1
|
Xu Y, Yang Z, Wang T, Hu L, Jiao S, Zhou J, Dai T, Feng Z, Li S, Meng Q. From molecular subgroups to molecular targeted therapy in rheumatoid arthritis: A bioinformatics approach. Heliyon 2024; 10:e35774. [PMID: 39220908 PMCID: PMC11365346 DOI: 10.1016/j.heliyon.2024.e35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
1Background Rheumatoid Arthritis (RA) is a heterogeneous autoimmune disease with multiple unidentified pathogenic factors. The inconsistency between molecular subgroups poses challenges for early diagnosis and personalized treatment strategies. In this study, we aimed to accurately distinguish RA patients at the transcriptome level using bioinformatics methods. 2Methods We collected a total of 362 transcriptome datasets from RA patients in three independent samples from the GEO database. Consensus clustering was performed to identify molecular subgroups, and clinical features were assessed. Differential analysis was employed to annotate the biological functions of specifically upregulated genes between subgroups. 3Results Based on consensus clustering of RA samples, we identified three robust molecular subgroups, with Subgroup III representing the high-risk subgroup and Subgroup II exhibiting a milder phenotype, possibly associated with relatively higher levels of autophagic ability. Subgroup I showed biological functions mainly related to viral infections, cellular metabolism, protein synthesis, and inflammatory responses. Subgroup II involved autophagy of mitochondria and organelles, protein localization, and organelle disassembly pathways, suggesting heterogeneity in the autophagy process of mitochondria that may play a protective role in inflammatory diseases. Subgroup III represented a high-risk subgroup with pathological processes including abnormal amyloid precursor protein activation, promotion of inflammatory response, and cell proliferation. 4Conclusion The classification of the RA dataset revealed pathological heterogeneity among different subgroups, providing new insights and a basis for understanding the molecular mechanisms of RA, identifying potential therapeutic targets, and developing personalized treatment approaches.
Collapse
Affiliation(s)
- Yangyang Xu
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenyu Yang
- Jinan University, Guangzhou, Guangdong Province, China
- Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, Xuzhou City, Jiangsu Province, China
| | - Tengyan Wang
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang City, Guizhou Province, China
| | - Liqiong Hu
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Songsong Jiao
- Jinan University, Guangzhou, Guangdong Province, China
| | - Jiangfei Zhou
- Jinan University, Guangzhou, Guangdong Province, China
| | - Tianming Dai
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhencheng Feng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Qinqqi Meng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Goto T, Miyazaki Y, Nakayamada S, Shiraishi N, Yoshinaga T, Tanaka Y, Nakamura T. Down-regulated Th17 cells in a patient with familial Mediterranean fever associated with amyloid A amyloidosis in the treatment of canakinumab. Mod Rheumatol Case Rep 2023; 7:237-242. [PMID: 35349715 DOI: 10.1093/mrcr/rxac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023]
Abstract
Autoinflammatory diseases are innate immune-mediated inflammatory disorders, unlike autoimmune diseases, which are characterised by abnormalities in adoptive immunity, although autoimmune and autoinflammatory diseases have certain similar clinical features. Familial Mediterranean fever (FMF), the most common monogenic autoinflammatory disease, is associated with mutations in the MEFV gene that encodes pyrin, which results in inflammasome activation and uncontrolled production of interleukin (IL)-1β. Regular use of colchicine, the primary drug for FMF treatment, prevents febrile attacks and reduces the long-term risk of subsequent complications of amyloid A (AA) amyloidosis. However, a minority of FMF patients develop colchicine resistance, and anti-IL-1β treatment with canakinumab, which is a genetically modified human IgG subclass type 1 (IgG1) monoclonal antibody specific for human IL-1β, was beneficial in inhibiting inflammation in such patients. Here, we present a patient with FMF associated with AA amyloidosis, who was treated with canakinumab and demonstrated down-regulated Th17 cells and activated Th17 cells (from 21.4% to 12.8%, and from 1.45% to 0.83%, respectively) in peripheral blood, as shown by immunophenotyping via multicolour flow cytometry and by disease activity and improved laboratory inflammatory surrogate markers-C-reactive protein (CRP) and serum AA protein (SAA). CRP had values within normal limits, but SAA did not (Spearman's rank correlation coefficient; ρ = 0.133). We report that SAA and IL-1β may differentiate Th17 cells from CD4+-naïve T cells, and we discuss interactions between autoinflammation and autoimmunity as a model based on this case, through modes of action with IL-1β and SAA. This report is the first demonstrating that an IL-1β antagonist may reduce Th17 cells in FMF as a therapeutic option.
Collapse
Affiliation(s)
- Takeshi Goto
- Kumamoto University School of Medical Sciences, Kumamoto, Japan
| | - Yusuke Miyazaki
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Nakayamada
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naoki Shiraishi
- Section of Nephrology, Sakurajyuji Hospital, Kumamoto, Japan
| | | | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | |
Collapse
|
3
|
Hassan SU, Chua EG, Kaur P, Paz EA, Tay CY, Greeff JC, Liu S, Martin GB. Contribution of the Immune Response in the Ileum to the Development of Diarrhoea caused by Helminth Infection: Studies with the Sheep Model. Funct Integr Genomics 2022; 22:865-877. [PMID: 35576023 PMCID: PMC9550700 DOI: 10.1007/s10142-022-00864-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
Gastrointestinal helminths are a global health issue, for humans as well as domestic animals. Most studies focus on the tissues that are infected with the parasite, but here we studied the ileum, a tissue that is rarely infected by helminths. We tested whether inflammation in the ileum contributes to the development and severity of diarrhoea, by comparing sheep that are susceptible (n = 4) or resistant (n = 4) to the disease. We analyzed the ileum transcriptome using RNASeq sequencing approach and various bioinformatics tools including FastQC, STAR, featureCounts, DESeq2, DAVID, clusterProfiler, Cytoscape (ClusterONE) and EnrichR. We identified 243 differentially expressed genes (DEGs), of which 118 were up-regulated and 125 were down-regulated DEGs in the diarrhoea-susceptible animals compared to the diarrhoea-resistant animals. The resulting DEGs were functionally enriched for biological processes, pathways and gene set enrichment analysis. The up-regulated DEGs suggested that an inflammatory immune response was coupled with genes involved in 'Th2 immune response' and 'anti-inflammatory response'. The down-regulated DEGs were related to ion transport, muscle contraction and pathways preventing inflammation. We conclude that i) susceptibility to helminth-induced diarrhoea involves an inflammatory response at a non-infectious site; ii) down-regulation of pathways preventing inflammation can contribute to the severity of diarrhoea; and iii) genes involved in anti-inflammatory responses can reduce the inflammation and diarrhoea.
