1
|
Ruan Y, Liu R, Gong L. Investigation of dysregulated lipid metabolism in diabetic mice via targeted metabolomics of bile acids in enterohepatic circulation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9236. [PMID: 34897861 DOI: 10.1002/rcm.9236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE The mechanism of lipid metabolism disorder in type 2 diabetes (T2DM) remains unclear. This study aimed to reveal the mechanism underlying dysregulated lipid metabolism in T2DM through bile acid metabolism. METHODS A db/db mouse model was employed to investigate the alteration of bile acid profiles in T2DM. Ultrahigh-performance liquid chromatography with tandem mass spectrometry was used to quantify the detailed bile acid levels in each compartment of enterohepatic circulation. The pathological change of mouse liver was assessed by liver histology and serum biochemical assays. The expression level of bile acid-related transporters and synthases was measured with Western blot analysis. RESULTS The results showed that T2DM can result in severe liver fat accumulation and liver damage. In addition, compared to the control group, in T2DM mice, bile acid synthesis is reduced, while the level of bile acids is increased at the storage sites and the reabsorption sites, but there are subtle gender differences. Further, the ratio of conjugated bile acids in total bile acid in the liver of T2DM mice increased significantly relative to the control group for both female and male mice. CONCLUSIONS In T2DM, bile acid metabolism is disordered in both male and female mice, which could be the underlying mechanism of dysregulated lipid metabolism in T2DM.
Collapse
Affiliation(s)
- Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Caligiuri A, Gentilini A, Pastore M, Gitto S, Marra F. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells 2021; 10:cells10102759. [PMID: 34685739 PMCID: PMC8534788 DOI: 10.3390/cells10102759] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury of different etiologies may result in hepatic fibrosis, a scar formation process consisting in altered deposition of extracellular matrix. Progression of fibrosis can lead to impaired liver architecture and function, resulting in cirrhosis and organ failure. Although fibrosis was previous thought to be an irreversible process, recent evidence convincingly demonstrated resolution of fibrosis in different organs when the cause of injury is removed. In the liver, due to its high regenerative ability, the extent of fibrosis regression and reversion to normal architecture is higher than in other tissues, even in advanced disease. The mechanisms of liver fibrosis resolution can be recapitulated in the following main points: removal of injurious factors causing chronic hepatic damage, elimination, or inactivation of myofibroblasts (through various cell fates, including apoptosis, senescence, and reprogramming), inactivation of inflammatory response and induction of anti-inflammatory/restorative pathways, and degradation of extracellular matrix. In this review, we will discuss the major cellular and molecular mechanisms underlying the regression of fibrosis/cirrhosis and the potential therapeutic approaches aimed at reversing the fibrogenic process.
Collapse
|
3
|
Blutt SE, Crawford SE, Bomidi C, Zeng XL, Broughman JR, Robertson M, Coarfa C, Tessier MEM, Savidge T, Hollinger FB, Curley SA, Donowitz M, Estes MK. Use of human tissue stem cell-derived organoid cultures to model enterohepatic circulation. Am J Physiol Gastrointest Liver Physiol 2021; 321:G270-G279. [PMID: 34288725 PMCID: PMC8461792 DOI: 10.1152/ajpgi.00177.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The use of human tissue stem cell-derived organoids has advanced our knowledge of human physiological and pathophysiological processes that are unable to be studied using other model systems. Increased understanding of human epithelial tissues including intestine, stomach, liver, pancreas, lung, and brain have been achieved using organoids. However, it is not yet clear whether these cultures recapitulate in vivo organ-to-organ signaling or communication. In this work, we demonstrate that mature stem cell-derived intestinal and liver organoid cultures each express functional molecules that modulate bile acid uptake and recycling. These organoid cultures can be physically coupled in a Transwell system and display increased secretion of fibroblast growth factor 19 (FGF19) (intestine) and downregulation of P450 enzyme cholesterol 7 α-hydroxylase (CYP7A) (liver) in response to apical exposure of the intestine to bile acids. This work establishes that organoid cultures can be used to study and therapeutically modulate interorgan interactions and advance the development of personalized approaches to medical care.NEW & NOTEWORTHY Interorgan signaling is a critical feature of human biology and physiology, yet has remained difficult to study due to the lack of in vitro models. Here, we demonstrate that physical coupling of ex vivo human intestine and liver epithelial organoid cultures recapitulates in vivo interorgan bile acid signaling. These results suggest that coupling of multiple organoid systems provides new models to investigate interorgan communication and advances our knowledge of human physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Sarah E. Blutt
- 1Department of Molecular Virology and Microbiology, grid.39382.33Baylor College of Medicine, Houston, Texas
| | - Sue E. Crawford
- 1Department of Molecular Virology and Microbiology, grid.39382.33Baylor College of Medicine, Houston, Texas
| | - Carolyn Bomidi
- 1Department of Molecular Virology and Microbiology, grid.39382.33Baylor College of Medicine, Houston, Texas
| | - Xi-Lei Zeng
- 1Department of Molecular Virology and Microbiology, grid.39382.33Baylor College of Medicine, Houston, Texas
| | - James R. Broughman
- 1Department of Molecular Virology and Microbiology, grid.39382.33Baylor College of Medicine, Houston, Texas
| | - Matthew Robertson
- 2Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- 2Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas,3Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas,4Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mary Elizabeth M. Tessier
- 5Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Tor Savidge
- 6Department of Pathology and Immunology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - F. Blaine Hollinger
- 1Department of Molecular Virology and Microbiology, grid.39382.33Baylor College of Medicine, Houston, Texas,7Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Steven A. Curley
- 8Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Mark Donowitz
- 9Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary K. Estes
- 1Department of Molecular Virology and Microbiology, grid.39382.33Baylor College of Medicine, Houston, Texas,7Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Duan R, Guan X, Huang K, Zhang Y, Li S, Xia J, Shen M. Flavonoids from Whole-Grain Oat Alleviated High-Fat Diet-Induced Hyperlipidemia via Regulating Bile Acid Metabolism and Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7629-7640. [PMID: 34213907 DOI: 10.1021/acs.jafc.1c01813] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A high-fat diet (HFD) causes hyperlipidemia, which worsens disturbances in bile acid (BA) metabolism and gut microbiota. This study aimed to investigate the regulation of flavonoids from whole-grain oat (FO) on BA metabolism and gut microbiota in HFD-induced hyperlipidemic mice. The experiment results showed that FO improved serum lipid profiles and decreased body weight and lipid deposition in HFD-fed mice. Through real-time qualitative polymerase chain reaction (RT-qPCR) and Western blot assays, by up-regulating the expression of PPARα, CPT-1, CYP7A1, FXR, TGR5, NTCP, and BSTP, and down-regulating those of SREBP-1c, FAS, and ASBT, FO suppressed lipogenesis, promoted lipolysis and BA synthesis, and efflux to faeces via the FXR pathway. 16s rRNA sequencing revealed that FO significantly increased Akkermansia and significantly decreased Lachnoclostridium, Blautia, Colidextribacter, and Desulfovibrio. Spearman's correlation analysis showed that these bacteria were strongly correlated with hyperlipidemia-related parameters. Therefore, our results indicated that FO possessed an antihyperlipidemic effect via regulating the gut-liver axis, i.e., BA metabolism and gut microbiota.
Collapse
Affiliation(s)
- Ruiqian Duan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao Guan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Huang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sen Li
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ji'an Xia
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meng Shen
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
5
|
Potenza M, Cavalluzzi MM, Milani G, Lauro G, Carino A, Roselli R, Fiorucci S, Zampella A, Pierri CL, Lentini G, Bifulco G. Inverse Virtual Screening for the rapid re-evaluation of the presumed biological safe profile of natural products. The case of steviol from Stevia rebaudiana glycosides on farnesoid X receptor (FXR). Bioorg Chem 2021; 111:104897. [PMID: 33901797 DOI: 10.1016/j.bioorg.2021.104897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/20/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Nonnutritive sweeteners (NNSs) are widely employed as dietary substitutes for classical sugars thanks to their safety profile and low toxicity. In this study, a re-evaluation of the biological effects of steviol (1), the main metabolite from Stevia rebaudiana glycosides, was performed using the Inverse Virtual Screening (IVS) target fishing computational approach. Starting from well-known pharmacological properties of Stevia rebaudiana glycosides, this computational tool was employed for predicting the putative interacting targets of 1 and, afterwards, of its five synthetic ester derivatives 2-6, accounting a large panel of proteins involved in cancer and inflammation events. Applying this methodology, the farnesoid X receptor (FXR) was identified as the putative target partner of 1-6. The predicted ligand-protein interactions were corroborated by transactivation assays, specifically disclosing the agonistic activity of 1 and the antagonistic activities of 2-6 on FXR. The reported results highlight the feasibility of IVS as a fast and potent tool for predicting the interacting targets of query compounds, addressing the re-evaluation of their bioactivity. In light of the obtained results, the presumably safe profile of known compounds, such as the case of steviol (1), is critically discussed.
