1
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Wang E, Jiang Y, Zhao C. Hydroxytyrosol isolation, comparison of synthetic routes and potential biological activities. Food Sci Nutr 2024; 12:6899-6912. [PMID: 39479663 PMCID: PMC11521723 DOI: 10.1002/fsn3.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Hydroxytyrosol (HT) is a polyphenol found in the olive plant (Olea europaea) that has garnered attention from the food, feed, supplement, and pharmaceutical industries. HT has evolved from basic separation and extraction to chemical and biocatalytic synthesis. The yield of HT can reach 1.93 g/L/h through chemical synthesis and 7.7 g/L/h through biocatalysis; however, both methods are subject to inherent limitations. Furthermore, the potential health benefits associated with HT have been highlighted, including its ability to act as an antioxidant, reduce inflammation, combat cancer and obesity, and exert antibacterial and antiviral effects. Its neuroprotective effects, skin protection, and wound healing capabilities are also discussed. Given these remarkable biological properties, HT stands out as one of the most extensively investigated natural phenols. This review highlights future methods and pathways for the synthesis of HT, providing insights based on its bioactivity characteristics, health benefits, and potential future applications.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| |
Collapse
|
3
|
Kheirouri S, Alizadeh M, Keramati M. High use of non-hydrogenated plant source oils and mayonnaise sauce increase the risk of Parkinson disease. Nutr Neurosci 2024; 27:849-856. [PMID: 37997257 DOI: 10.1080/1028415x.2023.2277974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Objectives: This study aimed to assess the contribution of edible/cooking oils and mayonnaise sauce in the severity, motor and non-motor symptoms, and risk of Parkinson's disease (PD).Methods: In this study, 120 patients with PD and 50 healthy individuals participated. The frequency and quantity of edible/cooking oils including animal and plant source oils (hydrogenated and nonhydrogenated) and mayonnaise sauce used by participants were determined using a food frequency questionnaire. The severity of PD was determined by the Unified Parkinson's Disease Rating Scale (UPDRS).Results: Patients with PD had lower use of hydrogenated plant-based oil (HPO) (p < 0.001) and animal oils (p < 0.001) but had higher use of non-hydrogenated plant-based oil (NHPO) (p < 0.001), olive oil (p = 0.02), and mayonnaise sauce (p < 0.001) compared with the healthy subjects. Use of each unit HPO reduced 4% the odds of PD (p = 0.01). The odds of PD increased 20% by each unit increase in NHPO usage (p = 0.001), 49% by olive oil (p = 0.02), and 127% by mayonnaise sauce (p = 0.004) intake. According to receiver operator characteristics curve analysis, mayonnaise sauce and NHPO had the largest area under the curve in predicting PD. Intake of animal oil was positively correlated with total score of UPDRS (p = 0.05) and motor symptoms (p = 0.04). Intake of butter was positively correlated with total score of UPDRS (p = 0.047), nonmotor aspects of experiences of daily living (p = 0.02), and motor examination (p = 0.02).Discussion: The findings indicate that high intake of HPO reduces, while high intake of NHPO, olive oil, and mayonnaise sauce increases the odds of PD.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Keramati
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Bayazid AB, Jeong SA, Azam S, Oh SH, Lim BO. Neuroprotective effects of fermented blueberry and black rice against particulate matter 2.5 μm-induced inflammation in vitro and in vivo. Drug Chem Toxicol 2024:1-11. [PMID: 39034857 DOI: 10.1080/01480545.2024.2367559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/08/2024] [Indexed: 07/23/2024]
Abstract