Collapse
Affiliation(s)
- Shamshad Ul Hassan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Eng Guan Chua
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Erwin A Paz
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Chin Yen Tay
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Johan C Greeff
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Primary Industries and Regional Development, Western Australia, 3 Baron Hay Court, South Perth, WA, 6151, Australia
| | - Shimin Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Graeme B Martin
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
4
|
Human Serum Amyloid a Impaired Structural Stability of High-Density Lipoproteins (HDL) and Apolipoprotein (Apo) A-I and Exacerbated Glycation Susceptibility of ApoA-I and HDL. Molecules 2022; 27:molecules27134255. [PMID: 35807498 PMCID: PMC9268363 DOI: 10.3390/molecules27134255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Human serum amyloid A (SAA) is an exchangeable apolipoprotein (apo) in high-density lipoprotein (HDL) that influences HDL quality and functionality, particularly in the acute phase of inflammation. On the other hand, the structural and functional correlations of HDL containing SAA and apoA-I have not been reported. The current study was designed to compare the change in HDL quality with increasing SAA content in the lipid-free and lipid-bound states in reconstituted HDL (rHDL). The expressed recombinant human SAA1 (13 kDa) was purified to at least 98% and characterized in the lipid-free and lipid-bound states with apoA-I. The dimyristoyl phosphatidylcholine (DMPC) binding ability of apoA-I was impaired severely by the addition of SAA, while SAA alone could not bind with DMPC. The recombinant human SAA1 was incorporated into the rHDL (molar ratio 95:5:1, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC): cholesterol: apoA-I) with various apoA-I:SAA molar ratios from 1:0 to 1:0.5, 1:1 and 1:2. With increasing SAA1 content, the rHDL particle size was reduced from 98 Å to 93 Å, and the α-helicity of apoA-I:SAA was decreased from 73% to 40% for (1:0) and (1:2), respectively. The wavelength maximum fluorescence (WMF) of tryptophan in rHDL was red-shifted from 339 nm to 345 nm for (1:0) and (1:2) of apoA-I:SAA, respectively, indicating that the addition of SAA to rHDL destabilized the secondary structure of apoA-I. Upon denaturation by urea treatment from 0 M to 8 M, SAA showed only a 3 nm red-shift in WMF, while apoA-I showed a 16 nm red-shift in WMF, indicating that SAA is resistant to denaturation and apoA-I had higher conformational flexibility than SAA. The glycation reaction of apoA-I in the presence of fructose was accelerated up to 1.8-fold by adding SAA in a dose-dependent manner than that of apoA-I alone. In conclusion, the incorporation of SAA in rHDL impaired the structural stability of apoA-I and exacerbated glycation of HDL and apoA-I.
Collapse
|
5
|
Jung BG, Vankayalapati R, Samten B. Mycobacterium tuberculosis stimulates IL-1β production by macrophages in an ESAT-6 dependent manner with the involvement of serum amyloid A3. Mol Immunol 2021; 135:285-293. [PMID: 33957478 DOI: 10.1016/j.molimm.2021.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022]
Abstract
Despite its critical roles in immune responses against tuberculosis infection and immune pathology, the molecular details of interleukin (IL)-1β production in tuberculosis infection remain elusive. To explore IL-1β production in tuberculosis infection, we infected mouse bone marrow-derived macrophages (BMDM) with Mycobacterium tuberculosis (Mtb) H37Rv, its early secreted antigenic target protein of 6 kDa (ESAT-6) gene deletion (H37Rv:Δ3875) or complemented strain (H37Rv:Δ3875C) and evaluated IL-1β production. H37Rv induced significantly increased IL-1β production by BMDMs compared to non-infected BMDMs. In contrast, H37Rv:Δ3875 induced significantly less mature IL-1β production despite eliciting comparable levels of pro-IL-1β and IL-8 from BMDMs compared to H37Rv and H37Rv:Δ3875C. Blocking either NLRP3 or K+ efflux diminished H37Rv-induced IL-1β production by BMDMs. Infection of mice intranasally with H37Rv:Δ3875 induced less IL-1β production in the lungs compared with H37Rv. Intranasal delivery of ESAT-6 but not CFP10 induced production of IL-1β in mouse lungs and RNA-Seq analysis identified serum amyloid A (SAA) 3 as one of the highly expressed genes in mouse lungs. Infection of mice with H37Rv but not H37Rv:Δ3875 induced expression of lung SAA3 mRNA and protein, consistent with the effect of intranasal delivery of ESAT-6. Silencing SAA3 reduced Mtb-induced IL-1β production by BMDMs. We conclude that SAA3 plays critical role in ESAT-6 dependent IL-1β production by macrophages in tuberculosis infection.
Collapse
Affiliation(s)
- Bock-Gie Jung
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, TX, 75708, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, TX, 75708, USA
| | - Buka Samten
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, TX, 75708, USA.
| |
Collapse
|
6
|
Koga T, Kawakami A, Tsokos GC. Current insights and future prospects for the pathogenesis and treatment for rheumatoid arthritis. Clin Immunol 2021; 225:108680. [DOI: 10.1016/j.clim.2021.108680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/27/2022]
|
7
|
Sorić Hosman I, Kos I, Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front Immunol 2021; 11:631299. [PMID: 33679725 PMCID: PMC7933664 DOI: 10.3389/fimmu.2020.631299] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with a significant importance for patients with inflammatory rheumatic diseases (IRD). The central role of SAA in pathogenesis of IRD has been confirmed by recent discoveries, including its involvement in the activation of the inflammasome cascade and recruitment of interleukin 17 producing T helper cells. Clinical utility of SAA in IRD was originally evaluated nearly half a century ago. From the first findings, it was clear that SAA could be used for evaluating disease severity and monitoring disease activity in patients with rheumatoid arthritis and secondary amyloidosis. However, cost-effective and more easily applicable markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), overwhelmed its use in clinical practice. In the light of emerging evidences, SAA has been discerned as a more sensitive biomarker in a wide spectrum of IRD, especially in case of subclinical inflammation. Furthermore, a growing number of studies are confirming the advantages of SAA over many other biomarkers in predicting and monitoring response to biological immunotherapy in IRD patients. Arising scientific discoveries regarding the role of SAA, as well as delineating SAA and its isoforms as the most sensitive biomarkers in various IRD by recently developing proteomic techniques are encouraging the revival of its clinical use. Finally, the most recent findings have shown that SAA is a biomarker of severe Coronavirus disease 2019 (COVID-19). The aim of this review is to discuss the SAA-involving immune system network with emphasis on mechanisms relevant for IRD, as well as usefulness of SAA as a biomarker in various IRD. Therefore, over a hundred original papers were collected through an extensive PubMed and Scopus databases search. These recently arising insights will hopefully lead to a better management of IRD patients and might even inspire the development of new therapeutic strategies with SAA as a target.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Ivanka Kos
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
8
|
Resveratrol Plays Protective Roles on Kidney of Uremic Rats via Activating HSP70 Expression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2126748. [PMID: 32280682 PMCID: PMC7125444 DOI: 10.1155/2020/2126748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 12/26/2022]
Abstract
Objective To investigate the protective effects of resveratrol on kidney of uremic rats and to explore whether the mechanism is associated with heat shock protein 70 (HSP70) expression. Methods Sixty male Sprague Dawley rats were randomly separated into 5 groups, including sham group, uremic model group, and different doses of resveratrol group (5 mg/kg, 10 mg/kg, and 20 mg/kg). The serum creatinine (Cr) and urea nitrogen (BUN) levels were detected by Automatic Biochemical Analyzer (ABA). The pathological changes of renal tissues and the renal interstitial fibrosis were analyzed by hematoxylin-eosin (HE) and Masson, respectively. The expression of HSP70 protein in renal tissues was detected by immunohistochemistry. The expression of HSP70 and NF-κB pathway-related proteins were detected by Western blot. To further validate the protective role of resveratrol through activating HSP70 in uremic rats, HSP70 activator (17-AAG) and HSP70 inhibitor group (MKT-077) were used. Results In the model group, the levels of Cr and BUN in serum were significantly increased, and the renal interstitial collagen deposition was also obviously increased (p < 0.05). Compared with the model group, the levels of Cr and BUN in different doses of resveratrol groups were remarkably declined, and the renal interstitial collagen deposition was declined (p < 0.05). Resveratrol also significantly improved the renal tissue lesions when compared with the model group. In renal tissues, different doses of resveratrol treatment remarkably raised HSP70 and p-IκBα expression and also remarkably declined the level of p-P65 protein (p < 0.05). Meanwhile, the effect of 17-AAG was similar to 20 mg/kg resveratrol on NF-κB pathway-related proteins expression. After the added MKT-077 in the resveratrol treatment group, the levels of HSP70 and p-IκBα in the renal tissue were remarkably declined; however, the levels of p-P65 protein was remarkably raised (p < 0.05). Conclusion Resveratrol played a protective role on the kidney of uremic rats through activating HSP70 expression.
