. Furthermore, fluoride and SO2 derivative-dependent NBCe1 regulation was found to require TGF-β1. In conclusion, this study indicates that the combined effect of fluorine and sulfur on LS8 cells is mainly antagonistic. TGF-β1 may regulate NBCe1 and may participate in the occurrence of dental fluorosis through the classic TGF-β1/Smad pathway and the unconventional ERK and JNK pathways.
Collapse
Affiliation(s)
- Ying Lv
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Wentai Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Lili Yao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Jiaojiao He
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Changhu Lin
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Chenglong Tu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China.
- The Toxicity Testing Center of Guizhou Medical University, Guizhou Medical University, Guizhou, China.
| |
Collapse
|
13
|
Wen S, Chen Y, Tang Y, Zhao Y, Liu S, You T, Xu H. Male reproductive toxicity of polystyrene microplastics: Study on the endoplasmic reticulum stress signaling pathway. Food Chem Toxicol 2023; 172:113577. [PMID: 36563925 DOI: 10.1016/j.fct.2022.113577] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Microplastics (MPs) have raised health concerns in public for its potential reproductive toxicity. In this study, we subjected the Kunming mice to 0.01, 0.1 and 1.0 mg/day polystyrene MPs (10 μm, PS-MPs) for 35 days, aiming to investigate the relevant male reproductive toxicity and latent molecular mechanism. The results showed the decreased sperm counts and motility, while the elevated sperm abnormality in PS-MPs-exposed mice. Testicular H&E staining displayed the vacuolization, atrophy, and even shedding of germ cells in seminiferous tubule. And the testosterone content in serum also decreased with PS-MPs treatment. Moreover, molecular analysis indicated that PS-MPs upregulated the expression trait factors for ERS (e.g., immunoglobulin-binding protein [BIP], inositol-requiring protein 1α [IRE1α], X-box-binding protein 1 splicing [XBP1s], Jun kinase [JNK], and the transcription of CCAAT/enhancer-binding protein (C/EBP) homologous protein [CHOP]) and downstream apoptotic modulator (e.g., Caspase-12, -9, and -3) in the testis. The steroidogenic acute regulatory protein (StAR), the testosterone synthetic initiator, was also downregulated. With the supplementation of ERS inhibitor, the MPs-induced testicular damage and decreased testosterone were improved to almost normal level. Overall, this study suggested that PS-MPs generate reproductive toxicity possibly via activating ERS and apoptosis signaling pathway.
Collapse
Affiliation(s)
- Siyue Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yanbiao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
14
|
Cai P, Feng N, Zou H, Gu J, Liu X, Liu Z, Yuan Y, Bian J. Zearalenone damages the male reproductive system of rats by destroying testicular focal adhesion. ENVIRONMENTAL TOXICOLOGY 2023; 38:278-288. [PMID: 36288102 DOI: 10.1002/tox.23694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA), a common mycotoxin in animal feed, is harmful to public health and causes huge economic losses. The potential target proteins of ZEA and its derivatives were screened using the PharmMapper database and the related genes (proteins) of the testis were obtained from Genecards. We obtained 144 potential targets of ZEA and its derivatives related to the testis using Venn diagrams. The PPI analysis showed that ZEA had the most targets in testis, followed by ZAN, α-ZAL, β-ZEL, α-ZEL, and β-ZAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses evaluated the metabolic and cancer pathways. We further screened four hub genes: RAC3, CCND1, EP300, and CTNNB1. Eight key biological processes were obtained by GO analysis, and four important pathways were identified by KEGG analysis. Animal and cell experimental results confirmed that ZEA could inhibit the expression of four key KEGG pathway protein components and four hub proteins that interfere with cell adhesion by inhibiting the focal adhesion structure of the testis, Leydig cells, and Sertoli cells. Collectively, our findings reveal that the destruction of the focal adhesion structure in the testis is the mechanism through which ZEA damages the male reproductive system.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Ma Y, Peng X, Pan Z, Hu C, Xia Q, Cai G, Cao Y, Pan F. Linear and non-linear relationships between sulfur dioxide and semen quality: A longitudinal study in Anhui, China. ENVIRONMENTAL RESEARCH 2023; 216:114731. [PMID: 36368370 DOI: 10.1016/j.envres.2022.114731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Existing evidence indicates that ambient air pollutants pose a threat to human semen quality; however, these findings are sparse and controversial. Besides, their non-linear dose-response relationship has not yet been well investigated. This study aimed to explore the linear and non-linear associations of gaseous air pollutants exposure with semen quality based on a large longitudinal cohort. A total of 15,112 males (with 28,267 semen tests) from the Anhui prospective assisted reproduction cohort were analyzed. Individual air pollutants exposure before semen tests in four exposure windows (i.e., 0-9, 10-14, 70-90, and 0-90 days) were estimated by inverse distance weighting interpolation. Linear mixed-effects models, cubic spline analysis and piecewise regression were used to test the potential linear and non-linear dose-response relationships. Ambient SO2 exposure was negatively associated with all semen quality parameters (all p values < 0.05), except for the progressive motility in the 0-90 and 70-90 days exposure windows. There were 'J' or 'U' shaped dose-response relationships of ambient SO2 exposure with total sperm count, progressive motility, total motility, progressively motile sperm count, and total motile sperm count (p values for non-linearity < 0.05), but not sperm concentration. Piecewise regression analysis also indicated a negative association of SO2 exposure with semen quality only when SO2 exposure was below the cut-off points identified by cubic spline analyses, which were all smaller than 40 μg/m3, the 2021 updated WHO air quality guideline level for SO2 exposure. Overall, we found that SO2 exposure was negatively associated with semen quality. Ambient SO2 exposure could reach the maximum hazardous dose even below the WHO air quality guideline level for SO2 exposure, suggesting a refinement to the current guideline.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoqing Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; School of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Zhipeng Pan
- Department of Medical Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qing Xia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Grzegorzewska AK, Wojtysiak D, Jaszcza K, Sechman A. In vitroSodium Fluoride Treatment Significantly Affects Apoptosis and Proliferation in the Liver of Embryonic Chickens. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sodium fluoride (NaF), although helpful in preventing dental decay, may negatively affect the body. The aim of this study was to examine the effects of a 6-h in vitro treatment of livers isolated from 14-day-old chicken embryos with NaF at doses of 1.7 (D1), 3.5 (D2), 7.1 (D3)
and 14.2 mM (D4), with regard to apoptosis, cell proliferation and tissue structure. The mRNA expression of the apoptosis regulators CYCS, APAF1, BCL2, CASP3, CASP9 and TMBIM1 was analysed by the qPCR method. Apoptotic cells were detected by a TUNEL
assay. The tissue and DNA structure were also analysed by histological staining (H&E, Feulgen). The number of proliferating cells was determined and the apoptosis regulatory proteins were localised by the immunohistochemical staining of PCNA, CASP3 and APAF1. The results showed that the
mRNA expression of CYCS, BCL2, CASP3, CASP9 and APAF1 increased significantly in the D1 group, as did that of CASP9 in the D3 group and of BCL2 and APAF1 in the D4 group. The number of apoptotic cells increased significantly in the
D4 group, where they increased from 18% to 49%. On the other hand, the number of proliferating cells decreased gradually, in a dose-dependent manner, from 84% in the control group to 5.5% in the D4 group. The expression of apoptosis-regulating factors also increased: in the D3 and D4 groups,
the CASP3 immunopositive reaction was more intensive in single cells in the embryonic livers, whereas that of APAF1 increased in the hepatocytes as well as in the hepatic blood vessel walls. The mechanism of the effect of NaF on apoptosis in the embryonic liver is very complex. In the groups
exposed to higher doses of NaF, apoptosis was significantly stimulated, while proliferation was inhibited and the tissue structure was damaged. The expression of apoptosis regulators at the mRNA and protein levels increased, but the mRNA expression did not depend on the NaF dose. These results
reveal that NaF, by changing the balance between apoptosis and the proliferation of hepatocytes, may disturb the development and function of the liver in embryonic chickens. Therefore, the risk of exposure to NaF should be considered when determining the standards for human and animal exposure
to this compound.