Collapse
Affiliation(s)
- Marianna Potenza
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Gualtiero Milani
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova facoltà di Medicina, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, Naples 80131, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova facoltà di Medicina, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, Naples 80131, Italy
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy.
| |
Collapse
|
6
|
Chen MJ, Liu C, Wan Y, Yang L, Jiang S, Qian DW, Duan JA. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids 2021; 165:108757. [PMID: 33161055 DOI: 10.1016/j.steroids.2020.108757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs) are amphiphilic molecules with a nonpolar steroid carbon skeleton and a polar carboxylate side chain. Recently, BAs have aroused the attention of scholars due to their potential roles on metabolic diseases. As important endogenous ligands, BAs are wildly active in the enterohepatic circulation, during which microbiota play a significant role in promoting the hydrolysis and dehydroxylation of BAs. Besides, many pathways initiated by BAs including glucolipid metabolism and inflammation signaling pathways have been reported to regulate the host metabolism and maintain immune homeostasis. Herein, the characteristics on the enterohepatic circulation and metabolism of BAs are systematically summarized. Moreover, the regulation mechanism of the glucolipid metabolism by BAs is intensively discussed. Worthily, FXR and TGR5, which are involved in glucolipid metabolism, are the prime candidates for targeted therapies of chronic metabolic diseases such as diabetes and hypercholesterolemia.
Collapse
Affiliation(s)
- Meng-Jun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Hypolipidemic and Hepatoprotective Effects of Polysaccharides Extracted from Liriope spicata Var. Prolifera in C57BL/6J Mice with High-Fat Diet-Induced Hyperlipidemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8013189. [PMID: 33376498 PMCID: PMC7746456 DOI: 10.1155/2020/8013189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
In this study, C57BL/6J mice with high-fat diet- (HFD-) induced hyperlipidemia were treated with total Liriope spicata var. prolifera polysaccharides (TLSP: 200, 400, and 800 mg/kg body weight), simvastatin (3 mg/kg body weight), or saline for 8 weeks, respectively. The results showed that TLSP had strong lipid-lowering and hepatoprotective effects on C57BL/6J mice with HFD-induced hyperlipidemia. TLSP administration significantly reduced serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels and downregulated the expressions of peroxisome proliferator-activated receptor (PPAR)γ and fatty acid synthase (FAS) in the adipose and liver tissues of the mice. TLSP exerted hypolipidemic and hepatoprotective effects by activating lipid/bile acid metabolism via the FXH-SHP/CYP7A1 and SEBP-1c/FAC/ACC signaling pathways. Thus, TLPS is a promising natural polymer with hepatoprotective and hypolipidemic properties.
Collapse
|
8
|
Bile acid transporter-mediated oral drug delivery. J Control Release 2020; 327:100-116. [PMID: 32711025 DOI: 10.1016/j.jconrel.2020.07.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized in the liver, stored in the gallbladder, and secreted into the duodenum at meals. Apical sodium-dependent bile acid transporter (ASBT), an ileal Na+-dependent transporter, plays the leading role of bile acid absorption into enterocytes, where bile acids are delivered to basolateral side by ileal bile acid binding protein (IBABP) and then released by organic solute transporter OSTα/β. The absorbed bile acids are delivered to the liver via portal vein. In this process called "enterohepatic recycling", only 5% of the bile acid pool (~3 g in human) is excreted in feces, indicating the large recycling capacity and high transport efficacy of ASBT-mediated absorption. Therefore, bile acid transporter-mediated oral drug delivery has been regarded as a feasible and potential strategy to improve the oral bioavailability. This review introduces the key factors in enterohepatic recycling, especially the mechanism of bile acid uptake by ASBT, and the development of bile acid-based oral drug delivery for ASBT-targeting, including bile acid-based prodrugs, bile acid/drug electrostatic complexation and bile acid-containing nanocarriers. Furthermore, the specific transport pathways of bile acid in enterocytes are described and the recent finding of lymphatic delivery of bile acid-containing nanocarriers is discussed.
Collapse
|
9
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
10
|
The gut–liver axis in hepatocarcinoma: a focus on the nuclear receptor FXR and the enterokine FGF19. Curr Opin Pharmacol 2018; 43:93-98. [DOI: 10.1016/j.coph.2018.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
|
11
|
Wang D, Jiang X, Lu A, Tu M, Huang W, Huang P. BMP14 induces tenogenic differentiation of bone marrow mesenchymal stem cells in vitro. Exp Ther Med 2018; 16:1165-1174. [PMID: 30116367 PMCID: PMC6090266 DOI: 10.3892/etm.2018.6293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2018] [Indexed: 01/28/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are pluripotent cells, which have the capacity to differentiate into various types of mesenchymal cell phenotypes, including osteoblasts, chondroblasts, myoblasts and tendon fibroblasts (TFs). The molecular mechanism for tenogenic differentiation of BMSCs is still unknown. The present study investigated the effects of bone morphogenetic protein (BMP) 14 on BMSC differentiation in vitro. It was revealed that BMP14 significantly increased the expression of tendon markers (scleraxis and tenomodulin) at the mRNA and protein level, which led to the upregulation of sirtuin 1 (Sirt1) expression. The gain or loss of Sirt1 function may promote or inhibit tenogenic differentiation by deacetylating the peroxisome proliferator-activated receptor (PPAR)-γ. BMP14 also triggered the phosphorylation of c-Jun N-terminal kinase (JNK) and Smad1; overexpression of Sirt1 significantly increased the phosphorylation and knockdown of Sirt1 significantly decreased the phosphorylation. The inhibition of JNK and Smad significantly increased the acetylation of PPARγ and inhibited the expression of tenogenic differentiation markers. These results suggest that BMP14 may induce the tenogenic differentiation of BMSCs via the Sirt1-JNK/Smad1-PPARγ signaling pathway. The present study provided a cellular and molecular basis for the development of novel therapeutic strategies for tendon healing.
Collapse
Affiliation(s)
- Dan Wang
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Xinhao Jiang
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Aiqing Lu
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Min Tu
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Wei Huang
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Ping Huang
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
12
|
Zheng T, Kang JH, Sim JS, Kim JW, Koh JT, Shin CS, Lim H, Yim M. The farnesoid X receptor negatively regulates osteoclastogenesis in bone remodeling and pathological bone loss. Oncotarget 2017; 8:76558-76573. [PMID: 29100332 PMCID: PMC5652726 DOI: 10.18632/oncotarget.20576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
Farnesoid X receptor (FXR, NR1H4) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Since the role of FXR in osteoclast differentiation remains ill-defined, we investigated the biological function of FXR on osteoclastogenesis, using FXR-deficient mice. We demonstrated that FXR deficiency increases osteoclast formation in vitro and in vivo. First, FXR deficiency was found to accelerate osteoclast formation via down-regulation of c-Jun N-terminal kinase (JNK) 1/2 expression. Increased expression of peroxisome proliferator-activated receptor (PPAR)γ and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1)β seems to mediate the pro-osteoclastogenic effect of FXR deficiency via the JNK pathway. In addition, we found that FXR deficiency downregulated the expression of interferon-β (IFN-β), a strong inhibitor of osteoclastogenesis, via receptor activator of nuclear factor-kappaB ligand (RANKL). We further suggested that interference of IFN-β expression by FXR deficiency impaired the downstream JAK3-STAT1 signaling pathways, which in turn increased osteoclast formation. Finally, FXR deficiency accelerated unloading- or ovariectomy-induced bone loss in vivo. Thus, our findings demonstrate that FXR is a negative modulator in osteoclast differentiation and identify FXR as a potential therapeutic target for postmenopausal osteoporosis and unloading-induced bone loss.
Collapse
Affiliation(s)
- Ting Zheng
- College of Pharmacy, Sookmyung Women's University, Yongsan-ku, Seoul, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Sookmyung Women's University, Yongsan-ku, Seoul, Republic of Korea
| | - Jung-Sun Sim
- College of Pharmacy, Sookmyung Women's University, Yongsan-ku, Seoul, Republic of Korea
| | - Jung-Woo Kim
- Department of Pharmacology and Dental Therapeutics, Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Soo Shin
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyungsik Lim
- Departments of Physics, Hunter College of the City University of New York, New York City, New York, USA
| | - Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Yongsan-ku, Seoul, Republic of Korea
| |
Collapse
|
13
|
Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1319-1325. [PMID: 28844960 DOI: 10.1016/j.bbadis.2017.08.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Bile salts represent signalling molecules with a variety of endocrine functions. Bile salt effects are mediated by different receptor molecules, comprising ligand-activated nuclear transcription factors as well as G protein-coupled membrane-bound receptors. The farnesoid X receptor (FXR) and the plasma membrane-bound G protein-coupled receptor TGR5 (Gpbar-1) are prototypic bile salt receptors of both classes and are highly expressed in the liver including the biliary tree as well as in the intestine. In liver, TGR5 is localized in different non-parenchymal cells such as sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells and small and large cholangiocytes. Through TGR5 bile salts can mediate choleretic, cell-protective as well as proliferative effects in cholangiocytes. A disturbance of these signalling mechanisms can contribute to the development of biliary diseases. In line with the important role of TGR5 for bile salt signalling, TGR5 knockout mice are more susceptible to cholestatic liver damage. Furthermore, in absence of TGR5 cholangiocyte proliferation in response to cholestasis is attenuated and intrahepatic and extrahepatic bile ducts show increased cell damage, underscoring the role of the receptor for biliary physiology. Decreased TGR5 expression may also contribute to the development or progression of cholangiopathies like primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) since reduced TGR5-dependent cell-protective mechanisms such as bicarbonate secretion renders cholangiocytes more vulnerable towards bile salt toxicity. Nevertheless, TGR5 overexpression or constant stimulation of the receptor can promote cholangiocyte proliferation leading to cyst growth in polycystic liver disease or even progression of cholangiocarcinoma. Not only the stimulation of TGR5-mediated pathways by suitable TGR5 agonists but also the inhibition of TGR5 signalling by the use of antagonists represent potential therapeutic approaches for different types of biliary diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Kathleen Deutschmann
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Maria Reich
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Caroline Klindt
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Carola Dröge
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
JUŘICA J, DOVRTĚLOVÁ G, NOSKOVÁ K, ZENDULKA O. Bile Acids, Nuclear Receptors and Cytochrome P450. Physiol Res 2016; 65:S427-S440. [DOI: 10.33549/physiolres.933512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the importance of bile acids (BA) as important regulators of various homeostatic mechanisms with detailed focus on cytochrome P450 (CYP) enzymes. In the first part, synthesis, metabolism and circulation of BA is summarized and BA are reviewed as physiological ligands of nuclear receptors which regulate transcription of genes involved in their metabolism, transport and excretion. Notably, PXR, FXR and VDR are the most important nuclear receptors through which BA regulate transcription of CYP genes involved in the metabolism of both BA and xenobiotics. Therapeutic use of BA and their derivatives is also briefly reviewed. The physiological role of BA interaction with nuclear receptors is basically to decrease production of toxic non-polar BA and increase their metabolic turnover towards polar BA and thus decrease their toxicity. By this, the activity of some drug-metabolizing CYPs is also influenced what could have clinically relevant consequences in cholestatic diseases or during the treatment with BA or their derivatives.