The increasing prevalence of particulate matter (PM) has raised significant concerns about its adverse effects on human health. This study investigates the potential of fermented blueberry and black rice (FBBR) in mitigating the effects of PM2.5 in SH-SY5Y cells and mice. Various assays, including MTT, NO, western blot, ELISA, and behavioral studies were conducted. Results showed that PM2.5 induced considerable cytotoxicity and elevated NO production at a concentration of 100 μg/mL of PM2.5 in SH-SY5Y cells. FBBR administration attenuated PM2.5-exposed cytotoxicity and suppressed NO production in SH-SY5Y cells. In an intranasally-exposed mice model, 10 mg/kg body weight (BW) of PM2.5 resulted in cognitive impairments. However, FBBR treatment ameliorated these impairments in both the Y-maze and MWM tests in PM2.5-exposed mice. Additionally, FBBR administration increased the expression of BDNF and reduced inflammatory markers in the brains of PM2.5-exposed SH-SY5Y cells. These findings highlight the detrimental effects of PM2.5 on the nervous system and suggest the potential of FBBR as a nutraceutical agent for mitigating these effects. Importantly, the results emphasize the urgency of addressing the harmful impact of PM2.5 on the nervous system and underscore the promising role of FBBR as a protective intervention against the adverse effects associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Department of Applied Biological Sciences, Medicinal Biosciences, Graduate School, BK21 program, Konkuk University, Chungju, Korea
| | - Soo Ah Jeong
- Department of Applied Biological Sciences, Medicinal Biosciences, Graduate School, BK21 program, Konkuk University, Chungju, Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp, Chungju, Korea
| | - Shofiul Azam
- Department of Psychiatry, School of Medicine, New York University, New York, NY, USA
| | - Seung Hyeon Oh
- Department of Applied Biological Sciences, Medicinal Biosciences, Graduate School, BK21 program, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- Department of Applied Biological Sciences, Medicinal Biosciences, Graduate School, BK21 program, Konkuk University, Chungju, Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp, Chungju, Korea
| |
Collapse
|
5
|
Chaji S, Zenasni W, Ouaabou R, Ajal EA, Lahlali R, Fauconnier ML, Hanine H, Černe M, Pasković I, Merah O, Bajoub A. Nutrient and Bioactive Fraction Content of Olea europaea L. Leaves: Assessing the Impact of Drying Methods in a Comprehensive Study of Prominent Cultivars in Morocco. PLANTS (BASEL, SWITZERLAND) 2024; 13:1961. [PMID: 39065489 PMCID: PMC11281108 DOI: 10.3390/plants13141961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
This study explores the potential of olive leaves, long integral to Mediterranean traditional medicine, as a rich source of valuable compounds. The challenge lies in their considerable water content, hindering these compounds' full valorization. Four drying methods (air-drying, oven-drying, freeze-drying and solar-drying) were investigated for their impact on nutrient and bioactive compound content in the leaves of four olive varieties ("Arbequina", "Koroneiki", "Menara" and "Picholine Marocaine") cultivated in Morocco. In their fresh state, "Picholine Marocaine" exhibited the highest protein levels (6.11%), "Arbequina" had the highest phenolic content (20.18 mg gallic acid equivalents/g fresh weight (FW)), and "Koroneiki" and "Menara" were highest in flavonoids (3.28 mg quercetin equivalents/g FW). Specific drying methods proved optimal for different varieties. Oven-drying at 60 °C and 70 °C effectively preserved protein, while phenolic content varied with drying conditions. Air-drying and freeze-drying demonstrated effectiveness for flavonoids. In addition, an analytical approach using high-performance liquid chromatography and diode array detection (HPLC-DAD) was applied to investigate the effects of the different drying methods on the bioactive fraction of the analyzed samples. The results showed qualitative and quantitative differences depending on both the variety and the drying method used. A total of 11 phenolic compounds were tentatively identified, with oleuropein being the most abundant in all the samples analyzed. The freeze-dried samples showed the highest content of oleuropein in the varieties "Arbequina" and "Picholine Marocaine" compared to the other methods analyzed. In contrast, "Koroneiki" and "Menara" had higher oleuropein content when air dried. Overall, the obtained results highlight the importance of tailored drying techniques for the preservation of nutrients and bioactive compounds in olive leaves.