Collapse
Affiliation(s)
- Agnieszka K. Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Klaudia Jaszcza
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
17
|
Younes M, Aquilina G, Castle L, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Boon P, Cheyns K, Crebelli R, FitzGerald R, Lambré C, Mirat M, Ulbrich B, Vleminckx C, Mech A, Rincon AM, Tard A, Horvath Z, Wright M. Follow-up of the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228). EFSA J 2022; 20:e07594. [PMID: 36440381 PMCID: PMC9685353 DOI: 10.2903/j.efsa.2022.7594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sulfur dioxide-sulfites (E 220-228) were re-evaluated in 2016, resulting in the setting of a temporary ADI of 0.7 mg SO2 equivalents/kg bw per day. Following a European Commission call for data, the present follow-up opinion assesses data provided by interested business operators (IBOs) and additional evidence identified in the publicly available literature. No new biological or toxicological data addressing the data gaps described in the re-evaluation were submitted by IBOs. Taking into account data identified from the literature search, the Panel concluded that there was no substantial reduction in the uncertainties previously identified in the re-evaluation. Therefore, the Panel considered that the available toxicity database was inadequate to derive an ADI and withdrew the current temporary group acceptable daily intake (ADI). A margin of exposure (MOE) approach was considered appropriate to assess the risk for these food additives. A lower confidence limit of the benchmark dose of 38 mg SO2 equivalents/kg bw per day, which is lower than the previous reference point of 70 mg SO2 equivalents/kg bw per day, was estimated based on prolonged visual evoked potential latency. An assessment factor of 80 was applied for the assessment of the MoE. At the estimated dietary exposures, when using a refined exposure scenario (Data set D), MOEs at the maximum of 95th percentile ranges were below 80 for all population groups except for adolescents. The dietary exposures estimated using the maximum permitted levels would result in MOEs below 80 in all population groups at the maximum of the ranges of the mean, and for most of the population groups at both minimum and maximum of the ranges at the 95th percentile. The Panel concluded that this raises a safety concern for both dietary exposure scenarios. The Panel also performed a risk assessment for toxic elements present in sulfur dioxide-sulfites (E 220-228), based on data submitted by IBOs, and concluded that the maximum limits in the EU specifications for arsenic, lead and mercury should be lowered and a maximum limit for cadmium should be introduced.
Collapse
|
18
|
Zhang Y, Dong F, Wang Z, Xu B, Zhang T, Wang Q, Lin Q. Fluoride Exposure Provokes Mitochondria-Mediated Apoptosis and Increases Mitophagy in Osteocytes via Increasing ROS Production. Biol Trace Elem Res 2022:10.1007/s12011-022-03450-w. [PMID: 36255553 DOI: 10.1007/s12011-022-03450-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
Abstract
Fluoride is a persistent environmental pollutant, and its excessive intake causes skeletal and dental fluorosis. However, few studies focused on the effects of fluoride on osteocytes, making up over 95% of all bone cells. This study aimed to investigate the effect of fluoride on osteocytes in vitro, as well as explore the underlying mechanisms. CCK-8, LDH assay, fluorescent probes, flow cytometry, and western blotting were performed to examine cell viability, apoptosis, mitochondria changes, reactive oxygen species (ROS) and mitochondrial ROS (mtROS), and protein expressions. Results showed that sodium fluoride (NaF) exposure (4, 8 mmol/L) for 24 h inhibited the cell viability of osteocytes MLO-Y4 and promoted G0/G1 phase arrest and increased cell apoptosis. NaF treatment remarkably caused mitochondria damage, loss of MMP, ATP decrease, Cyto c release, and Bax/Bcl-2 ratio increase and elevated the activity of caspase-9 and caspase-3. Furthermore, NaF significantly upregulated the expressions of LC-3II, PINK1, and Parkin and increased autophagy flux and the accumulation of acidic vacuoles, while the p62 level was downregulated. In addition, NaF exposure triggered the production of intracellular ROS and mtROS and increased malondialdehyde (MDA); but superoxide dismutase (SOD) activity and glutathione (GSH) content were decreased. The scavenger N-acetyl-L-cysteine (NAC) significantly reversed NaF-induced apoptosis and mitophagy, suggesting that ROS is responsible for the mitochondrial-mediated apoptosis and mitophagy induced by NaF exposure. These findings provide in vitro evidence that apoptosis and mitophagy are cellular mechanisms for the toxic effect of fluoride on osteocytes, thereby suggesting the potential role of osteocytes in skeletal and dental fluorosis.
Collapse
Affiliation(s)
- Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.
| | - Fanhe Dong
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Zihan Wang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Bingbing Xu
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Tao Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Qiqi Wang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Qiao Lin
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| |
Collapse
|
19
|
Zheng P, Chen Z, Shi J, Xue Y, Bai Y, Kang Y, Xu H, Jia G, Wang T. Association between ambient air pollution and blood sex hormones levels in men. ENVIRONMENTAL RESEARCH 2022; 211:113117. [PMID: 35304116 DOI: 10.1016/j.envres.2022.113117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Concerns are growing over time on the adverse health effects of air pollution. However, the association between ambient air pollution and blood sex hormones in men is poorly understood. We included 72,917 men aged 20-55 years from February 2014 to December 2019 in Beijing, China in this study. Blood testosterone, follicle stimulating hormone, luteinizing hormone, estradiol, and prolactin levels of each participant were measured. We collected exposure data of daily ambient levels of particulate matter ≤10 μm (PM10) and ≤2.5 μm (PM2.5), nitrogen dioxide, sulfur dioxide (SO2), carbon monoxide, and ozone. Generalized linear mixed models were used to analyze the potential association between ambient air pollution exposure and blood sex hormone levels. The results showed that both immediate and short-term cumulative PM2.5, PM10, and SO2 exposure was related to altered serum sex hormone levels in men, especially testosterone. An increase of 10 μg/m3 in PM2.5 and PM10 in the current day was related to a 1.6% (95% confidence interval [CI]: 0.9%-2.3%) and 1.1% (95% CI: 0.5%-1.6%) decrease in testosterone, respectively, and a decreasing tendency of accumulated effects persisted within lag 0-30 days. The present study demonstrated that it is important to control ambient air pollution exposure to reduce effects on the reproductive health of men.
Collapse
Affiliation(s)
- Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Yuting Xue
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yi Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Huiyu Xu
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
20
|
Zeng H, Jian Y, Xie Y, Fan Q, Chang Q, Zheng B, Zhang Y. Edible bird's nest inhibits the inflammation and regulates the immunological balance of lung injury mice by SO
2. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hongliang Zeng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yeye Jian
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yong Xie
- College of Pharmacy Fujian University of Traditional Chinese Medicine Fuzhou China
| | | | - Qing Chang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Baodong Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yi Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
21
|
Anjum R, Maheshwari N, Mahmood R. 3,4-Dihydroxybenzaldehyde mitigates fluoride-induced cytotoxicity and oxidative damage in human RBC. J Trace Elem Med Biol 2022; 69:126888. [PMID: 34773916 DOI: 10.1016/j.jtemb.2021.126888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fluoride is an essential micronutrient that is needed for mineralization of bones and formation of dental enamel. It is a widely dispersed environmental pollutant and chronic exposure to it is toxic, resulting in malignancies and hematological damage in humans. Blood is a major and early target of environmental pollutants and toxicants like fluoride. Fluoride generates reactive oxygen species and free radicals which induce oxidative stress in target cells and mediate its toxic effects. The aim of this study was to determine the mitigating effect of plant antioxidant 3,4-dihydroxybenzaldehyde (DHB) on sodium fluoride (NaF) induced oxidative damage and cytotoxicity in isolated human red blood cells (RBC) METHOD: Isolated human RBC were treated with 0.5 mM NaF, in absence or presence of different concentrations of DHB (0.1-2.5 mM). Several biochemical parameters were analyzed in cell lysates and whole cells. RESULTS Treatment of RBC with NaF increased the formation of reactive oxygen and nitrogen species. It oxidized thiols, proteins and lipids and generated their peroxidative products. Methemoglobin level, heme degradation and lipid peroxidation were increased but cellular antioxidant status declined significantly in NaF alone treated RBC, compared to the control. NaF inhibited antioxidant, membrane bound and glycolytic enzymes in RBC. However, prior incubation of RBC with DHB significantly attenuated the NaF-induced alterations in all these parameters in a DHB concentration-dependent manner. CONCLUSION These results show that DHB mitigates NaF-induced oxidative damage in human RBC, probably because of its antioxidant character.