Collapse
Affiliation(s)
| | | | | | - O. ZENDULKA
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno. Czech Republic
| |
Collapse
|
15
|
Shi L, Wang J, Wang Y, Feng Y. MDG-1, an Ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of bile acids. Carbohydr Polym 2016; 150:74-81. [PMID: 27312615 DOI: 10.1016/j.carbpol.2016.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/01/2016] [Accepted: 05/04/2016] [Indexed: 01/15/2023]
Abstract
Hyperlipidemia is a chronic metabolic disorder with systemic complications that is prevalent worldwide. MDG-1, a water-soluble β-d-fructan polysaccharide from Ophiopogon japonicas has potent hypolipidemic and weight-control effects. The present study aimed to investigate the effects of MDG-1 on lipid metabolic disorders in diet-induced obese mice based on the metabolic profile of bile acids. C57BL/6 mice were treated with a low-fat diet, high-fat diet or high fat mixed with 1‰ (w/w) MDG-1 diet for 12 weeks. The results showed that MDG-1 inhibited body weight gain and lowered serum and liver total cholesterol contents in obese mice. In addition, MDG-1 could adsorb bile acids in the gut lumen and reduce their reabsorption, thus promoting cholesterol catabolism. Furthermore, MDG-1 inhibited the expression of the farnesoid X receptor, but activated the liver X receptor. Our findings shed new light on the mechanism of MDG-1 in the control of lipids.
Collapse
Affiliation(s)
- Linlin Shi
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jie Wang
- Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yuan Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
16
|
Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha. J Nat Med 2016; 70:584-91. [PMID: 26968537 DOI: 10.1007/s11418-016-0980-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
Plants possess various natural antiviral properties. Epigallocatechin-3-gallate (EGCG), a major component of green tea, inhibits a variety of viruses. However, the clinical application of EGCG is currently hindered by a scarcity of information on its molecular mechanism of action. In the present study, we examined the anti-HBV (hepatitis B virus) effects of catechins from green tea at the transcriptional and antigen-expression levels, as well as the associated molecular mechanisms, because HBV-associated liver diseases have become a key public health issue due to their serious impact on human physical and mental health. By using fluorescence quenching and affinity binding, we demonstrated that EGCG is an important transcriptional regulator of the HBV genome, which it achieves by interacting with farnesoid X receptor alpha (FXRα). Luciferase assay showed that EGCG effectively inhibited the transcription of the HBV promoter dose-dependently when expression plasmids of FXRα and retinoid X receptor α (RXRα) were co-transfected into HEK293 cells. These results indicate that the downregulation of the HBV antigen and the decrease in the transcriptional activation of the HBV EnhII/core promoter by FXRα/RXRα are mainly due to the interaction between EGCG and FXRα. Therefore, EGCG, an antagonist of FXRα in liver cells, has the potential to be employed as an effective anti-HBV agent.
Collapse
|
17
|
Serviddio G, Bellanti F, Vendemiale G. Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radic Biol Med 2013; 65:952-968. [PMID: 23994574 DOI: 10.1016/j.freeradbiomed.2013.08.174] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species, when released under controlled conditions and limited amounts, contribute to cellular proliferation, senescence, and survival by acting as signaling intermediates. In past decades there has been an epidemic diffusion of nonalcoholic fatty liver disease (NAFLD) that represents the result of the impairment of lipid metabolism, redox imbalance, and insulin resistance in the liver. To date, most studies and reviews have been focused on the molecular mechanisms by which fatty liver progresses to steatohepatitis, but the processes leading toward the development of hepatic steatosis in NAFLD are not fully understood yet. Several nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) α/γ/δ, PPARγ coactivators 1α and 1β, sterol-regulatory element-binding proteins, AMP-activated protein kinase, liver-X-receptors, and farnesoid-X-receptor, play key roles in the regulation of lipid homeostasis during the pathogenesis of NAFLD. These nuclear receptors may act as redox sensors and may modulate various metabolic pathways in response to specific molecules that act as ligands. It is conceivable that a redox-dependent modulation of lipid metabolism, nuclear receptor-mediated, could cause the development of hepatic steatosis and insulin resistance. Thus, this network may represent a potential therapeutic target for the treatment and prevention of hepatic steatosis and its progression to steatohepatitis. This review summarizes the redox-dependent factors that contribute to metabolism alterations in fatty liver with a focus on the redox control of nuclear receptors in normal liver as well as in NAFLD.
Collapse
Affiliation(s)
- Gaetano Serviddio
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| | - Francesco Bellanti
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
18
|
Smith Z, Ryerson D, Kemper JK. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol Cell Endocrinol 2013; 368:59-70. [PMID: 22579755 PMCID: PMC3473118 DOI: 10.1016/j.mce.2012.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023]
Abstract
The traditional role of bile acids is to simply facilitate absorption and digestion of lipid nutrients, but bile acids also act as endocrine signaling molecules that activate nuclear and membrane receptors to control integrative metabolism and energy balance. The mechanisms by which bile acid signals are integrated to regulate target genes are, however, largely unknown. Recently emerging evidence has shown that transcriptional cofactors sense metabolic changes and modulate gene transcription by mediating reversible epigenomic post-translational modifications (PTMs) of histones and chromatin remodeling. Importantly, targeting these epigenomic changes has been a successful approach for treating human diseases, especially cancer. Here, we review emerging roles of transcriptional cofactors in the epigenomic regulation of liver metabolism, especially focusing on bile acid metabolism. Targeting PTMs of histones and chromatin remodelers, together with the bile acid-activated receptors, may provide new therapeutic options for bile acid-related disease, such as cholestasis, obesity, diabetes, and entero-hepatic cancers.
Collapse
Affiliation(s)
- Zachary Smith
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
19
|
Bukiya AN, McMillan JE, Fedinec AL, Patil SA, Miller DD, Leffler CW, Parrill AL, Dopico AM. Cerebrovascular dilation via selective targeting of the cholane steroid-recognition site in the BK channel β1-subunit by a novel nonsteroidal agent. Mol Pharmacol 2013; 83:1030-44. [PMID: 23455312 DOI: 10.1124/mol.112.083519] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Ca(2+)/voltage-gated K(+) large conductance (BK) channel β1 subunit is particularly abundant in vascular smooth muscle. By determining their phenotype, BK β1 allows the BK channels to reduce myogenic tone, facilitating vasodilation. The endogenous steroid lithocholic acid (LCA) dilates cerebral arteries via BK channel activation, which requires recognition by a BK β1 site that includes Thr169. Whether exogenous nonsteroidal agents can access this site to selectively activate β1-containing BK channels and evoke vasodilation remain unknown. We performed a chemical structure database similarity search using LCA as a template, along with a two-step reaction to generate sodium 3-hydroxyolean-12-en-30-oate (HENA). HENA activated the BK (cbv1 + β1) channels cloned from rat cerebral artery myocytes with a potency (EC₅₀ = 53 μM) similar to and an efficacy (×2.5 potentiation) significantly greater than that of LCA. This HENA action was replicated on native channels in rat cerebral artery myocytes. HENA failed to activate the channels made of cbv1 + β2, β3, β4, or β1T169A, indicating that this drug selectively targets β1-containing BK channels via the BK β1 steroid-sensing site. HENA (3-45 μM) dilated the rat and C57BL/6 mouse pressurized cerebral arteries. Consistent with the electrophysiologic results, this effect was larger than that of LCA. HENA failed to dilate the arteries from the KCNMB1 knockout mouse, underscoring BK β1's role in HENA action. Finally, carotid artery-infusion of HENA (45 μM) dilated the pial cerebral arterioles via selective BK-channel targeting. In conclusion, we have identified for the first time a nonsteroidal agent that selectively activates β1-containing BK channels by targeting the steroid-sensing site in BK β1, rendering vasodilation.
