1
|
Hou X, Zhang Y, Xu D, Qin S, Xue C, Wang J, Zhou X, Shangguan J, Li Z, Liu J, Jia Z, Lu J. Metabolic profiling of a new synthetic cannabinoid receptor agonist, ADMB-FUBIATA, with human liver microsomes, human primary hepatocytes and human recombinant CYP450 enzymes using LC-quadrupole-orbitrap MS. J Pharm Biomed Anal 2024; 249:116342. [PMID: 38986350 DOI: 10.1016/j.jpba.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
A novel synthetic cannabinoid receptor agonist (SCRA), ADMB-FUBIATA, featuring an acetamide-linked structure, has emerged on the illicit drug market. To provide dependable verification of its consumption and identify reliable biomarkers, we investigated an in vitro metabolism study of ADMB-FUBIATA incubated with human primary hepatocytes (HPHs) for the first time and correlated our findings with those from human liver microsomes (HLMs). In this work, ADMB-FUBIATA (10 μM) was incubated with HLM and HPH for 1 and 5 h, respectively, and then subjected to LC-quadrupole-orbitrap MS. A total of 25 metabolites across 8 metabolic pathways were identified after incubation with HLM and HPH, respectively. Monohydroxylation and N-dealkylation were the major metabolic pathways, and formation to ketone was first identified. In addition, the metabolism of ADMB-FUBIATA were found to be mediated by multiple CYP450 enzymes, predominantly CYP2C19, 2D6, and 3A4. This research also initially characterized the fragmentation patterns of the metabolites of ADMB-FUBIATA, elaborating on their structural relationship with ADMB-FUBIATA analogs. To effectively monitor ADMB-FUBIATA abuse, metabolites M4 and M1 were proposed as reliable biomarkers by cross-validating the HLM and HPH incubation results.
Collapse
Affiliation(s)
- Xiaolong Hou
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Ying Zhang
- Beijing Public Security Forensic Identification Centre, Key Laboratory of the Ministry of Public Security for Toxicological Analysis in Court, Beijing 100192, China.
| | - Duoqi Xu
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China.
| | - Shiyang Qin
- Beijing Public Security Forensic Identification Centre, Key Laboratory of the Ministry of Public Security for Toxicological Analysis in Court, Beijing 100192, China.
| | - Chenyu Xue
- Beijing Public Security Forensic Identification Centre, Key Laboratory of the Ministry of Public Security for Toxicological Analysis in Court, Beijing 100192, China.
| | - Jifen Wang
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Xinyang Zhou
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jianyang Shangguan
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Zhuoyan Li
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jiatong Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Zhenjun Jia
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jianghai Lu
- Drug and Food Anti-doping Laboratory, China Anti-Doping Agency, Beijing 100029, China.
| |
Collapse
|
2
|
Zerdoug A, Le Vée M, Le Mentec H, Carteret J, Jouan E, Jamin A, Lopez B, Uehara S, Higuchi Y, Yoneda N, Chesné C, Suemizu H, Fardel O. Induction of drug metabolizing enzyme and drug transporter expression by antifungal triazole pesticides in human HepaSH hepatocytes. CHEMOSPHERE 2024; 366:143474. [PMID: 39369742 DOI: 10.1016/j.chemosphere.2024.143474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Triazole pesticides are widely used fungicides, to which humans are rather highly exposed. They are known to activate drug-sensing receptors regulating expression of hepatic drug metabolizing enzymes and drug transporters, thus suggesting that the hepatic drug detoxification system is modified by these agrochemicals. To investigate this hypothesis, the effects of 9 triazole fungicides towards expression of drug metabolizing enzymes and transporters were characterized in cultured human HepaSH cells, that are human hepatocytes deriving from chimeric humanized liver TK-NOG mice. Most of triazoles used at 10 μM were found to act as inducers of cytochrome P-450 (CYP) 1A1, CYP1A2, CYP2B6, CYP3A4 and UDP-glucuronosyltransferase 1A1 mRNA levels and of CYP3A4 protein; some triazoles also enhanced mRNA expression of the canalicular transporters P-glycoprotein/MDR1, multidrug resistance-associated protein 2 and breast cancer resistance protein. Triazoles however concomitantly inhibited CYP2B6 and CYP3A4 activities and thus appeared as dual regulators of these CYPs, being both inducers of their expression and inhibitors of their activity. The inducing effect however predominated, at least for bromuconazole, propiconazole and tebuconazole. Bromuconazole was moreover predicted to enhance CYP2B6 and CYP3A4 expression in humans exposed to this fungicide in a chronic, acute or occupational context. These data demonstrate that key-actors of the human hepatic detoxification system are impacted by triazole pesticides, which may have to be considered for the risk assessment of these agrochemicals. They additionally highlight that the use of human HepaSH cells as surrogates to primary human hepatocytes represents an attractive and promising way for studying hepatic effects of environmental chemicals.
Collapse
Affiliation(s)
- Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; Biopredic International, F-35760, Saint Grégoire, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Hélène Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Agnès Jamin
- Biopredic International, F-35760, Saint Grégoire, France
| | - Béatrice Lopez
- Biopredic International, F-35760, Saint Grégoire, France
| | - Shotaro Uehara
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Yuichiro Higuchi
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | | | - Hiroshi Suemizu
- Central Institute for Experimental Medicine and Life Science, 210-0821, Kawasaki, Japan
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
3
|
He Y, Gao M, Zhu X, Peng W, Zhou Y, Cheng J, Bai L, Bao J. Large-Scale Formation and Long-Term Culture of Hepatocyte Organoids From Streamlined In Vivo Genome-Edited GGTA1 -/- Pigs for Bioartificial Liver Applications. Xenotransplantation 2024; 31:e12878. [PMID: 39166823 DOI: 10.1111/xen.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Hepatocyte transplantation and bioartificial liver (BAL) systems hold significant promise as less invasive alternatives to traditional transplantation, providing crucial temporary support for patients with acute and chronic liver failure. Although human hepatocytes are ideal, their use is limited by ethical concerns and donor availability, leading to the use of porcine hepatocytes in BAL systems due to their functional similarities. Recent advancements in gene-editing technology have improved porcine organ xenotransplantation clinical trials by addressing immune rejection issues. Gene-edited pigs, such as alpha-1,3-galactosyltransferase (GGTA1) knockout pigs, offer a secure source of primary cells for BAL systems. Our research focuses on optimizing the safety and functionality of porcine primary hepatocytes during large-scale cultivation. We achieved this by creating GGTA1 knockout pigs through one-step delivery of CRISPR/Cas9 to pig zygotes via oviduct injection of rAAV, and enhancing hepatocyte viability and function by co-culturing hepatocytes with Roof plate-specific spondin 1 overexpressing HUVECs (R-HUVECs). Using a Rocker culture system, approximately 1010 primary porcine hepatocytes and R-HUVECs rapidly formed organoids with a diameter of 92.1 ± 28.1 µm within 24 h. These organoids not only maintained excellent functionality but also supported partial hepatocyte self-renewal during long-term culture over 28 days. Gene-edited primary porcine hepatocyte organoids will significantly advance the applications of hepatocyte transplantation and BAL systems.
Collapse
Affiliation(s)
- Yuting He
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengyu Gao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xinglong Zhu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wanliu Peng
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanyan Zhou
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Wojtunik-Kulesza K, Rudkowska M, Klimek K, Agacka-Mołdoch M, Mołdoch J, Michalak A. Expanding Knowledge about the Influence of Citral on Cognitive Functions-In Vitro, In Vivo and Ex Vivo Studies. Int J Mol Sci 2024; 25:6866. [PMID: 38999975 PMCID: PMC11241199 DOI: 10.3390/ijms25136866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Citral, a common monoterpene found in numerous plants, is an interesting compound that has been shown to have various biological activities. Although it is widely distributed in nature and there are many studies presenting its biological activities, its anti-neurodegenerative activity, especially under in vivo conditions, is very poorly understood. Thus, this paper aimed to deepen knowledge about citral activity towards factors and symptoms of neurodegeneration. To accomplish this, several comprehensive tests were conducted, including the estimation of butyrylcholinesterase inhibition, the evaluation of hepatotoxicity and the detection of oxidative stress and lipid peroxidation in vitro, as well as an in vivo behavioral assessment using mice models. Additionally, ex vivo determination of level of the compound in the brain and blood of a tested animal was undertaken. The results obtained revealed that citral is able to inhibit butyrylcholinesterase activity and protect hepatic cells against oxidative stress and lipid peroxidation in vitro. Moreover, behavioral tests in vivo indicated that citral (50 mg/kg) improves memory processes associated with acquisition (passive avoidance test), both in acute and subchronic administration. Additionally, we found that the administration of citral at 25 mg/kg and 50 mg/kg did not significantly affect the locomotor activity. Beyond the aforementioned, gas chromatography-mass spectrometry analysis revealed the presence of the compound in the blood and brain after subchronic administration of citral. Taken together, the results obtained in vitro, in vivo and ex vivo clearly indicate that citral is a promising monoterpene that can potentially be used towards cognition improvement.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodźki, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Monika Agacka-Mołdoch
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodźki, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Huang C, Jiang H, Dong J, Jiang L, Li J, Xu J, Cui T, Wang L, Li X, Feng G, Zhang Y, Li T, Li W, Zhou Q. Functional mouse hepatocytes derived from interspecies chimeric livers effectively mitigate chronic liver fibrosis. Stem Cell Reports 2024; 19:877-889. [PMID: 38729156 PMCID: PMC11390683 DOI: 10.1016/j.stemcr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Liver disease is a major global health challenge. There is a shortage of liver donors worldwide, and hepatocyte transplantation (HT) may be an effective treatment to overcome this problem. However, the present approaches for generation of hepatocytes are associated with challenges, and interspecies chimera-derived hepatocytes produced by interspecies blastocyst complementation (IBC) may be promising donor hepatocytes because of their more comprehensive hepatic functions. In this study, we isolated mouse hepatocytes from mouse-rat chimeric livers using IBC and found that interspecies chimera-derived hepatocytes exhibited mature hepatic functions in terms of lipid accumulation, glycogen storage, and urea synthesis. Meanwhile, they were more similar to endogenous hepatocytes than hepatocytes derived in vitro. Interspecies chimera-derived hepatocytes could relieve chronic liver fibrosis and reside in the injured liver after transplantation. Our results suggest that interspecies chimera-derived hepatocytes are a potentially reliable source of hepatocytes and can be applied as a therapeutic approach for HT.