Collapse
|
9
|
Kumar S, Balhara AK, Buragohain L, Kumar R, Sharma RK, Phulia SK, Mohanty AK, Singh I. Identification of novel proteomics markers involved in ovarian endocrinology of riverine buffalo ( Bubalus bubalis). BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1658061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sunil Kumar
- Division of Animal Reproduction, ICAR-IVRI, Izatnagar, India
| | | | - Lukumoni Buragohain
- Department of Animal Biotechnology, College of Veterinary Science, AAU, Guwahati, India
| | - Rajesh Kumar
- Department of Veterinary Physiology, Kerala Veterinary and Animal Sciences University, Pookot, India
| | | | | | | | - Inderjeet Singh
- Division of Animal Physiology and Reproduction, ICAR-CIRB, Hisar, India
| |
Collapse
|
10
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
11
|
Ignacio RMC, Gibbs CR, Kim S, Lee ES, Adunyah SE, Son DS. Serum amyloid A predisposes inflammatory tumor microenvironment in triple negative breast cancer. Oncotarget 2019; 10:511-526. [PMID: 30728901 PMCID: PMC6355188 DOI: 10.18632/oncotarget.26566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Acute-phase proteins (APPs) are associated with a variety of disorders such as infection, inflammatory diseases, and cancers. The signature profile of APPs in breast cancer (BC) is poorly understood. Here, we identified serum amyloid A (SAA) for proinflammatory predisposition in BC through the signature profiles of APPs, interleukin (IL) and tumor necrosis factor (TNF) superfamily using publicly available datasets of tumor samples and cell lines. Triple-negative breast cancer (TNBC) subtype highly expressed SAA1/2 compared to HER2, luminal A (LA) and luminal B (LB) subtypes. IL1A, IL1B, IL8/CXCL8, IL32 and IL27RA in IL superfamily and CD70, TNFSF9 and TNFRSF21 in TNF superfamily were highly expressed in TNBC compared to other subtypes. SAA is restrictedly regulated by nuclear factor (NF)-κB and IL-1β, an NF-κB activator highly expressed in TNBC, increased the promoter activity of SAA1 in human TNBC MDA-MB231 cells. Interestingly, two κB-sites contained in SAA1 promoter were involved, and the proximal region (-96/-87) was more critical than the distal site (-288/-279) in regulating IL-1β-induced SAA1. Among the SAA receptors, TLR1 and TLR2 were highly expressed in TNBC. Cu-CPT22, TLR1/2 antagonist, abrogated IL-1β-induced SAA1 promoter activity. In addition, SAA1 induced IL8/CXCL8 promoter activity, which was partially reduced by Cu-CPT22. Notably, SAA1/2, TLR2 and IL8/CXCL8 were associated with a poor overall survival in mesenchymal-like TNBC. Taken together, IL-1-induced SAA via NF-κB-mediated signaling could potentiate an inflammatory burden, leading to cancer progression and high mortality in TNBC patients.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Carla R Gibbs
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Soohyun Kim
- Department of Veterinary Sciences, College of Veterinary Medicine, Kon-Kuk University, Seoul, Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
12
|
Vallejo A, Chami B, Dennis JM, Simone M, Ahmad G, Abdo AI, Sharma A, Shihata WA, Martin N, Chin-Dusting JPF, de Haan JB, Witting PK. NFκB Inhibition Mitigates Serum Amyloid A-Induced Pro-Atherogenic Responses in Endothelial Cells and Leukocyte Adhesion and Adverse Changes to Endothelium Function in Isolated Aorta. Int J Mol Sci 2018; 20:ijms20010105. [PMID: 30597899 PMCID: PMC6337750 DOI: 10.3390/ijms20010105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
The acute phase protein serum amyloid A (SAA) is associated with endothelial dysfunction and early-stage atherogenesis. Stimulation of vascular cells with SAA increases gene expression of pro-inflammation cytokines and tissue factor (TF). Activation of the transcription factor, nuclear factor kappa-B (NFκB), may be central to SAA-mediated endothelial cell inflammation, dysfunction and pro-thrombotic responses, while targeting NFκB with a pharmacologic inhibitor, BAY11-7082, may mitigate SAA activity. Human carotid artery endothelial cells (HCtAEC) were pre-incubated (1.5 h) with 10 μM BAY11-7082 or vehicle (control) followed by SAA (10 μg/mL; 4.5 h). Under these conditions gene expression for TF and Tumor Necrosis Factor (TNF) increased in SAA-treated HCtAEC and pre-treatment with BAY11-7082 significantly (TNF) and marginally (TF) reduced mRNA expression. Intracellular TNF and interleukin 6 (IL-6) protein also increased in HCtAEC supplemented with SAA and this expression was inhibited by BAY11-7082. Supplemented BAY11-7082 also significantly decreased SAA-mediated leukocyte adhesion to apolipoprotein E-deficient mouse aorta in exvivo vascular flow studies. In vascular function studies, isolated aortic rings pre-treated with BAY11-7082 prior to incubation with SAA showed improved endothelium-dependent vasorelaxation and increased vascular cyclic guanosine monophosphate (cGMP) content. Together these data suggest that inhibition of NFκB activation may protect endothelial function by inhibiting the pro-inflammatory and pro-thrombotic activities of SAA.
Collapse
Affiliation(s)
- Abigail Vallejo
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Belal Chami
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Joanne M Dennis
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Martin Simone
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Gulfam Ahmad
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Adrian I Abdo
- Heart Research Institute, Newton, NSW 2053, Australia.
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
| | - Waled A Shihata
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Medicine, Monash University, Victoria 3500, Australia.
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University £Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | - Nathan Martin
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Jaye P F Chin-Dusting
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Medicine, Monash University, Victoria 3500, Australia.
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University £Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Immunology, Monash University, Victoria 3004, Australia.