Collapse
Affiliation(s)
- Ruhi Anjum
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| | - Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
22
|
Liu P, Li R, Tian X, Zhao Y, Li M, Wang M, Ying X, Yuan J, Xie J, Yan X, Lyu Y, Wei C, Qiu Y, Tian F, Zhao Q, Yan X. Co-exposure to fluoride and arsenic disrupts intestinal flora balance and induces testicular autophagy in offspring rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112506. [PMID: 34265531 DOI: 10.1016/j.ecoenv.2021.112506] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
While numerous studies have shown that fluoride or arsenic exposure may damage the reproductive system, there are few reports of co-exposure to fluoride and arsenic. In addition, the literature on autophagy and intestinal flora composition in reproductive toxicity studies of co-exposure to fluoride and arsenic is insufficient. In this study, we developed a rat model of fluoride and arsenic exposure via drinking water from pre-pregnancy to 90 days postnatal. Sprague-Dawley rats were randomly divided into sterile water control group, fluoride group (100 mg/L NaF), arsenic group (50 mg/L NaAsO2) and combined exposure group (100 mg/L NaF+50 mg/L NaAsO2). Our results showed that fluoride and arsenic exposure caused a reduction in testicular weight and significant pathological damage to tissue. We found that the levels of follicle-stimulating hormone, luteinizing hormone, and testosterone were reduced to varying degrees. Meanwhile experiments showed that fluoride and arsenic exposure can modulate autophagic flux, causing increased levels of Beclin1 and LC3 expression and decreased p62 expression. Analogously, by performing 16S sequencing of rat feces, we found 24 enterobacterial genera that differed significantly among the groups. Furthermore, the flora associated with testicular injury were identified by correlation analysis of hormonal indices and autophagy alterations with intestinal flora composition at the genus level, respectively. In summary, our study shows that fluoride and arsenic co-exposure alters autophagic flux in the testis, causes testicular injury, and reveals an association between altered intestinal flora composition and testicular injury.
Collapse
Affiliation(s)
- Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ran Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiyu Yuan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoting Yan
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
23
|
Li Y, Zafar MI, Wang X, Ding X, Li H. Heat Stress and Pulsed Unfocused Ultrasound: The Viability of these Physical Approaches for Drug Delivery into Testicular Seminiferous Tubules. Curr Drug Deliv 2021; 17:438-446. [PMID: 32407274 DOI: 10.2174/1567201817666200514080811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
Abstract
AIM To investigate the application of Scrotal Heat Stress (SHS) and Pulsed Unfocused Ultrasound (PuFUS) to explore Blood-Testis Barrier (BTB) permeability in adult mice. BACKGROUND The BTB provides a stable microenvironment and a unique immune barrier for spermatogenesis. Meanwhile, it blocks macromolecular substances access, including therapeutic agents and antibodies, thereby it decreases the therapeutic or immunocontraception effects. OBJECTIVES To determine the viability of these physical approaches in delivering macromolecular substances into seminiferous tubules. MATERIALS & METHODS Mice were subjected to receive single SHS intervention at 39°C, 41°C, or 43°C for 30 min. Whereas, mice received the PuFUS intervention at 1.75w/cm2, 1.25w/cm2, and 2.5w/cm2 for 2 min, 5 min, and 10 min, respectively. The Biotin and macromolecular substances (IgG, IgM, and exosomes) were separately injected into the testicular interstitium at different times following SHS or PuFUS interventions, to observe their penetration through BTB into seminiferous tubules. RESULTS As detected by Biotin tracer, the BTB opening started from day-2 following the SHS and lasted for more than three days, whereas the BTB opening started from 1.5h following PuFUS and lasted up to 24h. Apparent penetration of IgG, IgM, and exosomes into seminiferous tubules was observed after five days of the SHS at 43°C, but none at 39°C, or any conditions tested with PuFUS. CONCLUSION The current results indicate that SHS at 43°C comparatively has the potential for delivering macromolecular substances into seminiferous tubules, whereas the PuFUS could be a novel, quick, and mild approach to open the BTB. These strategies might be useful for targeted drug delivery into testicular seminiferous tubules. However, further studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mohammad Ishraq Zafar
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofang Ding
- Center of Reproductive Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
24
|
Tang W, Xiao Y, Long Y, Li Y, Peng F, Zhu C, He T, Lou D, Zhu Y. Sodium fluoride causes oxidative damage to silkworm (Bombyx mori) testis by affecting the oxidative phosphorylation pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112229. [PMID: 33991993 DOI: 10.1016/j.ecoenv.2021.112229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori was used to study the molecular mechanism of fluoride induced reproductive toxicity. In our previous study, we confirmed the physiological and biochemical effects of NaF on reproductive toxicity, and we found that the molecular mechanism of NaF induced reproductive damage may be associated with the oxidative phosphorylation pathway. To further study the function of NaF exposure on the oxidative phosphorylation pathway in the testis in Bombyx mori, and the relationship between oxidative phosphorylation and oxidative stress, we measured the changes in the main ROS (O2- and H2O2) in the testis, the activity of the main electron transport chain complex enzymes in the oxidative phosphorylation pathway and the transcription levels of the corresponding genes; we additionally performed pathological observations of the silkworm testis after exposure to 200 mg/L NaF solution for different times. The content of O2- and H2O in the silkworm gonads increased significantly at 24 h, 72 h and 120 h after NaF stress. The activity of mitochondrial complexes I, III, IV and V in the silkworm testis was significantly greater than that in the control group. RT-PCR analysis suggested that the mRNA transcription levels of NADH-CoQ1, Cyt c reductase, Cyt c oxidase and ATP synthase genes were up-regulated significantly. Histopathological investigation showed that the damage to the silkworm testis was more severe with increasing NaF exposure times. These results indicated that NaF stress affects the NADH respiratory chain of the mitochondrial electron transport chain and increases the activity of related enzyme complexes, thus destroying the balance of the electron transport chain. Subsequently, the content of ROS in cells significantly increases, thus resulting in oxidative stress reactions in cells. These results enable better understanding of the testis-damaging molecular toxicological mechanism of NaF.
Collapse
Affiliation(s)
- Wenchao Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China; School of Biotechnology, Southwest University, Chongqing, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China
| | - Yuanyuan Xiao
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Yaohang Long
- School of Biotechnology, Southwest University, Chongqing, China
| | - Yaofeng Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Fang Peng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Can Zhu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Tinggui He
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Didong Lou
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Yong Zhu
- School of Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
25
|
Liang X, Li Z, Zhang H, Hong X. Study of the Characteristics and Comprehensive Fuzzy Assessment of Indoor Air Chemical Contamination in Public Buildings. Front Public Health 2021; 9:579299. [PMID: 34026697 PMCID: PMC8138320 DOI: 10.3389/fpubh.2021.579299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
Quality-of-life is improving daily with continuous improvements in urban modernization, which necessitates more stringent requirements for indoor air quality. Fuzzy assessment enables us to obtain the grade of the evaluation object by compound calculation with the help of membership function and weight coefficient, overcoming the limitations of traditional methods applied to develop environmental quality indices. First, this study continuously measured SO2, O3, NO2, NO, CO, CO2, PM10, PM2.5, and other chemical pollutants during the daytime operating hours of a library and a canteen. We analyzed the concentration distributions of the particles in the air were discussed based on 31 different particle diameters. Finally, the experimental data in department store and waiting hall were analyzed by fuzzy evaluation, with the following results. (1) The library and canteen PM10 concentrations peaked at 07:45 in the morning and was elevated during the afternoon (48.9 and 59 μg/m3, respectively). (2) The Pearson correlation coefficient of the PM10 and PM2.5 concentrations in the library was 0.98. PM10 and SO2 in the canteen were negatively correlated, with a correlation coefficient of −0.65. PM2.5 and PM1 were always highly positively correlated. (3) The high concentration of particles in the library was associated with the small particle size range (0.25~0.45 μm). (4) By applying the fuzzy comprehensive evaluation method, the library grade evaluation was the highest level, and the waiting hall was the lowest. This study enhances our understanding of the indoor chemical contamination relationships for public buildings and highlights the urgent need for improving indoor air quality.
Collapse
Affiliation(s)
- Xiguan Liang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Zhisheng Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Huagang Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Xinru Hong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
26
|
Grzegorzewska AK, Grot E, Sechman A. Sodium Fluoride In Vitro Treatment Affects the Expression of Gonadotropin and Steroid Hormone Receptors in Chicken Embryonic Gonads. Animals (Basel) 2021; 11:ani11040943. [PMID: 33810503 PMCID: PMC8066272 DOI: 10.3390/ani11040943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Effects of in vitro sodium fluoride (NaF) treatment on the mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of PGRs were examined in gonads of 14-day-old chicken embryos. In the ovary, the NaF treatment significantly increased mRNA levels of all investigated receptors. In the testes, the lowest applied dose of NaF (1.7 mM) significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. Alternatively, the higher NaF dose (7.1 mM) elevated PGR mRNA level in the male gonad. Immunohistochemical analysis revealed that the NaF exposure increased PGR expression in the ovarian cortex, while it decreased its expression in the testes. Collectively, these data indicate that: (i) NaF may disturb the chicken embryonic development, and (ii) different mechanisms of this toxicant action exist within the female and male gonads. Abstract Sodium fluoride (NaF), in addition to preventing dental decay may negatively affect the body. The aim of this study was to examine the effect of a 6 h in vitro treatment of gonads isolated from 14-day-old chicken embryos with NaF at doses of 1.7 (D1), 3.5 (D2), 7.1 (D3), and 14.2 mM (D4). The mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of progesterone receptors were examined in the tissue. In the ovary, the expression of FSHR and LHR increased following the NaF treatment. In the case of FSHR the highest stimulatory effect was noticed in the D2 group, while the expression of LHR increased in a dose-dependent manner. A gradual increase in ESR1 and PGR mRNA levels was also observed in the ovary following the NaF treatment, but only up to the D3 dose of NaF. The highest ESR2 level was also found in the D3 group. In the testes, the lowest dose of NaF significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. On the other hand, an increase in PGR expression was observed in the D3 group. The expression of LHR in the testes was not affected by the NaF treatment. Immunohistochemical analysis showed that NaF exposure increased progesterone receptor expression in the ovarian cortex, while it decreased its expression in the testes. These results reveal that NaF may disturb the chicken embryonic development and different mechanisms of this toxicant action exist within the females and males.