Collapse
Affiliation(s)
- Salah Chaji
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
- Laboratory of Bioprocess and Bio-Interfaces, Faculty of Science and Techniques, University Sultan Moulay Slimane, B.P. 523, M’Ghila, Beni Mellal 23000, Morocco
| | - Walid Zenasni
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
| | - Rachida Ouaabou
- Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques Al Hoceima, Abdelmalek Essaadi University, B.P. 34, Al-Hoceima 32003, Morocco
| | - El Amine Ajal
- UPR of Pharmacognosy, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, B.P. 6203, Rabat 10000, Morocco
| | - Rachid Lahlali
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro Biotech, University of Liege, 5030 Gembloux, Belgium;
| | - Hafida Hanine
- Laboratory of Bioprocess and Bio-Interfaces, Faculty of Science and Techniques, University Sultan Moulay Slimane, B.P. 523, M’Ghila, Beni Mellal 23000, Morocco
| | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.Č.); (I.P.)
| | - Igor Pasković
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.Č.); (I.P.)
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de Recherche Agronomique et Environnement (INRAE), Institut National Polytechnique de Toulouse (INPT), Université de Toulouse, 31030 Toulouse, France
- Département Génie Biologique, Institut Universitaire de Technologie Paul Sabatier, Université Paul Sabatier, 32000 Auch, France
| | - Aadil Bajoub
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
6
|
Rahman MA, Rahman MDH, Rhim H, Kim B. Drug Target to Alleviate Mitochondrial Dysfunctions in Alzheimer's Disease: Recent Advances and Therapeutic Implications. Curr Neuropharmacol 2024; 22:1942-1959. [PMID: 39234772 PMCID: PMC11333791 DOI: 10.2174/1570159x22666240426091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is a severe progressive neurodegenerative condition associated with neuronal damage and reduced cognitive function that primarily affects the aged worldwide. While there is increasing evidence suggesting that mitochondrial dysfunction is one of the most significant factors contributing to AD, its accurate pathobiology remains unclear. Mitochondrial bioenergetics and homeostasis are impaired and defected during AD pathogenesis. However, the potential of mutations in nuclear or mitochondrial DNA encoding mitochondrial constituents to cause mitochondrial dysfunction has been considered since it is one of the intracellular processes commonly compromised in early AD stages. Additionally, electron transport chain dysfunction and mitochondrial pathological protein interactions are related to mitochondrial dysfunction in AD. Many mitochondrial parameters decline during aging, causing an imbalance in reactive oxygen species (ROS) production, leading to oxidative stress in age-related AD. Moreover, neuroinflammation is another potential causative factor in AD-associated mitochondrial dysfunction. While several treatments targeting mitochondrial dysfunction have undergone preclinical studies, few have been successful in clinical trials. Therefore, this review discusses the molecular mechanisms and different therapeutic approaches for correcting mitochondrial dysfunction in AD, which have the potential to advance the future development of novel drug-based AD interventions.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| |
Collapse
|
7
|
Kamboj S, Sharma P, Kamboj R, Kamboj S, Hariom, Girija, Guarve K, Dutt R, Verma I, Dua K, Rani N. Exploring the Therapeutic Potential of Phytoconstituents for Addressing Neurodegenerative Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:129-144. [PMID: 38265386 DOI: 10.2174/0118715249273015231225091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 01/25/2024]
Abstract
Neurodegenerative disorder is a serious condition that is caused by abnormal or no neurological function. Neurodegenerative disease is a major growing cause of mortality and morbidity worldwide, especially in the elderly. After World War Ⅱ, eugenics term was exterminated from medicines. Neurodegenerative disease is a genetically inherited disease. Lifestyle changes, environmental factors, and genetic modification, together or alone, are involved in the occurrence of this disorder. The major examples of neurodegenerative disorders are Alzheimer's and Parkinson's disease, in which apoptosis and necrosis are the two major death pathways for neurons. It has been determined from various studies that the etiology of the neurodegenerative disease involves the role of oxidative stress and anti-oxidant defence system, which are prime factors associated with the activation of signal transduction pathway that is responsible for the formation of synuclein in the brain and manifestation of toxic reactions in the form of functional abnormality, which ultimately leads to the dysfunction of neuronal pathway or cell. There has not been much success in the discovery of effective therapy to treat neurodegenerative diseases because the main cause of abnormal functioning or death of neurons is not well known. However, the use of natural products that are derived from plants has effective therapeutic potential against neurodegenerative disease. The natural compounds with medicinal properties to prevent neurological dysfunction are curcumin, wolfberry, ginseng, and Withania somnifera. The selection and use of natural compounds are based on their strong anti-inflammatory and anti-oxidant properties against neurodegenerative disease. Herbal products have active constituents that play an important role in the prevention of communication errors between neurons and neurotransmitters and their respective receptors in the brain, which influence their function. Considering this, natural products have great potential against neurodegenerative diseases. This article reviews the natural compounds used to treat neurodegenerative diseases and their mechanisms of action.