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Paul K Witting
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
13
|
Lucherini OM, Lopalco G, Cantarini L, Emmi G, Lopalco A, Venerito V, Vitale A, Iannone F. Critical regulation of Th17 cell differentiation by serum amyloid-A signalling in Behcet's disease. Immunol Lett 2018; 201:38-44. [PMID: 30385329 DOI: 10.1016/j.imlet.2018.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
Abstract
The current understandings on cellular and molecular biology suggest that Th17 axis plays a pivotal role in Behcet's disease (BD) pathogenesis. Recently the role of serum amyloid-A (SAA) as a potential marker of disease activity in BD patients has been explored, and it has been reported that the occurrence of specific clinical features are significantly associated with high serum levels of this inflammatory mediator. The aim of this study was to investigate the cytokine-like activity of SAA in inducing Th17 differentiation from CD4 + T naive cells in BD. Purified peripheral monocytes from BD and healthy control (HC) were stimulated with SAA "in vitro", and secreted IL-8, TNF-α, IL-18, IFN-α, IFN-γ, IL-1β and IL-6 were measured using a Bio-Rad multiplex cytokine immunoassay. To assess Th17 differentiation, purified CD4 + T cells were challenged with anti-CD3/CD28 antibodies, while cultured with supernatant derived from SAA stimulated monocytes, and intracellular staining of IL-17A and IFN-γ was evaluated by flow-cytometry. Furthermore, peripheral blood mononuclear cells (PBMCs) were stimulated with SAA and transcript levels of RAR-related orphan nuclear receptor (ROR)-γt and IL-17A were assessed by Real-time PCR. Upon stimulation with SAA, monocytes obtained from both HC and BD groups released large amounts of IL-8, IL-6, TNF-α, IL-1β and IFN-α. Monocytes-derived supernatants from BD patients, but not HC, were capable of promoting Th17 but not Th1 differentiation from CD4 + T cells. However, SAA did not induce up-regulation of Th17 specific mRNA transcript such as IL-17A and (ROR)-γt in PBMCs from both HC and BD. In BD patients SAA induced Th17 polarization rather than Th1 differentiation from CD4 + T cells. These data suggest that a critical regulation of Th17 may be the functional link between acute SAA increase and the induction of Th17 mediated inflammatory response in BD.
Collapse
Affiliation(s)
- Orso Maria Lucherini
- Research Center of Systemic Autoinflammatory Diseases, Behçet's Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Rheumatology Unit, Bari, Italy.
| | - Luca Cantarini
- Research Center of Systemic Autoinflammatory Diseases, Behçet's Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Antonio Lopalco
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Vincenzo Venerito
- Department of Emergency and Organ Transplantation, Rheumatology Unit, Bari, Italy
| | - Antonio Vitale
- Research Center of Systemic Autoinflammatory Diseases, Behçet's Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Florenzo Iannone
- Department of Emergency and Organ Transplantation, Rheumatology Unit, Bari, Italy
| |
Collapse
|
14
|
Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proc Natl Acad Sci U S A 2018; 115:E1147-E1156. [PMID: 29351990 DOI: 10.1073/pnas.1717802115] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of abundant desmoplastic stroma primarily composed of cancer-associated fibroblasts (CAFs). It is generally accepted that CAFs stimulate tumor progression and might be implicated in drug resistance and immunosuppression. Here, we have compared the transcriptional profile of PDGFRα+ CAFs isolated from genetically engineered mouse PDAC tumors with that of normal pancreatic fibroblasts to identify genes potentially implicated in their protumorigenic properties. We report that the most differentially expressed gene, Saa3, a member of the serum amyloid A (SAA) apolipoprotein family, is a key mediator of the protumorigenic activity of PDGFRα+ CAFs. Whereas Saa3-competent CAFs stimulate the growth of tumor cells in an orthotopic model, Saa3-null CAFs inhibit tumor growth. Saa3 also plays a role in the cross talk between CAFs and tumor cells. Ablation of Saa3 in pancreatic tumor cells makes them insensitive to the inhibitory effect of Saa3-null CAFs. As a consequence, germline ablation of Saa3 does not prevent PDAC development in mice. The protumorigenic activity of Saa3 in CAFs is mediated by Mpp6, a member of the palmitoylated membrane protein subfamily of the peripheral membrane-associated guanylate kinases (MAGUK). Finally, we interrogated whether these observations could be translated to a human scenario. Indeed, SAA1, the ortholog of murine Saa3, is overexpressed in human CAFs. Moreover, high levels of SAA1 in the stromal component correlate with worse survival. These findings support the concept that selective inhibition of SAA1 in CAFs may provide potential therapeutic benefit to PDAC patients.
Collapse
|
15
|
Lin Y, Luo Z. NLRP6 facilitates the interaction between TAB2/3 and TRIM38 in rheumatoid arthritis fibroblast-like synoviocytes. FEBS Lett 2017; 591:1141-1149. [PMID: 28295271 DOI: 10.1002/1873-3468.12622] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
In the present study, we investigated the role of nucleotide oligomerization domain-like receptor family pyrin domain containing 6 (NLRP6) in rheumatoid arthritis (RA) and explored the underlying mechanism. We found that both mRNA and protein levels of NLRP6 are attenuated in synovial tissues and fibroblast-like synoviocytes (FLS) of RA patients compared to patients with osteoarthritis. We also observed that pro-inflammatory cytokine production is decreased and nuclear factor-kappa B activation is inhibited in NLRP6-overexpressing RA-FLS. Furthermore, we found that NLRP6 overexpression promotes transforming growth factor-b-activated kinase 1-binding protein 2/3 lysosome-dependent degradation, and we provide evidence showing that NLRP6 plays the role of providing the docking site to facilitate the interaction between transforming growth factor-b-activated kinase 1-binding protein 2/3 and tripartite motif 38 in RA-FLS.
Collapse
Affiliation(s)
- Yang Lin
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengqiang Luo
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Murakami K. Potential of specialized pro-resolving lipid mediators against rheumatic diseases. ACTA ACUST UNITED AC 2017; 39:155-63. [PMID: 27320930 DOI: 10.2177/jsci.39.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While arachidonic acid (AA), which is classified into n-6 polyunsaturated fatty acid (PUFA), has been mainly recognized as a substrate of pro-inflammatory mediators, eicosapentaenoic acid or docosahexaenoic acid, which are classified into n-3 PUFA, is currently identified as substrates of mediators inducing resolution of inflammation, namely pro-resolving mediators (SPM). As with any other pathological conditions, it is gradually elucidated that SPMs contributes a certain effect on joint inflammation. In osteoarthritis (OA), Lipid fractions extracted from adipocytes, especially in infrapatellar fat pad rather than subcutaneous tissue induce T cell skewing for producing IFN-γ or decrease the production of IL-12p40 from macrophages. In synovial tissues form OA, there are some of known receptors for SPM. In the synovial fluid from rheumatoid arthritis (RA), it could be identified and quantified a certain kind of SPMs such as maresin 1, lipoxin A4 and resolvin D5. In murine models of arthritis, some of SPMs are found to have some functions to reduce tissue damage. Correctively, SPMs might have some potential to a novel therapeutic target for arthritis or any other rheumatic diseases.