Collapse
|
27
|
The role of different compounds on the integrity of blood-testis barrier: A concise review based on in vitro and in vivo studies. Gene 2021; 780:145531. [PMID: 33631249 DOI: 10.1016/j.gene.2021.145531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Sertoli cells are "nurturing cells'' in the seminiferous tubules of the testis which have essential roles in the development, proliferation and differentiation of germ cells. These cells also divide the seminiferous epithelium into a basal and an adluminal compartment and establish the blood-testis barrier (BTB). BTB shields haploid germ cells from recognition by the innate immune system. Moreover, after translocation of germ cells into the adluminal compartment their nutritional source is separated from the circulatory system being only supplied by the Sertoli cells. The integrity of BTB is influenced by several organic/ organometallic, hormonal and inflammatory substances. Moreover, several environmental contaminants such as BPA have hazardous effects on the integrity of BTB. In the current review, we summarize the results of studies that assessed the impact of these agents on the integrity of BTB. These studies have implications in understanding the molecular mechanism of male infertility and also in the male contraception.
Collapse
|
28
|
Huang W, Liu M, Xiao B, Zhang J, Song M, Li Y, Cao Z. Aflatoxin B 1 disrupts blood-testis barrier integrity by reducing junction protein and promoting apoptosis in mice testes. Food Chem Toxicol 2021; 148:111972. [PMID: 33421461 DOI: 10.1016/j.fct.2021.111972] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023]
Abstract
Aflatoxin B1 (AFB1) is an unavoidable food and environmental contaminant, which can lead to disorders in spermatogenesis and its mechanism remains unclear. The blood-testis barrier (BTB) is responsible for ensuring normal spermatogenesis in testes. Therefore, we hypothesized that disruption of the BTB was involved in AFB1-induced spermatogenesis disorders. To confirm our hypothesis, male Kunming mice were orally gavaged AFB1 (0, 0.375, 0.75, or 1.5 mg/kg) for 30 days. Primarily, we first proved that AFB1 disrupted the BTB integrity. Then, AFB1 decreased BTB-related junction protein expression and elevated Sertoli cell apoptosis, which were associated with oxidative stress. Additionally, AFB1 upregulated the p-p38 MAPK/p38 MAPK ratio. These results collectively indicated that AFB1 disrupted the BTB via reducing the expression of BTB-related junction protein and promoting apoptosis in mice testes, which were associated with the oxidative stress-mediated p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
29
|
Kassetas CJ, Caton JS, Kirsch JD, Dorsam ST, McCarthy KL, Crouse MS, Sedivec KK, Neville BW, Dahlen CR. Effects of feeding 60% dried corn distillers grains plus solubles or the equivalent sulfur as CaSO 4 on performance and reproductive traits of yearling Angus bulls. Theriogenology 2020; 162:6-14. [PMID: 33388726 DOI: 10.1016/j.theriogenology.2020.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023]
Abstract
The objectives of this study were to investigate the effects of feeding 60% dried corn distillers grains plus solubles (DDGS) or the equivalent sulfur as calcium sulfate (CaSO4) on semen quality and performance characteristics in yearling bulls. Thirty-six half-sibling Angus bulls [291 ± 8.5 d; initial body weight (BW) = 320 ± 2.7 kg] were assigned to one of three diets: 1) 60% concentrate as corn (CON; S = 0.18%; n = 12); 2) 60% DDGS replacing corn (60DDGS; S = 0.55% DM; n = 12); 3) CON + equivalent sulfur of 60DDGS added as CaSO4 (SULF; S = 0.54%; n = 12). Bulls were fed for 112 d to target an average daily gain (ADG) of 1.6 kg/d. Blood samples were collected on d 0, 56, and 112, and evaluated for testosterone, thyroxine, triiodothyronine (T3) and glutathione peroxidase (GPx) activity. Ruminal H2S was measured on d 0, 14, and 42. Scrotal circumference and semen were collected on d 0, 28, 56, 84, and 112 to evaluate sperm characteristics and GPx activity in seminal plasma. A computer assisted semen analysis was used to evaluate kinematic profiles in motile and progressive sperm throughout the study. Data were analyzed as repeated measures using MIXED procedures of SAS. No differences (P ≥ 0.14) were observed for final BW, ADG, or scrotal circumference; however, SULF tended (P = 0.07) to have reduced gain:feed compared with CON, with 60DDGS being intermediate. Concentrations of ruminal H2S on d 42 were greatest (P < 0.01) for SULF. Increased ejaculate volume was observed for 60DDGS and CON (P < 0.01) compared with SULF. For motile populations of sperm, velocity on an average path (VAP) and curvilinear velocity (VCL) were reduced (P ≤ 0.02) for SULF compared with CON, with 60DDGS being intermediate. In progressively motile sperm throughout the study, VAP and VSL were reduced (P ≤ 0.05) in 60DDGS and SULF compared to CON. For VCL, SULF was reduced (P ≤ 0.02) compared with CON, with 60DDGS being intermediate. In serum, concentrations of T3 were reduced (P = 0.009) in 60DDGS compared with CON or SULF. A treatment by day interaction (P = 0.03) was observed for seminal plasma GPx. At d 56, GPx activity was greater (P = 0.03) for 60DDGS compared with CON, with SULF intermediate; and at d 112, 60DDGS had the greatest (P ≤ 0.02) GPx activity. Therefore, feeding 60% DDGS to developing bulls altered semen kinematics, T3 concentrations, and GPx activity leading to the conclusion that these differences may not be solely dependent on concentrations of dietary sulfur.
Collapse
Affiliation(s)
- Cierrah J Kassetas
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, 58108, USA.
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, 58108, USA
| | - James D Kirsch
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, 58108, USA
| | - Kacie L McCarthy
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, 58108, USA
| | - Matthew S Crouse
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, 58108, USA
| | - Kevin K Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, 58483, USA
| | - Bryan W Neville
- Carrington Research Extension Center, North Dakota State University, Fargo, 58421, USA
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, 58108, USA.
| |
Collapse
|
30
|
Grzegorzewska AK, Ocłoń E, Kucharski M, Sechman A. Effect of in vitro sodium fluoride treatment on CAT, SOD and Nrf mRNA expression and immunolocalisation in chicken (Gallus domesticus) embryonic gonads. Theriogenology 2020; 157:263-275. [PMID: 32823022 DOI: 10.1016/j.theriogenology.2020.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/28/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
In this study, we examined the effect of sodium fluoride (NaF) on oxidative stress in chicken embryonic gonads. Following exposure to varying concentrations of NaF for 6 h, mRNA expression and immunolocalisation of catalase (CAT), sodium dismutase (SOD1 and SOD2) and nuclear respiratory factors (Nrf1 and Nrf) were analysed in the gonads. In the ovary, a dose-dependent increase in mRNA expression of CAT, Nrf1 and Nrf2 following NaF exposure was found, while the intensity of immunolocalised CAT, SOD2 and Nrf1 was higher in NaF-treated groups. In the testis, no effect of NaF on CAT, SOD1 and Nrf1 mRNA levels was observed; however, NaF (3.5-14.2 mM) elevated Nrf2 mRNA expression. NaF, at a dose of 7.1 mM, increased the immunoreactivity of Nrf1 and SOD2. Further experiments evaluated the ovary and testes when incubated with NaF (7.1 mM), vitamin C (Vitamin C, 4 mM) or NaF + Vitamin C. mRNA expression of all four examined genes in the whole ovary and immunoreactivity of Nrf1 and CAT in the ovarian medulla increased in each experimental group. Similar effects were observed in the testis, where mRNA expression, as well as CAT and Nrf2 immunoreactivity, increased in Vitamin C and NaF + Vitamin C-treated groups. In summary, NaF exposure generated oxidative stress which is manifested by increased expression of free radical scavenging enzymes in chicken embryonic gonads. High doses of Vitamin C did not reverse this effect.