Collapse
Affiliation(s)
- Sweta Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Prerna Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Shikha Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Hariom
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Girija
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Rohit Dutt
- Gandhi Memorial National College, Ambala, India
| | - Inderjeet Verma
- MM College of Pharmacy, MM (Deemed to be University), Mullana, Ambala, India
| | - Kamal Dua
- Discipline of Pharmacy Graduate of Technology, Sydney, Australia
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| |
Collapse
|
8
|
Tabanez M, Santos IR, Ikebara JM, Camargo MLM, Dos Santos BA, Freire BM, Batista BL, Takada SH, Squitti R, Kihara AH, Cerchiaro G. The Impact of Hydroxytyrosol on the Metallomic-Profile in an Animal Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:14950. [PMID: 37834398 PMCID: PMC10573659 DOI: 10.3390/ijms241914950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is undeniable that as people get older, they become progressively more susceptible to neurodegenerative illnesses such as Alzheimer's disease (AD). Memory loss is a prominent symptom of this condition and can be exacerbated by uneven levels of certain metals. This study used inductively coupled plasma mass spectrometry (ICP-MS) to examine the levels of metals in the blood plasma, frontal cortex, and hippocampus of Wistar rats with AD induced by streptozotocin (STZ). It also tested the effects of the antioxidant hydroxytyrosol (HT) on metal levels. The Barnes maze behavior test was used, and the STZ group showed less certainty and greater distance when exploring the Barnes maze than the control group. The results also indicated that the control group and the STZ + HT group exhibited enhanced learning curves during the Barnes maze training as compared to the STZ group. The ICP-MS analysis showed that the STZ group had lower levels of cobalt in their blood plasma than the control group, while the calcium levels in the frontal cortex of the STZ + HT group were higher than in the control group. The most important finding was that copper levels in the frontal cortex from STZ-treated animals were higher than in the control group, and that the STZ + HT group returned to equivalent levels to the control group. The antioxidant HT can restore copper levels to their basal physiological state. This finding may help explain HT's potential beneficial effect in AD-patients.
Collapse
Affiliation(s)
- Miguel Tabanez
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Ilma R. Santos
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Juliane M. Ikebara
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Mariana L. M. Camargo
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Bianca A. Dos Santos
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Bruna M. Freire
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
| | - Bruno L. Batista
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
| | - Silvia H. Takada
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Rosanna Squitti
- Department of Laboratory Science, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Alexandre H. Kihara
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| |
Collapse
|
9
|
Allegretta C, Difonzo G, Caponio F, Tamma G, Laselva O. Olive Leaf Extract (OLE) as a Novel Antioxidant That Ameliorates the Inflammatory Response in Cystic Fibrosis. Cells 2023; 12:1764. [PMID: 37443798 PMCID: PMC10340374 DOI: 10.3390/cells12131764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The deletion of phenylalanine at position 508 (F508del) produces a misfolded CFTR protein that is retained in the ER and degraded. The lack of normal CFTR channel activity is associated with chronic infection and inflammation which are the primary causes of declining lung function in Cystic Fibrosis (CF) patients. Moreover, LPS-dependent oxidative stress downregulates CFTR function in airway epithelial cells. Olive leaf extract (OLE) is used in traditional medicine for its effects, including anti-oxidant and anti-inflammatory ones. We found that OLE decreased the intracellular ROS levels in a dose-response manner in CFBE cells. Moreover, OLE attenuates the inflammatory response to LPS or IL-1β/TNFα stimulation, mimicking the infection and inflammatory status of CF patients, in CFBE and primary nasal epithelial (HNE) cells. Furthermore, we demonstrated that OLE restored the LPS-mediated decrease of TrikfaftaTM-dependent F508del-CFTR function in CFBE and HNE cultures. These findings provide strong evidence of OLE to prevent redox imbalance and inflammation that can cause chronic lung damage by enhancing the antioxidant activity and attenuating inflammation in CF airway epithelial cells. Additionally, OLE might be used in combination with CFTR modulators therapy to improve their efficacy in CF patients.