Collapse
Affiliation(s)
- Cheng Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxi Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liyuan Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tianda Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
6
|
Bronsard J, Savary C, Massart J, Viel R, Moutaux L, Catheline D, Rioux V, Clement B, Corlu A, Fromenty B, Ferron PJ. 3D multi-cell-type liver organoids: A new model of non-alcoholic fatty liver disease for drug safety assessments. Toxicol In Vitro 2024; 94:105728. [PMID: 37951556 DOI: 10.1016/j.tiv.2023.105728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The development of in vitro models that recapitulate critical liver functions is essential for accurate assessments of drug toxicity. Although liver organoids can be used for drug discovery and toxicology, they are limited by (i) the lack of expression and activity of xenobiotic-metabolizing enzymes, and (ii) the difficulty of mimicking non-alcoholic fatty liver disease (NAFLD, which influences the expression of these enzymes) in vitro. Here, we generated three-dimensional multi-cell-type liver organoids (hereafter "HML organoids") from HepaRG cells, primary human macrophages, and hepatic-stellate-cell-derived LX-2 cells. We also developed an NAFLD model by culturing HML organoids for 9 days with a mixture of stearic and oleic acids. The exposed organoids showed typical features of steatosis and expressed fibrosis markers. We subsequently used HML and NAFLD-HML organoids to model drug-induced liver injury. By estimating the IC50 and benchmark doses, we were able to improve the in vitro detection of drugs likely to be toxic in fatty livers. Thus, HML and NAFLD-HML organoids exhibited most of the liver's functions and are relevant in vitro models of drug metabolism, drug toxicity, and adverse drug event in NAFLD.
Collapse
Affiliation(s)
- J Bronsard
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - C Savary
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - J Massart
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - R Viel
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, France-BioImaging (ANR-10-INBS-04), plateforme H2P2, F-35000 Rennes, France
| | - L Moutaux
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - D Catheline
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - V Rioux
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - B Clement
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - A Corlu
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - B Fromenty
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - P J Ferron
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France.
| |
Collapse
|
7
|
Messelmani T, Le Goff A, Soncin F, Souguir Z, Merlier F, Maubon N, Legallais C, Leclerc E, Jellali R. Coculture model of a liver sinusoidal endothelial cell barrier and HepG2/C3a spheroids-on-chip in an advanced fluidic platform. J Biosci Bioeng 2024; 137:64-75. [PMID: 37973520 DOI: 10.1016/j.jbiosc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
The liver is one of the main organs involved in the metabolism of xenobiotics and a key organ in toxicity studies. Prior to accessing the hepatocytes, xenobiotics pass through the hepatic sinusoid formed by liver sinusoidal endothelial cells (LSECs). The LSECs barrier regulates the kinetics and concentrations of the xenobiotics before their metabolic processing by the hepatocytes. To mimic this physiological situation, we developed an in vitro model reproducing an LSECs barrier in coculture with a hepatocyte biochip, using a fluidic platform. This technology made dynamic coculture and tissue crosstalk possible. SK-HEP-1 and HepG2/C3a cells were used as LSECs and as hepatocyte models, respectively. We confirmed the LSECs phenotype by measuring PECAM-1 and stabilin-2 expression levels and the barrier's permeability/transport properties with various molecules. The tightness of the SK-HEP-1 barrier was enhanced in the dynamic coculture. The morphology, albumin secretion, and gene expression levels of markers of HepG2/C3a were not modified by coculture with the LSECs barrier. Using acetaminophen, a well-known hepatotoxic drug, to study tissue crosstalk, there was a reduction in the expression levels of the LSECs markers stabilin-2 and PECAM-1, and a modification of those of CLEC4M and KDR. No HepG2/C3a toxicity was observed. The metabolisation of acetaminophen by HepG2/C3a monocultures and cocultures was confirmed. Although primary cells are required to propose a fully relevant model, the present approach highlights the potential of our system for investigating xenobiotic metabolism and toxicity.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, 43 Avenue le Corbusier, 59800 Lille, France; CNRS, IRL2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Franck Merlier
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu, Cedex CS 60319, 60203 Compiègne, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Eric Leclerc
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; CNRS, IRL2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
8
|
Arif S, Moulin VJ. Extracellular vesicles on the move: Traversing the complex matrix of tissues. Eur J Cell Biol 2023; 102:151372. [PMID: 37972445 DOI: 10.1016/j.ejcb.2023.151372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles are small particles involved in intercellular signaling. They are produced by virtually all cell types, transport biological molecules, and are released into the extracellular space. Studies on extracellular vesicles have become more numerous in recent years, leading to promising research on their potential impact on health and disease. Despite significant progress in understanding the bioactivity of extracellular vesicles, most in vitro and in vivo studies overlook their transport through the extracellular matrix in tissues. The interaction or free diffusion of extracellular vesicles in their environment can provide valuable insights into their efficacy and function. Therefore, understanding the factors that influence the transport of extracellular vesicles in the extracellular matrix is essential for the development of new therapeutic approaches that involve the use of these extracellular vesicles. This review discusses the importance of the interaction between extracellular vesicles and the extracellular matrix and the different factors that influence their diffusion. In addition, we evaluate their role in tissue homeostasis, pathophysiology, and potential clinical applications. Understanding the complex interaction between extracellular vesicles and the extracellular matrix is critical in order to develop effective strategies to target specific cells and tissues in a wide range of clinical applications.
Collapse
Affiliation(s)
- Syrine Arif
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada; Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Véronique J Moulin
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada; Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
9
|
Haas M, Ackermann G, Küpper JH, Glatt H, Schrenk D, Fahrer J. OCT1-dependent uptake of structurally diverse pyrrolizidine alkaloids in human liver cells is crucial for their genotoxic and cytotoxic effects. Arch Toxicol 2023; 97:3259-3271. [PMID: 37676300 PMCID: PMC10567918 DOI: 10.1007/s00204-023-03591-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are important plant hepatotoxins, which occur as contaminants in plant-based foods, feeds and phytomedicines. Numerous studies demonstrated that the genotoxicity and cytotoxicity of PAs depend on their chemical structure, allowing for potency ranking and grouping. Organic cation transporter-1 (OCT1) was previously shown to be involved in the cellular uptake of the cyclic PA diesters monocrotaline, retrorsine and senescionine. However, little is known about the structure-dependent transport of PAs. Therefore, we investigated the impact of OCT1 on the uptake and toxicity of three structurally diverse PAs (heliotrine, lasiocarpine and riddelliine) differing in their degree and type of esterification in metabolically competent human liver cell models and hamster fibroblasts. Human HepG2-CYP3A4 liver cells were exposed to the respective PA in the presence or absence of the OCT1-inhibitors D-THP and quinidine, revealing a strongly attenuated cytotoxicity upon OCT1 inhibition. The same experiments were repeated in V79-CYP3A4 hamster fibroblasts, confirming that OCT1 inhibition prevents the cytotoxic effects of all tested PAs. Interestingly, OCT1 protein levels were much lower in V79-CYP3A4 than in HepG2-CYP3A4 cells, which correlated with their lower susceptibility to PA-induced cytotoxicity. The cytoprotective effect of OCT1 inhibiton was also demonstrated in primary human hepatocytes following PA exposure. Our experiments further showed that the genotoxic effects triggered by the three PAs are blocked by OCT1 inhibition as evidenced by strongly reduced γH2AX and p53 levels. Consistently, inhibition of OCT1-mediated uptake suppressed the activation of the DNA damage response (DDR) as revealed by decreased phosphorylation of checkpoint kinases upon PA treatment. In conclusion, we demonstrated that PAs, independent of their degree of esterification, are substrates for OCT1-mediated uptake into human liver cells. We further provided evidence that OCT1 inhibition prevents PA-triggered genotoxicity, DDR activation and subsequent cytotoxicity. These findings highlight the crucial role of OCT1 together with CYP3A4-dependent metabolic activation for PA toxicity.
Collapse
Affiliation(s)
- Manuel Haas
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Gabriel Ackermann
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Division of Molecular Cell Biology, Department of Environment and Nature Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Hansruedi Glatt
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Dieter Schrenk
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany.
| |
Collapse
|
10
|
Haijer F, Koets-Shajari S, Heegsma J, Serna-Salas S, Blokzijl T, Buist-Homan M, Moshage H, Faber KN. Hydroxyurea attenuates hepatic stellate cell proliferation in vitro and liver fibrogenesis in vivo. FASEB J 2023; 37:e23124. [PMID: 37552464 DOI: 10.1096/fj.202300920r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Liver fibrosis results from excessive proliferation of, and collagen production by hepatic stellate cells (HSCs) that is caused by chronic liver injury. No drugs are available to cure liver fibrosis. Hydroxyurea is an anti-proliferative drug that is used in benign and malignant disorders. Here, we studied the effect of hydroxyurea on primary HSCs and its anti-fibrotic effect in the CCl4 mouse model of liver fibrosis. Primary rat HSCs were cultured in the absence or presence of hydroxyurea (0.1-1.0 mmol/L). CCl4 or vehicle was administered to C57BL/6/J mice for 4 weeks, with or without hydroxyurea (100 mg/kg/day) co-treatment. We used real-time cell proliferation analysis, Oil Red O (lipid droplet) staining, immunohistochemistry, Acridine Orange staining (apoptosis), Sytox green staining (necrosis), RT-qPCR, ELISA, and Western Blotting for analysis. Hydroxyurea dose-dependently suppressed lipid droplet-loss and mRNA levels of Col1α1 and Acta2 in transdifferentiating HSCs. In fully-activated HSCs, hydroxyurea dose-dependently attenuated PCNA protein levels and BrdU incorporation, but did not reverse Col1α1 and Acta2 mRNA expression. Hydroxyurea did not induce apoptosis or necrosis in HSCs or hepatocytes. Hydroxyurea suppressed accumulation of desmin-positive HSCs and hepatic collagen deposition after CCl4 treatment. CCl4 -induced regenerative hepatocyte proliferation, Col1α1 and Acta2 mRNA expression and α-SMA protein levels were not affected. This study demonstrates that hydroxyurea inhibits HSC proliferation in vitro and attenuates early development of liver fibrosis in vivo, while preserving hepatocyte regeneration after toxic insults by CCl4. Thus, hydroxyurea may have therapeutic value against liver fibrosis.