Collapse
Affiliation(s)
- Anna N Bukiya
- Departments of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The patent application WO2012082947 claims novel compounds as agonists of a plasma membrane-bound bile acid receptor TGR5. By activating TGR5, the agonists improve glycemic control and enhance energy expenditure. The basic generic claim of the patent covers pyrazole derivatives, different permutations on the core pyrazole ring are covered in the subsidiary claims. The claimed compounds are human TGR5 agonists having potency in the nM range.
Collapse
Affiliation(s)
- Saurin Raval
- Zydus Research Centre, Moraiya, Ahmedabad 382210, India.
| |
Collapse
|
21
|
Hoekstra M, van der Sluis RJ, Li Z, Oosterveer MH, Groen AK, Van Berkel TJC. FXR agonist GW4064 increases plasma glucocorticoid levels in C57BL/6 mice. Mol Cell Endocrinol 2012; 362:69-75. [PMID: 22643070 DOI: 10.1016/j.mce.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 01/09/2023]
Abstract
Since high expression of farnesoid X receptor (FXR) has been detected in glucocorticoid-producing adrenocortical cells, we evaluated the potential role of FXR in adrenal glucocorticoid production. FXR agonist GW4064 increased fasting plasma corticosterone levels (+45%; P<0.01) in C57BL/6 mice, indicative of enhanced adrenal steroidogenesis. GW4064 treatment did not affect plasma ACTH levels, adrenal weight, or adrenal expression of steroidogenic genes. Scavenger receptor BI (SR-BI) mRNA and protein expression, respectively, increased 1.9-fold (P<0.01) and 1.5-fold, which suggests a stimulated lipoprotein-associated cholesterol uptake into the adrenals upon GW4064 treatment. In line with an enhanced flux of cellular cholesterol into the steroidogenic pathway, adrenal unesterified and esterified cholesterol stores were 21-41% decreased (P<0.01) upon GW4064 treatment. In conclusion, we have shown that the FXR agonist GW4064 stimulates plasma corticosterone levels in C57BL/6 mice. Our findings suggest a novel role for FXR in the modulation of adrenal cholesterol metabolism and glucocorticoid synthesis in mice.
Collapse
MESH Headings
- Adrenal Glands/anatomy & histology
- Adrenal Glands/drug effects
- Adrenal Glands/metabolism
- Adrenocorticotropic Hormone/blood
- Animals
- Apolipoproteins A/genetics
- Apolipoproteins A/metabolism
- Cholesterol Side-Chain Cleavage Enzyme/genetics
- Cholesterol Side-Chain Cleavage Enzyme/metabolism
- Corticosterone/blood
- Female
- Glucocorticoids/blood
- Isoxazoles/pharmacology
- Lipid Metabolism
- Lipids/blood
- Liver/metabolism
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Size/drug effects
- Phosphoenolpyruvate Carboxykinase (ATP)/genetics
- Phosphoenolpyruvate Carboxykinase (ATP)/metabolism
- Progesterone Reductase/genetics
- Progesterone Reductase/metabolism
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Steroid 11-beta-Hydroxylase/genetics
- Steroid 11-beta-Hydroxylase/metabolism
- Steroid 21-Hydroxylase/genetics
- Steroid 21-Hydroxylase/metabolism
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/metabolism
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Bukiya AN, Patil S, Li W, Miller D, Dopico AM. Calcium- and voltage-gated potassium (BK) channel activators in the 5β-cholanic acid-3α-ol analogue series with modifications in the lateral chain. ChemMedChem 2012; 7:1784-92. [PMID: 22945504 PMCID: PMC4193543 DOI: 10.1002/cmdc.201200290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Indexed: 02/07/2023]
Abstract
Large conductance, calcium- and voltage-gated potassium (BK) channels regulate various physiological processes and represent an attractive target for drug discovery. Numerous BK channel activators are available. However, these agents usually interact with the ubiquitously distributed channel-forming subunit and thus cannot selectively target a particular tissue. We performed a structure-activity relationship study of lithocholic acid (LCA), a cholane that activates BK channels via the accessory BK β1 subunit. The latter protein is highly abundant in smooth muscle but scarce in most other tissues. Modifications to the LCA lateral chain length and functional group yielded two novel smooth muscle BK channel activators in which the substituent at C24 has a small volume and a net negative charge. Our data provide detailed structural information that will be useful to advance a pharmacophore in search of β1 subunit-selective BK channel activators. These compounds are expected to evoke smooth muscle relaxation, which would be beneficial in the pharmacotherapy of prevalent human disorders associated with increased smooth muscle contraction, such as systemic hypertension, cerebral or coronary vasospasm, bronchial asthma, bladder hyperactivity, and erectile dysfunction.
Collapse
Affiliation(s)
- Anna N. Bukiya
- Anna N. Bukiya, Alex M. Dopico Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Ave., #115, Memphis, TN 38163
| | - Shivaputra Patil
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Wei Li
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Duane Miller
- Shivaputra Patil, Wei Li, Duane Miller Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave., # 435, Memphis, TN 38163
| | - Alex M. Dopico
- Anna N. Bukiya, Alex M. Dopico Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Ave., #115, Memphis, TN 38163
| |
Collapse
|
23
|
Stojancevic M, Stankov K, Mikov M. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2012; 26:631-7. [PMID: 22993736 PMCID: PMC3441172 DOI: 10.1155/2012/538452] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/30/2011] [Indexed: 12/14/2022]
Abstract
The most important function of the intestinal mucosa is to form a barrier that separates luminal contents from the intestine. Defects in the intestinal epithelial barrier have been observed in several intestinal disorders such as inflammatory bowel disease (IBD). Recent studies have identified a number of factors that contribute to development of IBD including environmental triggers, genetic factors, immunoregulatory defects and microbial exposure. The current review focuses on the influence of the farnesoid X receptor (FXR) on the inhibition of intestinal inflammation in patients with IBD. The development and investigation of FXR agonists provide strong support for the regulatory role of FXR in mucosal innate immunity. Activation of FXR in the intestinal tract decreases the production of proinflammatory cytokines such as interleukin (IL) 1-beta, IL-2, IL-6, tumour necrosis factor-alpha and interferon-gamma, thus contributing to a reduction in inflammation and epithelial permeability. In addition, intestinal FXR activation induces the transcription of multiple genes involved in enteroprotection and the prevention of bacterial translocation in the intestinal tract. These data suggest that FXR agonists are potential candidates for exploration as a novel therapeutic strategy for IBD in humans.
Collapse
Affiliation(s)
- Maja Stojancevic
- Department of Pharmacology, University of Novi Sad, Hajduk Veljkova, Serbia.
| | | | | |
Collapse
|
24
|
Portincasa P, Ciaula AD, Bonfrate L, Wang DQ. Therapy of gallstone disease: What it was, what it is, what it will be. World J Gastrointest Pharmacol Ther 2012; 3:7-20. [PMID: 22577615 PMCID: PMC3348960 DOI: 10.4292/wjgpt.v3.i2.7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 09/21/2011] [Accepted: 09/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cholesterol gallstone disease is a common clinical condition influenced by genetic factors, increasing age, female gender, and metabolic factors. Although laparoscopic cholecystectomy is currently considered the gold standard in treating patients with symptomatic gallstones, new perspectives regarding medical therapy of cholelithiasis are currently under discussion, also taking into account the pathogenesis of gallstones, the natural history of the disease and the analysis of the overall costs of therapy. A careful selection of patients may lead to successful non-surgical therapy in symptomatic subjects with a functioning gallbladder harboring small radiolucent stones. The classical oral litholysis by ursodeoxycholic acid has been recently paralleled by new experimental observations, suggesting that cholesterol-lowering agents which inhibit cholesterol synthesis (statins) or intestinal cholesterol absorption (ezetimibe), or drugs acting on specific nuclear receptors involved in cholesterol and bile acid homeostasis, might be proposed as additional approaches for treating cholesterol gallstones. In this review we discuss old, recent and future perspectives on medical treatment of cholesterol cholelithiasis.
Collapse
Affiliation(s)
- Piero Portincasa
- Piero Portincasa, Leonilde Bonfrate, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Piazza Giulio Cesare 11, Policlinico, 70124 Bari, Italy
| | | | | | | |
Collapse
|
25
|
|
26
|
Id Boufker H, Lagneaux L, Fayyad-Kazan H, Badran B, Najar M, Wiedig M, Ghanem G, Laurent G, Body JJ, Journé F. Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone 2011; 49:1219-31. [PMID: 21893226 DOI: 10.1016/j.bone.2011.08.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
Bone tissue contains bile acids which accumulate from serum and which can be released in large amounts in the bone microenvironment during bone resorption. However, the direct effects of bile acids on bone cells remain largely unexplored. Bile acids have been identified as physiological ligands of the farnesoid X receptor (FXR, NR1H4). In the present study, we have examined the effects of FXR activation/inhibition on the osteoblastic differentiation of human bone marrow stromal cells (BMSC). We first demonstrated the expression of FXR in BMSC and SaOS2 osteoblast-like cells, and observed that FXR activation by chenodeoxycholic acid (CDCA) or by farnesol (FOH) increases the activity of alkaline phosphatase and the calcification of the extracellular matrix. In addition, we observed that FXR agonists are able to stimulate the expression of osteoblast marker genes [bone sialoprotein (BSP), osteocalcin (OC), osteopontin (OPN) and alkaline phosphatase (ALP)] (FXR involvement validated by shRNA-induced gene silencing), as well as the DNA binding activity of the bone transcription factor RUNX2 (EMSA and ChIP assay). Importantly, we observed that nitrogen-containing bisphosphonates (BPs) inhibit the basal osteoblastic differentiation of BMSC, possibly through suppression of endogenous FOH production, independently of their effects on protein prenylation. Likewise, we found that the FXR antagonist guggulsterone (GGS) inhibits ALP activity, calcium deposition, DNA binding of RUNX2, and bone marker expression, indicating that GGS interferes with osteoblastic differentiation. Furthermore, GGS induced the appearance of lipid vesicles in BMSC and stimulated the expression of adipose tissue markers (peroxisome proliferator activated receptor-gamma (PPARγ), adipoQ, leptin and CCAAT/enhancer-binding protein-alpha (C/EBPα)). In conclusion, our data support a new role for FXR in the modulation of osteoblast/adipocyte balance: its activation stimulates RUNX2-mediated osteoblastic differentiation of BMSC, whereas its inhibition leads to an adipocyte-like phenotype.