Collapse
Affiliation(s)
- Caterina Allegretta
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (G.D.); (F.C.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (G.D.); (F.C.)
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
10
|
Vilas-Franquesa A, Casertano M, Tresserra-Rimbau A, Vallverdú-Queralt A, Torres-León C. Recent advances in bio-based extraction processes for the recovery of bound phenolics from agro-industrial by-products and their biological activity. Crit Rev Food Sci Nutr 2023; 64:10643-10667. [PMID: 37366277 DOI: 10.1080/10408398.2023.2227261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Usually found bound to other complex molecules (e.g., lignin, hemicellulose), phenolic compounds (PC) are widely present in agro-industrial by-products, and their extraction is challenging. In recent times, research is starting to highlight the bioactive roles played by bound phenolics (BPC) in human health. This review aims at providing a critical update on recent advances in green techniques for the recovery of BPC, focusing on enzymatic-assisted (EAE) and fermentation-assisted extraction (FAE) as well as in the combination of technologies, showing variable yield and features. The present review also summarizes the most recent biological activities attributed to BPC extracts until now. The higher antioxidant activity of BPC-compared to FPC-coupled with their affordable by-product source make them medicinally potent and economically viable, promoting their integral upcycling and generating new revenue streams, business, and employment opportunities. In addition, EAE and FAE can have a biotransformative effect on the PC itself or its moiety, leading to improved extraction outcomes. Moreover, recent research on BPC extracts has reported promising anti-cancer and anti-diabetic activity. Yet further research is needed to elucidate their biological mechanisms and exploit the true potential of their applications in terms of new food products or ingredient development for human consumption.
Collapse
Affiliation(s)
- Arnau Vilas-Franquesa
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain, Bellaterra, Spain
| | - Melania Casertano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Anna Tresserra-Rimbau
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autonoma de Coahuila, Unidad Torreón, Viesca, Coahuila, Mexico
| |
Collapse
|
11
|
Yang L, Zhai Y, Zhang Z, Liu Z, Hou B, Zhang B, Wang Z. Widely Targeted Metabolomics Reveals the Effects of Soil on the Metabolites in Dioscorea opposita Thunb. Molecules 2023; 28:4925. [PMID: 37446587 DOI: 10.3390/molecules28134925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Chinese yam (Dioscorea opposita Thunb. cv. Tiegun), a type of homologous medicinal plant, mainly grows in sandy soil (SCY) and loessial soil (LCY). However, the effects of the soil on the metabolites in SCY and LCY remain unclear. Herein, this study aims to comprehensively elucidate the metabolites in SCY and LCY. A UPLC-MS/MS-based, widely targeted metabolomics approach was adapted to compare the chemical composition of SCY and LCY. A total of 988 metabolites were detected, including 443 primary metabolites, 510 secondary metabolites, and 35 other compounds. Notably, 177 differential metabolites (classified into 12 categories) were identified between SCY and LCY; among them, 85.9% (152 differential metabolites) were upregulated in LCY. LCY significantly increased the contents of primary metabolites such as 38 lipids and 6 nucleotides and derivatives, as well as some secondary metabolites such as 36 flavonoids, 28 phenolic acids, 13 alkaloids, and 6 tannins. The results indicate that loessial soil can improve the nutritional and medicinal value of D. opposita.
