1
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
3
|
Tsai CC, Yang YN, Wang K, Chen YCE, Chen YF, Yang JC, Li ZL, Huang HM, Pedersen JZ, Incerpi S, Lee SY, Lin HY, Whang-Peng J. Progesterone modulates cell growth via integrin αvβ3-dependent pathway in progesterone receptor-negative MDA-MB-231 cells. Heliyon 2024; 10:e34006. [PMID: 39071644 PMCID: PMC11283053 DOI: 10.1016/j.heliyon.2024.e34006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Progesterone (P4) plays a pivotal role in regulating the cancer progression of various types, including breast cancer, primarily through its interaction with the P4 receptor (PR). In PR-negative breast cancer cells, P4 appears to function in mediating cancer progression, such as cell growth. However, the mechanisms underlying the roles of P4 in PR-negative breast cancer cells remain incompletely understood. This study aimed to investigate the effects of P4 on cell proliferation, gene expression, and signal transduction in PR-negative MDA-MB-231 breast cancer cells. P4-activated genes, associated with proliferation in breast cancer cells, exhibit a stimulating effect on cell growth in PR-negative MDA-MB-231 cells, while demonstrating an inhibitory impact in PR-positive MCF-7 cells. The use of arginine-glycine-aspartate (RGD) peptide successfully blocked P4-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, aligning with computational models of P4 binding to integrin αvβ3. Disrupting integrin αvβ3 binding with RGD peptide or anti-integrin αvβ3 antibody altered P4-induced expression of proliferative genes and modified P4-induced cell growth in breast cancer cells. In conclusion, integrin αvβ3 appears to mediate P4-induced ERK1/2 signal pathway to regulate proliferation via alteration of proliferation-related gene expression in PR-negative breast cancer cells.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Ning Yang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chun E. Chen
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome 00133, Italy
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany 12203, NY, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jaqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
5
|
Fu Q, Lu Z, Chang Y, Jin T, Zhang M. Bibliometric and visualized analysis of resveratrol in anticancer investigations. Food Sci Nutr 2024; 12:2223-2239. [PMID: 38628201 PMCID: PMC11016421 DOI: 10.1002/fsn3.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
A growing number of publications have shown that resveratrol has anticancer effects and has become a hotspot in cancer research. The purpose of this study is to analyze the academic results and research trends in resveratrol within the field of anticancer and to predict the future trends in this field. We conducted a literature search for resveratrol in anticancer research from 2003 to 2022 using the Science Citation Index Expanded of the Web of Science Core Collection. The visualization software was used to perform the bibliometric analysis. A total of 1463 publications from 2003 to 2022 were retrieved. China had the highest number of publications. Taipei Medical University became the research institution with the largest number of publications worldwide. The journals with the highest output and co-citation frequency were Molecules and Cancer Research. Levenson, Anait S and Jaeger, Walter published the largest number of papers. Jang, MS was the most co-cited author. Timeline View shows trends and relationship between research topics over time and suggests that the emerging frontier of resveratrol in anticancer may be "resveratrol induces apoptosis." As more and more evidence shows the important role of resveratrol in anticancer, further research on its mechanisms and target discovery may become a major direction for future research. The bibliometric analysis findings of this study will significantly contribute to scholars' comprehensive understanding of the anticancer effects and mechanisms of action of resveratrol, aiding in delineating research hotspots and frontier directions within this field, thereby providing guidance for future investigations.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Zhongqi Lu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Ying Chang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Meihua Zhang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| |
Collapse
|
6
|
Wu SX, Xiong RG, Huang SY, Zhou DD, Saimaiti A, Zhao CN, Shang A, Zhang YJ, Gan RY, Li HB. Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review. Crit Rev Food Sci Nutr 2023; 63:12422-12440. [PMID: 35852215 DOI: 10.1080/10408398.2022.2101428] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a severe public health problem. Resveratrol is a famous natural compound that has various bioactivities, such as antioxidant, anti-inflammatory, antidiabetic and antiaging activities. Especially, resveratrol could prevent and treat various cancers, such as oral, thyroid, breast, lung, liver, pancreatic, gastric, colorectal, bladder, prostate and ovarian cancers. The underlying mechanisms have been widely studied, such as inhibiting cell proliferation, suppressing metastasis, inducing apoptosis, stimulating autophagy, modulating immune system, attenuating inflammation, regulating gut microbiota and enhancing effects of other anticancer drugs. In this review, we summarize effects and mechanisms of resveratrol on different cancers. This paper is helpful to develop resveratrol, crude extract containing resveratrol, or foods containing resveratrol into functional food, dietary supplements or auxiliary agents for prevention and management of cancers.