Collapse
Affiliation(s)
- Hichame Id Boufker
- Laboratoire d'Hématologie Expérimentale, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lax S, Schauer G, Prein K, Kapitan M, Silbert D, Berghold A, Berger A, Trauner M. Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int J Cancer 2011; 130:2232-9. [PMID: 21780109 DOI: 10.1002/ijc.26293] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 06/29/2011] [Indexed: 01/10/2023]
Abstract
The nuclear bile acid receptor/farnesoid X receptor (FXR; NR1H4) is involved in bile acid homeostasis, cell proliferation and apoptosis and has been linked to intestinal carcinogenesis in mice. Aim of this study was to analyze FXR expression in human normal intestinal mucosa and colon carcinoma. We achieved systematic mapping of FXR expression of human intestinal mucosa and analysis of 75 human colon carcinomas using FXR immunohistochemistry on formalin-fixed, paraffin-embedded tissue. FXR expression gradually decreased from terminal ileum to the sigmoid colon with strongest expression in the terminal ileum (p < 0.001). FXR expression in carcinomas was reduced compared to peritumoral nonneoplastic mucosa (p < 0.000). Loss of FXR expression was significantly correlated with grading in tumors of the right colon (p = 0.008). FXR expression in tumor and normal tissue showed an inverse correlation with stage. FXR expression in tumor was inversely correlated with clinical outcome. No association was found with patients' age and sex. In nonneoplastic mucosa FXR expression concurred with low expression of Ki-67. In carcinomas, no association was found between FXR expression and Ki-67 and cyclin D1, respectively. Development of colon carcinoma in humans is associated with reduced FXR expression independent of site and may reflect an impaired defense against potentially carcinogenic bile acids along their intestinal gradient. In contrast to normal colon mucosa, FXR expression in carcinomas is not associated with low proliferation. Colon carcinomas with FXR expression seem to be associated with lower stage and a more favourable outcome compared to FXR negative carcinomas.
Collapse
Affiliation(s)
- Sigurd Lax
- Department of Pathology, General Hospital Graz West, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lemoine M, Serfaty L. [Nonalcoholic fatty liver disease]. Presse Med 2011; 41:169-89. [PMID: 21723084 DOI: 10.1016/j.lpm.2011.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 02/07/2023] Open
Abstract
NAFLD encompasses a spectrum of liver diseases including simple steatosis and nonalcoholic steatohepatitis (NASH), which is characterized by inflammation and hepatocyte ballooning on a background of steatosis. NAFLD, the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver diseases over the last decade in developed countries as well as in low and middle-income regions owing to dramatic epidemic proportions of obesity and diabetes worldwide. While simple steatosis has mostly a benign course, NASH can lead to fibrosis, cirrhosis and hepatocellular carcinoma. Insulin resistance is considered as the cornerstone in the development of NAFLD/NASH. Liver biopsy remains the gold standard for the diagnosis of NASH. However, non-invasive markers of NASH and fibrosis represent interesting tools to identify patients with severe liver injuries. Even if insulin sensitizers and hepatoprotective agents are promising drugs, no medication has been currently approved for the treatment of NASH. Diet, exercise and control of the metabolic disorders still represent crucial therapeutic options for the management of NAFLD/NASH.
Collapse
Affiliation(s)
- Maud Lemoine
- Hôpital Saint-Antoine, service d'hépatologie, Inserm UMRS 938, 75571 Paris cedex 12, France.
| | | |
Collapse
|
29
|
Gardmo C, Tamburro A, Modica S, Moschetta A. Proteomics for the discovery of nuclear bile acid receptor FXR targets. Biochim Biophys Acta Mol Basis Dis 2011; 1812:836-41. [PMID: 21439373 PMCID: PMC3117992 DOI: 10.1016/j.bbadis.2011.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/23/2011] [Accepted: 03/15/2011] [Indexed: 01/24/2023]
Abstract
Nuclear receptors (NRs) are important pharmacological targets for a number of diseases, including cancer and metabolic disorders. To unmask the direct role of NR function it is fundamental to find the NR targets. During the last few years several NRs have been shown to affect microRNA expression, thereby modulating protein levels. The farnesoid X receptor (FXR), the main regulator of bile acid (BA) homeostasis, also regulates cholesterol, lipid and glucose metabolism. Here we used, for the first time, a proteomics approach on mice treated with a FXR ligand to find novel hepatic FXR targets. Nineteen spots with a more than two-fold difference in protein amounts were found by 2D-DIGE and 20 proteins were identified by MALDI-TOF MS as putative novel FXR targets. The most striking feature of the protein list was the great number of mitochondrial proteins, indicating a substantial impact of FXR activation on mitochondrial function in the liver. To examine if the differences found in the proteomics assay reflected differences at the mRNA level, a microarray assay was generated on hepatic samples from wild type and FXR−/− mice treated with a FXR ligand and compared to vehicle treatment. At least six proteins were shown to be regulated only at a post-transcriptional level. In conclusion, our study provides the impetus to include proteomic analysis for the identification of novel targets of transcription factors, such as NRs. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Cissi Gardmo
- Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), 66030, Italy.
| | | | | | | |
Collapse
|
30
|
Choi H, Hwang H, Chin J, Kim E, Lee J, Nam SJ, Lee BC, Rho BJ, Kang H. Tuberatolides, potent FXR antagonists from the Korean marine tunicate Botryllus tuberatus. JOURNAL OF NATURAL PRODUCTS 2011; 74:90-4. [PMID: 21142112 DOI: 10.1021/np100489u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One isoprenoid, tuberatolide A (1), meroterpenoids tuberatolide B (2) and 2'-epi-tuberatolide B (3), and the known meroterpenoids yezoquinolide (4), (R)-sargachromenol (5), and (S)-sargachromenol (6) were isolated from the Korean marine tunicate Botryllus tuberatus. The structures of these compounds were elucidated by NMR, MS, and CD spectroscopic analyses. These terpenoids antagonized the chenodeoxycholic acid (CDCA)-activated human farnesoid X receptor (hFXR) in a cell-based co-transfection assay with IC(50) values as low as 1.5 μM without significant effect on steroid receptors. Furthermore, they released the co-activator peptide from the CDCA-bound hFXR ligand binding domain in cell-free surface plasmon resonance experiments.