Collapse
Affiliation(s)
- A K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - E Ocłoń
- Center for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - M Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
31
|
Zhou BH, Wei SS, Jia LS, Zhang Y, Miao CY, Wang HW. Drp1/Mff signaling pathway is involved in fluoride-induced abnormal fission of hepatocyte mitochondria in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138192. [PMID: 32278173 DOI: 10.1016/j.scitotenv.2020.138192] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Fluoride, a toxic substance, is widely distributed in the environment and causes serious damage to the body. This study was performed to investigate the effects of fluoride on mitochondrial fission in mouse hepatocytes. A total of 48 mice were equally divided into four groups and admisnistered with NaF in drinking water at fluorine ion concentrations of 0, 25, 50 and 100 mg/L for 70 days. The pathomorphology and ultrastructurre of hepatocytes were then observed. The mitochondrial lesion parameters (number, length, width and vacuolization area) are evaluated. The expression of Drp1, Mff, Fis1, MiD49, MiD51 and Dyn2, which are associated with mitochondrial fission, was determined by quantitative real-time PCR and Western blot analysis. Apoptosis was detected by using TUNEL assay. Results showed that fluoride causes notable changes in the pathological morphology of liver tissues and severely damages the ultrastructure of hepatocytes. Damage manifested as nuclear condensation, nuclear membrane breakdown, mitochondrial vacuolation, increased fragmentation, and mitochondrial fission. Moreover, mRNA and protein expression levels were significantly upregulated in the Drp1/Mff signaling pathway. The mRNA expression levels of Cyt c, caspase 9 and 3 markedly increased in the fluoride treated groups in a dose-dependent manner. The percentage of TUNEL-positive nuclei in the liver remarkably increased after fluoride treatment. Overall, the results indicate that excessive fluoride exposure can increase mitochondrial fission via the Drp1/Mff signaling pathway, severely damage the mitochondrial structure, and lead to apoptosis of hepatocytes.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China.
| | - Shan-Shan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China
| | - Liu-Shu Jia
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China
| | - Yan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China
| | - Cheng-Yi Miao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People's Republic of China.
| |
Collapse
|
32
|
Babakhanzadeh E, Nazari M, Ghasemifar S, Khodadadian A. Some of the Factors Involved in Male Infertility: A Prospective Review. Int J Gen Med 2020; 13:29-41. [PMID: 32104049 PMCID: PMC7008178 DOI: 10.2147/ijgm.s241099] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Infertility is defined as the inability of couples to have a baby after one year of regular unprotected intercourse, affecting 10 to 15% of couples. According to the latest WHO statistics, approximately 50-80 million people worldwide sufer from infertility, and male factors are responsible for approximately 20-30% of all infertility cases. The diagnosis of infertility in men is mainly based on semen analysis. The main parameters of semen include: concentration, appearance and motility of sperm. Causes of infertility in men include a variety of things including hormonal disorders, physical problems, lifestyle problems, psychological issues, sex problems, chromosomal abnormalities and single-gene defects. Despite numerous efforts by researchers to identify the underlying causes of male infertility, about 70% of cases remain unknown. These statistics show a lack of understanding of the mechanisms involved in male infertility. This article focuses on the histology of testicular tissue samples, the male reproductive structure, factors affecting male infertility, strategies available to find genes involved in infertility, existing therapeutic methods for male infertility, and sperm recovery in infertile men.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Ghasemifar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
33
|
Gorga A, Rindone GM, Centola CL, Sobarzo C, Pellizzari EH, Camberos MDC, Cigorraga SB, Riera MF, Galardo MN, Meroni SB. In vitro effects of glyphosate and Roundup on Sertoli cell physiology. Toxicol In Vitro 2020; 62:104682. [PMID: 31626902 DOI: 10.1016/j.tiv.2019.104682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Roundup (R), a formulation that contains glyphosate (G) as the active ingredient, is a commonly used nonselective herbicide that has been proposed to affect male fertility. It is well known that an adequate Sertoli cell function is essential to maintain germ cell development. The aim of the present study was to analyze whether G and R are able to affect Sertoli cell functions, such as energy metabolism and blood-testis barrier (BTB) integrity. Sertoli cell cultures from 20-day-old rats were exposed to 10 and 100 ppm of G or R, doses which do not decrease cell viability. Neither G nor R caused impairment in lactate production or fatty acid oxidation. G and R decreased Transepithelial Electrical Resistance, which indicates the establishment of a Sertoli cell junction barrier. However, neither G nor R modified the expression of claudin11, ZO1 and occludin, proteins that constitute the BTB. Analysis of cellular distribution of claudin11 by immunofluorescence showed that G and R induced a delocalization of the signal from membrane to the cytoplasm. The results suggest that G and R could alter an important function of Sertoli cell such as BTB integrity and thus they could compromise the normal development of spermatogenesis.
Collapse
Affiliation(s)
- Agostina Gorga
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Gustavo Marcelo Rindone
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Cecilia Lucia Centola
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Cristian Sobarzo
- Facultad de Medicina, UBA, Instituto de Investigaciones Biomédicas (INBIOMED), Argentina
| | - Eliana Herminia Pellizzari
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - María Del Carmen Camberos
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Selva Beatriz Cigorraga
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Fernanda Riera
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Noel Galardo
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Silvina Beatriz Meroni
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina.
| |
Collapse
|
34
|
Liang C, Gao Y, He Y, Han Y, Manthari RK, Tikka C, Chen C, Wang J, Zhang J. Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113438. [PMID: 31672359 DOI: 10.1016/j.envpol.2019.113438] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
It is very important to explore the potential harm and underlying mechanism of fluoride due to the extensive distribution and the significant health risks of fluoride in environment. The objective of this study to investigate whether fluoride can induce mitochondrial impairment and mitophagy in testicular cells. For this, 40 male mice were randomly divided into four groups treated with 0, 0.6, 1.2, 2.4 mM NaF deionized water, respectively, for 90 days continuously. The results showed that mitophagy was triggered by F in testicular tissues, especially in the Leydig cells by transmission electron microscopy and mitophagy receptor PHB2 locations by immunofluorescence. Furthermore, TM3 Leydig cells line was employed and treated with 0, 0.125, 0.25, and 0.5 mM NaF for 24 h. The mitochondrial function indicators and mitophagy maker PHB2, COX IV and regulator PINK1 in transcript and protein levels in Leydig cells were examined by the methods of qRT-PCR, western blotting, and immunofluorescence co-localization. The results showed that fluoride decreased the mitochondrial membrane potential with a concomitant increase in the number of lysosomes. Meanwhile, fluoride exposure also increased the expressions of PINK1 and PHB2 in TM3 Leydig cells. These results revealed that fluoride could induce mitochondrial impairment and excessive PINK1/Parkin-mediated mitophagy in testicular cells, especially in Leydig cells, which could contribute to the elucidation of the mechanisms of F-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Chen Liang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yan Gao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuyang He
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Chiranjeevi Tikka
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Chenkai Chen
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
35
|
Wang J, Li G, Li Y, Zhao Y, Manthari RK, Wang J. The Effects of Fluoride on the Gap-Junctional Intercellular Communication of Rats' Osteoblast. Biol Trace Elem Res 2020; 193:195-203. [PMID: 30887282 DOI: 10.1007/s12011-019-01692-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
The gap junction protein plays an important role in the bone formation and alteration of these proteins leading to cause bone development. Aim to determine the effects of different concentration of fluoride on gap-junctional intercellular communication (GJIC) related genes and proteins in the rats' osteoblast cells. We treated the osteoblast cells with various concentrations (0, 0.01, 0.1, 0.5, and 1.0 mM) NaF for 24 and 72 h. We used the scrape loading and dye transfer technique to research the intracellular connectivity. Moreover, the mRNA expression levels of connexin 43 (Cx43), connexin45 (Cx45), collagen I, and osteocalcin (OCN) were analyzed by qRT-PCR, the protein expression levels of connexin43 (Cx43) were analyzed by western blotting and immunofluorescence. Our results suggested that the osteoblast proliferations were decreased in the 0.5 and 1 mM NaF groups, after 24 and 72 treatments. The scrape loading and dye transfer experiment showed that the GJIC were increased in the 0.01 mM NaF group and decreased in the 0.5 and 1 mM NaF groups. In addition, the mRNA expressions of Cx43, Cx45, and OCN, and the protein expressions of Cx43 were increased in the 0.01 mM NaF group and decreased in the 0.5 and 1 mM NaF groups. In summary, these results suggest that the low concentration NaF is good for the GJIC, but the high concentration NaF damages the GJIC.
Collapse
Affiliation(s)
- Jinming Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Guangsheng Li
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yanyan Li
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China.