Collapse
Affiliation(s)
- Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yun-Jian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Taghvaei S, Taghvaei A, Anvar MS, Guo C, Sabouni F, Minuchehr Z. Computational study of SENP1 in cancer by novel natural compounds and ZINC database screening. Front Pharmacol 2023; 14:1144632. [PMID: 37502217 PMCID: PMC10368881 DOI: 10.3389/fphar.2023.1144632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Sentrin-specific protease 1 (SENP1) is a protein whose main function is deSUMOylation. SENP1 inhibits apoptosis, and increases angiogenesis, estrogen and androgen receptor transcription and c-Jun transcription factor, proliferation, growth, cell migration, and invasion of cancer. The in vivo and in vitro studies also demonstrated which natural compounds, especially phytochemicals, minerals, and vitamins, prevent cancer. More than 3,000 plant species have been reported in modern medicine. Natural compounds have many anti-cancerous andanti-turmeric properties such as antioxidative, antiangiogenic, antiproliferative, and pro-apoptotic properties. Methods: In this study, we investigated the interaction of some natural compounds with SENP1 to inhibit its activity. We also screened the ZINC database including natural compounds. Molecular docking was performed, and toxicity of compounds was determined; then, molecular dynamics simulation (MDS) and essential dynamics (ED) were performed on natural compounds with higher free binding energies and minimal side effects. By searching in a large library, virtual screening of the ZINC database was performed using LibDock and CDOCKER, and the final top 20 compounds were allowed for docking against SENP1. According to the docking study, the top three leading molecules were selected and further analyzed by MDS and ED. Results: The results suggest that resveratrol (from the selected compounds) and ZINC33916875 (from the ZINC database) could be more promising SENP1 inhibitory ligands. Discussion: Because these compounds can inhibit SENP1 activity, then they can be novel candidates for cancer treatment. However, wet laboratory experiments are needed to validate their efficacy as SENP1 inhibitors.
Collapse
Affiliation(s)
- Somayye Taghvaei
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Taghvaei
- Faculty of Pharmacy, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Saberi Anvar
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Chun Guo
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Farzaneh Sabouni
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
9
|
Chong Y, Zhu C, Hu W, Jiang C, Liang W, Zhu Z. miR-212-5p Suppresses Glioma Development via Targeting SUMO2. Biochem Genet 2023; 61:35-47. [PMID: 35715580 DOI: 10.1007/s10528-022-10236-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 05/18/2022] [Indexed: 01/24/2023]
Abstract
Recently, increasing studies have suggested that miRNAs play a significant role in the occurrence and development of glioma. More researches are needed to explore the role of miRNAs in glioma, which will help to find new therapeutic targets. miR-212-5p has been reported to be involved in the progression in many cancers. However, whether miR-212-5p has a regulative effect on glioma remains un clear. In this study, we aimed to explore the effect of miR-212-5p on glioma development and its mechanism. Here, we demonstrated that miR-212-5p was lowly expressed in glioma cell. miR-212-5p suppressed the glioma cell proliferation, inhibited the migratory and invasive capabilities and promoted apoptosis in glioma cells. Besides, miR-212-5p also inhibited tumor growth in vivo. We found small ubiquitin-like modifier 2 (SUMO2) was the target of miR-212-5p, and miR-212-5p suppressed SUMO2 expression to regulate the proliferation, migration, and apoptosis of glioma cells. These findings indicated that miR-212-5p may be a possible therapeutic target for the treatment for glioma.
Collapse
Affiliation(s)
- Yulong Chong
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210009, China
- Suqian Hospital Affiliated to Xuzhou Medical University, 223800, Suqian, China
| | - Chunran Zhu
- Department of Neurosurgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, 210028, China
| | - Wei Hu
- Suqian Hospital Affiliated to Xuzhou Medical University, 223800, Suqian, China
| | - Chengrong Jiang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210009, China
| | - Weibang Liang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210009, China.
| | - Zongjing Zhu
- Suqian Hospital Affiliated to Xuzhou Medical University, 223800, Suqian, China.
| |
Collapse
|
10
|
Genome-Wide Transcriptional Profiling Reveals PHACTR1 as a Novel Molecular Target of Resveratrol in Endothelial Homeostasis. Nutrients 2022; 14:nu14214518. [DOI: 10.3390/nu14214518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease in which endothelial cells play an important role in maintaining vascular homeostasis. Endotheliitis caused by endothelial dysfunction (ED) is the key cause for the development of cardiovascular and cerebrovascular diseases as well as other vascular system diseases. Resveratrol (RES), a multi-functional polyphenol present in edible plants and fruits, prevents cardiovascular disease by regulating a variety of athero-relevant signaling pathways. By transcriptome profiling of RES-treated human umbilical vein endothelial cells (HUVECs) and in-depth bioinformatic analysis, we observed that differentially expressed genes (DEGs) were enriched in KEGG pathways of fluid shear stress and atherosclerosis, suggesting that the RES may serve as a good template for a shear stress mimetic drug that hold promise in combating atherosclerosis. A heat map and multiple datasets superimposed screening revealed that RES significantly down-regulated phosphatase and actin modulator 1 (PHACTR1), a pivotal coronary artery disease risk gene associated with endothelial inflammation and polyvascular diseases. We further demonstrate that RES down-regulated the gene and protein expression of PHACTR1 and inhibited TNF-α-induced adhesion of THP-1 monocytes to activated endothelial cells via suppressing the expression of PHACTR1. Taken together, our study reveals that PHACTR1 represents a new molecular target for RES to maintain endothelial cell homeostasis and prevent atherosclerotic cardiovascular disease.