Collapse
Affiliation(s)
- Hyukjae Choi
- Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, Seoul National University, NS-80, 151-747, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen WD, Wang YD, Meng Z, Zhang L, Huang W. Nuclear bile acid receptor FXR in the hepatic regeneration. Biochim Biophys Acta Mol Basis Dis 2010; 1812:888-92. [PMID: 21167938 DOI: 10.1016/j.bbadis.2010.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 01/05/2023]
Abstract
The liver can fully regenerate itself by a compensatory regrowth in response to partial hepatectomy or injury. This process consists of a variety of well-orchestrated phases and is mediated by many signals. Farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Bile acids are FXR physiological ligands. As a metabolic regulator, FXR plays key roles in regulating metabolism of bile acids, lipids and glucose. Recently, bile acid/FXR signaling pathway is shown to be required for normal liver regeneration. Furthermore, FXR promotes liver repair after injury and activation of FXR is able to alleviate age-related defective liver regeneration. These novel findings suggest that FXR-mediated bile acid signaling is an integrated component of normal liver regeneration machinery, and also highlight the potential use of FXR ligands to promote liver regeneration after segmental liver transplantation or resection of liver tumors. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Wei-Dong Chen
- Division of Gene Regulation & Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
32
|
Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta Mol Basis Dis 2010; 1812:842-50. [PMID: 21130162 DOI: 10.1016/j.bbadis.2010.11.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 12/26/2022]
Abstract
Abnormally elevated lipid and glucose levels due to the disruption of metabolic homeostasis play causative roles in the development of metabolic diseases. A cluster of metabolic conditions, including dyslipidemia, abdominal obesity, and insulin resistance, is referred to as metabolic syndrome, which has been increasing globally at an alarming rate. The primary nuclear bile acid receptor, Farnesoid X Receptor (FXR, NR1H4), plays important roles in controlling lipid and glucose levels by regulating expression of target genes in response to bile acid signaling in enterohepatic tissues. In this review, I discuss how signal-dependent FXR transcriptional activity is dynamically regulated under normal physiological conditions and how it is dysregulated in metabolic disease states. I focus on the emerging roles of post-translational modifications (PTMs) and transcriptional cofactors in modulating FXR transcriptional activity and pathways. Dysregulation of nuclear receptor transcriptional signaling due to aberrant PTMs and cofactor interactions are key determinants in the development of metabolic diseases. Therefore, targeting such abnormal PTMs and transcriptional cofactors of FXR in disease states may provide a new molecular strategy for development of pharmacological agents to treat metabolic syndrome. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|
33
|
Di Ciaula A, Wang DQH, Wang HH, Bonfrate L, Portincasa P. Targets for current pharmacologic therapy in cholesterol gallstone disease. Gastroenterol Clin North Am 2010; 39:245-64, viii-ix. [PMID: 20478485 PMCID: PMC2915454 DOI: 10.1016/j.gtc.2010.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gallstone disease is a frequent condition throughout the world and, cholesterol stones are the most frequent form in Western countries. The standard treatment of symptomatic gallstone subjects is laparoscopic cholecystectomy. The selection of patients amenable for nonsurgical, medical therapy is of key importance; a careful analysis should consider the natural history of the disease and the overall costs of therapy. Only patients with mild symptoms and small, uncalcified cholesterol gallstones in a functioning gallbladder with a patent cystic duct are considered for oral litholysis by hydrophilic ursodeoxycholic acid, in the hope of achieving cholesterol desaturation of bile and progressive stone dissolution. Recent studies have raised the possibility that cholesterol-lowering agents that inhibit hepatic cholesterol synthesis (statins) or intestinal cholesterol absorption (ezetimibe), or drugs acting on specific nuclear receptors involved in cholesterol and bile acid homeostasis, may offer, alone or in combination, additional medical therapeutic tools for treating cholesterol gallstones. Recent perspectives on medical treatment of cholesterol gallstone disease are discussed in this article.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine, Hospital of Bisceglie, via Bovio 279 - 70052 - Bisceglie (Bari), Italy, +39-80-3363271, +39-80-3363232 (fax)
| | - David Q.-H. Wang
- Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School and Harvard Digestive Diseases Center, 330 Brookline Avenue, DA 601, Boston, MA 02215, (617) 667-0561, (617) 975-5071 (fax)
| | - Helen H. Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, DA 601, Boston, MA 02215, (617) 667-5156, (617) 975-5071 (fax)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Internal and Public Medicine, University of Bari Medical School, Piazza Giulio Cesare 11, Policlinico, 70124 Bari, Italy. +39-80-5478227, +39-80-5478232 (fax)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Internal Medicine and Public Medicine, University Medical School, Bari, Italy
| |
Collapse
|
34
|
Cummings BP, Strader AD, Stanhope KL, Graham JL, Lee J, Raybould HE, Baskin DG, Havel PJ. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology 2010; 138:2437-46, 2446.e1. [PMID: 20226188 PMCID: PMC2883638 DOI: 10.1053/j.gastro.2010.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/01/2010] [Accepted: 03/04/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Bariatric surgery has been shown to reverse type 2 diabetes; however, mechanisms by which this occurs remain undefined. Ileal interposition (IT) is a surgical model that isolates the effects of increasing delivery of unabsorbed nutrients to the lower gastrointestinal tract. In this study we investigated effects of IT surgery on glucose tolerance and diabetes onset in UCD-T2DM (University of California at Davis type 2 diabetes mellitus) rats, a polygenic obese animal model of type 2 diabetes. METHODS IT or sham surgery was performed on 4-month-old male UCD-T2DM rats. All animals underwent oral glucose tolerance testing (OGTT). A subset was killed 2 months after surgery for tissue analyses. The remainder was followed until diabetes onset and underwent oral fat tolerance testing (OFTT). RESULTS IT surgery delayed diabetes onset by 120 +/- 49 days compared with sham surgery (P < .05) without a difference in body weight. During OGTT, IT-operated animals exhibited lower plasma glucose excursions (P < .05), improved early insulin secretion (P < .01), and 3-fold larger plasma glucagon-like peptide-1(7-36) (GLP-1(7-36)) excursions (P < .001), and no difference in glucose-dependent insulinotropic polypeptide responses compared with sham-operated animals. Total plasma peptide YY (PYY) excursions during OFTT were 3-fold larger in IT-operated animals (P < .01). IT-operated animals exhibited lower adiposity (P < .05), smaller adipocyte size (P < .05), 25% less ectopic lipid deposition, lower circulating lipids, and greater pancreatic insulin content compared with sham-operated animals (P < .05). CONCLUSIONS IT surgery delays the onset of diabetes in UCD-T2DM rats which may be related to increased nutrient-stimulated secretion of GLP-1(7-36) and PYY and improvements of insulin sensitivity, beta-cell function, and lipid metabolism.
Collapse
Affiliation(s)
- Bethany P. Cummings
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis; Davis, California.,Department of Nutrition, University of California, Davis; Davis, California
| | - April D. Strader
- Department of Physiology, Southern Illinois University School of Medicine; Carbondale, Illinois
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis; Davis, California.,Department of Nutrition, University of California, Davis; Davis, California
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis; Davis, California.,Department of Nutrition, University of California, Davis; Davis, California
| | - Jennifer Lee
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine; University of California, Davis; Davis, California
| | - Helen E. Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine; University of California, Davis; Davis, California
| | - Denis G. Baskin
- Research and Development Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, and Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis; Davis, California.,Department of Nutrition, University of California, Davis; Davis, California
| |
Collapse
|
35
|
Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Järvinen H, Svegliati-Baroni G. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis 2010; 42:320-30. [PMID: 20207596 DOI: 10.1016/j.dld.2010.01.016] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/17/2010] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome encompasses metabolic and cardiovascular risk factors which predict diabetes and cardiovascular disease (CVD) better than any of its individual components. Nonalcoholic fatty liver disease (NAFLD) comprises a disease spectrum which includes variable degrees of simple steatosis (nonalcoholic fatty liver, NAFL), nonalcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is the hepatic manifestation of the metabolic syndrome, with insulin resistance as the main pathogenetic mechanism. Recent data indicate that hyperinsulinemia is probably the consequence rather than cause of NAFLD and NAFLD can be considered an independent predictor of cardiovascular disease. Serum free fatty acids derived from lipolysis of visceral adipose tissue are the main source of hepatic triglycerides in NAFLD, although hepatic de novo lipogenesis and dietary fat supply contribute to the pathogenesis of NAFLD. Approximately 10-25% NAFLD patients develop NASH, the evolutive form of hepatic steatosis. Presumably in a genetically predisposed environment, this increased lipid overload overwhelms the oxidative capacity and reactive oxygen species are generated, leading to lipid peroxidation, cytokine induction, chemoattraction of inflammatory cells, hepatic stellate cell activation and finally fibrogenesis with extracellular matrix deposition. No currently available therapies for NAFLD and NASH exist. Recently nuclear receptors have emerged as key regulators of lipid and carbohydrate metabolism for which specific pharmacological ligands are available, making them attractive therapeutic targets for NAFLD and NASH.
Collapse
Affiliation(s)
- Ester Vanni
- Division of Gastro-Hepatology, San Giovanni Battista Hospital, University of Turin, C. so Bramante 88, 10126 Turin, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Gadaleta RM, van Mil SWC, Oldenburg B, Siersema PD, Klomp LWJ, van Erpecum KJ. Bile acids and their nuclear receptor FXR: Relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:683-92. [PMID: 20399894 DOI: 10.1016/j.bbalip.2010.04.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/03/2010] [Accepted: 04/09/2010] [Indexed: 12/15/2022]
Abstract
The nuclear receptor Farnesoid X Receptor (FXR) critically regulates nascent bile formation and bile acid enterohepatic circulation. Bile acids and FXR play a pivotal role in regulating hepatic inflammation and regeneration as well as in regulating extent of inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. Recent evidence suggests, that the bile acid-FXR interaction is involved in the pathophysiology of a wide range of diseases of the liver, biliary and gastrointestinal tract, such as cholestatic and inflammatory liver diseases and hepatocellular carcinoma, inflammatory bowel disease and inflammation-associated cancer of the colon and esophagus. In this review we discuss current knowledge of the role the bile acid-FXR interaction has in (patho)physiology of the liver, biliary and gastrointestinal tract, and proposed underlying mechanisms, based on in vitro data and experimental animal models. Given the availability of highly potent synthetic FXR agonists, we focus particularly on potential relevance for human disease.