Collapse
Affiliation(s)
- Floris Haijer
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shiva Koets-Shajari
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janette Heegsma
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sandra Serna-Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tjasso Blokzijl
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Calamaio S, Serzanti M, Boniotti J, Fra A, Garrafa E, Cominelli M, Verardi R, Poliani PL, Dotti S, Villa R, Mazzoleni G, Dell’Era P, Steimberg N. Human iPSC-Derived 3D Hepatic Organoids in a Miniaturized Dynamic Culture System. Biomedicines 2023; 11:2114. [PMID: 37626611 PMCID: PMC10452373 DOI: 10.3390/biomedicines11082114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The process of identifying and approving a new drug is a time-consuming and expensive procedure. One of the biggest issues to overcome is the risk of hepatotoxicity, which is one of the main reasons for drug withdrawal from the market. While animal models are the gold standard in preclinical drug testing, the translation of results into therapeutic intervention is often ambiguous due to interspecies differences in hepatic metabolism. The discovery of human induced pluripotent stem cells (hiPSCs) and their derivatives has opened new possibilities for drug testing. We used mesenchymal stem cells and hepatocytes both derived from hiPSCs, together with endothelial cells, to miniaturize the process of generating hepatic organoids. These organoids were then cultivated in vitro using both static and dynamic cultures. Additionally, we tested spheroids solely composed by induced hepatocytes. By miniaturizing the system, we demonstrated the possibility of maintaining the organoids, but not the spheroids, in culture for up to 1 week. This timeframe may be sufficient to carry out a hypothetical pharmacological test or screening. In conclusion, we propose that the hiPSC-derived liver organoid model could complement or, in the near future, replace the pharmacological and toxicological tests conducted on animals.
Collapse
Affiliation(s)
- Serena Calamaio
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (M.S.)
| | - Marialaura Serzanti
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (M.S.)
| | - Jennifer Boniotti
- Laboratory of Tissue Engineering, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (J.B.); (G.M.)
| | - Annamaria Fra
- Oncology and Experimental Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Emirena Garrafa
- Laboratory Diagnostics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (P.L.P.)
| | - Rosanna Verardi
- Laboratory for Stem Cell Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (P.L.P.)
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (S.D.); (R.V.)
| | - Riccardo Villa
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy; (S.D.); (R.V.)
| | - Giovanna Mazzoleni
- Laboratory of Tissue Engineering, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (J.B.); (G.M.)
| | - Patrizia Dell’Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (M.S.)
| | - Nathalie Steimberg
- Laboratory of Tissue Engineering, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (J.B.); (G.M.)
| |
Collapse
|
12
|
Reardon AJF, Farmahin R, Williams A, Meier MJ, Addicks GC, Yauk CL, Matteo G, Atlas E, Harrill J, Everett LJ, Shah I, Judson R, Ramaiahgari S, Ferguson SS, Barton-Maclaren TS. From vision toward best practices: Evaluating in vitro transcriptomic points of departure for application in risk assessment using a uniform workflow. FRONTIERS IN TOXICOLOGY 2023; 5:1194895. [PMID: 37288009 PMCID: PMC10242042 DOI: 10.3389/ftox.2023.1194895] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most chemicals had AEDs that were lower (i.e., more conservative) than apical PODs in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be protective of potential effects on human health. An assessment of multiple data points for single chemicals revealed that longer exposure duration and varied cell culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated increased chemical potency. Seven chemicals were flagged as outliers when comparing the ratio of tPOD to traditional POD, thus indicating they require further assessment to better understand their hazard potential. Our findings build confidence in the use of tPODs but also reveal data gaps that must be addressed prior to their adoption to support risk assessment applications.
Collapse
Affiliation(s)
- Anthony J. F. Reardon
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Reza Farmahin
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Gregory C. Addicks
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Carole L. Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Geronimo Matteo
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, University of Ottawa, Ottawa, ON, Canada
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Logan J. Everett
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Imran Shah
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Richard Judson
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Sreenivasa Ramaiahgari
- Division of Translational Toxicology, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Stephen S. Ferguson
- Division of Translational Toxicology, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Tara S. Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
13
|
Messelmani T, Le Goff A, Soncin F, Gilard F, Souguir Z, Maubon N, Gakière B, Legallais C, Leclerc E, Jellali R. Investigation of the metabolomic crosstalk between liver sinusoidal endothelial cells and hepatocytes exposed to paracetamol using organ-on-chip technology. Toxicology 2023; 492:153550. [PMID: 37209942 DOI: 10.1016/j.tox.2023.153550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Organ-on-chip technology is a promising in vitro approach recapitulating human physiology for the study of responses to drug exposure. Organ-on-chip cell cultures have paved new grounds for testing and understanding metabolic dose-responses when evaluating pharmaceutical and environmental toxicity. Here, we present a metabolomic investigation of a coculture of liver sinusoidal endothelial cells (LSECs, SK-HEP-1) with hepatocytes (HepG2/C3a) using advanced organ-on-chip technology. To reproduce the physiology of the sinusoidal barrier, LSECs were separated from hepatocytes by a membrane (culture insert integrated organ-on-chip platform). The tissues were exposed to acetaminophen (APAP), an analgesic drug widely used as a xenobiotic model in liver and HepG2/C3a studies. The differences between the SK-HEP-1, HepG2/C3a monocultures and SK-HEP-1/HepG2/C3a cocultures, treated or not with APAP, were identified from metabolomic profiles using supervised multivariate analysis. The pathway enrichment coupled with metabolite analysis of the corresponding metabolic fingerprints contributed to extracting the specificity of each type of culture and condition. In addition, we analysed the responses to APAP treatment by mapping the signatures with significant modulation of the biological processes of the SK-HEP-1 APAP, HepG2/C3a APAP and SK-HEP-1/HepG2/C3a APAP conditions. Furthermore, our model shows how the presence of the LSECs barrier and APAP first pass can modify the metabolism of HepG2/C3a. Altogether, this study demonstrates the potential of a "metabolomic-on-chip" strategy for pharmaco-metabolomic applications predicting individual response to drugs.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Anne Le Goff
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, 43 Avenue le Corbusier, 59800 Lille, France; CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Cécile Legallais
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Eric Leclerc
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France; CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Rachid Jellali
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
14
|
Zerdoug A, Le Vée M, Uehara S, Jamin A, Higuchi Y, Yoneda N, Lopez B, Chesné C, Suemizu H, Fardel O. Drug transporter expression and activity in cryopreserved human hepatocytes isolated from chimeric TK-NOG mice with humanized livers. Toxicol In Vitro 2023; 90:105592. [PMID: 37030647 DOI: 10.1016/j.tiv.2023.105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Chimeric mice with humanized liver are thought to represent a sustainable source of isolated human hepatocytes for in vitro studying detoxification of drugs in humans. Because drug transporters are now recognized as key-actors of the hepatic detoxifying process, the present study was designed to characterize mRNA expression and activity of main hepatic drug transporters in cryopreserved human hepatocytes isolated from chimeric TK-NOG mice and termed HepaSH cells. Such cells after thawing were shown to exhibit a profile of hepatic solute carrier (SLC) and ATP-binding cassette (ABC) drug transporter mRNA levels well correlated to those found in cryopreserved primary human hepatocytes or human livers. HepaSH cells used either as suspensions or as 24 h-cultures additionally displayed notable activities of uptake SLCs, including organic anion transporting polypeptides (OATPs), organic anion transporter 2 (OAT2) or sodium-taurocholate co-transporting polypeptide (NTCP). SLC transporter mRNA expression, as well as SLC activities, nevertheless fell in HepaSH cells cultured for 120 h, which may reflect a partial dedifferentiation of these cells with time in culture in the conventional monolayer culture conditions used in the study. These data therefore support the use of cryopreserved HepaSH cells as either suspensions or short-term cultures for drug transport studies.