Collapse
|
11
|
Resveratrol as a modulatory of apoptosis and autophagy in cancer therapy. Clin Transl Oncol 2022; 24:1219-1230. [PMID: 35038152 DOI: 10.1007/s12094-021-02770-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the leading causes of death, with a heavy socio-economical burden for countries. Despite the great advances that have been made in the treatment of cancer, chemotherapy is still the most common method of treatment. However, many side effects, including hepatotoxicity, renal toxicity, and cardiotoxicity, limit the efficacy of conventional chemotherapy. Over recent years, natural products have attracted attention as therapeutic agents against various diseases, such as cancer. Resveratrol (RES), a natural polyphenol occurring in grapes, nuts, wine, and berries, exhibited potential for preventing and treating various cancer types. RES also ameliorates chemotherapy-induced detrimental effects. Furthermore, RES could modulate apoptosis and autophagy as the main forms of cancer cell deaths by targeting various signaling pathways and up/downregulation of apoptotic and autophagic genes. This review will summarize the anti-cancer effects of RES and focus on the fundamental mechanisms and targets for modulating apoptosis and autophagy by RES.
Collapse
|
12
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
13
|
Levenson AS. Metastasis-associated protein 1-mediated antitumor and anticancer activity of dietary stilbenes for prostate cancer chemoprevention and therapy. Semin Cancer Biol 2022; 80:107-117. [PMID: 32126261 PMCID: PMC7483334 DOI: 10.1016/j.semcancer.2020.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Dietary bioactive polyphenols that demonstrate beneficial biological functions including antioxidant, anti-inflammatory, and anticancer activity hold immense promise as effective and safe chemopreventive and chemosensitizing natural anticancer agents. The underlying molecular mechanisms of polyphenols' multiple effects are complex and these molecules are considered promising targets for chemoprevention and therapy. However, the development of novel personalized targeted chemopreventive and therapeutic strategies is essential for successful therapeutic outcomes. In this review, we highlight the potential of metastasis-associated protein 1 (MTA1)-targeted anticancer and antitumor effects of three dietary stilbenes, namely resveratrol, pterostilbene, and gnetin C, for prostate cancer management. MTA1, an epigenetic reader and master transcriptional regulator, plays a key role in all stages of prostate cancer progression and metastasis. Stilbenes inhibit MTA1 expression, disrupt the MTA1/histone deacetylase complex, modulate MTA1-associated Epi-miRNAs and reduce MTA1-dependent inflammation, cell survival, and metastasis in prostate cancer in vitro and in vivo. Overall, the MTA1-targeted strategies involving dietary stilbenes may be valuable for effective chemoprevention in selected subpopulations of early stage prostate cancer patients and for combinatorial strategies with conventional chemotherapeutic drugs against advanced metastatic prostate cancer.
Collapse
Affiliation(s)
- Anait S Levenson
- Department of Biomedical Sciences, School of Veterinary Medicine, Long Island University, Brookville, NY, 11548, USA.
| |
Collapse
|
14
|
Liu P, Zhang J, Wang Y, Wang C, Qiu X, Chen DQ. Natural Products Against Renal Fibrosis via Modulation of SUMOylation. Front Pharmacol 2022; 13:800810. [PMID: 35308200 PMCID: PMC8931477 DOI: 10.3389/fphar.2022.800810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Renal fibrosis is the common and final pathological process of kidney diseases. As a dynamic and reversible post-translational modification, SUMOylation and deSUMOylation of transcriptional factors and key mediators significantly affect the development of renal fibrosis. Recent advances suggest that SUMOylation functions as the promising intervening target against renal fibrosis, and natural products prevent renal fibrosis via modulating SUMOylation. Here, we introduce the mechanism of SUMOylation in renal fibrosis and therapeutic effects of natural products. This process starts by summarizing the key mediators and enzymes during SUMOylation and deSUMOylation and its regulation role in transcriptional factors and key mediators in renal fibrosis, then linking the mechanism findings of SUMOylation and natural products to develop novel therapeutic candidates for treating renal fibrosis, and concludes by commenting on promising therapeutic targets and candidate natural products in renal fibrosis via modulating SUMOylation, which highlights modulating SUMOylation as a promising strategy for natural products against renal fibrosis.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Yun Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chen Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Xinping Qiu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dan-Qian Chen,
| |
Collapse
|
15
|
Kilarkaje N, Al-Qaryyan M, Al-Bader MD. Trans-resveratrol imparts disparate effects on transcription of DNA damage sensing/repair pathway genes in euglycemic and hyperglycemic rat testis. Toxicol Appl Pharmacol 2021; 418:115510. [PMID: 33775663 DOI: 10.1016/j.taap.2021.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Prevention or repair of DNA damage is critical to inhibit carcinogenesis in living organisms. Using quantitative RT2 Profiler™ PCR array, we investigated if trans-resveratrol could modulate the transcription of DNA damage sensing/repair pathway genes in euglycemic and non-obese type 2 diabetic Goto-Kakizaki rat testis. Trans-resveratrol imparted disparate effects on gene expressions. In euglycemic rats, it downregulated 79% and upregulated 2% of genes. However, in diabetic rats, it upregulated only 2% and downregulated 4% of genes. As such, diabetes upregulated 16% and downregulated 4% of genes. Trans-resveratrol normalized the expression of 9 (60%) out of 15 upregulated genes in diabetic rats. In euglycemic rats, trans-resveratrol inhibited ATM/ATR, DNA damage repair, pro-cell cycle progression, and apoptosis signaling genes. However, it increased Cdkn1a and Sumo1, indicating cell cycle arrest, apoptosis, and cytostasis in conjunction with increased DNA double-strand breaks and apoptosis. Diabetes increased DNA damage and apoptosis but did not affect ATM/ATR and double-strand break repair genes, although it increased few single-strand repair genes. Diabetes increased Abl1 and Sirt1, which may be related to apoptosis, but their increase may well suggest the enhanced cell cycle progression and putative carcinogenicity. The transcription of Rad17 and Smc1a increased in diabetic rats indicating G2 phase arrest and increases in a few DNA single-strand breaks repair genes suggesting DNA damage repair. Trans-resveratrol inhibits the cell cycle and causes cell death in euglycemic rat testis but normalizes diabetes-induced genes related to DNA damage and cell cycle control, suggesting its usefulness in maintaining DNA integrity in diabetes.