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
36
|
Cui H, Abdel‐Samie MA, Lin L. Novel packaging systems in grape storage—A review. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Haiying Cui
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
| | - Mohamed Abdel‐Shafi Abdel‐Samie
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
- Department of Food and Dairy Sciences and TechnologyArish University Arish Egypt
| | - Lin Lin
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
| |
Collapse
|
37
|
Han Y, Yu Y, Liang C, Shi Y, Zhu Y, Zheng H, Wang J, Zhang J. Fluoride-induced unrestored arrest during haploid period of spermatogenesis via the regulation of DDX25 in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:538-551. [PMID: 31330346 DOI: 10.1016/j.envpol.2019.06.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
The effect of fluoride as an ongoing topic has attracted much attentions due to the decline in overall human fertility worldwide. However, whether fluorine causes a temporary stimulus or permanent damage to the male reproductive system, as well as the mechanism of fluoride influencing spermatogenesis remained unclear. 48 adult male rats were randomly divided into four groups (twelve each). Control group received the distilled water, while the other three groups were treated with 25, 50, 100 mg/L NaF via drinking water for 8 weeks. Six rats from each group were selected randomly to detect the levels of various indices related to spermatogenesis. The remaining rats were given only distilled water and left for recovery of a period of 2 weeks. Results showed that the levels of serum CK, ALP, CHE, BUN, UA, and Cr, testis morphology and the ultrastructure of sperm acrosome and chromatoid body (CB) were significantly changed by fluoride. Interestingly, the elongated spermatid counts, spermatids elongation ratio, and mRNA expressions of Prm1/2 and MIWI, TDRD1, TDRD 6, TDRD7, PABP, and Hsp72 related to CB decreased markedly in fluoride treatment groups compared to the control. Furthermore, the expression levels of DDX25 and associated regulatory proteins like CRM1, HMG2, H4, TP2, and PGK2 were down-regulated by fluoride. After 2-weeks withdrawal period, out of the 19 altered spermatogenesis indicators, 15 indicators in 100 mg/L group and 3 indicators in 50 mg/L group still exhibited a significant change, while none showed change in 25 mg/L group. These results proved that the reversibility of fluoride toxicity is dose-dependent on the male reproductive system. Meanwhile, fluoride caused unrestored arrest during the haploid period of spermatogenesis, where reduced DDX25 and associated regulatory proteins play a crucial role in this process, which could provide the underlying insights to the toxic mechanism of fluoride induced male reproductive toxicity.
Collapse
Affiliation(s)
- Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yuxiang Yu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Chen Liang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yan Shi
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yuchen Zhu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Heping Zheng
- College of Biology, Department of Molecular Medicine, Hunan University, Changsha, 410082, PR China.
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
38
|
Gao Y, Zhao Y, Zhang H, Zhang P, Liu J, Feng Y, Men Y, Li L, Shen W, Sun Z, Min L. Pubertal exposure to low doses of zearalenone disrupting spermatogenesis through ERα related genetic and epigenetic pathways. Toxicol Lett 2019; 315:31-38. [PMID: 31419471 DOI: 10.1016/j.toxlet.2019.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022]
Abstract
Endocrine disruptor zearalenone (ZEA) has been found to damage the reproductive system especially spermatogenesis. In our previous report, we have found that low dose (lower than No-Observed Effect Level, NOEL) ZEA exposure disturbed mouse spermatogenesis and diminished mouse semen quality. The purpose of current investigation was to explore the underlying mechanisms of pubertal low dose ZEA exposure upsetting spermatogenesis. And it was demonstrated that pubertal low dose ZEA exposure disrupted the meiosis process and the important genetic pathways to inhibit the spermatogenesis and even to diminish the semen quality with the decrease in spermatozoa motility and concentration. The DNA methylation markers 5mC and 5hmC were decreased, the histone methylation marker H3K27 was increased, at the same time estrogen receptor alpha was diminished in mouse testis after pubertal low dose ZEA exposure. The data indicate that the disruption in spermatogenesis by pubertal low dose ZEA exposure may be through the alterations in genetic and epigenetic pathways, and the interactions with estrogen receptor signaling pathway. Therefore, we should pay great attention on ZEA exposure to reduce its adverse impacts on male reproductive health.
Collapse
Affiliation(s)
- Yishan Gao
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Pengfei Zhang
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China; College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jing Liu
- University research core, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanni Feng
- College of Veterinary Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yuhao Men
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Zhongyi Sun
- Center for Reproductive Medicine, Shenzhen Hospital, Peking University, Shenzhen 518036, PR China
| | - Lingjiang Min
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
39
|
Jiang S, Liang C, Gao Y, Liu Y, Han Y, Wang J, Zhang J. Fluoride exposure arrests the acrosome formation during spermatogenesis via down-regulated Zpbp1, Spaca1 and Dpy19l2 expression in rat testes. CHEMOSPHERE 2019; 226:874-882. [PMID: 31509916 DOI: 10.1016/j.chemosphere.2019.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 06/10/2023]
Abstract
The exposure and health effects of fluoride are an ongoing topic that has attracted worldwide attention. Fluoride exposure disturbs the testicular development, sexual hormone levels and spermatogenesis. However, as to whether fluoride interferes with acrosome formation which is essential for production of capable spermatozoa during spermatogenesis still remains unclear. The objective was to determine the effects of fluoride on the acrosome formation and to further elucidate the potential mechanism of impaired reproductive function. For this, forty adult rats were assigned into four groups. The control group received distilled water, while the other three groups were treated with 25, 50 and 100 mg NaF/L via drinking water for 56 d, respectively. Testes were processed for total RNA extraction and western blot analysis. Three samples of each group were fixed in 2.5% glutaraldehyde solution for transmission electron microscopy analysis. From the results, we first found that fluoride decreased the expression of mRNA and protein levels of Zpbp1, Spaca1 and Dpy19l2 of seven markers during acrosome biogenesis in testes. Furthermore, fluoride damaged not only the acrosome structure, but also the structure of the nuclear lamina which was observed to be discontinuous and partially missing by transmission electron microscopy. Moreover, the results indicated that the altered structure in nuclear lamina maybe due to reduced LMNB2 expression in testis induced by fluoride. In a nutshell, fluoride exposure could restrain acrosome biogenesis during spermatogenesis and contribute to the elucidation of the underlying mechanisms of fluoride-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Shanshan Jiang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chen Liang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yan Gao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yu Liu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
40
|
Men Y, Zhao Y, Zhang P, Zhang H, Gao Y, Liu J, Feng Y, Li L, Shen W, Sun Z, Min L. Gestational exposure to low-dose zearalenone disrupting offspring spermatogenesis might be through epigenetic modifications. Basic Clin Pharmacol Toxicol 2019; 125:382-393. [PMID: 31058416 DOI: 10.1111/bcpt.13243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Zearalenone (ZEA), a F-2 mycotoxin produced by Fusarium, has been found to be an endocrine disruptor through oestrogen receptor signalling pathway to impair spermatogenesis. The disruption on reproductive systems by ZEA exposure might be transgenerational. In our previous report, we have found that low dose (lower than no-observed effect level, NOEL) of ZEA impaired mouse spermatogenesis and decreased mouse semen quality. The purpose of the current investigation was to explore the impacts of low-dose ZEA on spermatogenesis in the offspring after prenatal exposure and the underlying mechanisms. And it demonstrated that prenatal low-dose ZEA exposure disrupted the meiosis process to inhibit the spermatogenesis in offspring and even to diminish the semen quality by the decrease in spermatozoa motility and concentration. The DNA methylation marker 5hmC was decreased, the histone methylation markers H3K9 and H3K27 were elevated, and oestrogen receptor alpha was reduced in the offspring testis after prenatal low-dose ZEA exposure. The data suggest that the disruption in spermatogenesis by prenatal low-dose ZEA exposure may be through the modifications on epigenetic pathways (DNA methylation and histone methylation) and the interactions with oestrogen receptor signalling pathway. Moreover, in the current study, the male offspring were indirectly exposed to low-dose ZEA through placenta and the spermatogenesis in offspring was disrupted which suggested that the toxicity of ZEA on reproductive systems was very severe. Therefore, we strongly recommend that greater attention should be paid to this mycotoxin to minimize its adverse impact on human spermatogenesis.