Collapse
Affiliation(s)
- Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France; Biopredic International, F-35760 Saint Grégoire, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Shotaro Uehara
- Central Institute for Experimental Animals, 210-0821 Kawasaki, Japan
| | - Agnès Jamin
- Biopredic International, F-35760 Saint Grégoire, France
| | - Yuichiro Higuchi
- Central Institute for Experimental Animals, 210-0821 Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Animals, 210-0821 Kawasaki, Japan
| | | | | | - Hiroshi Suemizu
- Central Institute for Experimental Animals, 210-0821 Kawasaki, Japan
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
15
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Petrenko Y, Dejneka A, Lunov O. Mechanical Regulation of Mitochondrial Dynamics and Function in a 3D-Engineered Liver Tumor Microenvironment. ACS Biomater Sci Eng 2023; 9:2408-2425. [PMID: 37001010 PMCID: PMC10170482 DOI: 10.1021/acsbiomaterials.2c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
It has become evident that physical stimuli of the cellular microenvironment transmit mechanical cues regulating key cellular functions, such as proliferation, migration, and malignant transformation. Accumulating evidence suggests that tumor cells face variable mechanical stimuli that may induce metabolic rewiring of tumor cells. However, the knowledge of how tumor cells adapt metabolism to external mechanical cues is still limited. We therefore designed soft 3D collagen scaffolds mimicking a pathological mechanical environment to decipher how liver tumor cells would adapt their metabolic activity to physical stimuli of the cellular microenvironment. Here, we report that the soft 3D microenvironment upregulates the glycolysis of HepG2 and Alexander cells. Both cell lines adapt their mitochondrial activity and function under growth in the soft 3D microenvironment. Cells grown in the soft 3D microenvironment exhibit marked mitochondrial depolarization, downregulation of mitochondrially encoded cytochrome c oxidase I, and slow proliferation rate in comparison with stiff monolayer cultures. Our data reveal the coupling of liver tumor glycolysis to mechanical cues. It is proposed here that soft 3D collagen scaffolds can serve as a useful model for future studies of mechanically regulated cellular functions of various liver (potentially other tissues as well) tumor cells.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Yuriy Petrenko
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| |
Collapse
|
16
|
Haas M, Wirachowski K, Thibol L, Küpper JH, Schrenk D, Fahrer J. Potency ranking of pyrrolizidine alkaloids in metabolically competent human liver cancer cells and primary human hepatocytes using a genotoxicity test battery. Arch Toxicol 2023; 97:1413-1428. [PMID: 36928417 PMCID: PMC10110667 DOI: 10.1007/s00204-023-03482-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Pyrrolizidine alkaloids (PAs) occur as contaminants in plant-based foods and herbal medicines. Following metabolic activation by cytochrome P450 (CYP) enzymes, PAs induce DNA damage, hepatotoxicity and can cause liver cancer in rodents. There is ample evidence that the chemical structure of PAs determines their toxicity. However, more quantitative genotoxicity data are required, particularly in primary human hepatocytes (PHH). Here, the genotoxicity of eleven structurally different PAs was investigated in human HepG2 liver cells with CYP3A4 overexpression and PHH using an in vitro test battery. Furthermore, the data were subject to benchmark dose (BMD) modeling to derive the genotoxic potency of individual PAs. The cytotoxicity was initially determined in HepG2-CYP3A4 cells, revealing a clear structure-toxicity relationship for the PAs. Importantly, experiments in PHH confirmed the structure-dependent toxicity and cytotoxic potency ranking of the tested PAs. The genotoxicity markers γH2AX and p53 as well as the alkaline Comet assay consistently demonstrated a structure-dependent genotoxicity of PAs in HepG2-CYP3A4 cells, correlating well with their cytotoxic potency. BMD modeling yielded BMD values in the range of 0.1-10 µM for most cyclic and open diesters, followed by the monoesters. While retrorsine showed the highest genotoxic potency, monocrotaline and lycopsamine displayed the lowest genotoxicity. Finally, experiments in PHH corroborated the genotoxic potency ranking, and revealed genotoxic effects even in the absence of detectable cytotoxicity. In conclusion, our findings strongly support the concept of grouping PAs into potency classes and help to pave the way for a broader acceptance of relative potency factors in risk assessment.
Collapse
Affiliation(s)
- Manuel Haas
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Karina Wirachowski
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Lea Thibol
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Division of Molecular Cell Biology, Department of Environment and Nature Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Dieter Schrenk
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany.
| |
Collapse
|
17
|
Targeting IKKβ Activity to Limit Sterile Inflammation in Acetaminophen-Induced Hepatotoxicity in Mice. Pharmaceutics 2023; 15:pharmaceutics15020710. [PMID: 36840032 PMCID: PMC9959252 DOI: 10.3390/pharmaceutics15020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The kinase activity of inhibitory κB kinase β (IKKβ) acts as a signal transducer in the activating pathway of nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death in the development of numerous hepatocellular injuries. However, the importance of IKKβ activity on acetaminophen (APAP)-induced hepatotoxicity remains to be defined. Here, a derivative of caffeic acid benzylamide (CABA) inhibited the kinase activity of IKKβ, as did IMD-0354 and sulfasalazine which show therapeutic efficacy against inflammatory diseases through a common mechanism: inhibiting IKKβ activity. To understand the importance of IKKβ activity in sterile inflammation during hepatotoxicity, C57BL/6 mice were treated with CABA, IMD-0354, or sulfasalazine after APAP overdose. These small-molecule inhibitors of IKKβ activity protected the APAP-challenged mice from necrotic injury around the centrilobular zone in the liver, and rescued the mice from hepatic damage-associated lethality. From a molecular perspective, IKKβ inhibitors directly interrupted sterile inflammation in the Kupffer cells of APAP-challenged mice, such as damage-associated molecular pattern (DAMP)-induced activation of NF-κB activity via IKKβ, and NF-κB-regulated expression of cytokines and chemokines. However, CABA did not affect the upstream pathogenic events, including oxidative stress with glutathione depletion in hepatocytes after APAP overdose. N-acetyl cysteine (NAC), the only FDA-approved antidote against APAP overdose, replenishes cellular levels of glutathione, but its limited efficacy is concerning in late-presenting patients who have already undergone oxidative stress in the liver. Taken together, we propose a novel hypothesis that chemical inhibition of IKKβ activity in sterile inflammation could mitigate APAP-induced hepatotoxicity in mice, and have the potential to complement NAC treatment in APAP overdoses.
Collapse
|
18
|
Carlsson MJ, Fahrer J. Analyzing the Effects of HDAC Inhibitors on DNA Damage and Associated Cytotoxicity in Primary Hepatocytes. Methods Mol Biol 2023; 2589:241-252. [PMID: 36255629 DOI: 10.1007/978-1-0716-2788-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Primary hepatocytes are the gold standard in pharmaco- and toxicokinetic studies during preclinical development of drug candidates. Such cells are a valuable tool to identify potential hepatotoxicity, an important adverse drug reaction. Primary hepatocytes can be obtained not only from wild-type mice but also from genetically engineered knockout mouse strains. Liver perfusion yields murine primary hepatocytes (mpH) with high vitality, expressing an array of metabolic enzymes and transporters that are impaired or even absent in established liver cell lines. Furthermore, mpH display no genetic alterations and are proficient in the DNA damage response pathway. This makes mpH a suitable model to analyze the effects of histone deacetylase inhibitors on DNA damage and cell viability. Here, we report an efficient and fast protocol for the isolation of mpH by liver perfusion. These mpH can be used for downstream applications such as the detection of the DNA damage marker γH2AX by confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Max J Carlsson
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
19
|
Cryostructuring of Polymeric Systems: 63. † Synthesis of Two Chemically Tanned Gelatin-Based Cryostructurates and Evaluation of Their Potential as Scaffolds for Culturing of Mammalian Cells. Gels 2022; 8:gels8110695. [DOI: 10.3390/gels8110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Various gelatin-containing gel materials are used as scaffolds for animal and human cell culturing within the fields of cell technologies and tissue engineering. Cryostructuring is a promising technique for the preparation of efficient macroporous scaffolds in biomedical applications. In the current study, two new gelatin-based cryostructurates were synthesized, their physicochemical properties and microstructure were evaluated, and their ability to serve as biocompatible scaffolds for mammalian cells culturing was tested. The preparation procedure included the dissolution of Type A gelatin in water, the addition of urea to inhibit self-gelation, the freezing of such a solution, ice sublimation in vacuo, and urea extraction with ethanol from the freeze-dried matter followed by its cross-linking in an ethanol medium with either carbodiimide or glyoxal. It was shown that in the former case, a denser cross-linked polymer phase was formed, while in the latter case, the macropores in the resultant biopolymer material were wider. The subsequent biotesting of these scaffolds demonstrated their biocompatibility for human mesenchymal stromal cells and HepG2 cells during subcutaneous implantation in rats. Albumin secretion and urea synthesis by HepG2 cells confirmed the possibility of using gelatin cryostructurates for liver tissue engineering.
Collapse
|
20
|
Nagarajan SR, Cross E, Johnson E, Sanna F, Daniels LJ, Ray DW, Hodson L. Determining the temporal, dose, and composition effects of nutritional substrates in an in vitro model of intrahepatocellular triglyceride accumulation. Physiol Rep 2022; 10:e15463. [PMID: 36301719 PMCID: PMC9612139 DOI: 10.14814/phy2.15463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Pathological accumulation of intrahepatic triglyceride underpins the early stages of nonalcoholic fatty liver disease (NAFLD) and can progress to fibrosis, cirrhosis, and cancer of the liver. Studies in humans suggest that consumption of a diet enriched in saturated compared to unsaturated fatty acids (FAs), is more detrimental to liver fat accumulation and metabolism. However, the reasons for the divergence remain unclear and physiologically-relevant cellular models are required. Therefore, the aims of this study were to investigate the effect of modifying media composition, concentration, and treatment frequency of sugars, FAs and insulin on intrahepatocellular triglyceride content and intracellular glucose, FA and circadian function. Huh7 cells were treated with 2% human serum and a combination of sugars and FAs (low fat low sugar [LFLS], high fat low sugar [HFLS], or high fat high sugar [HFHS]) enriched in either unsaturated (OPLA) or saturated (POLA) FAs for 2, 4, or 7 days with a daily or alternating treatment regime. Stable isotope tracers were utilized to investigate basal and/or insulin-responsive changes in hepatocyte metabolism in response to different treatment regimes. Cell viability, media biochemistry, intracellular metabolism, and circadian biology were quantified. The FA composition of the media (OPLA vs. POLA) did not influence cell viability or intracellular triglyceride content in hepatocytes. In contrast, POLA-treated cells had lower FA oxidation and media acetate, and with higher FA concentrations, displayed lower intracellular glycogen content and diminished insulin stimulation of glycogenesis, compared to OPLA-treated cells. The addition of HFHS also had profound effects on circadian oscillation and gene expression. Cells treated daily with HFHS for at least 4 days resulted in a cellular model displaying characteristics of early stage NAFLD seen in humans. Repeated treatment for longer durations (≥7 days) may provide opportunities to investigate lipid and glucose metabolism in more severe stages of NAFLD.