Collapse
Affiliation(s)
| | - Mariam Al-Qaryyan
- Department of Physiology Faculty of Medicine, Kuwait University, Kuwait
| | - Maie D Al-Bader
- Department of Physiology Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
16
|
Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020; 25:E4613. [PMID: 33050462 PMCID: PMC7587200 DOI: 10.3390/molecules25204613] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are micronutrients that are widely present in human daily diets. Numerous studies have demonstrated their potential as antioxidants and anti-inflammatory agents, and for cancer prevention, heart protection and the treatment of neurodegenerative diseases. However, due to their vulnerability to environmental conditions and low bioavailability, their application in the food and medical fields is greatly limited. Nanoformulations, as excellent drug delivery systems, can overcome these limitations and maximize the pharmacological effects of polyphenols. In this review, we summarize the biological activities of polyphenols, together with systems for their delivery, including phospholipid complexes, lipid-based nanoparticles, protein-based nanoparticles, niosomes, polymers, micelles, emulsions and metal nanoparticles. The application of polyphenol nanoparticles in food and medicine is also discussed. Although loading into nanoparticles solves the main limitation to application of polyphenolic compounds, there are some concerns about their toxicological safety after entry into the human body. It is therefore necessary to conduct toxicity studies and residue analysis on the carrier.
Collapse
Affiliation(s)
| | | | | | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.Y.); (Y.D.); (F.W.)
| |
Collapse
|
17
|
Crocetto F, Boccellino M, Barone B, Di Zazzo E, Sciarra A, Galasso G, Settembre G, Quagliuolo L, Imbimbo C, Boffo S, Angelillo IF, Di Domenico M. The Crosstalk between Prostate Cancer and Microbiota Inflammation: Nutraceutical Products Are Useful to Balance This Interplay? Nutrients 2020; 12:E2648. [PMID: 32878054 PMCID: PMC7551491 DOI: 10.3390/nu12092648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
The human microbiota shows pivotal roles in urologic health and disease. Emerging studies indicate that gut and urinary microbiomes can impact several urological diseases, both benignant and malignant, acting particularly on prostate inflammation and prostate cancer. Indeed, the microbiota exerts its influence on prostate cancer initiation and/or progression mechanisms through the regulation of chronic inflammation, apoptotic processes, cytokines, and hormonal production in response to different pathogenic noxae. Additionally, therapies' and drugs' responses are influenced in their efficacy and tolerability by microbiota composition. Due to this complex potential interconnection between prostate cancer and microbiota, exploration and understanding of the involved relationships is pivotal to evaluate a potential therapeutic application in clinical practice. Several natural compounds, moreover, seem to have relevant effects, directly or mediated by microbiota, on urologic health, posing the human microbiota at the crossroad between prostatic inflammation and prostate cancer development. Here, we aim to analyze the most recent evidence regarding the possible crosstalk between prostate, microbiome, and inflammation.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Biagio Barone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Erika Di Zazzo
- Department of Health Science “V. Tiberio”, 86100 Campobasso, Italy
| | - Antonella Sciarra
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80135 Naples, Italy;
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Giuliana Settembre
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, 19122 PA, USA;
| | | | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, 19122 PA, USA;
| |
Collapse
|
18
|
Ashrafizadeh M, Najafi M, Orouei S, Zabolian A, Saleki H, Azami N, Sharifi N, Hushmandi K, Zarrabi A, Ahn KS. Resveratrol Modulates Transforming Growth Factor-Beta (TGF-β) Signaling Pathway for Disease Therapy: A New Insight into Its Pharmacological Activities. Biomedicines 2020; 8:E261. [PMID: 32752069 PMCID: PMC7460084 DOI: 10.3390/biomedicines8080261] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (Res) is a well-known natural product that can exhibit important pharmacological activities such as antioxidant, anti-diabetes, anti-tumor, and anti-inflammatory. An evaluation of its therapeutic effects demonstrates that this naturally occurring bioactive compound can target different molecular pathways to exert its pharmacological actions. Transforming growth factor-beta (TGF-β) is an important molecular pathway that is capable of regulating different cellular mechanisms such as proliferation, migration, and angiogenesis. TGF-β has been reported to be involved in the development of disorders such as diabetes, cancer, inflammatory disorders, fibrosis, cardiovascular disorders, etc. In the present review, the relationship between Res and TGF-β has been investigated. It was noticed that Res can inhibit TGF-β to suppress the proliferation and migration of cancer cells. In addition, Res can improve fibrosis by reducing inflammation via promoting TGF-β down-regulation. Res has been reported to be also beneficial in the amelioration of diabetic complications via targeting the TGF-β signaling pathway. These topics are discussed in detail in this review to shed light on the protective effects of Res mediated via the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negin Sharifi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