Collapse
Affiliation(s)
- Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Kyoto University Hospital
| |
Collapse
|
17
|
Lee HY, Lee M, Bae YS. Formyl Peptide Receptors in Cellular Differentiation and Inflammatory Diseases. J Cell Biochem 2017; 118:1300-1307. [PMID: 28075050 DOI: 10.1002/jcb.25877] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Formyl peptide receptors (FPRs) are a family of classical chemoattractant receptors. Although FPRs are mainly expressed in phagocytic innate immune cells including monocytes/macrophages and neutrophils, recent reports demonstrated that additional different cell types such as T-lymphocytes and several non-immune cells also express functional FPRs. FPRs were first reported as a specific receptor to detect bacteria-derived N-formyl peptides. However, accumulating evidence has shown that FPRs can recognize various ligands derived from pathogens, mitochondria, and host. This review summarizes studies on some interesting endogenous agonists for FPRs. Here, we discuss functional roles of FPRs and their ligands concerning the regulation of cellular differentiation focusing on myeloid lineage cells. Accumulating evidence also suggests that FPRs may contribute to the control of inflammatory diseases. Here, we briefly review the current understanding of the functional role of FPRs and their ligands in inflammatory disorders in some animal disease models. J. Cell. Biochem. 118: 1300-1307, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| |
Collapse
|
18
|
Jacobsen S, Ladefoged S, Berg LC. Production of serum amyloid A in equine articular chondrocytes and fibroblast-like synoviocytes treated with proinflammatory cytokines and its effects on the two cell types in culture. Am J Vet Res 2016; 77:50-8. [PMID: 26709936 DOI: 10.2460/ajvr.77.1.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the role of the major equine acute phase protein serum amyloid A (SAA) in inflammation of equine intraarticular tissues. SAMPLE Articular chondrocytes and fibroblast-like synoviocytes (FLSs) from 8 horses (4 horses/cell type). PROCEDURES Chondrocytes and FLSs were stimulated in vitro for various periods up to 48 hours with cytokines (recombinant interleukin [IL]-1β, IL-6, tumor necrosis factor-α, or a combination of all 3 [IIT]) or with recombinant SAA. Gene expression of SAA, IL-6, matrix metalloproteinases (MMP)-1 and -3, and cartilage-derived retinoic acid-sensitive protein were assessed by quantitative real-time PCR assay; SAA protein was evaluated by immunoturbidimetry and denaturing isoelectric focusing and western blotting. RESULTS All cytokine stimulation protocols increased expression of SAA mRNA and resulted in detectable SAA protein production in chondrocytes and FLSs. Isoforms of SAA in lysed chondrocytes and their culture medium corresponded to those previously detected in synovial fluid from horses with joint disease. When exposed to SAA, chondrocytes and FLSs had increased expression of IL-6, SAA, and MMP3, and chondrocytes had increased expression of MMP-1. Chondrocytes had decreased expression of cartilage-derived retinoic acid-sensitive protein. CONCLUSIONS AND CLINICAL RELEVANCE Upregulation of SAA in chondrocytes and FLSs stimulated with proinflammatory cytokines and the proinflammatory effects of SAA suggested that SAA may be involved in key aspects of pathogenesis of the joint inflammation in horses.
Collapse
|
19
|
Passey SL, Bozinovski S, Vlahos R, Anderson GP, Hansen MJ. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes. PLoS One 2016; 11:e0146882. [PMID: 26784349 PMCID: PMC4718684 DOI: 10.1371/journal.pone.0146882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/24/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. RESULTS SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10-13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. CONCLUSIONS These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass.
Collapse
Affiliation(s)
- Samantha L. Passey
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Steven Bozinovski
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Ross Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Gary P. Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Michelle J. Hansen
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Proost P, Struyf S, Van Damme J. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Rev 2015; 30:55-69. [PMID: 26794452 DOI: 10.1016/j.cytogfr.2015.12.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Levels of serum amyloid A (SAA), a major acute phase protein in humans, are increased up to 1000-fold upon infection, trauma, cancer or other inflammatory events. However, the exact role of SAA in host defense is yet not fully understood. Several pro- and anti-inflammatory properties have been ascribed to SAA. Here, the regulated production of SAA by cytokines and glucocorticoids is discussed first. Secondly, the cytokine and chemokine inducing capacity of SAA and its receptor usage are reviewed. Thirdly, the direct (via FPR2) and indirect (via TLR2) chemotactic effects of SAA and its synergy with chemokines are unraveled. Altogether, a complex cytokine-SAA-chemokine network is established, in which SAA plays a key role in regulating the inflammatory response.
Collapse
Affiliation(s)
- Mieke De Buck
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Mieke Gouwy
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Jacques Van Snick
- Ludwig Cancer Research, Brussels Branch, Brussels, Belgium; e Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Jo Van Damme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
21
|
The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation. Biomolecules 2015; 5:2723-57. [PMID: 26501341 PMCID: PMC4693255 DOI: 10.3390/biom5042723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response.
Collapse
|
22
|
Hong C, Shen C, Ding H, Huang S, Mu Y, Su H, Wei W, Ma J, Zheng F. An involvement of SR-B1 mediated p38 MAPK signaling pathway in serum amyloid A-induced angiogenesis in rheumatoid arthritis. Mol Immunol 2015; 66:340-5. [PMID: 25932604 DOI: 10.1016/j.molimm.2015.03.254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
Serum amyloid A (SAA) has been reported high expression in autoimmune diseases, such as rheumatoid arthritis (RA). However, detailed molecular mechanisms induced by SAA in the pathogenesis of RA are still unclear. Herein, we focused on the role of SAA-SR-B1 mediated p38 MAPK signaling pathway in the process of RA angiogenesis. Our results showed that both SAA and SR-B1 predominantly localized to vascular endothelial cells, lining and sublining layers in RA synovium. In a series of in vitro experiments with human umbilical vein endothelial cells (HUVECs), SAA induced the endothelial cells (ECs) proliferation, migration and tube formation. However, blockage of SR-B1 and p38 MAPK inhibited SAA-induced cells proliferation, migration and tube formation. In conclusion, our data showed a possible molecular mechanism for SAA-SR-B1 induced angiogenesis events via p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chengcheng Hong
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Chen Shen
- Departmemt of Medical Laboratory, Jining No.1 People's Hospital, 272011 Shandong Province, China
| | - Hongmei Ding
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Shanshan Huang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Yun Mu
- Department of Medical Laboratory, Tianjin Children's Hospital, 300074 Tianjin, China
| | - Huihui Su
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Wei Wei
- Department of Rheumatology, General Hospital, Tianjin Medical University, 300052 Tianjin, China
| | - Jun Ma
- Department of Health Statistics, College of Public Health, Tianjin Medical University, 300203, Tianjin, China.
| | - Fang Zheng
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China.