Collapse
Affiliation(s)
- Shilpa R. Nagarajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineChurchill Hospital, University of OxfordOxfordUK
| | - Eloise Cross
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineChurchill Hospital, University of OxfordOxfordUK
| | - Elspeth Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineChurchill Hospital, University of OxfordOxfordUK
| | - Fabio Sanna
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineChurchill Hospital, University of OxfordOxfordUK
| | - Lorna J. Daniels
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineChurchill Hospital, University of OxfordOxfordUK
| | - David W. Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineChurchill Hospital, University of OxfordOxfordUK
- National Institute for Health Research Oxford Biomedical Research CentreOxford University Hospital TrustsOxfordUK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineChurchill Hospital, University of OxfordOxfordUK
- National Institute for Health Research Oxford Biomedical Research CentreOxford University Hospital TrustsOxfordUK
| |
Collapse
|
21
|
Messelmani T, Le Goff A, Souguir Z, Maes V, Roudaut M, Vandenhaute E, Maubon N, Legallais C, Leclerc E, Jellali R. Development of Liver-on-Chip Integrating a Hydroscaffold Mimicking the Liver’s Extracellular Matrix. Bioengineering (Basel) 2022; 9:bioengineering9090443. [PMID: 36134989 PMCID: PMC9495334 DOI: 10.3390/bioengineering9090443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
The 3Rs guidelines recommend replacing animal testing with alternative models. One of the solutions proposed is organ-on-chip technology in which liver-on-chip is one of the most promising alternatives for drug screening and toxicological assays. The main challenge is to achieve the relevant in vivo-like functionalities of the liver tissue in an optimized cellular microenvironment. Here, we investigated the development of hepatic cells under dynamic conditions inside a 3D hydroscaffold embedded in a microfluidic device. The hydroscaffold is made of hyaluronic acid and composed of liver extracellular matrix components (galactosamine, collagen I/IV) with RGDS (Arg-Gly-Asp-Ser) sites for cell adhesion. The HepG2/C3A cell line was cultured under a flow rate of 10 µL/min for 21 days. After seeding, the cells formed aggregates and proliferated, forming 3D spheroids. The cell viability, functionality, and spheroid integrity were investigated and compared to static cultures. The results showed a 3D aggregate organization of the cells up to large spheroid formations, high viability and albumin production, and an enhancement of HepG2 cell functionalities. Overall, these results highlighted the role of the liver-on-chip model coupled with a hydroscaffold in the enhancement of cell functions and its potential for engineering a relevant liver model for drug screening and disease study.
Collapse
Affiliation(s)
- Taha Messelmani
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Anne Le Goff
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Victoria Maes
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Méryl Roudaut
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Elodie Vandenhaute
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Cécile Legallais
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Eric Leclerc
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| |
Collapse
|
22
|
Dalsbecker P, Beck Adiels C, Goksör M. Liver-on-a-chip devices: the pros and cons of complexity. Am J Physiol Gastrointest Liver Physiol 2022; 323:G188-G204. [PMID: 35819853 DOI: 10.1152/ajpgi.00346.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Physiologically relevant and broadly applicable liver cell culture platforms are of great importance in both drug development and disease modeling. Organ-on-a-chip systems offer a promising alternative to conventional, static two-dimensional (2-D) cultures, providing much-needed cues such as perfusion, shear stress, and three-dimensional (3-D) cell-cell communication. However, such devices cover a broad range of complexity both in manufacture and in implementation. In this review, we summarize the key features of the human liver that should be reflected in a physiologically relevant liver-on-a-chip model. We also discuss different material properties of importance in producing liver-on-a-chip devices and summarize recent and current progress in the field, highlighting different types of devices at different levels of complexity.
Collapse
Affiliation(s)
| | | | - Mattias Goksör
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Biswas S, Vasudevan A, Yadav N, Yadav S, Rawal P, Kaur I, Tripathi DM, Kaur S, Chauhan VS. Chemically Modified Dipeptide Based Hydrogel Supports Three-Dimensional Growth and Functions of Primary Hepatocytes. ACS APPLIED BIO MATERIALS 2022; 5:4354-4365. [PMID: 35994753 DOI: 10.1021/acsabm.2c00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A huge shortage of organ donors, particularly in the case of liver, has necessitated the development of alternative therapeutic strategies. Primary hepatocytes (pHCs) transplantation has made a considerable transition from bench to bedside, but the short-term viability and functionality of pHCs in in vitro limit their use for clinical applications. Different cell culture strategies are required to maintain the proliferation of pHCs for extended periods. Here, we described the formation of a hybrid scaffold based on a modified dipeptide for the culture of pHCs. First, the dipeptide (Dp), isoleucine-α,β-dehydrophenylalanine (IΔF) was synthesized, purified, and fully characterized. IΔF readily formed a highly stable hydrogel, which was also characterized by CD, TEM, and thioflavin T assay. The addition of soluble liver extracellular matrix (sLEM) to the dipeptide readily formed a hybrid scaffold that was characterized by TEM, and its mechanical strength was determined by rheology experiments. The hybrid scaffold was translucent, biocompatible, and proteolytically stable and, with its mechanical strength, closely mimicked that of the native liver. LEM1-Dp matrix exhibited high biocompatibility in the readily available adherent liver cell line Huh7 and primary rat hepatocyte cells (pHCs). pHCs cultured on LEM1-Dp matrix also maintained significantly higher cell viability and an escalated expression of markers related to the hepatocytes such as albumin as compared to that observed in cells cultured on collagen type I (Col I)-coated substrate plate (col-TCTP). Z-stacking of confocal laser microscopy's volume view clearly indicated pHCs seeded on top of the hydrogel matrix migrated toward the Z direction showing 3D growth. Our results indicated that low molecular weight dipeptide hydrogel along with sLEM can resemble biomimetic 3D-like microenvironments for improved pHCs proliferation, differentiation, and function. This hybrid scaffold is also easy to scale up, which makes it suitable for several downstream applications of hepatocytes, including drug development, pHCs transplantation, and liver regeneration.
Collapse
Affiliation(s)
- Saikat Biswas
- International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| | - Ashwini Vasudevan
- Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | - Nitin Yadav
- International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| | - Saurabh Yadav
- International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| | - Preety Rawal
- Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | - Impreet Kaur
- Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | - Dinesh M Tripathi
- Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | - Virander Singh Chauhan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| |
Collapse
|
24
|
Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering (Basel) 2022; 9:bioengineering9080392. [PMID: 36004917 PMCID: PMC9404740 DOI: 10.3390/bioengineering9080392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.
Collapse
|
25
|
Shi Q, Arefin A, Ren L, Papineau KS, Barnette DA, Schnackenberg LK, Hawes JJ, Avigan M, Mendrick DL, Ewart L, Ronxhi J. Co-Culture of Human Primary Hepatocytes and Nonparenchymal Liver Cells in the Emulate® Liver-Chip for the Study of Drug-Induced Liver Injury. Curr Protoc 2022; 2:e478. [PMID: 35790095 DOI: 10.1002/cpz1.478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a significant public health issue, but standard animal tests and clinical trials sometimes fail to predict DILI due to species differences and the relatively low number of human subjects involved in preapproval studies of a new drug, respectively. In vitro models have long been used to aid DILI prediction, with primary human hepatocytes (PHHs) being generally considered the gold standard. However, despite many efforts and decades of work, traditional culture methods have been unsuccessful in either fully preserving essential liver functions after isolation of PHHs or in emulating interactions between PHHs and hepatic nonparenchymal cells (NPCs), both of which are essential for the development of DILI under in vivo conditions. Recently, various liver-on-a-chip (Liver-Chip) systems have been developed to co-culture hepatocytes and NPCs in a three-dimensional environment on microfluidic channels, enabling better maintenance of primary liver cells and thus improved DILI prediction. The Emulate® Liver-Chip is a commercially available system that can recapitulate some in vivo DILI responses associated with certain compounds whose liver safety profile cannot be accurately evaluated using conventional approaches involving PHHs or animal models due to a lack of innate immune responses or species-dependent toxicity, respectively. Here, we describe detailed procedures for the use of Emulate® Liver-Chips for co-culturing PHHs and NPCs for the purpose of DILI evaluation. First, we describe the procedures for preparing the Liver-Chip. We then outline the steps needed for sequential seeding of PHHs and NPCs in the prepared Liver-Chips. Lastly, we provide a protocol for utilizing cells maintained in perfusion culture in the Liver-Chips to evaluate DILI, using acetaminophen as an example. In all, use of this system and the procedures described here allow better preservation of the functions of human primary liver cells, resulting in an improved in vitro model for DILI assessment. © 2022 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Liver-Chip preparation Basic Protocol 2: Seeding primary human hepatocytes and nonparenchymal cells on Liver-Chips Basic Protocol 3: Perfusion culture for the study of acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Qiang Shi
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ayesha Arefin
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Lijun Ren
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Katy S Papineau
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Dustyn A Barnette
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Laura K Schnackenberg
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Jessica J Hawes
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Mark Avigan
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Donna L Mendrick
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | | | | |
Collapse
|
26
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
27
|
An Engineered Protein-Based Building Block (Albumin Methacryloyl) for Fabrication of a 3D In Vitro Cryogel Model. Gels 2022; 8:gels8070404. [PMID: 35877489 PMCID: PMC9324498 DOI: 10.3390/gels8070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of attrition in drug development or withdrawal; current animal experiments and traditional 2D cell culture systems fail to precisely predict the liver toxicity of drug candidates. Hence, there is an urgent need for an alternative in vitro model that can mimic the liver microenvironments and accurately detect human-specific drug hepatotoxicity. Here, for the first time we propose the fabrication of an albumin methacryloyl cryogel platform inspired by the liver’s microarchitecture via emulating the mechanical properties and extracellular matrix (ECM) cues of liver. Engineered crosslinkable albumin methacryloyl is used as a protein-based building block for fabrication of albumin cryogel in vitro models that can have potential applications in 3D cell culture and drug screening. In this work, protein modification, cryogelation, and liver ECM coating were employed to engineer highly porous three-dimensional cryogels with high interconnectivity, liver-like stiffness, and liver ECM as artificial liver constructs. The resulting albumin-based cryogel in vitro model provided improved cell–cell and cell–material interactions and consequently displayed excellent liver functional gene expression, being conducive to detection of fialuridine (FIAU) hepatotoxicity.