19
|
Zhang J, Jin X, Zhou C, Zhao H, He P, Hao Y, Dong Q. Resveratrol Suppresses Human Nasopharyngeal Carcinoma Cell Growth Via Inhibiting Differentiation Antagonizing Non-Protein Coding RNA (DANCR) Expression. Med Sci Monit 2020; 26:e923622. [PMID: 32683392 PMCID: PMC7388650 DOI: 10.12659/msm.923622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although resveratrol has been found to show anti-cancer effects and potential chemotherapeutic activities in several cancers, the role and molecular mechanisms of resveratrol in nasopharyngeal carcinoma (NPC) remains poorly understood. This study aimed to investigate the effect of resveratrol in NPC progression and its molecular mechanism. MATERIAL AND METHODS Quantitative real-time polymerase chain reaction and western blotting were used to detect the expression of DANCR and PTEN. MTT assay and EdU assay were performed to detect the cell proliferation in NPC cells with different treatment. The effect of resveratrol on cell migration was explored by Transwell migration assay. RNA immunoprecipitation assay and chromatin immunoprecipitation assay were performed to test the interaction between DANCR, EZH2, and PTEN. A mouse xenograft model of NPC cell was established, and immunohistochemistry assay was performed to detect the PTEN expression. RESULTS Resveratrol treatment inhibited NPC cell growth and migration in a dose-dependent manner. Additionally, resveratrol downregulated the expression of DANCR and DANCR overexpressing abrogated the inhibition effect of resveratrol on NPC cell migration. Mechanistically, DANCR could bind to EZH2 and downregulated PTEN expression through mediating the binding of EZH2 on PTEN promoter. Furthermore, rescue experiments suggested resveratrol inhibited NPC cell growth and migration by the DANCR/PTEN pathway. Resveratrol significantly decreased the tumor volume and tumor weight and increased the expression of PTEN. CONCLUSIONS Resveratrol increased PTEN expression and suppressed NPC cell growth and migration through downregulation of DANCR.
Collapse
|
20
|
Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020; 9:foods9030340. [PMID: 32183376 PMCID: PMC7143620 DOI: 10.3390/foods9030340] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Resveratrol is a bioactive compound in many foods. Since its anticancer activity was reported in 1997, its health benefits have been intensively investigated. Resveratrol has antioxidant, anti-inflammatory, immunomodulatory, glucose and lipid regulatory, neuroprotective, and cardiovascular protective effects, therefore, can protect against diverse chronic diseases, such as cardiovascular diseases (CVDs), cancer, liver diseases, obesity, diabetes, Alzheimer's disease, and Parkinson's disease. This review summarizes the main findings of resveratrol-related health benefits in recent epidemiological surveys, experimental studies, and clinical trials, highlighting its related molecular mechanisms. Resveratrol, therefore, has been regarded as a potent candidate for the development of nutraceuticals and pharmaceuticals to prevent and treat certain chronic diseases.
Collapse
|
21
|
NDAT suppresses pro-inflammatory gene expression to enhance resveratrol-induced anti-proliferation in oral cancer cells. Food Chem Toxicol 2020; 136:111092. [DOI: 10.1016/j.fct.2019.111092] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/25/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
|
22
|
Khusbu FY, Zhou X, Roy M, Chen FZ, Cao Q, Chen HC. Resveratrol induces depletion of TRAF6 and suppresses prostate cancer cell proliferation and migration. Int J Biochem Cell Biol 2019; 118:105644. [PMID: 31712163 DOI: 10.1016/j.biocel.2019.105644] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Although the early diagnosis of prostate cancer (PCa) enhances life expectancy with a 5-year survival rate of 100 %, metastasized-PCa is the fundamental reason for death by PCa, hence requires an advanced and target-directed treatment strategy. Metastasis is considered to be initiated with the epithelial-mesenchymal transition (EMT) event in which tumor cells change their epithelial characteristics into mesenchymal form and exacerbates the cancer progression. Herein, we investigated the effect and mechanism of resveratrol function in PCa cell proliferation and migration and reported that TNF-receptor associated factor 6 (TRAF6), an unconventional E3 ligase, is a key mediator of resveratrol function to inhibit PCa cell growth and proliferation and targeted for lysosomal degradation by resveratrol. MTT and cell counting demonstrated that resveratrol inhibited the viability and proliferation in DU145 and PC3 cells. Resveratrol (50 μM) mediated the degradation of TRAF6 which in turn facilitated repression of the NF-κB pathway. Also, wound healing and transwell migration assays and level of EMT-related proteins showed that resveratrol used TRAF6, at least in part to inhibit cell migration. Overexpression of TRAF6 augmented EMT in PCa by upregulating the expression of transcription factor SLUG. Moreover, TRAF6 overexpression was closely associated with EMT process through the NF-κB pathway. Our exploration exhibited that resveratrol may inhibit EMT through the TRAF6/NF-κB/SLUG axis. Altogether, this study represents that TRAF6 acts as an intermediary of resveratrol action to suppress PCa cell proliferation and migration, and concerns future attention to obtain as a therapeutic target for the treatment of PCa.