| |
Collapse
|
23
|
Webb NR, De Beer MC, Wroblewski JM, Ji A, Bailey W, Shridas P, Charnigo RJ, Noffsinger VP, Witta J, Howatt DA, Balakrishnan A, Rateri DL, Daugherty A, De Beer FC. Deficiency of Endogenous Acute-Phase Serum Amyloid A Protects apoE-/- Mice From Angiotensin II-Induced Abdominal Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol 2015; 35:1156-65. [PMID: 25745063 DOI: 10.1161/atvbaha.114.304776] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/13/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Rupture of abdominal aortic aneurysm (AAA), a major cause of death in the aged population, is characterized by vascular inflammation and matrix degradation. Serum amyloid A (SAA), an acute-phase reactant linked to inflammation and matrix metalloproteinase induction, correlates with aortic dimensions before aneurysm formation in humans. We investigated whether SAA deficiency in mice affects AAA formation during angiotensin II (Ang II) infusion. APPROACH AND RESULTS Plasma SAA increased ≈60-fold in apoE(-/-) mice 24 hours after intraperitoneal Ang II injection (100 μg/kg; n=4) and ≈15-fold after chronic 28-day Ang II infusion (1000 ng/kg per minute; n=9). AAA incidence and severity after 28-day Ang II infusion was significantly reduced in apoE(-/-) mice lacking both acute-phase SAA isoforms (SAAKO; n=20) compared with apoE(-/-) mice (SAAWT; n=20) as assessed by in vivo ultrasound and ex vivo morphometric analyses, despite a significant increase in systolic blood pressure in SAAKO mice compared with SAAWT mice after Ang II infusion. Atherosclerotic lesion area of the aortic arch was similar in SAAKO and SAAWT mice after 28-day Ang II infusion. Immunostaining detected SAA in AAA tissues of Ang II-infused SAAWT mice that colocalized with macrophages, elastin breaks, and enhanced matrix metalloproteinase activity. Matrix metalloproteinase-2 activity was significantly lower in aortas of SAAKO mice compared with SAAWT mice after 10-day Ang II infusion. CONCLUSIONS Lack of endogenous acute-phase SAA protects against experimental AAA through a mechanism that may involve reduced matrix metalloproteinase-2 activity.
Collapse
Affiliation(s)
- Nancy R Webb
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.).
| | - Maria C De Beer
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Joanne M Wroblewski
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Ailing Ji
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - William Bailey
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Preetha Shridas
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Richard J Charnigo
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Victoria P Noffsinger
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Jassir Witta
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Deborah A Howatt
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Anju Balakrishnan
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Debra L Rateri
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Alan Daugherty
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Frederick C De Beer
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| |
Collapse
|
24
|
Juvenile idiopathic arthritis complicated by amyloidosis with secondary nephrotic syndrome - effective treatment with tocilizumab. Reumatologia 2015; 53:157-60. [PMID: 27407243 PMCID: PMC4847300 DOI: 10.5114/reum.2015.53138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022] Open
Abstract
A case report of a boy with juvenile idiopathic arthritis since the age of 2 years, generalized onset, complicated by nephrotic syndrome due to secondary type A amyloidosis is presented. In the patient the disease had an especially severe course, complicated by frequent infections, making routine treatment difficult. Amyloidosis was diagnosed in the 5th year of the disease based on a rectal biopsy. Since the disease onset the boy has been taking prednisolone and sequentially cyclosporine A, methotrexate, chlorambucil, etanercept, and cyclophosphamide. Clinical and laboratory remission was observed after treatment with tocilizumab. After 42 months of treatment with tocilizumab the boy's condition is good. There is no pain or joint edema, and no signs of nephrotic syndrome.
Collapse
|
25
|
Jha MK, Suk K. Glia-based biomarkers and their functional role in the CNS. Expert Rev Proteomics 2014; 10:43-63. [DOI: 10.1586/epr.12.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Majidzadeh-A K, Gharechahi J. Plasma proteomics analysis of tamoxifen resistance in breast cancer. Med Oncol 2013; 30:753. [DOI: 10.1007/s12032-013-0753-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023]
|
27
|
de Seny D, Cobraiville G, Charlier E, Neuville S, Esser N, Malaise D, Malaise O, Calvo FQ, Relic B, Malaise MG. Acute-phase serum amyloid a in osteoarthritis: regulatory mechanism and proinflammatory properties. PLoS One 2013; 8:e66769. [PMID: 23776697 PMCID: PMC3680431 DOI: 10.1371/journal.pone.0066769] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/11/2013] [Indexed: 01/01/2023] Open
Abstract
Objective To determine if serum amyloid A (A-SAA) could be detected in human osteoarthritic (OA) joints and further clarify if high A-SAA level in joints result from a local production or from a diffusion process from abnormally elevated plasma concentration. Regulatory mechanism of A-SAA expression and its pro-inflammatory properties were also investigated. Methods A-SAA levels in serum and synovial fluid of OA (n = 29) and rheumatoid arthritis (RA) (n = 27) patients were measured and compared to matched-healthy volunteers (HV) (n = 35). In vitro cell cultures were performed on primary joint cells provided from osteoarthritis patients. Regulatory mechanisms were studied using Western-blotting, ELISA and lentiviral transfections. Results A-SAA was statistically increased in OA plasma patients compared to HV. Moreover, A-SAA level in OA plasma and synovial fluid increased with the Kellgren & Lauwrence grade. For all OA and RA patients, A-SAA plasma level was higher and highly correlated with its corresponding level in the synovial fluid, therefore supporting that A-SAA was mainly due to the passive diffusion process from blood into the joint cavity. However, A-SAA expression was also observed in vitro under corticosteroid treatment and/or under IL-1beta stimuli. A-SAA expression was down-regulated by PPAR-γ agonists (genistein and rosiglitazone) and up-regulated by TGF-β1 through Alk1 (Smad1/5) pathway. RhSAA induced proinflammatory cytokines (IL-6, IL-8, GRO-α and MCP-1) and metalloproteinases (MMP-1, MMP-3 and MMP-13) expression in FLS and chondrocytes, which expression was downregulated by TAK242, a specific TLR4 inhibitor. Conclusion Systemic or local A-SAA expression inside OA joint cavity may play a key role in inflammatory process seen in osteoarthritis, which could be counteracted by TLR4 inhibition.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory of Rheumatology, GIGA Research, University of Liège, CHU Liège, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci 2013; 14:7193-230. [PMID: 23549262 PMCID: PMC3645683 DOI: 10.3390/ijms14047193] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022] Open
Abstract
The formyl peptide receptor 2 (FPR2) is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR) family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ)-42 and prion protein (Prp)106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP)-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC), protein kinase C (PKC) isoforms, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, the mitogen-activated protein kinase (MAPK) pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2 agonists.
Collapse
|
29
|
Lee HY, Kim SD, Baek SH, Choi JH, Bae YS. Role of formyl peptide receptor 2 on the serum amyloid A-induced macrophage foam cell formation. Biochem Biophys Res Commun 2013; 433:255-9. [DOI: 10.1016/j.bbrc.2013.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 02/04/2023]
|
30
|
Bennett D, Eckersall PD, Waterston M, Marchetti V, Rota A, McCulloch E, Sbrana S. The effect of robenacoxib on the concentration of C-reactive protein in synovial fluid from dogs with osteoarthritis. BMC Vet Res 2013; 9:42. [PMID: 23452411 PMCID: PMC3610148 DOI: 10.1186/1746-6148-9-42] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background Robenacoxib is a novel and highly selective inhibitor of COX-2 in dogs and cats and because of its acidic nature is regarded as being tissue-selective. Thirty four dogs with stifle osteoarthritis secondary to failure of the cranial cruciate ligament were recruited into this study. Lameness, radiographic features, synovial cytology and C-reactive protein concentrations in serum and synovial fluid were assessed before and 28 days after commencing a course of Robenacoxib at a dose of 1 mg/kg SID. Results There was a significant reduction in the lameness score (P < 0.01) and an increase in the radiographic score (P < 0.05) between pre- and post-treatment assessments. There was no difference between pre- (median 1.49 mg/l; Q1-Q3 0.56-4.24 mg/L) and post – (1.10 mg/L; 0.31-1.78 mg/L) treatment serum C-reactive protein levels although synovial fluid levels were significantly reduced (pre- : 0.44 mg/L; 0.23-1.62 mg/L; post- : 0.17 mg/L; 0.05-0.49 mg/L) (P < 0.05). There was no correlation between C-reactive protein concentrations in serum and matched synovial fluid samples. Conclusions Robenacoxib proved effective in reducing lameness in dogs with failure of the cranial cruciate ligament and osteoarthritis of the stifle joint. The drug also reduced levels of C-reactive protein in the synovial fluid taken from the affected stifle joint. Robenacoxib appears to reduce articular inflammation as assessed by C-reactive protein which supports the concept that Robenacoxib is a tissue-selective non-steroidal anti-inflammatory drug.