Collapse
Affiliation(s)
- Lanping Yang
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yangyang Zhai
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhenzhen Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhenzhen Liu
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Baohua Hou
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Baobao Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhenhui Wang
- College of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
12
|
Zou H, Gong Y, Ye H, Yuan C, Li T, Zhang J, Ren L. Dietary regulation of peroxisome proliferator-activated receptors in metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154904. [PMID: 37267691 DOI: 10.1016/j.phymed.2023.154904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are a class of ligand-activated nuclear transcription factors, members of the type nuclear receptor superfamily, with three subtypes, namely PPARα, PPARβ/δ, and PPARγ, which play a key role in the metabolic syndrome. In the past decades, a large number of studies have shown that natural products can act by regulating metabolic pathways mediated by PPARs. PURPOSE This work summarizes the physiological importance and clinical significance of PPARs and reviews the experimental evidence that natural products mediate metabolic syndrome via PPARs. METHODS This study reviews relevant literature on clinical trials, epidemiology, animals, and cell cultures published in NCBI PubMed, Scopus, Web of Science, Google Scholar, and other databases from 2001 to October 2022. Search keywords were "natural product" OR "botanical" OR "phytochemical" AND "PPAR" as well as free text words. RESULTS The modulatory involvement of PPARs in the metabolic syndrome has been supported by prior research. It has been observed that many natural products can treat metabolic syndrome by altering PPARs. The majority of currently described natural compounds are mild PPAR-selective agonists with therapeutic effects that are equivalent to synthetic medicines but less harmful adverse effects. CONCLUSION PPAR agonists can be combined with natural products to treat and prevent metabolic syndrome. Further human investigations are required because it is unknown how natural products cause harm and how they might have negative impacts.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
13
|
Fadil HAE, Behairy A, Ebraheim LLM, Abd-Elhakim YM, Fathy HH. The palliative effect of mulberry leaf and olive leaf ethanolic extracts on hepatic CYP2E1 and caspase-3 immunoexpression and oxidative damage induced by paracetamol in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41682-41699. [PMID: 36637651 PMCID: PMC10067661 DOI: 10.1007/s11356-023-25152-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the possible protective role of mulberry leaf (MLE) and olive leaf (OLE) ethanolic extracts against paracetamol (PTL)-induced liver injury in rats compared to silymarin as a reference drug. Initially, MLE and OLE were characterized using gas chromatography-mass spectrometry (GC/MS). Then, forty male Sprague Dawley rats were divided into five groups: the negative control group orally received distilled water for 35 days, the PTL-treated group (PTG) received 500 mg PTL/kg b. wt. for 7 days, the MLE-treated group (MLTG) received 400 mg MLE/kg b. wt., the OLE-treated group (OLTG) received 400 mg OLE/kg b. wt., and the silymarin-treated group (STG) received 100 mg silymarin/kg b. wt. The last three groups received the treatment for 28 days, then PTL for 7 days. The GC-MS characterization revealed that MLE comprised 19 constituents dominated by ethyl linoleate, phytol, hexadecanoic acid, ethyl ester, and squalene. Moreover, OLE comprised 30 components, and the major components were 11-eicosenoic acid, oleic acid, phytol, and à-tetralone. MLE and OLE significantly corrected the PTL-induced normocytic normochromic anemia, leukocytosis, hypercholesterolemia, and hypoproteinemia. Moreover, the MLE and OLE pretreatment considerably suppressed the PTL-induced increment in serum levels of hepatic enzymes, including alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Furthermore, the PTL-induced depletion in antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, and the rise in hepatic malondialdehyde content were significantly reversed by the MLE and OLE pretreatment. Besides, MLE and OLE pretreatment significantly protected the hepatic tissue against PTL-induced DNA damage, pathological perturbations, and increased caspase 3 and CYP2E1 immunoexpression. Of note, OLTG showed better enhancement of most indices rather than MLTG. Conclusively, these findings imply that OLE, with its antioxidant and antiapoptotic capabilities, is superior to MLE in protecting against PTL-induced liver injury.