Collapse
Affiliation(s)
- Yuhao Men
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Pengfei Zhang
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yishan Gao
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jing Liu
- University Research Core, Qingdao Agricultural University, Qingdao, China
| | - Yanni Feng
- College of Veterinary Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhongyi Sun
- Center for Reproductive Medicine, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Lingjiang Min
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
41
|
Cross-talk between ER stress and mitochondrial pathway mediated adriamycin-induced testicular toxicity and DA-9401 modulate adriamycin-induced apoptosis in Sprague-Dawley rats. Cancer Cell Int 2019; 19:85. [PMID: 30992692 PMCID: PMC6450013 DOI: 10.1186/s12935-019-0805-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background DA-9401 was prepared as a mixture of Chinese medicinal herb extracts from roots of Morinda officinalis How (Rubiaceae), outer scales of Allium cepa L. (Liliceae) and seeds of Cuscuta chinensis Lamark (Convolvulaceae). The present study was designed to investigate the possible protective role of DA-9401 in adriamycin (ADR)-induced testicular toxicity associated with oxidative stress, endoplasmic reticulum (ER) stress, and apoptosis. Methods Fifty healthy 8-week-old male Sprague–Dawley rats were equally divided into five groups. The first CTR group was treated with normal saline 2 ml/day by gavage. The second was treated with DA-100 (DA-9401 100 mg/kg/day). The third (ADR) group received ADR (2 mg/kg/once a week) intraperitoneally, while the combination of ADR and DA-9401 was given to the fourth ADR + DA-100 (100 mg/kg/day p.o) group and fifth ADR + DA-200 (200 mg/kg/day p.o) group. At the end of the 8-week treatment period, body weight, reproductive organ weights, fertility rate, pups per female were recorded, and serum were assayed for hormone concentrations. Tissues were subjected to semen analysis, histopathological changes, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), oxidative stress markers and expression levels of endoplasmic reticulum (ER) stress markers, apoptosis markers, tight junction protein markers, steroidogenic acute regulatory protein (StAR), cation channel of sperm (CatSper) and glycogen synthase kinase-3 (GSK-3) by western blot. Results DA-9401 administration to ADR-treated rats significantly decreased serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, interleukin-6, TNF-α, MDA level, ROS/RNS level, ER stress response protein levels, tunnel positive cells, cleaved caspase-3, and Bax/Bcl2 ratio. Moreover, pretreatment with DA-9401 significantly increased body weight, reproductive organ weights, fertility rate, pups per female, Johnsen’s score, spermatogenic cell density, sperm count and sperm motility, serum testosterone concentration, testicular superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), tight junction protein markers, star protein level, CatSper, and GSK-3 level. Conclusions ADR treatment can markedly impair testicular function and induce testicular cell death presumably by causing significant changes in oxidative stress, ER stress, and mitochondrial pathway. DA-9401 exerts beneficial effects against oxidative stress, ER stress, and mitochondria-mediated cell death pathway in testis tissue by up-regulating expression levels of tight junction protein markers, steroidogenic acute regulatory protein, GSK-3 alpha, and cation channels of sperm. Electronic supplementary material The online version of this article (10.1186/s12935-019-0805-2) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Zhou L, Su X, Li B, Chu C, Sun H, Zhang N, Han B, Li C, Zou B, Niu Y, Zhang R. PM2.5 exposure impairs sperm quality through testicular damage dependent on NALP3 inflammasome and miR-183/96/182 cluster targeting FOXO1 in mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:551-563. [PMID: 30476817 DOI: 10.1016/j.ecoenv.2018.10.108] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Exposure to ambient fine particular matter (PM2.5) has been clearly associated with male reproductive disorders. However, very limited toxicological studies were carried out to investigate the potential mechanisms underlying the PM2.5-induced sperm quality decline. In the present study, we established a real time whole-body PM2.5 exposure mouse model to investigate the effects of PM2.5 on sperm quality and its potential mechanisms. Sixty male C57BL/6 mice were randomly subjected to three groups: filtered air group, unfiltered air group and concentrated air group. Half of the mice from each group were sacrificed for study when the exposure duration accumulated to 8 weeks and the rest of the mice were sacrificed when exposed for 16 weeks. Our results suggested that PM2.5 exposure could induce significant increases in circulating white blood cells and inflammation in lungs. PM2.5 exposure induced apparently DNA damages and histopathologic changes in testes. There were significantly decreased sperm densities of mice, which were paralleled with the down-regulated testosterone levels in testes tissue of mice after exposure to PM2.5 for 16 weeks. The numbers of motile sperms were decreased and sperms with abnormal morphology were increased after PM2.5 exposure in a time-depended and dose-depended manner. PM2.5 exposure significantly increased the expression of the major components of the NACHT, LRR and PYD domains-containing protein3 (NALP3) inflammasome, accompanied by the increased expression of miR-183/96/182 targeting FOXO1 in testes. The present data demonstrated that sperm quality decline induced by PM2.5 could be partly explained by the inflammatory reaction in testes which might be a consequence of systemic inflammation. The molecular mechanism was depended on the activation of NALP3 inflammasome accompanied by miR-183/96/182 targeting FOXO1 in testes.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Chen Chu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Hongyue Sun
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Bingjie Zou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Yujie Niu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China; Department of Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China; Department of Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
43
|
Shenoy PS, Sen U, Kapoor S, Ranade AV, Chowdhury CR, Bose B. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:534-548. [PMID: 30384060 DOI: 10.1016/j.envpol.2018.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Fluoride is a well-known compound for its usefulness in healing dental caries. Similarly, fluoride is also known for its toxicity to various tissues in animals and humans. It causes skeletal fluorosis leading to osteoporosis of the bones. We hypothesized that when bones are affected by fluoride, the skeletal muscles are also likely to be affected by underlying molecular events involving myogenic differentiation. Murine myoblasts C2C12 were cultured in differentiation media with or without NaF (1 ppm-5 ppm) for four days. The effects of NaF on myoblasts and myotubes when exposed to low (1.5 ppm) and high concentration (5 ppm) were assessed based on the proliferation, alteration in gene expression, ROS production, and production of inflammatory cytokines. Changes based on morphology, multinucleated myotube formation, expression of MyHC1 and signaling pathways were also investigated. Concentrations of NaF tested had no effects on cell viability. NaF at low concentration (1.5 ppm) caused myoblast proliferation and when subjected to myogenic differentiation it induced hypertrophy of the myotubes by activating the IGF-1/AKT pathway. NaF at higher concentration (5 ppm), significantly inhibited myotube formation, increased skeletal muscle catabolism, generated reactive oxygen species (ROS) and inflammatory cytokines (TNF-α and IL-6) in C2C12 cells. NaF also enhanced the production of muscle atrophy-related genes, myostatin, and atrogin-1. The data suggest that NaF at low concentration can be used as muscle enhancing factor (hypertrophy), and at higher concentration, it accelerates skeletal muscle atrophy by activating the ubiquitin-proteosome pathway.
Collapse
Affiliation(s)
- P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Anu V Ranade
- College of Medicine, University of Sharjah, United Arab Emirates
| | - Chitta R Chowdhury
- Department of Oral Biology & Genomic Studies, A.B.Shetty Memorial Institute of Dental Sciences, Nitte University, Mangalore, 575018, Karnataka, India; School of Health and Life Sciences, Biomedical and Environmental Health Group, De Montfort University, Leicester, United Kingdom
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
44
|
Li X, Zhang J, Niu R, Manthari RK, Yang K, Wang J. Effect of fluoride exposure on anxiety- and depression-like behavior in mouse. CHEMOSPHERE 2019; 215:454-460. [PMID: 30336322 DOI: 10.1016/j.chemosphere.2018.10.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/29/2018] [Accepted: 10/11/2018] [Indexed: 05/27/2023]
Abstract
We established the mouse model of fluoride (68 mg F ion/L deionized water) exposure for 90 days, 120 days and 150 days, and applied diverse methods as behavioral models of anxiety and depression, and analyzed the levels of the anxiety- and depression-like related genes like BDNF1, BDNF4, 5-HT1A, VGLUT, GAD67, and VGAT in the mouse hippocampus. In the mice exposed to NaF for 120 days, compared to the control group, chalky opacity was observed on the enamel of teeth; the results of anxiety-like behavior, like elevated zero maze, light/dark exploration test, novel object recognition test and emergence test were significantly altered, however in the mice exposed for 150 days, only the elevated zero maze and emergence test were significantly altered. Also, the results of depression-like behavior were significantly altered in the 120 days treated mice. Exposure to NaF for 120 days significantly decreased the mRNA expression levels of the BDNF4 with a concomitant increase in the 5-HT1A compared to the control mice. Especially the mRNA expression levels of GAD67 and VGAT were significantly decreased in all the three NaF treated groups. However, no significant changes were observed in the mRNA expression levels of the VGLUT compared to the control mice. In summary, we speculated that fluoride exposure had adverse effects on nervous system, inducing an imbalance between excitation and inhibition, which resulted in abnormal behavior and depression.