Collapse
|
28
|
Hammour MM, Othman A, Aspera-Werz R, Braun B, Weis-Klemm M, Wagner S, Nadalin S, Histing T, Ruoß M, Nüssler AK. Optimisation of the HepaRG cell line model for drug toxicity studies using two different cultivation conditions: advantages and limitations. Arch Toxicol 2022; 96:2511-2521. [PMID: 35748891 DOI: 10.1007/s00204-022-03329-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The HepaRG cell line represents a successful model for hepatotoxicity studies. These cells are of human origin and are differentiated in vitro into mature and functional hepatocyte-like cells. The objective of this research was to compare two different culture protocols, Sison-Young et al. 2017 (hereinafter referred as Sison) and Gripon et al. 2002 (hereinafter referred as Biopredic) for HepaRG cells in order to optimise this model for drug metabolism and toxicity testing studies. HepaRG cells obtained from the same batch were cultured according to the described protocols. Using both protocols, differentiated HepaRG cells retained their drug metabolic capacity (major phase I/II enzymes) and transporters, as well as their morphological characteristics. Morphologically, HepaRG cells cultured after the Biopredic protocol formed more apical membranes and small ductular-like structures, than those cultivated using the Sison protocol. Also, the efflux activity of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1) as well as the activity of uridine-glucuronosyltransferase (UGT) and glutathione S-transferase (GST) were significantly reduced in HepaRG cultured using the Sison protocol. Applying well-established drug cocktails to measure cytochrome P450 (CYPs) activity, we found that production of the corresponding metabolites was hampered in Sison-cultured HepaRG cells, indicating that the activity of CYP1A2, CYP2C9, CYP3A4, CYP2B6 and CYP2C19 was significantly reduced. Moreover, HepaRG sensitivity to well-known drugs, namely diclofenac, amiodarone, imipramine and paracetamol, revealed some differences between the two culture protocols. Furthermore, the HepaRG cells can be maintained with higher viability and sufficient CYPs activity and expression (i.e. CYP3A4, CYP1A2 and CYP2B6) as well as liver-specific functions, using Biopredic compared with the Sison culture protocol. These maintained liver-specific functions might be dependent on the prolongation of the culture conditions in the case of the Biopredic protocol. In conclusion, based on the metabolic activity of HepaRG cells using the standard protocol from Biopredic, we believe that this protocol is optimal for investigating drug metabolism and pharmacokinetic screening studies.
Collapse
Affiliation(s)
- Mohammad Majd Hammour
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Amnah Othman
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Romina Aspera-Werz
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Michaela Weis-Klemm
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Tina Histing
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
29
|
Cell models for Alzheimer’s and Parkinson’s disease: At the interface of biology and drug discovery. Biomed Pharmacother 2022; 149:112924. [PMID: 36068783 DOI: 10.1016/j.biopha.2022.112924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
30
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
31
|
Xie Y, Yao J, Jin W, Ren L, Li X. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges. Front Cell Dev Biol 2021; 9:765980. [PMID: 34901010 PMCID: PMC8662991 DOI: 10.3389/fcell.2021.765980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Weilin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
32
|
Piña-Olmos S, Dolores-Hernández M, Diaz-Torres R, Ramírez-Bribiesca JE, López-Arellano R, López Barrera LD, Ramírez-Noguera P. Precision-cut liver slices as a model for assess hepatic cellular response of chitosan-glutathione nanoparticles on cultures treated with zilpaterol and clenbuterol. Toxicol Mech Methods 2021; 32:313-324. [PMID: 34747310 DOI: 10.1080/15376516.2021.2002992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zilpaterol and clenbuterol are two β-adrenergic agonist drugs used in animal production. Both drugs have anabolic effects with advantages on carcass yield. Meanwhile, zilpaterol is approved for animal feed in authorized countries. Clenbuterol is a banned substance due to the risk of toxicity; however, it is still being used in unknown dose levels in many farm species. Therefore, the use and abuse of these substances should be closely monitored, considering the clenbuterol ability and the not proved yet of zilpaterol to produce reactive oxygen and nitrogen species. Regarding glutathione which is the main intracellular antioxidant plays detoxification functions on liver metabolism; in this work, it is our interest to know the capacity of chitosan-glutathione nanoparticles (CS/GSH-NP) as a complementary source of exogenous GSH to modify the oxide-reduction status on bovine precision-cut liver slice cultures (PCLS) exposed to clenbuterol and zilpaterol. A single drug assay was performed in first instance by adding clenbuterol, zilpaterol, chitosan nanoparticles (CS-NP), and CS/GSH-NP. Then combinate drug assay was carried out by testing clenbuterol and zilpaterol combined with CS-NP or CS/GSH-NP. The results showed that both β-adrenergic agonists modify in a dose-dependent manner in oxide-reduction response through ROS generation. The activity or content of glutathione peroxidase activity, intracellular GSH, gamma glutamyl-transpeptidase, aspartate aminotrasnferase and alanine aminotrasnferase were modified. The exogenous GSH delivered by nanoparticles could be used to modulate these markers.
Collapse
Affiliation(s)
- Sofia Piña-Olmos
- Laboratorio de Toxicología Celular L-9, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - Mariana Dolores-Hernández
- Laboratorio de Desarrollo Farmacéutico (LEDEFAR), Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - Roberto Diaz-Torres
- Laboratorio de Toxicología Celular L-9, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - J Efrén Ramírez-Bribiesca
- Programa de Ganadería, Colegio de Posgraduados, Montecillo, Carretera México-Texcoco Km 36.5, Montecillo, Estado de México, México
| | - Raquel López-Arellano
- Laboratorio de Desarrollo Farmacéutico (LEDEFAR), Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - Laura Denise López Barrera
- Laboratorio de Toxicología Celular L-9, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| | - Patricia Ramírez-Noguera
- Laboratorio de Toxicología Celular L-9, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Carretera México-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli Estado de México, México
| |
Collapse
|
33
|
Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int J Mol Sci 2021; 22:ijms222212473. [PMID: 34830355 PMCID: PMC8618738 DOI: 10.3390/ijms222212473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) culture systems opened up new horizons in studying the biology of tissues and organs, modelling various diseases, and screening drugs. Producing accurate in vitro models increases the possibilities for studying molecular control of cell–cell and cell–microenvironment interactions in detail. The Notch signalling is linked to cell fate determination, tissue definition, and maintenance in both physiological and pathological conditions. Hence, 3D cultures provide new accessible platforms for studying activation and modulation of the Notch pathway. In this review, we provide an overview of the recent advances in different 3D culture systems, including spheroids, organoids, and “organ-on-a-chip” models, and their use in analysing the crucial role of Notch signalling in the maintenance of tissue homeostasis, pathology, and regeneration.
Collapse
|
34
|
Xu H, Wu L, Yuan G, Liang X, Liu X, Li Z, Chen N, Farzaneh M. MicroRNAs: Crucial Players in the Differentiation of Human Pluripotent and Multipotent Stem Cells into Functional Hepatocyte-Like Cells. Curr Stem Cell Res Ther 2021; 17:734-740. [PMID: 34615452 DOI: 10.2174/1574888x16666211006102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.
Collapse
Affiliation(s)
- Hao Xu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Liying Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Guojia Yuan
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Xiaolu Liang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Xiaoguang Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Zuobiao Li
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Nianping Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran
| |
Collapse
|
35
|
Pluta KD, Ciezkowska M, Wisniewska M, Wencel A, Pijanowska DG. Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Bouwmeester MC, Bernal PN, Oosterhoff LA, van Wolferen ME, Lehmann V, Vermaas M, Buchholz MB, Peiffer QC, Malda J, van der Laan LJW, Kramer NI, Schneeberger K, Levato R, Spee B. Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies. Macromol Biosci 2021; 21:e2100327. [PMID: 34559943 DOI: 10.1002/mabi.202100327] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 01/01/2023]
Abstract
There is a need for long-lived hepatic in vitro models to better predict drug induced liver injury (DILI). Human liver-derived epithelial organoids are a promising cell source for advanced in vitro models. Here, organoid technology is combined with biofabrication techniques, which holds great potential for the design of in vitro models with complex and customizable architectures. Here, porous constructs with human hepatocyte-like cells derived from organoids are generated using extrusion-based printing technology. Cell viability of bioprinted organoids remains stable for up to ten days (88-107% cell viability compared to the day of printing). The expression of hepatic markers, transporters, and phase I enzymes increased compared to undifferentiated controls, and is comparable to non-printed controls. Exposure to acetaminophen, a well-known hepatotoxic compound, decreases cell viability of bioprinted liver organoids to 21-51% (p < 0.05) compared to the start of exposure, and elevated levels of damage marker miR-122 are observed in the culture medium, indicating the potential use of the bioprinted constructs for toxicity testing. In conclusion, human liver-derived epithelial organoids can be combined with a biofabrication approach, thereby paving the way to create perfusable, complex constructs which can be used as toxicology- and disease-models.