Collapse
Affiliation(s)
- Hosny Abd El Fadil
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L M Ebraheim
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba Hussein Fathy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Khan S, Hassan MI, Shahid M, Islam A. Nature's Toolbox Against Tau Aggregation: An Updated Review of Current Research. Ageing Res Rev 2023; 87:101924. [PMID: 37004844 DOI: 10.1016/j.arr.2023.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Tau aggregation is a hallmark of several neurodegenerative disorders, such as Alzheimer's disease (AD), frontotemporal dementia, and progressive supranuclear palsy. Hyperphosphorylated tau is believed to contribute to the degeneration of neurons and the development of these complex diseases. Therefore, one potential treatment for these illnesses is to prevent or counteract tau aggregation. In recent years, interest has been increasing in developing nature-derived tau aggregation inhibitors as a potential treatment for neurodegenerative disorders. Researchers have become increasingly interested in natural compounds with multifunctional features, such as flavonoids, alkaloids, resveratrol, and curcumin, since these molecules can interact simultaneously with the various targets of AD. Recent studies have demonstrated that several natural compounds can inhibit tau aggregation and promote the disassembly of pre-formed tau aggregates. Nature-derived tau aggregation inhibitors hold promise as a potential treatment for neurodegenerative disorders. However, it is important to note that more research is needed to fully understand the mechanisms by which these compounds exert their effects and their safety and efficacy in preclinical and clinical studies. Nature-derived inhibitors of tau aggregation are a promising new direction in the research of neurodegenerative complexities. This review focuses on the natural products that have proven to be a rich supply for inhibitors in tau aggregation and their uses in neurodegenerative complexities, including AD.
Collapse
|
15
|
Ferreira DM, de Oliveira NM, Chéu MH, Meireles D, Lopes L, Oliveira MB, Machado J. Updated Organic Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. PLANTS (BASEL, SWITZERLAND) 2023; 12:688. [PMID: 36771772 PMCID: PMC9921517 DOI: 10.3390/plants12030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Olea europaea L. folium merits further exploration of the potential of its substrates for therapeutic supplements. Quantitative and qualitative analyses were conducted on samples of Madural, Verdeal, and Cobrançosa elementary leaves and leaf sprouts (mamões) collected in the region of Valpaços, Portugal. Organic analysis assessed the moisture content, total carbohydrates, ash, protein, and fat contents, total phenolic content (TPC), vitamin E, and fatty acid (FA) profiles. Moisture content was determined through infrared hygrometry and TPC was determined by a spectrophotometric method. Concerning organic analysis, all leaf samples showed similar moisture content, though Cobrançosa's leaf sprouts and Verdeal's elementary leaves had slightly lower contents. Meanwhile, these cultivars also showed a higher TPC, α-tocopherol isomer, and fatty acid composition (FAC). FAC in all samples exhibited higher contents of PUFA and SFA than MUFA, with a predominance of linolenic and palmitic acids. Organic analyses of Cobrançosa's leaf sprouts and Verdeal's elementary leaf extracts allow for the prediction of adequate physiological properties regarding neuroinflammatory, neurobehavioral, metabolic, cardiovascular, osteo-degenerative, anti-ageing, pulmonary, and immunological defense disorders. These physiological changes observed in our preliminary in silico studies suggest an excellent nutraceutical, which should be borne in mind during severe pandemic situations.
Collapse
Affiliation(s)
- Diana Melo Ferreira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália M. de Oliveira
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| | - Maria Helena Chéu
- RECI—Research Unit in Education and Community Intervention, Instituto Piaget—ISEIT, 3515-776 Viseu, Portugal
| | - Diana Meireles
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Lara Lopes
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| | - Maria Beatriz Oliveira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Machado
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| |
Collapse
|
16
|
Puri V, Kanojia N, Sharma A, Huanbutta K, Dheer D, Sangnim T. Natural product-based pharmacological studies for neurological disorders. Front Pharmacol 2022; 13:1011740. [PMID: 36419628 PMCID: PMC9676372 DOI: 10.3389/fphar.2022.1011740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
Central nervous system (CNS) disorders and diseases are expected to rise sharply in the coming years, partly because of the world's aging population. Medicines for the treatment of the CNS have not been successfully made. Inadequate knowledge about the brain, pharmacokinetic and dynamic errors in preclinical studies, challenges with clinical trial design, complexity and variety of human brain illnesses, and variations in species are some potential scenarios. Neurodegenerative diseases (NDDs) are multifaceted and lack identifiable etiological components, and the drugs developed to treat them did not meet the requirements of those who anticipated treatments. Therefore, there is a great demand for safe and effective natural therapeutic adjuvants. For the treatment of NDDs and other memory-related problems, many herbal and natural items have been used in the Ayurvedic medical system. Anxiety, depression, Parkinson's, and Alzheimer's diseases (AD), as well as a plethora of other neuropsychiatric disorders, may benefit from the use of plant and food-derived chemicals that have antidepressant or antiepileptic properties. We have summarized the present level of knowledge about natural products based on topological evidence, bioinformatics analysis, and translational research in this review. We have also highlighted some clinical research or investigation that will help us select natural products for the treatment of neurological conditions. In the present review, we have explored the potential efficacy of phytoconstituents against neurological diseases. Various evidence-based studies and extensive recent investigations have been included, which will help pharmacologists reduce the progression of neuronal disease.