Collapse
Affiliation(s)
- Raffaella M Gadaleta
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Zollner G, Wagner M, Trauner M. Nuclear receptors as drug targets in cholestasis and drug-induced hepatotoxicity. Pharmacol Ther 2010; 126:228-43. [PMID: 20388526 DOI: 10.1016/j.pharmthera.2010.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 01/04/2023]
Abstract
Nuclear receptors are key regulators of various processes including reproduction, development, and metabolism of xeno- and endobiotics such as bile acids and drugs. Research in the last two decades provided researchers and clinicians with a detailed understanding of the regulation of these processes and, most importantly, also prompted the development of novel drugs specifically targeting nuclear receptors for the treatment of a variety of diseases. Some nuclear receptor agonists are already used in daily clinical practice but many more are currently designed or tested for the treatment of diabetes, dyslipidemia, fatty liver disease, cancer, drug hepatotoxicity and cholestasis. The hydrophilic bile acid ursodeoxycholic acid is currently the only available drug to treat cholestasis but its efficacy is limited. Therefore, development of novel treatments represents a major goal for both pharmaceutical industry and academic researchers. Targeting nuclear receptors in cholestasis is an intriguing approach since these receptors are critically involved in regulation of bile acid homeostasis. This review will discuss the general role of nuclear receptors in regulation of transporters and other enzymes maintaining bile acid homeostasis and will review the role of individual receptors as therapeutic targets. In addition, the central role of nuclear receptors and other transcription factors such as the aryl hydrocarbon receptor (AhR) and the nuclear factor-E2-related factor (Nrf2) in mediating drug disposition and their potential therapeutic role in drug-induced liver disease will be covered.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | | | | |
Collapse
|
38
|
Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D. Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice. GENES AND NUTRITION 2010; 5:343-53. [PMID: 21189870 DOI: 10.1007/s12263-010-0171-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/25/2010] [Indexed: 12/30/2022]
Abstract
UNLABELLED Intake of anthocyanin-rich foods has been associated with a reduced risk of cardiovascular diseases. Supplementation with anthocyanin-rich extracts from black rice or purple sweet potato was reported to attenuate atherosclerotic lesion development in apolipoprotein E-deficient (apo E(-/-)) mice. However, the mechanism(s) of their preventive action are not completely understood. Previous studies revealed that anthocyanins altered mRNA levels of genes related to atherosclerosis in cultured macrophages and endothelial cells, but in vivo studies remain scarce. The aim of the study was to investigate the impact of bilberry anthocyanin-rich extract (BE) supplementation on gene expression in the liver of apo E(-/-) mice, the widely used model of atherosclerosis. The liver was chosen because it is the main site of lipid metabolism. Apo E(-/-) mice received for 2 weeks a standard diet supplemented with a nutritional dose of BE (0.02%). This study focused on the early stage of atherosclerosis development for better assessment of anthocyanin action on initiation mechanisms of this pathology. The results showed that a 2-week supplementation significantly reduced plasmatic total cholesterol and hepatic triglyceride levels, whereas the plasmatic antioxidant status remained unchanged. Transcriptional analysis, using microarrays, revealed that the expression of 2,289 genes was significantly altered. BE over-expressed genes involved in bile acid synthesis and cholesterol uptake into the liver and down-regulated the expression of pro-inflammatory genes. These results suggest an anti-atherogenic effect of BE through the regulation of cholesterol metabolism and liver inflammation and provide a global integrated view of the mechanisms involved in the preventive action of this extract. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s12263-010-0171-0) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Catalano S, Malivindi R, Giordano C, Gu G, Panza S, Bonofiglio D, Lanzino M, Sisci D, Panno ML, Andò S. Farnesoid X receptor, through the binding with steroidogenic factor 1-responsive element, inhibits aromatase expression in tumor Leydig cells. J Biol Chem 2010; 285:5581-93. [PMID: 20026603 PMCID: PMC2820785 DOI: 10.1074/jbc.m109.052670] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/17/2009] [Indexed: 11/06/2022] Open
Abstract
The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that regulates bile acid homeostasis. It is expressed in the liver and the gastrointestinal tract, but also in several non-enterohepatic tissues including testis. Recently, FXR was identified as a negative modulator of the androgen-estrogen-converting aromatase enzyme in human breast cancer cells. In the present study we detected the expression of FXR in Leydig normal and tumor cell lines and in rat testes tissue. We found, in rat Leydig tumor cells, R2C, that FXR activation by the primary bile acid chenodeoxycholic acid (CDCA) or a synthetic agonist GW4064, through a SHP-independent mechanism, down-regulates aromatase expression in terms of mRNA, protein levels, and its enzymatic activity. Transient transfection experiments, using vector containing rat aromatase promoter PII, evidenced that CDCA reduces basal aromatase promoter activity. Mutagenesis studies, electrophoretic mobility shift, and chromatin immunoprecipitation analysis reveal that FXR is able to compete with steroidogenic factor 1 in binding to a common sequence present in the aromatase promoter region interfering negatively with its activity. Finally, the FXR-mediated anti-proliferative effects exerted by CDCA on tumor Leydig cells are at least in part due to an inhibition of estrogen-dependent cell growth. In conclusion our findings identify for the first time the activators of FXR as negative modulators of the aromatase enzyme in Leydig tumor cell lines.
Collapse
Affiliation(s)
| | | | - Cinzia Giordano
- From the Departments of Pharmaco-Biology and
- Centro Sanitario, University of Calabria, 87030 Arcavacata di Rende (CS), Italy
| | - Guowei Gu
- From the Departments of Pharmaco-Biology and
| | | | | | | | - Diego Sisci
- From the Departments of Pharmaco-Biology and
| | | | - Sebastiano Andò
- Cell Biology and
- Centro Sanitario, University of Calabria, 87030 Arcavacata di Rende (CS), Italy
| |
Collapse
|
40
|
Martin P, Riley R, Thompson P, Williams D, Back D, Owen A. Effect of prototypical inducers on ligand activated nuclear receptor regulated drug disposition genes in rodent hepatic and intestinal cells. Acta Pharmacol Sin 2010; 31:51-65. [PMID: 20048746 DOI: 10.1038/aps.2009.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM The aim of this study was to investigate the impact on expression of mRNA and protein by paradigm inducers/activators of nuclear receptors and their target genes in rat hepatic and intestinal cells. Furthermore, assess marked inter laboratory conflicting reports regarding species and tissue differences in expression to gain further insight and rationalise previously observed species differences between rodent and human based systems. METHODS Quantitative real time-polymerase chain reaction (QRT-PCR) and immunoblots were used to assess messenger RNA (mRNA) and protein expression for CYP2B2, CYP3A1, CYP3A2, CYP3A9, ABCB1a, ABCB1b, ABCC1, ABCC2, pregnane X receptor (PXR), farnesoid X receptor (FXR) and constituitive androstane receptor (CAR) in rat hepatoma cell line H411E, intestinal cells, Iec-6, and rat primary hepatocytes, in response to exposure for 18 h with prototypical inducers. RESULTS Dexamethasone (DEX) and pregnenolone 16alpha carbonitrile (PCN) significantly induced PXR, CYP3A9, ABCB1a and ABCB1b. However, when co-incubated, DEX appeared to restrict PCN-dependent induction. Chenodeoxycholic acid (CDCA) was the only ligand to induce FXR in all three cell types. Despite previously reported species differences between PCN and rifampicin (RIF), both compounds exhibited a similar profile of induction. CONCLUSION Data presented herein may explain some of the discrepancies previously reported with respect to species differences from different laboratories and have important implications for study design.
Collapse
|
41
|
MacLeod AK, Kelly VP, Higgins LG, Kelleher MO, Price SA, Bigley AL, Betton GR, Hayes JD. Expression and localization of rat aldo-keto reductases and induction of the 1B13 and 1D2 isoforms by phenolic antioxidants. Drug Metab Dispos 2009; 38:341-6. [PMID: 19920056 DOI: 10.1124/dmd.109.030544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aldo-keto reductase (AKR) phase I drug metabolism enzyme superfamily is implicated in detoxification or bioactivation of a wide variety of carbonyl-bearing compounds. In this study, we have used antibodies raised against purified recombinant rat AKR isoforms 1A3, 1B4, 1C9, 1D2, and 7A1 to characterize the expression profile of these superfamily members in the rat and define their localization by immunohistochemistry. Western blotting showed that AKR1A3, AKR1B4, and AKR1C9 are ubiquitously expressed, whereas AKR1D2 and AKR7A1 are present in liver, adrenal gland, and kidney, with the latter also present in testis, spleen, and stomach. Immunohistochemical analysis of the kidney demonstrated the localization of AKR1A3 in proximal convoluted tubules, AKR1B4 in the loop of Henle, and AKR1C9 in the pars recta S3 segment of proximal tubules. We also report localization of AKR1B4 in the adrenal gland (parenchymal cells of the zona reticularis) and testis (Sertoli cells and late spermatids), of AKR1D2 in the liver (hepatocyte nuclei), and of AKR7A1 in the pancreatic duct and bronchiolar epithelium. Previous studies have shown that expression of AKR7A1 is induced in response to dietary administration of the phenolic antioxidants butylated hydroxyanisole and ethoxyquin. Here we identify AKR1B13 and AKR1D2 as further inducible members of the rat AKR superfamily.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fickert P, Fuchsbichler A, Moustafa T, Wagner M, Zollner G, Halilbasic E, Stöger U, Arrese M, Pizarro M, Solís N, Carrasco G, Caligiuri A, Sombetzki M, Reisinger E, Tsybrovskyy O, Zatloukal K, Denk H, Jaeschke H, Pinzani M, Trauner M. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2392-405. [PMID: 19910507 DOI: 10.2353/ajpath.2009.090114] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nuclear bile acid receptor, farnesoid X receptor (FXR), may play a pivotal role in liver fibrosis. We tested the impact of genetic FXR ablation in four different mouse models. Hepatic fibrosis was induced in wild-type and FXR knock-out mice (FXR(-/-)) by CCl(4) intoxication, 3,5-diethoxycarbonyl-1,4-dihydrocollidine feeding, common bile duct ligation, or Schistosoma mansoni (S.m.)-infection. In addition, we determined nuclear receptor expression levels (FXR, pregnane X receptor (PXR), vitamin D receptor, constitutive androstane receptor (CAR), small heterodimer partner (SHP)) in mouse hepatic stellate cells (HSCs), portal myofibroblasts (MFBs), and human HSCs. Cell type-specific FXR protein expression was determined by immunohistochemistry in five mouse models and prototypic human fibrotic liver diseases. Expression of nuclear receptors was much lower in mouse and human HSCs/MFBs compared with total liver expression with the exception of vitamin D receptor. FXR protein was undetectable in mouse and human HSCs and MFBs. FXR loss had no effect in CCl(4)-intoxicated and S.m.-infected mice, but significantly decreased liver fibrosis of the biliary type (common bile duct ligation, 3,5-diethoxycarbonyl-1,4-dihydrocollidine). These data suggest that FXR loss significantly reduces fibrosis of the biliary type, but has no impact on non-cholestatic liver fibrosis. Since there is no FXR expression in HSCs and MFBs in liver fibrosis, our data indicate that these cells may not represent direct therapeutic targets for FXR ligands.