Collapse
Affiliation(s)
- Manon C Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Paulina N Bernal
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Vivian Lehmann
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Monique Vermaas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Maj-Britt Buchholz
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Quentin C Peiffer
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus Medical Center, Postbus 2040, Rotterdam, 3000 CA, The Netherlands
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, Utrecht, 3584 CM, The Netherlands
- Division of Toxicology, Wageningen University, P.O. box 8000, Wageningen, 6700 EA, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
37
|
Buick JK, Williams A, Meier MJ, Swartz CD, Recio L, Gagné R, Ferguson SS, Engelward BP, Yauk CL. A Modern Genotoxicity Testing Paradigm: Integration of the High-Throughput CometChip® and the TGx-DDI Transcriptomic Biomarker in Human HepaRG™ Cell Cultures. Front Public Health 2021; 9:694834. [PMID: 34485225 PMCID: PMC8416458 DOI: 10.3389/fpubh.2021.694834] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Higher-throughput, mode-of-action-based assays provide a valuable approach to expedite chemical evaluation for human health risk assessment. In this study, we combined the high-throughput alkaline DNA damage-sensing CometChip® assay with the TGx-DDI transcriptomic biomarker (DDI = DNA damage-inducing) using high-throughput TempO-Seq®, as an integrated genotoxicity testing approach. We used metabolically competent differentiated human HepaRG™ cell cultures to enable the identification of chemicals that require bioactivation to cause genotoxicity. We studied 12 chemicals (nine DDI, three non-DDI) in increasing concentrations to measure and classify chemicals based on their ability to damage DNA. The CometChip® classified 10/12 test chemicals correctly, missing a positive DDI call for aflatoxin B1 and propyl gallate. The poor detection of aflatoxin B1 adducts is consistent with the insensitivity of the standard alkaline comet assay to bulky lesions (a shortcoming that can be overcome by trapping repair intermediates). The TGx-DDI biomarker accurately classified 10/12 agents. TGx-DDI correctly identified aflatoxin B1 as DDI, demonstrating efficacy for combined used of these complementary methodologies. Zidovudine, a known DDI chemical, was misclassified as it inhibits transcription, which prevents measurable changes in gene expression. Eugenol, a non-DDI chemical known to render misleading positive results at high concentrations, was classified as DDI at the highest concentration tested. When combined, the CometChip® assay and the TGx-DDI biomarker were 100% accurate in identifying chemicals that induce DNA damage. Quantitative benchmark concentration (BMC) modeling was applied to evaluate chemical potencies for both assays. The BMCs for the CometChip® assay and the TGx-DDI biomarker were highly concordant (within 4-fold) and resulted in identical potency rankings. These results demonstrate that these two assays can be integrated for efficient identification and potency ranking of DNA damaging agents in HepaRG™ cell cultures.
Collapse
Affiliation(s)
- Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carol D Swartz
- Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, NC, United States
| | - Leslie Recio
- Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, NC, United States
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Stephen S Ferguson
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
Stern-Tal D, Ittah S, Sklan E. A new cell-sized support for 3D cell cultures based on recombinant spider silk fibers. J Biomater Appl 2021; 36:1748-1757. [PMID: 34472404 PMCID: PMC8984929 DOI: 10.1177/08853282211037781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is now generally accepted that 2D cultures cannot accurately replicate the rich
environment and complex tissue architecture that exists in vivo, and that classically
cultured cells tend to lose their original function. Growth of spheroids as opposed to 2D
cultures on plastic has now been hailed as an efficient method to produce quantities of
high-quality cells for cancer research, drug discovery, neuroscience, and regenerative
medicine. We have developed a new recombinant protein that mimics dragline spidersilk and
that self-assembles into cell-sized coils. These have high thermal and shelf-life
stability and can be readily sterilized and stored for an extended period of time. The
fibers are flexible, elastic, and biocompatible and can serve as cell-sized scaffold for
the formation of 3D cell spheroids. As a proof of concept, recombinant spidersilk was
integrated as a scaffold in spheroids of three cell types: primary rat hepatocytes, human
mesenchymal stem cells, and mouse L929 cells. The scaffolds significantly reduced spheroid
shrinkage and unlike scaffold-free spheroids, spheroids did not disintegrate over the
course of long-term culture. Cells in recombinant spidersilk spheroids showed increased
viability, and the cell lines continued to proliferate for longer than control cultures
without spidersilk. The spidersilk also supported biological functions. Recombinant
spidersilk primary hepatocyte spheroids exhibited 2.7-fold higher levels of adenosine
triphosphate (ATP) continued to express and secrete albumin and exhibited significantly
higher basal and induced CYP3A activity for at least 6 weeks in culture, while control
spheroids without fibers stopped producing albumin after 27 days and CPY3A activity was
barely detectable after 44 days. These results indicate that recombinant spidersilk can
serve as a useful tool for long-term cell culture of 3D cell spheroids and specifically
that primary hepatocytes can remain active in culture for an extended period of time which
could be of great use in toxicology testing.
Collapse
Affiliation(s)
| | - Shmulik Ittah
- 26742The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ella Sklan
- Seevix Material Sciences LTD, Jerusalem, Israel
| |
Collapse
|
39
|
Heydari Z, Moeinvaziri F, Agarwal T, Pooyan P, Shpichka A, Maiti TK, Timashev P, Baharvand H, Vosough M. Organoids: a novel modality in disease modeling. Biodes Manuf 2021; 4:689-716. [PMID: 34395032 PMCID: PMC8349706 DOI: 10.1007/s42242-021-00150-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Limitations of monolayer culture conditions have motivated scientists to explore new models that can recapitulate the architecture and function of human organs more accurately. Recent advances in the improvement of protocols have resulted in establishing three-dimensional (3D) organ-like architectures called ‘organoids’ that can display the characteristics of their corresponding real organs, including morphological features, functional activities, and personalized responses to specific pathogens. We discuss different organoid-based 3D models herein, which are classified based on their original germinal layer. Studies of organoids simulating the complexity of real tissues could provide novel platforms and opportunities for generating practical knowledge along with preclinical studies, including drug screening, toxicology, and molecular pathophysiology of diseases. This paper also outlines the key challenges, advantages, and prospects of current organoid systems.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Farideh Moeinvaziri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Paria Pooyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 19991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tapas K. Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 19991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
| |
Collapse
|
40
|
Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021; 22:8227. [PMID: 34360991 PMCID: PMC8348238 DOI: 10.3390/ijms22158227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.
Collapse
Affiliation(s)
- Mattia Pasqua
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- Dipartimento della Ricerca, IRCCS ISMETT, 90127 Palermo, Italy;
| | | | - Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
41
|
Rizki-Safitri A, Tokito F, Nishikawa M, Tanaka M, Maeda K, Kusuhara H, Sakai Y. Prospect of in vitro Bile Fluids Collection in Improving Cell-Based Assay of Liver Function. FRONTIERS IN TOXICOLOGY 2021; 3:657432. [PMID: 35295147 PMCID: PMC8915818 DOI: 10.3389/ftox.2021.657432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The liver plays a pivotal role in the clearance of drugs. Reliable assays for liver function are crucial for various metabolism investigation, including toxicity, disease, and pre-clinical testing for drug development. Bile is an aqueous secretion of a functioning liver. Analyses of bile are used to explain drug clearance and related effects and are thus important for toxicology and pharmacokinetic research. Bile fluids collection is extensively performed in vivo, whereas this process is rarely reproduced as in the in vitro studies. The key to success is the technology involved, which needs to satisfy multiple criteria. To ensure the accuracy of subsequent chemical analyses, certain amounts of bile are needed. Additionally, non-invasive and continuous collections are preferable in view of cell culture. In this review, we summarize recent progress and limitations in the field. We highlight attempts to develop advanced liver cultures for bile fluids collection, including methods to stimulate the secretion of bile in vitro. With these strategies, researchers have used a variety of cell sources, extracellular matrix proteins, and growth factors to investigate different cell-culture environments, including three-dimensional spheroids, cocultures, and microfluidic devices. Effective combinations of expertise and technology have the potential to overcome these obstacles to achieve reliable in vitro bile assay systems.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Heydari Z, Zarkesh I, Ghanian MH, Aghdaei MH, Kotova S, Zahmatkesh E, Farzaneh Z, Piryaei A, Akbarzadeh I, Shpichka A, Gramignoli R, Timashev P, Baharvand H, Vosough M. Biofabrication of size-controlled liver microtissues incorporated with ECM-derived microparticles to prolong hepatocyte function. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00137-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Jellali R, Jacques S, Essaouiba A, Gilard F, Letourneur F, Gakière B, Legallais C, Leclerc E. Investigation of steatosis profiles induced by pesticides using liver organ-on-chip model and omics analysis. Food Chem Toxicol 2021; 152:112155. [PMID: 33775782 DOI: 10.1016/j.fct.2021.112155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022]
Abstract
Several studies have reported a correlation between pesticides exposure and metabolic disorders. Dichlorodiphenyltrichloroethane (DDT) and permethrin (PMT), two pesticides highly prevalent in the environment, have been associated to dysregulation of liver lipids and glucose metabolisms and non-alcoholic fatty liver disease (NAFLD). However, the effects of DDT/PMT mixtures and mechanisms mediating their action remain unclear. Here, we used multi-omic to investigate the liver damage induced by DDT, PMT and their mixture in rat liver organ-on-chip. Organ-on-chip allow the reproduction of in vivo-like micro-environment. Two concentrations, 15 and 150 μM, were used to expose the hepatocytes for 24 h under perfusion. The transcriptome and metabolome analysis suggested a dose-dependent effect for all conditions, with a profile close to control for pesticides low-doses. The comparison between control and high-doses detected 266/24, 256/24 and 1349/30 genes/metabolites differentially expressed for DDT150, PMT150 and Mix150 (DDT150/PMT150). Transcriptome modulation reflected liver inflammation, steatosis, necrosis, PPAR signaling and fatty acid metabolism. The metabolome analysis highlighted common signature of three treatments including lipid and carbohydrates production, and a decrease in amino acids and krebs cycle intermediates. Our study illustrates the potential of organ-on-chip coupled to multi-omics for toxicological studies and provides new tools for chemical risk assessment.
Collapse
Affiliation(s)
- Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203, Compiègne Cedex, France.
| | - Sebastien Jacques
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France
| | - Amal Essaouiba
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203, Compiègne Cedex, France
| | - Françoise Gilard
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, PARIS, France
| | - Bertrand Gakière
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203, Compiègne Cedex, France
| | - Eric Leclerc
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203, Compiègne Cedex, France.
| |
Collapse
|
44
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Tamai M, Fujiyama Y, Tagawa YI. Hepatocytes and Endothelial Networks in a Fluid-Based In Vitro Model of Liver Drug Metabolism. Tissue Eng Part A 2021; 27:1160-1167. [PMID: 33267675 DOI: 10.1089/ten.tea.2020.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drug-induced liver toxicity remains a major cause of drug withdrawal from animal testing and human clinical trials. A functional liver culture model corresponding to the liver is urgently required; however, in previous liver models, it has proven difficult to stably maintain multiple liver functions. Previously reported fluid-based systems have some advantages for hepatocyte culture, but have insufficient liver-specific functions because they simply involve moving conventional hepatocyte cultures from a dish into a fluid-based system. Importantly, these cultures have no liver tissue-specific structures that construct liver-specific cellular polarities, such as apical, basolateral, and basal faces. In this study, we developed a fluid-based system for our liver tissue culture models. The liver tissues that were constructed in our originally designed fluid-based systems represent a tissue culture model for studying hepatic functions. Together, our findings show that by mimicking the structure of the liver in the body, our system effectively maintains multiple liver-specific functions. Impact statement A functional liver culture model corresponding to the liver is urgently required; however, in previous liver models, it has proven difficult to stably maintain multiple liver functions. In this study, we developed a fluid-based system for our liver tissue culture models. The liver tissues that were constructed in our originally designed fluid-based systems represent a tissue culture model for studying hepatic functions. Together, our findings show that by mimicking the structure of the liver in the body, our system effectively maintains multiple liver-specific functions.