Collapse
Affiliation(s)
- Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Kampanart Huanbutta
- School of Pharmacy, Eastern Asia University, Rangsit, Pathum Thani, Thailand
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Muang, Chon Buri, Thailand
| |
Collapse
|
17
|
Papageorgiou CS, Lymberopoulos S, Bakas P, Zagklis DP, Sygouni V, Paraskeva CA. Hydroxytyrosol Enrichment of Olive Leaf Extracts via Membrane Separation Processes. MEMBRANES 2022; 12:1027. [PMID: 36363582 PMCID: PMC9698498 DOI: 10.3390/membranes12111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antioxidants isolated from plant materials, such as phenolics, have attracted a lot of attention because of their potential uses. This contributes to the idea of the biorefinery, which is a way to produce useful products from biomass waste. Olea europaea byproducts have been extensively investigated for their large contents in phenolics. Oleuropein is a phenolic compound abundant in olive leaves, with its molecule containing hydroxytyrosol, elenolic acid, and glucose. In this work, olive leaf extracts were treated using different combinations of ultrafiltration and nanofiltration membranes to assess their capacity of facilitating the production of hydroxytyrosol-enriched solutions, either by separating the initially extracted oleuropein or by separating the hydroxytyrosol produced after a hydrolysis step. The best performance was observed when an ultrafiltration membrane (UP010, 10,000 Da) was followed by a nanofiltration membrane (TS40, 200-300 Da) for the treatment of the hydrolyzed extract, increasing the purity of the final product from 25% w/w of the total extracted compounds being hydroxytyrosol when membrane processes were not used to 68% w/w.
Collapse
Affiliation(s)
- Costas S. Papageorgiou
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Stathis Lymberopoulos
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
| | - Panagiotis Bakas
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
| | - Dimitris P. Zagklis
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Varvara Sygouni
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Christakis A. Paraskeva
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| |
Collapse
|
18
|
An Olive-Derived Extract 20% Rich in Hydroxytyrosol Prevents β-Amyloid Aggregation and Oxidative Stress, Two Features of Alzheimer Disease, via SKN-1/NRF2 and HSP-16.2 in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:antiox11040629. [PMID: 35453314 PMCID: PMC9025619 DOI: 10.3390/antiox11040629] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Olive milling produces olive oil and different by-products, all of them very rich in different bioactive compounds like the phenolic alcohol hydroxytyrosol. The aim of the present study was to investigate the effects of an olive fruit extract 20% rich in hydroxytyrosol on the molecular mechanisms associated with Alzheimer disease features like Aβ- and tau- induced toxicity, as well as on oxidative stress in Caenorhabditis elegans. Moreover, characterization of the extracts, regarding the profile and content of phenolics, as well as total antioxidant ability, was investigated. The study of lethality, growth, pharyngeal pumping, and longevity in vivo demonstrated the lack of toxicity of the extract. One hundred μg/mL of extract treatment revealed prevention of oxidative stress and a delay in Aβ-induced paralysis related with a lower presence of Aβ aggregates. Indeed, the extract showed the ability to avoid a certain degree of proteotoxicity associated with aggregation of the tau protein. According to RNAi tests, SKN-1/NRF2 transcription factor and the overexpression of HSP-16.2 were mechanistically associated in the observed effects.
Collapse
|