Collapse
Affiliation(s)
- Xuehua Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Jianmeng Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Kaidong Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China.
| |
Collapse
|
45
|
Li X, Yi H, Wang H. Sulphur dioxide and arsenic affect male reproduction via interfering with spermatogenesis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:164-173. [PMID: 30195209 DOI: 10.1016/j.ecoenv.2018.08.109] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
As two potential environmental hazards, sulphur dioxide (SO2) and arsenic have adverse effects on male reproduction, but the mechanism of which and their combined toxicity are not clear. In this study, we investigate male reproductive toxicity with a focus on spermatogenesis by treating mice with 5 mg/m3 SO2 and/or 5 mg/L arsenic. Our results showed that arsenic exposure caused significant decreases in water and food consumption and body weight in mice, whereas these changes were not observed in the SO2-only group. Both SO2 and arsenic reduced sperm counts, increased the percentage of sperm malformation, and induced abnormal testicular pathological changes. Elevated H2O2 and MDA contents, declined T-SOD activity, decreased spermatogenic cell counts, enhanced caspase-3 activity, and increased TUNEL-positive cells were also observed in mice exposed to SO2 and/or arsenic. Moreover, SO2 and arsenic co-exposure changed the mRNA levels of Bax and Bcl-2, decreased serum testosterone levels, and downregulated the expression of steroidogenic-related genes (LHR, StAR, and ABP) in mice. These findings provide a new theoretical basis for understanding how SO2 and arsenic interfere with spermatogenesis leading to infertility. These results also suggest that SO2 and arsenic co-exposure likely result in an additive effect on male reproductive toxicity in mice.
Collapse
Affiliation(s)
- Xiujuan Li
- School of Life Science, Shanxi University, Taiyuan 030006, China; College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Hong Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Monell Chemical Senses Center, Philadelphia, PA, USA
| |
Collapse
|
46
|
Zhao WP, Wang HW, Liu J, Tan PP, Luo XL, Zhu SQ, Chen XL, Zhou BH. Positive PCNA and Ki-67 Expression in the Testis Correlates with Spermatogenesis Dysfunction in Fluoride-Treated Rats. Biol Trace Elem Res 2018; 186:489-497. [PMID: 29748930 DOI: 10.1007/s12011-018-1338-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/05/2018] [Indexed: 01/15/2023]
Abstract
The present study aimed to evaluate the effect of fluoride (F) on spermatogenesis in male rats. F- at 50 and 100 mg/L was administered for 70 days, after which the testicular and epididymis tissues were collected to observe the histopathological structure under a light microscope. The ultrastructure of the testis and sperm was also examined via transmission electron microscopy. The apoptosis of spermatogenic cells was measured through terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of proliferation factors, namely, proliferating cell nuclear antigen (PCNA) and Ki-67, in the testicular and epididymis tissues, were assayed through immunohistochemistry. F- at 50 and 100 mg/L significantly damaged the structure of the testis and epididymis, and the testis and sperm ultrastructure exhibited various changes, including mitochondrial swelling and vacuolization, and apsilated and raised sperm membrane. F treatment significantly increased spermatogenic cell apoptosis in the testis. PCNA (P < 0.01) and Ki-67 (P < 0.01) also presented positive expression in the testis. By comparison, no significant changes occurred in the epididymis. In summary, excessive F intake results in spermatogenesis dysfunction by damaging the testicular structure and inducing spermatogenic cell apoptosis in male rats. The positive expression level of PCNA and Ki-67 was a good response to spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Wen-Peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Pan-Pan Tan
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Xiang-Long Luo
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Shi-Quan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Xue-Li Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
47
|
Liu J, Wang HW, Zhao WP, Li XT, Lin L, Zhou BH. Induction of pathological changes and impaired expression of cytokines in developing female rat spleen after chronic excess fluoride exposure. Toxicol Ind Health 2018; 35:43-52. [DOI: 10.1177/0748233718809773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study was designed to investigate the effects of excessive fluoride on spleen toxicity. Twenty-four healthy female rats were randomly divided into two groups, each of 12 rats. Each group of female rats was given a control diet and either F− = 0 mg/L or an excessive F− = 150 mg/L in the drinking water for 120 days. The histomorphological and ultrastructural changes in their splenic tissues were observed under light and transmission electron microscopes. DNA damage and splenocyte apoptosis were examined using the micronucleus (MN) assay, single-cell gel electrophoresis (SCGE), and flow cytometry. The expression levels of cytokines, including interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor (TNF)-α, were determined through immunohistochemistry and Western-blot analysis. Results demonstrated that the histomorphological characteristics and ultrastructure of the splenic tissues were affected by excessive fluoride. Nuclear dying, nuclear membrane dissolution, mitochondrial vacuolation, and endoplasmic reticulum dilation were observed. SCGE and MN assays showed that the nuclear DNA of splenocytes was damaged by fluoride treatment, and splenocyte apoptosis was exacerbated in the fluoride group. With damage to the splenocyte structure and DNA, the protein expression levels of IL-1β, IL-2, IL-6, and TNF-α were significantly downregulated by exposure to fluoride. Excessive fluoride ingestion caused splenic pathological damage and abnormal cytokine expression in female rats.
Collapse
Affiliation(s)
- Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Hong-wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Wen-peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Xiao-ting Li
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Lin Lin
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Bian-hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| |
Collapse
|
48
|
He X, Sun Z, Manthari RK, Wu P, Wang J. Fluoride altered rat's blood testis barrier by affecting the F-actin via IL-1α. CHEMOSPHERE 2018; 211:826-833. [PMID: 30099167 DOI: 10.1016/j.chemosphere.2018.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 05/26/2023]
Abstract
Fluoride is known to affect the pro-inflammatory cytokines in the testis. Most of the recent literatures cited that cytokines regulate the blood-testis-barrier (BTB). However, the involvement of cytokines in the fluoride induced toxicity in BTB remains unclear. In order to study this, 60 male Sprague-Dawley (SD) rats were taken and randomly divided into 5 groups which included four fluoride groups exposed to 0, 25, 50, and 100 mg/L NaF in distilled water and one positive control group. On the 29th day of fluoride exposure, the positive control group rats were administered 0.1% CaCl2 solution. Biotin tracer technology and transmission electron microscopy (TEM) analysis were applied to evaluate the function and ultra-structure of BTB. The expression levels of the BTB associated proteins, actin relative protein 3 (Arp3), interleukin-1 alpha (IL-1α), and transforming growth factor beta-3 (TGF-β3) were determined using Western blotting and Enzyme Linked Immunosorbent Assay (ELISA) respectively, meanwhile the actin filament (F-actin) was detected by fluorescent phalloidin conjugates. Our results revealed that the function and the ultra-structure of BTB in all the fluoride treated groups were damaged with a concomitant significant decreases in basal ectoplasmic specialization (basal ES), associated protein β-catenin, and F-actin. Moreover, Arp3 levels were significantly increased in 50 and 100 mg/L NaF groups. Meanwhile, IL-1α significantly increased in all the fluoride treated groups. In summary, we concluded that an increase in IL-1α induced by NaF significantly decreased the expression of F-actin and the organization of F-actin highly branched, which might facilitate the BTB's functional and ultra-structural variations.
Collapse
Affiliation(s)
- Xinjin He
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China
| | - Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China.
| |
Collapse
|
49
|
Yang D, Jiang X, Sun J, Li X, Li X, Jiao R, Peng Z, Li Y, Bai W. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food Chem Toxicol 2018; 119:24-30. [DOI: 10.1016/j.fct.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
50
|
Liu J, Ren L, Wei J, Zhang J, Zhu Y, Li X, Jing L, Duan J, Zhou X, Sun Z. Fine particle matter disrupts the blood-testis barrier by activating TGF-β3/p38 MAPK pathway and decreasing testosterone secretion in rat. ENVIRONMENTAL TOXICOLOGY 2018; 33:711-719. [PMID: 29673083 DOI: 10.1002/tox.22556] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/08/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Fine particle matter (PM) is correlated with male reproductive dysfunction in animals and humans, but the underlying mechanisms remain unknown. To investigate the toxic mechanism of PM, 32 male Sprague-Dawley (SD) rats were exposed to saline or PM2.5 with the doses of 1.8, 5.4, and 16.2 mg/kg.b.w. via intratracheal instillation, respectively, one time every 3 days, in total times for 30 days. Sperm concentration, hormone level, the expressions of BTB-associated protein and the mitogen-activated protein kinase (MAPK) pathway, tumor necrosis factor α and transforming growth factor β3 levels were detected. The results showed a decrease in sperm number, testosterone and luteinizing hormone levels and altered ultrastructure of BTB in testis of rat after exposure to PM2.5 . The protein levels of N-Cadherin, Occludin, Claudin-11, and Connexin-43 were significantly decreased in the testes. TGF-β3 content in testes showed increase, with the p-p38/p38 MAPK ratio also increasing after PM2.5 exposure. These results demonstrate that PM2.5 restrained the expressions of BTB-associated proteins through activating TGF-β3/p38 MAPK pathway and decreasing testosterone secretion, and therefore lead to the damage of BTB resulting in the decrease of sperm quality, which might be the potential reasons for its negative effects on spermatogenesis and male reproduction.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- School of Nursing, Peking University, Beijing, 100191, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yupeng Zhu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|