Collapse
Affiliation(s)
- David Bennett
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Bearsden, Glasgow G61 1QH, Scotland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lee HY, Kim SD, Baek SH, Choi JH, Cho KH, Zabel BA, Bae YS. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation. Biochem Biophys Res Commun 2013; 433:18-23. [PMID: 23454129 DOI: 10.1016/j.bbrc.2013.02.077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 12/30/2022]
Abstract
Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biological Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| | | | | | | | | | | | | |
Collapse
|
32
|
Doyle MK, Rahman MU, Frederick B, Birbara CA, de Vries D, Toedter G, Wu X, Chen D, Ranganath VK, Westerman ME, Furst DE. Effects of subcutaneous and intravenous golimumab on inflammatory biomarkers in patients with rheumatoid arthritis: results of a phase 1, randomized, open-label trial. Rheumatology (Oxford) 2013; 52:1214-9. [PMID: 23418046 DOI: 10.1093/rheumatology/kes381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To evaluate the effects of the anti-TNF-α monoclonal antibody golimumab, administered by s.c. injection or i.v. infusion, on markers of inflammation in patients with RA. METHODS In this phase 1, open-label study, patients with active RA were randomized to receive s.c. golimumab 100 mg at baseline and every 4 weeks through week 20 (n = 33; group 1) or i.v. golimumab 2 mg/kg at baseline and week 12 (n = 16; group 2). Serum levels of CRP, IL-6, serum amyloid A (SAA), TNF receptor II (TNFRII), MMP-3, hyaluronic acid, haptoglobin, ferritin and haemoglobin and serum/urine hepcidin were measured at various time points. Associations between the biomarkers were assessed with Spearman's correlations. RESULTS In both groups 1 and 2, decreases in mean serum levels of CRP, IL-6, SAA, TNFRII, MMP-3, haptoglobin, ferritin and hepcidin, and mean urine levels of hepcidin occurred within 1 week and were sustained through week 8. Decreases in concentrations of serum CRP, IL-6, SAA, MMP-3, hepcidin, ferritin and haptoglobin and urine hepcidin were maintained through week 24 in group 1, but began to reverse after week 8 in group 2. Among all patients, decreases in serum hepcidin correlated significantly with decreases in serum CRP and ferritin. CONCLUSION Decreases in serum and urine concentrations of markers of inflammation occurred as early as 24 h after treatment with golimumab, and most of these improvements were sustained through week 24 in group 1.
Collapse
Affiliation(s)
- Mittie K Doyle
- Janssen Research & Development, LLC, Spring House, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
SAA does not induce cytokine production in physiological conditions. Cytokine 2012; 61:506-12. [PMID: 23165195 DOI: 10.1016/j.cyto.2012.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/05/2012] [Accepted: 10/19/2012] [Indexed: 02/02/2023]
Abstract
SAA has been shown to have potential proinflammatory properties in inflammatory diseases such as atherosclerosis. These include induction of tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein 1 in vitro. However, concern has been raised that these effects might be due to use of recombinant SAA with low level of endotoxin contaminants or its non-native forms. Therefore, physiological relevance has not been fully elucidated. In this study, we investigated the role of SAA in the production of inflammatory cytokines. Stimulation of mouse monocyte J774 cells with lipid-poor recombinant human SAA and purified SAA derived from cardiac surgery patients, but not ApoA-I and ApoA-II, elicited pro-inflammatory cytokines like granulocyte colony stimulating factor (G-CSF). However, HDL-associated SAA failed to stimulate production of these cytokines. Using neutralizing antibodies against toll like receptor (TLR) 2 and 4, we could evaluate that TLR 2 is responsible for G-CSF production by lipid-poor SAA. To confirm these data in vivo, we expressed mouse SAA in SAA deficient C57BL/6 mice using an adenoviral vector. G-CSF was identically expressed in SAA-Adenoviral infected mice as well as in control null-Adenoviral mice at the early time points (4-8h) and could not be detected in plasma 24h after infection when plasma SAA levels were maximally elevated, indicating that adenoviral vector rather than SAA affected G-CSF levels. Taken together, our findings suggest that lipid-poor SAA, but not HDL-associated SAA, stimulates G-CSF production and this stimulation is mediated through TLR 2 in J774 cells. However, its physiological role in vivo remains ambiguous.
Collapse
|
34
|
Jang SY, Shin YK, Lee HY, Park JY, Suh DJ, Kim JK, Bae YS, Park HT. Local production of serum amyloid a is implicated in the induction of macrophage chemoattractants in Schwann cells during wallerian degeneration of peripheral nerves. Glia 2012; 60:1619-28. [PMID: 22777957 DOI: 10.1002/glia.22382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/07/2012] [Indexed: 02/03/2023]
Abstract
The elevation of serum levels of serum amyloid A (SAA) has been regarded as an acute reactive response following inflammation and various types of injuries. SAA from the liver and extrahepatic tissues plays an immunomodulatory role in a variety of pathophysiological conditions. Inflammatory cytokines in the peripheral nerves have been implicated in the Wallerian degeneration of peripheral nerves after injury and in certain types of inflammatory neuropathies. In the present study, we found that a sciatic nerve axotomy could induce an increase of SAA1 and SAA3 mRNA expression in sciatic nerves. Immunohistochemical staining showed that Schwann cells are the primary sources of SAA production after nerve injury. In addition, interleukin-6-null mice, but not tumor necrosis factor-α-null mice showed a defect in the production of SAA1 in sciatic nerve following injury. Dexamethasone treatment enhanced the expression and secretion of SAA1 and SAA3 in sciatic nerve explants cultures, suggesting that interleukin-6 and corticosteroids might be major regulators for SAA production in Schwann cells following injury. Moreover, the stimulation of Schwann cells with SAA1 elicited the production of the macrophage chemoattractants, Ccl2 and Ccl3, in part through a G-protein coupled receptor. Our findings suggest that locally produced SAA might play an important role in Wallerian degeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- So Young Jang