Collapse
Affiliation(s)
- Miho Tamai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi, Kanagawa, Japan.,Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi Fujiyama
- Bio-Industry Unit Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Yoh-Ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
46
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Hof M, Jurkiewicz P, Lozinsky VI, Wolfová L, Petrenko Y, Kubinová Š, Dejneka A, Lunov O. Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP-mTOR Axis. Pharmaceuticals (Basel) 2020; 13:ph13120430. [PMID: 33260691 PMCID: PMC7759829 DOI: 10.3390/ph13120430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies undoubtedly show that the mammalian target of rapamycin (mTOR) and the Hippo–Yes-associated protein 1 (YAP) pathways are important mediators of mechanical cues. The crosstalk between these pathways as well as de-regulation of their signaling has been implicated in multiple tumor types, including liver tumors. Additionally, physical cues from 3D microenvironments have been identified to alter gene expression and differentiation of different cell lineages. However, it remains incompletely understood how physical constraints originated in 3D cultures affect cell plasticity and what the key mediators are of such process. In this work, we use collagen scaffolds as a model of a soft 3D microenvironment to alter cellular size and study the mechanotransduction that regulates that process. We show that the YAP-mTOR axis is a downstream effector of 3D cellular culture-driven mechanotransduction. Indeed, we found that cell mechanics, dictated by the physical constraints of 3D collagen scaffolds, profoundly affect cellular proliferation in a YAP–mTOR-mediated manner. Functionally, the YAP–mTOR connection is key to mediate cell plasticity in hepatic tumor cell lines. These findings expand the role of YAP–mTOR-driven mechanotransduction to the control hepatic tumor cellular responses under physical constraints in 3D cultures. We suggest a tentative mechanism, which coordinates signaling rewiring with cytoplasmic restructuring during cell growth in 3D microenvironments.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic; (M.H.); (P.J.)
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
| | - Lucie Wolfová
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
- Department of Tissue Engineering, Contipro a.s., 56102 Dolni Dobrouc, Czech Republic
| | - Yuriy Petrenko
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
| | - Šárka Kubinová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.W.); (Y.P.)
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Correspondence: (A.D.); (O.L.); Tel.: +420-2660-52141 (A.D.); +420-2660-52131 (O.L.)
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (A.F.); (B.S.); (M.U.); (M.L.); (Š.K.)
- Correspondence: (A.D.); (O.L.); Tel.: +420-2660-52141 (A.D.); +420-2660-52131 (O.L.)
| |
Collapse
|
47
|
Islam MR, Virag J, Oyen ML. Micromechanical poroelastic and viscoelastic properties of ex-vivo soft tissues. J Biomech 2020; 113:110090. [PMID: 33176223 DOI: 10.1016/j.jbiomech.2020.110090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
Soft biological tissues demonstrate strong time-dependent mechanical behavior, arising from their intrinsic viscoelasticity and fluid flow-induced poroelasticity. It is increasingly recognized that time-dependent mechanical properties of soft tissues influence their physiological functions and are linked to several pathological processes. Nevertheless, soft tissue time-dependent characteristics, especially their micromechanical variation with tissue composition and location, remain poorly understood. Nanoindentation is a well-established technique to measure local elastic properties but has not been fully explored to determine micro-scale time-dependent properties of soft tissues. Here, a nanoindentation-based experimental strategy is implemented to characterize the micro-scale poroelastic and viscoelastic behavior of mouse heart, kidney, and liver tissues. It is demonstrated that heart tissue exhibits substantial mechanical heterogeneity where the elastic modulus varies spatially from 1 to 30 kPa. In contrast, both kidney and liver tissues show relatively homogeneous response with elastic modulus 0.5-3 kPa. All three tissues demonstrate marked load relaxation under constant indentation, where the relaxation behavior is observed to be largely dominated by tissue viscoelasticity. Intrinsic permeability varies among different tissues, where heart tissue is found to be less permeable compared to kidney and liver tissues. Overall, the results presented herein provide key insights into the time-dependent micromechanical behavior of different tissues and can therefore contribute to studies of tissue pathology and tissue engineering applications.
Collapse
Affiliation(s)
- Mohammad R Islam
- Department of Engineering, East Carolina University, Greenville, NC 27834, United States
| | - Jitka Virag
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Michelle L Oyen
- Department of Engineering, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
48
|
Lee W, Koyama S, Morita K, Kiriake A, Kikuchi R, Chu X, Lee N, Scialis RJ, Shen H, Kimoto E, Tremaine L, Ishiguro N, Lotz R, Maeda K, Kusuhara H, Sugiyama Y. Cell-to-Medium Concentration Ratio Overshoot in the Uptake of Statins by Human Hepatocytes in Suspension, but Not in Monolayer: Kinetic Analysis Suggesting a Partial Loss of Functional OATP1Bs. AAPS JOURNAL 2020; 22:133. [PMID: 33063163 PMCID: PMC7561564 DOI: 10.1208/s12248-020-00512-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
Suspended human hepatocytes (SHH) have long been used in assessing hepatic drug uptake, while plated human hepatocytes in short-term monolayer culture (PHH) have gained use in recent years. This study aimed to cross-evaluate SHH and PHH in measuring the hepatic uptake mediated by organic anion transporting polypeptide 1Bs (OATP1Bs). We compared the time courses of cell-to-medium (C/M) concentration ratios and initial uptake clearance values of the OATP1B substrates (pitavastatin, rosuvastatin, cerivastatin, pravastatin, dehydropravastatin, and SC-62807) between SHH and PHH. For all compounds except cerivastatin, the C/M ratios in SHH displayed an apparent overshoot (an initial increase followed by a decrease) during the 180-min uptake experiment, but not in PHH. Based on the literature evidence suggesting the possible internalization of OATP1Bs in primary hepatocytes, separate experiments measured the drug uptake after varying lengths of pre-incubation in the drug-free medium. The initial uptake clearances of pitavastatin and rosuvastatin declined in SHH beyond an apparent threshold time of 20-min drug-free pre-incubation, but not in PHH. Kinetic modeling quantitatively captured the decline in the active uptake clearance in SHH, and more than half of the active uptake clearances of pitavastatin and rosuvastatin were prone to loss during the 180-min uptake experiment. These results suggested a partial, time-delayed loss of the functional OATP1Bs in SHH upon prolonged incubation. Our results indicate that PHH is more appropriate for experiments where a prolonged incubation is required, such as estimation of unbound hepatocyte-to-medium concentration ratio (Kp,uu) at the steady-state.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Satoshi Koyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Kiyoe Morita
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Aya Kiriake
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | | | - Xiaoyan Chu
- Merck & Co., Inc, North Wales, Pennsylvania, USA
| | - Nora Lee
- Daewoong Pharmaceutical Co., Ltd, Seoul, South Korea
| | | | - Hong Shen
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, Connecticut, USA
| | - Larry Tremaine
- Tremaine DMPK Consulting LLC, Merritt Island, Florida, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd, Kobe, Hyogo, Japan
| | - Ralf Lotz
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan.
| |
Collapse
|
49
|
Wencel A, Ciezkowska M, Wisniewska M, Zakrzewska KE, Pijanowska DG, Pluta KD. Effects of genetically modified human skin fibroblasts, stably overexpressing hepatocyte growth factor, on hepatic functions of cocultured C3A cells. Biotechnol Bioeng 2020; 118:72-81. [PMID: 32880912 DOI: 10.1002/bit.27551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 01/18/2023]
Abstract
Diseases leading to terminal hepatic failure are among the most common causes of death worldwide. Transplant of the whole organ is the only effective method to cure liver failure. Unfortunately, this treatment option is not available universally due to the serious shortage of donors. Thus, alternative methods have been developed that are aimed at prolonging the life of patients, including hepatic cells transplantation and bridging therapy based on hybrid bioartificial liver devices. Parenchymal liver cells are highly differentiated and perform many complex functions, such as detoxification and protein synthesis. Unfortunately, isolated hepatocytes display a rapid decline in viability and liver-specific functions. A number of methods have been developed to maintain hepatocytes in their highly differentiated state in vitro, amongst them the most promising being 3D growth scaffolds and decellularized tissues or coculture with other cell types required for the heterotypic cell-cell interactions. Here we present a novel approach to the hepatic cells culture based on the feeder layer cells genetically modified using lentiviral vector to stably produce additional amounts of hepatocyte growth factor and show the positive influence of these coculture conditions on the preservation of the hepatic functions of the liver parenchymal cells' model-C3A cells.
Collapse
Affiliation(s)
- Agnieszka Wencel
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Ciezkowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Wisniewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina E Zakrzewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.,Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota G Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof D Pluta
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
50
|
Othman A, Ehnert S, Dropmann A, Ruoß M, Nüssler AK, Hammad S. Precision-cut liver slices as an alternative method for long-term hepatotoxicity studies. Arch Toxicol 2020; 94:2889-2891. [PMID: 32683516 DOI: 10.1007/s00204-020-02861-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Amnah Othman
- Department of Traumatology, Siegfried Weller Institute, BG Clinic, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, BG Clinic, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anne Dropmann
- Molecular Hepatology Section, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hepatology and Bioinformatic Section, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, BG Clinic, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG Clinic, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| |
Collapse
|