Collapse
Affiliation(s)
- Farjana Yeasmin Khusbu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Xi Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Mridul Roy
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fang-Zhi Chen
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qian Cao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Han-Chun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
23
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
24
|
Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells. J Dent Sci 2019; 14:255-262. [PMID: 31528253 PMCID: PMC6739295 DOI: 10.1016/j.jds.2019.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background/purpose Dysregulation of cell cycle checkpoint control may lead to the independence of growth regulating signals. Checkpoint protein such as the PD-1/PD-L1 immune checkpoint involving tumor cells and host immune defense lymphocytes is a well-studied therapeutic target in oncology. Acting at a cell surface receptor on plasma membrane integrin αvβ3, thyroxine stimulates intracellular accumulation of PD-L1 in cancer cells. Although resveratrol also binds to integrin αvβ3, it reduces PD-L1 expression. Materials and methods In current studies, we investigated the roles of resveratrol and thyroxine in regulating expression of proliferation-related genes and checkpoint genes, PD-L1, BTLA in two oral cancer cell lines. Results Thyroxine suppressed the expression of pro-apoptotic BAD but induced proliferative CCND1 expression in SSC-25 cells and OEC-M1 cells. It activated expression of PD-L1 and BTLA in both cell lines. On the other hand, resveratrol suppressed the expression of all. Alternatively, it activated BAD expression. Thus thyroxine induces checkpoint gene expression which may promote proliferation in cancer cells. Alternatively, resveratrol reverses the stimulatory effects of thyroid hormone to induce anti-proliferation. Conclusion These findings provide new insights into the antagonizing effect of resveratrol on the thyroxine-induced expression of checkpoint genes and proliferative genes in oral cancers.
Collapse
|
25
|
Yen CM, Tsai CW, Chang WS, Yang YC, Hung YW, Lee HT, Shen CC, Sheu ML, Wang JY, Gong CL, Cheng WY, Bau DAT. Novel Combination of Arsenic Trioxide (As 2O 3) Plus Resveratrol in Inducing Programmed Cell Death of Human Neuroblastoma SK-N-SH Cells. Cancer Genomics Proteomics 2018; 15:453-460. [PMID: 30343279 DOI: 10.21873/cgp.20104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
AIM Arsenic trioxide (As2O3), known as pi-shuang and the most toxic compound in traditional Chinese medicine, has been used as an antitumor agent for thousands of years. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phenol that has significant anti-bacterial, anti-fungaI and antiaging activities. Our study aimed to examine the combined anticancer effects of As2O3 and resveratrol against human neuroblastoma SK-N-SH cells, and elucidate the underlying intracellular signaling. MATERIALS AND METHODS SK-N-SH cells were treated with an extremely low-dose (2-4 μM) of As2O3 alone or combined with 75 μg/ml resveratrol for further comparisons. Cell viability, apoptotic signaling as well as synergistic cytotoxic effects were estimated using the MTT assay, microscopy observation, flow cytometric analysis for loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS), and typical quantitative western blotting analysis. Student's t-test, and one- and two-way analysis of variance (ANOVA) were used for examination of significant differences. RESULTS The combined treatment was more effective than single treatment of As2O3 or resveratrol alone in suppressing cell viability, which correlated with the elevation of ROS levels. The intracellular mechanisms of cytotoxicity of As2O3 plus resveratrol were revealed as ROS accumulation and relative decrease of MMP, leading to activation of caspase-3 and -9, but not of caspase-1, -7 and-8. Combination treatment reduced the expression of B-cell lymphoma 2 (BCL2), BH3 interacting domain death agonist (BID), and BCL-x/L. CONCLUSION Combined treatment at extremely low concentration of two agents from natural products, As2O3 and resveratrol, has high potential as a cocktail of anticancer drugs for neuroblastoma.
Collapse
Affiliation(s)
- Chun-Ming Yen
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, R.O.C.,Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Chin Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Wen Hung
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Hsu-Tung Lee
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Ju-Yu Wang
- Basic Medical Science, Department of Nursing, Hung Kuang University, Taichung, Taiwan, R.O.C
| | - Chi-Li Gong
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Wen-Yu Cheng
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C. .,Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
26
|
Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food Chem 2018; 279:223-230. [PMID: 30611484 DOI: 10.1016/j.foodchem.2018.11.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 11/21/2022]
Abstract
In this study, resveratrol was successfully encapsulated using zein-chitosan complex coacervation. The encapsulation efficiency was markedly improved (51.4%) after chitosan coating at 1:2.5 zein/chitosan ratio, compared with 38.6% using native zein. Analysis of multi-model frequency ultrasound treatment effects on resveratrol encapsulation using zein-chitosan complex coacervation showed that 28/40 kHz dual-frequency ultrasound led to the highest encapsulation efficiency (65.2%; 31.9% increase) and loading capacity (5.9%; 31.1% increase) of resveratrol, followed by multi-frequency ultrasound at 20/28/40 kHz (17.8% encapsulation efficiency increase; 17.8% loading capacity increase). Dual-frequency ultrasound treatment significantly reduced the zein-chitosan complex coacervation particle size and reduced their distribution, however, did not change the zeta potential. Fourier transform infrared spectroscopy and fluorescence spectroscopy analysis demonstrated that ultrasound treatment had no effect on secondary structure of zein-chitosan complex but markedly decreased the fluorescence emission intensity. Differential scanning calorimetry and X-ray diffraction results indicated that Dual-frequency ultrasound treatment improved the thermal stability of zein-chitosan complex coacervation but had no effect on the crystal structure. Atomic force microscopy and scanning electron microscopy images revealed uniform distribution of zein-chitosan complex coacervation followed by ultrasonic treatment.