Collapse
Affiliation(s)
- Peter Fickert
- Laboratory of Experimental and Molecular Hepatology, Medical University Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Flatt B, Martin R, Wang TL, Mahaney P, Murphy B, Gu XH, Foster P, Li J, Pircher P, Petrowski M, Schulman I, Westin S, Wrobel J, Yan G, Bischoff E, Daige C, Mohan R. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J Med Chem 2009; 52:904-7. [PMID: 19159286 DOI: 10.1021/jm8014124] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Azepino[4,5-b]indoles have been identified as potent agonists of the farnesoid X receptor (FXR). In vitro and in vivo optimization has led to the discovery of 6m (XL335, WAY-362450) as a potent, selective, and orally bioavailable FXR agonist (EC(50) = 4 nM, Eff = 149%). Oral administration of 6m to LDLR(-/-) mice results in lowering of cholesterol and triglycerides. Chronic administration in an atherosclerosis model results in significant reduction in aortic arch lesions.
Collapse
Affiliation(s)
- Brenton Flatt
- Department of Medicinal Chemistry, Exelixis Inc., 4757 Nexus Centre Drive, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Natalini B, Sardella R, Gioiello A, Carbone G, Dawgul M, Pellicciari R. Side-chain modified bile acids: chromatographic separation of 23-methyl epimers. J Sep Sci 2009; 32:2022-33. [DOI: 10.1002/jssc.200900080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Martínez-Fernández P, Hierro L, Jara P, Alvarez L. Knockdown of ATP8B1 expression leads to specific downregulation of the bile acid sensor FXR in HepG2 cells: effect of the FXR agonist GW4064. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1119-29. [PMID: 19228886 DOI: 10.1152/ajpgi.90371.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Farnesoid X receptor (FXR) is a bile acid-sensing nuclear receptor that controls bile acid homeostasis. It has been suggested that downregulation of FXR contributes to the pathogenesis of an inherited disorder of bile secretion caused by mutations in ATP8B1. We have investigated the relationship between ATP8B1 knockdown and FXR downregulation in the human hepatoblastoma cell line HepG2. Transfection of HepG2 cells with ATP8B1 small interfering RNA (siRNA) duplexes led to a 60% reduction in the endogenous levels of ATP8B1 mRNA and protein and a concomitant decrease in FXR mRNA and protein content, as well as in FXR phosphorylation. This decrease was accompanied by a marked reduction in mRNA levels of a subset of FXR targets, such as bile salt export pump (ABCB11), small heterodimer partner, and uridine 5'-diphosphate-glucuronosyltransferase. ATP8B1 inhibition specifically targeted FXR since mRNA expression of other prominent nuclear receptors, such as pregnane X receptor and constitutive androstane receptor, or liver-enriched transcription factors, such as hepatocyte nuclear factor 1alpha (HNF-1alpha) and HNF-4alpha, was not altered. The expression of other key genes involved in bile acid synthesis, detoxification, and transport also remained unchanged upon ATP8B1 knockdown. Supporting the specificity of the effect, siRNA-mediated silencing of ABCB11, whose defect is associated with another inherited disorder of bile secretion, did not affect FXR expression. Treatment with the synthetic FXR agonist GW4064 was able to partially neutralize ATP8B1 siRNA-mediated FXR downregulation and fully counteract inhibition of FXR target genes. Collectively these findings indicate that ATP8B1 knockdown specifically downregulates FXR, and this action can be circumvented by treatment with FXR agonists.
Collapse
Affiliation(s)
- Pilar Martínez-Fernández
- Research Unit, La Paz University Hospital-Fundación para la Investigación Biomédica del Hospital Universitario La Paz (FIBHULP), Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Gauthier MA, Zhang Z, Zhu XX. New dental composites containing multimethacrylate derivatives of bile acids: a comparative study with commercial monomers. ACS APPLIED MATERIALS & INTERFACES 2009; 1:824-832. [PMID: 20356008 DOI: 10.1021/am8002395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have prepared multifunctional methacrylate derivatives of bile acids as cross-linkable monomers for use in dental composites. By modifying the chemical structure of the monomers, we were able to vary the viscosity, hydrophobicity, and reactivity and have studied the effect of these parameters on the conversion of the monomers, the shrinkage during polymerization, and the mechanical properties of the resulting polymers and composites. Materials containing these new monomers generally had physical, thermal, and mechanical properties comparable to those containing the commonly used dental monomers BisGMA or UDMA and had lower polymerization shrinkage. The multimethacrylate derivatives of cholic acid, which are known to be less cytotoxic than BisGMA and UDMA, are shown to be promising materials for dental applications.
Collapse
Affiliation(s)
- Marc A Gauthier
- Departement de Chimie, Universite de Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec H3C3J7, Canada
| | | | | |
Collapse
|
47
|
Xing Y, Saner-Amigh K, Nakamura Y, Hinshelwood MM, Carr BR, Mason JI, Rainey WE. The farnesoid X receptor regulates transcription of 3beta-hydroxysteroid dehydrogenase type 2 in human adrenal cells. Mol Cell Endocrinol 2009; 299:153-62. [PMID: 19059462 PMCID: PMC2679217 DOI: 10.1016/j.mce.2008.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 10/27/2008] [Accepted: 11/06/2008] [Indexed: 01/22/2023]
Abstract
Recent studies have shown that the adrenal cortex expresses high levels of farnesoid X receptor (FXR), but its function remains unknown. Herein, using microarray technology, we tried to identify candidate FXR targeting genes in the adrenal glands, and showed that FXR regulated 3beta-hydroxysteroid dehydrogenase type 2 (HSD3B2) expression in human adrenocortical cells. We further demonstrated that FXR stimulated HSD3B2 promoter activity and have defined the cis-element responsible for FXR regulation of HSD3B2 transcription. Transfection of H295R adrenocortical cells with FXR expression vector effectively increased FXR expression levels and additional treatment with chenodeoxycholic acid (CDCA) caused a 25-fold increase in the mRNA for organic solute transporter alpha (OSTalpha), a known FXR target gene. HSD3B2 mRNA levels also increased following CDCA treatment in a concentration-dependent manner. Cells transfected with a HSD3B2 promoter construct and FXR expression vector responded to CDCA with a 20-fold increase in reporter activity compared to control. Analysis of constructs containing sequential deletions of the HSD3B2 promoter suggested a putative regulatory element between -166 and -101. Mutation of an inverted repeat between -137 and -124 completely blocked CDCA/FXR induced reporter activity. Chromatin immunoprecipitation assays further confirmed the presence of a FXR response element in the HSD3B2 promoter. In view of the emerging role of FXR agonists as therapeutic treatment of diabetes and certain liver diseases, the effects of such agonists on other FXR expressing tissues should be considered. Our findings suggest that in human adrenal cells, FXR increases transcription and expression of HSD3B2. Alterations in this enzyme would influence the capacity of the adrenal gland to produce corticosteroids.
Collapse
Affiliation(s)
- Yewei Xing
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912
| | - Karla Saner-Amigh
- University of Texas Southwestern Medical Center, Dallas, Texas 75390-9032
| | - Yasuhiro Nakamura
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912
| | | | - Bruce R Carr
- University of Texas Southwestern Medical Center, Dallas, Texas 75390-9032
| | - J. Ian Mason
- Centre for Reproductive Biology, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland EH16 4TJ
| | - William E. Rainey
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912
| |
Collapse
|
48
|
Abstract
Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. As a metabolic regulator, FXR plays key roles in bile acid, cholesterol, lipid, and glucose metabolism. Therefore, FXR is a potential drug target for a number of metabolic disorders, especially those related to the metabolic syndrome. More recently, our group and others have extended the functions of FXR to more than metabolic regulation, which include anti-bacterial growth in intestine, liver regeneration, and hepatocarcinogenesis. These new findings suggest that FXR has much broader roles than previously thought, and also highlight FXR as a drug target for multiple diseases. This review summarizes the basic information of FXR but focuses on its new functions.
Collapse
|
49
|
Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 2008; 4:219. [PMID: 18854818 PMCID: PMC2583082 DOI: 10.1038/msb.2008.56] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/15/2008] [Indexed: 02/08/2023] Open
Abstract
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.
Collapse
|
50
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|