Collapse
|
27
|
Zhou C, Qian W, Ma J, Cheng L, Jiang Z, Yan B, Li J, Duan W, Sun L, Cao J, Wang F, Wu E, Wu Z, Ma Q, Li X. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1. Cell Prolif 2018; 52:e12514. [PMID: 30341797 PMCID: PMC6430460 DOI: 10.1111/cpr.12514] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES Gemcitabine is a standard treatment for advanced pancreatic cancer patients but can cause chemoresistance during treatment. The chemoresistant cells have features of cancer stem cells (CSCs). Resveratrol has been reported to overcome the resistance induced by gemcitabine. However, the mechanism by which resveratrol enhances chemosensitivity remains elusive. Here, we explored the mechanism by which resveratrol enhanced chemosensitivity and the role of sterol regulatory element binding protein 1 (SREBP1) in gemcitabine-induced stemness. MATERIALS AND METHODS The pancreatic cancer cell lines MiaPaCa-2 and Panc-1 were treated under different conditions. Methyl thiazolyl tetrazolium and colony formation assays were performed to evaluate effects on proliferation. Flow cytometry was conducted to detect apoptosis. Oil red O staining was performed to examine lipid synthesis. The sphere formation assay was applied to investigate the stemness of cancer cells. Immunohistochemistry was performed on tumour tissue obtained from treated KPC mice. RESULTS Resveratrol enhanced the sensitivity of gemcitabine and inhibited lipid synthesis via SREBP1. Knockdown of SREBP1 limited the sphere formation ability and suppressed the expression of CSC markers. Furthermore, suppression of SREBP1 induced by resveratrol reversed the gemcitabine-induced stemness. These results were validated in a KPC mouse model. CONCLUSIONS Our data provide evidence that resveratrol reverses the stemness induced by gemcitabine by targeting SREBP1 both in vitro and in vivo. Thus, resveratrol can be an effective chemotherapy sensitizer, and SREBP1 may be a rational therapeutic target.
Collapse
Affiliation(s)
- Cancan Zhou
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Weikun Qian
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Jiguang Ma
- Department of AnesthesiologyFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Liang Cheng
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Zhengdong Jiang
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Bin Yan
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Jie Li
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Wanxing Duan
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Liankang Sun
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Junyu Cao
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Fengfei Wang
- Department of NeurosurgeryNeuroscience Institute, Baylor Scott and White HealthTempleTexas,Neuroscience Institute, Baylor Scott & White HealthTempleTexas,Department of SurgeryTexas A & M University Health Science Center, College of MedicineTempleTexas,Department of NeurologyBaylor Scott & White HealthTempleTexas
| | - Erxi Wu
- Department of NeurosurgeryNeuroscience Institute, Baylor Scott and White HealthTempleTexas,Neuroscience Institute, Baylor Scott & White HealthTempleTexas,Department of SurgeryTexas A & M University Health Science Center, College of MedicineTempleTexas,Department of Pharmaceutical SciencesTexas A & M University College of PharmacyCollege StationTexas
| | - Zheng Wu
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Qingyong Ma
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Xuqi Li
- Department of General SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
28
|
Lin HY, Chin YT, Shih YJ, Chen YR, Leinung M, Keating KA, Mousa SA, Davis PJ. In tumor cells, thyroid hormone analogues non-immunologically regulate PD-L1 and PD-1 accumulation that is anti-apoptotic. Oncotarget 2018; 9:34033-34037. [PMID: 30344919 PMCID: PMC6183344 DOI: 10.18632/oncotarget.26143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022] Open
Abstract
The PD-1/PD-L1 immune checkpoint involving tumor cells and host immune defense lymphocytes is a well-studied therapeutic target in oncology. That PD-1 and PD-L1 may have additional functions within tumor cells that are independent of the checkpoint is indicated by actions of a thyroid hormone analogue, L-thyroxine (T4), on these checkpoint components. Acting at a cell surface receptor on plasma membrane integrin αvβ3, T4 stimulates intracellular accumulation of PD-L1 in cancer cells. In these thyroid hormone-treated cells, T4-induced PD-L1 is non-immunologically anti-apoptotic, blocking activation of p53. Several laboratories have also described accumulation of PD-1 in a variety of cancer cells, not just immune defense lymphocytes and macrophages. Preliminary observations indicate that T4 stimulates intracellular accumulation of PD-1 in tumor cells, suggesting that, like PD-L1, PD-1 has non-immunologic roles in the setting of cancer. Where such roles are anti-apoptotic, thyroid hormone-directed cancer cell accumulation of PD-1 and PD-L1 may limit effectiveness of immunologic therapy directed at the immune checkpoint.
Collapse
Affiliation(s)
- Hung-Yun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Matthew Leinung
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
29
|
Colica C, Milanović M, Milić N, Aiello V, De Lorenzo A, Abenavoli L. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyphenols, including anthocyanins, flavonoids and stilbenes, which constitute one of the most abundant and ubiquitous groups of plant metabolites, are an integral part of the human diet. Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol produced by some plants as a self-defence agent, has an antifungal activity. Resveratrol has been found in some plants (such as grapevine, pine and peanuts) and is considered to have beneficial effects also on human health. The number of studies on resveratrol greatly increased in PubMed database since 1997, after the anticancer effect of this molecule was first reported. The interest in resveratrol in grape was originally sparked by epidemiological studies indicating an inverse relationship between long-standing moderate consumption of red wine and the risk of coronary heart disease; this effect has been ascribed to resveratrol, which possesses diverse biochemical and physiological properties, including antiplatelet and anti-inflammatory proprieties, and provides a wide range of health benefits ranging from chemoprevention to cardioprotection. Recently, resveratrol has been described as an anti-aging compound. The consumption of resveratrol (red wine) together with a Mediterranean diet or a fast-food meal (“McDonald'sMeal”) had a positive impact on oxidized (ox-) LDL and on the expression of oxidative and inflammatory genes. Therefore, this review summarized the most important scientific data about healing and preventive potential of resveratrol, acting as cardioprotective, neuroprotective, chemopreventive and antioxidant agent.
Collapse
Affiliation(s)
- Carmela Colica
- CNR, IBFM UOS of Germaneto, University “Magna Graecia” of Catanzaro, Italy
| | - Maja Milanović
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Vincenzo Aiello
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
30
|
Ho Y, Sh Yang YC, Chin YT, Chou SY, Chen YR, Shih YJ, Whang-Peng J, Changou CA, Liu HL, Lin SJ, Tang HY, Lin HY, Davis PJ. Resveratrol inhibits human leiomyoma cell proliferation via crosstalk between integrin αvβ3 and IGF-1R. Food Chem Toxicol 2018; 120:346-355. [PMID: 30026090 DOI: 10.1016/j.fct.2018.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Leiomyomas (myomas) are the most common benign smooth muscle cell tumor of the myometrium. Resveratrol, a stilbene, has been used as an anti-inflammatory and antitumor agent. In the current study, we investigated the inhibitory effect of resveratrol on the proliferation of primary human myoma cell cultures. Resveratrol arrested cell proliferation via integrin αvβ3. It also inhibited integrin αvβ3 expression and protein accumulation. Concurrently, constitutive AKT phosphorylation in myoma cells was inhibited by resveratrol. Expressions of proapoptotic genes, such as cyclooxygenase (COX)-2, p21 and CDKN2, were induced by resveratrol in myoma cells. On the other hand, expressions of proliferative (anti-apoptotic) genes were either inhibited, as in BCL2, or unchanged, as in cyclin D1 and proliferating cell nuclear antigen (PCNA). The accumulation of insulin-like growth factor (IGF)-1 receptor (IGF-1R) was inhibited by resveratrol in primary myoma cells. IGF-1-induced cell proliferation was inhibited by co-incubation with resveratrol. Therefore, growth modulation of myoma cells occurs via mechanisms dependent on cross-talk between integrin αvβ3 and IGF-1R. Our findings suggest that resveratrol can be considered an alternative therapeutic agent for myomas.
Collapse
Affiliation(s)
- Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Szu-Yi Chou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| | | | - Chun A Changou
- Integrated Laboratory, Center of Translational Medicine and Core Facility, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Hsuan-Liang Liu
- Department of Chemical Engineering and Biotechnology, Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Shwu-Jiuan Lin
- School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA.
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA; Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
31
|
Jiang T, Guo J, Hu Z, Zhao M, Gu Z, Miao S. Identification of Potential Prostate Cancer-Related Pseudogenes Based on Competitive Endogenous RNA Network Hypothesis. Med Sci Monit 2018; 24:4213-4239. [PMID: 29923546 PMCID: PMC6042310 DOI: 10.12659/msm.910886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been revealed to function as competing endogenous RNAs (ceRNAs), which can seclude the common microRNAs (miRNAs) and hence prevent the miRNAs from binding to their ancestral gene. Nonetheless, the role of lncRNA-mediated ceRNAs in prostate cancer has not yet been elucidated. MATERIAL AND METHODS Using The Cancer Genome Atlas (TCGA) database, lncRNA, miRNA, and mRNA profiles from 499 prostate cancer tissues and 52 normal prostate tissues were analyzed with the R package "DESeq" to identify the differentially expressed RNAs. GO and KEGG pathway analyses were performed using "DAVID6.8" and R packages "Clusterprofile." The ceRNA network in prostate cancer was constructed using miRDB, miRTarBase, and TargetScan databases. Survival analysis was performed with Kaplan-Meier analysis. RESULTS A total of 376 lncRNAs, 33 miRNAs, and 687 mRNAs were identified as significant factors in tumorigenesis. Based on the hypothesis that the ceRNA network (lncRNA-miRNA-mRNA regulatory axis) is involved in prostate cancer and forms competitive interrelations between miRNA and mRNA or lncRNA, we constructed a ceRNA network that included 23 lncRNAs, 6 miRNAs, and 2 mRNAs that were differentially expressed in prostate cancer. Only 3 lncRNAs (LINC00308, LINC00355, and OSTN-AS1) had a significant association with survival (P<0.05). The 3 prostate cancer-specific lncRNA were validated in prostate cancer cell lines PC3 and DU145 using qRT-PCR. CONCLUSIONS We demonstrated the differential lncRNA expression profiles in prostate cancer, which provides new insights for future studies of the ceRNA network and its regulatory mechanisms in prostate cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Junjie Guo
- Department of Pathogenic Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Zhongchun Hu
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Ming Zhao
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Zhenggang Gu
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Shu Miao
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|