- Department of Physiology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dong Z, An F, Wu T, Zhang C, Zhang M, Zhang Y, An G, An F. PTX3, a key component of innate immunity, is induced by SAA via FPRL1-mediated signaling in HAECs. J Cell Biochem 2011; 112:2097-105. [PMID: 21465531 DOI: 10.1002/jcb.23128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Serum amyloid A (SAA) is regarded as an important acute phase protein in coronary artery diseases. However, its involvement in the immune response of atherosclerosis is poorly understood. The present study was designed to investigate the influence of SAA on the secretion of long pentraxin 3 (PTX3), a key component of innate immunity, in human aortic endothelial cells (HAECs). Our study revealed that recombinant SAA up-regulated PTX3 production in a remarkable dose- and time-dependent manner and the activation of formyl peptide receptor-like 1 (FPRL1) was crucial for SAA-induced expression of PTX3 in HAECs. Meanwhile, SAA-induced PTX3 production could be significantly down-regulated by using the specific siRNA sequences for Jun N-terminal kinases (JNK). Furthermore, the activation of activator protein-1 (AP-1) was necessary for the up-regulation of PTX3 expression. We also found that the activation of nuclear factor-kappa B (NF-κB) played an important role in this process. Our findings demonstrate that SAA up-regulates PTX3 production via FPRL1 significantly, and thus, contributes to the inflammatory pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhe Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Migita K, Koga T, Komori A, Torigoshi T, Maeda Y, Izumi Y, Sato J, Jiuchi Y, Miyashita T, Yamasaki S, Kawakami A, Nakamura M, Motokawa S, Ishibashi H. Influence of Janus kinase inhibition on interleukin 6-mediated induction of acute-phase serum amyloid A in rheumatoid synovium. J Rheumatol 2011; 38:2309-17. [PMID: 21844139 DOI: 10.3899/jrheum.101362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Inhibition of intracellular signal transduction is considered to be a therapeutic target for chronic inflammation. The new Janus kinase (JAK)3 inhibitor CP690,550 has shown efficacy in the treatment of rheumatoid arthritis (RA). We investigated the influence of JAK/STAT inhibition using CP690,550 on the induction of acute-phase serum amyloid A (SAA), which is triggered by interleukin 6 (IL-6) stimulation in rheumatoid fibroblast-like synoviocytes (RA-FLS). METHODS IL-6-stimulated gene expression of the acute-phase serum amyloid A genes (A-SAA; encoded by SAA1+SAA2) and SAA4 was analyzed by reverse transcriptase-polymerase chain reaction. The intracellular signaling pathway mediating the effects of CP690,550 on IL-6-stimulated JAK/STAT activation was assessed by measuring the phosphorylation levels using Western blots. RESULTS IL-6 trans-signaling induced A-SAA messenger RNA (mRNA) expression in RA-FLS. By contrast IL-6 stimulation did not affect SAA4 mRNA expression, which is expressed constitutively in RA-FLS. IL-6 stimulation elicited rapid phosphorylation of JAK2 and STAT3, which was blunted by CP690,550. CP690,550 abrogated IL-6-mediated A-SAA mRNA expression in RA-FLS. Similarly, CP690,550 inhibited IL-6-mediated A-SAA mRNA expression in human hepatocytes. CONCLUSION Our data indicated that CP690,550 blocked IL-6-induced JAK2/STAT3 activation, as well as the induction of A-SAA. Inhibition of IL-6-mediated proinflammatory signaling pathways by CP690,550 may represent a new antiinflammatory therapeutic strategy for RA and AA amyloidosis.
Collapse
Affiliation(s)
- Kiyoshi Migita
- Department of Rheumatology and Clinical Research Center, Nagasaki Medical Center, Omura, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Targońska-Stępniak B, Dryglewska M, Majdan M. Influence of long-term leflunomide treatment on serum amyloid concentration in rheumatoid arthritis patients. Pharmacol Rep 2011; 62:719-25. [PMID: 20885012 DOI: 10.1016/s1734-1140(10)70329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/07/2009] [Indexed: 10/25/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory disease that requires intervention with disease-modifying antirheumatic drugs (DMARDs) to stop disease progression. Leflunomide (LEF) is a DMARD with anti-inflammatory and immunomodulatory properties. As its primary mode of action, LEF reversibly inhibits dihydroorotate dehydrogenase, a key enzyme in de novo biosynthesis of pyrimidine in cells. Serum amyloid A protein (SAA) is elevated in inflammatory states and high SAA levels indicate a risk of developing secondary amyloidosis. The aim of this study was to investigate the effects of long-term LEF treatment on SAA levels and disease activity in a group of RA patients. The study group consisted of 50 consecutive RA patients (43 F, 7 M) treated with leflunomide. All patients had a clinical evaluation and SAA measurements taken at two consecutive visits during months 0, 1, 3, 6 and 12. Mean SAA concentrations decreased significantly in the first months of LEF therapy (up to the 6th month) with a more pronounced effect in patients with higher SAA levels. However, by the 12(th) month of treatment, the mean SAA level did not differ significantly from the SAA level at the start of treatment. At the same time though, other clinical and laboratory parameters of RA activity indicated that the disease activity decreased. Results demonstrated that in patients with active RA LEF therapy provided a significant, long-term reduction of inflammatory activity, as measured by the classic parameters of disease activity. During the treatment, SAA concentrations decreased significantly, followed by a slight increase, in spite of a reduction in other classical indicators of inflammatory response.
Collapse
Affiliation(s)
- Bożena Targońska-Stępniak
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, Jaczewskiego 8, PL 20-950 Lublin, Poland
| | | | | |
Collapse
|
38
|
Hatanaka E, Dermargos A, Armelin HA, Curi R, Campa A. Serum amyloid A induces reactive oxygen species (ROS) production and proliferation of fibroblast. Clin Exp Immunol 2010; 163:362-7. [PMID: 21175596 DOI: 10.1111/j.1365-2249.2010.04300.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Serum amyloid A (SAA) levels are elevated highly in acute phase response and elevated slightly and persistently in chronic diseases such as rheumatoid arthritis and diabetes. Given that fibroblasts exert profound effects on progression of inflammatory chronic diseases, the aim of this study was to investigate the response of fibroblasts to SAA. A dose-dependent increase in O(2) (-) levels was observed by treatment of fibroblasts with SAA (r = 0·99 and P ≤ 0·001). In addition, the expression of p47-phox was up-regulated by SAA (P < 0·001) and diphenyliodonium (DPI), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, reduced the release of O(2) (-) by 50%. Also, SAA raised fibroblast proliferation (P < 0·001) and this effect was completely abolished by the addition of anti-oxidants (P < 0·001). These findings support the notion that, in chronic inflammatory sites, SAA activated fibroblast proliferation and ROS production.
Collapse
Affiliation(s)
- E Hatanaka
- Instituto de Ciências da Atividade Física e Esportes, Universidade Cruzeiro do Sul, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
39
|
Lee HY, Kim SD, Shim JW, Kim HJ, Yun J, Baek SH, Kim K, Bae YS. A pertussis toxin sensitive G-protein-independent pathway is involved in serum amyloid A-induced formyl peptide receptor 2-mediated CCL2 production. Exp Mol Med 2010; 42:302-9. [PMID: 20177146 DOI: 10.3858/emm.2010.42.4.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Serum amyloid A (SAA) induced CCL2 production via a pertussis toxin (PTX)-insensitive pathway in human umbilical vein endothelial cells (HUVECs). SAA induced the activation of three MAPKs (ERK, p38 MAPK, and JNK), which were completely inhibited by knock-down of formyl peptide receptor 2 (FPR2). Inhibition of p38 MAPK and JNK by their specific inhibitors (SB203580 and SP600125), or inhibition by a dominant negative mutant of p38 MAPK dramatically decreased SAA-induced CCL2 production. Inactivation of G((i)) protein(s) by PTX inhibited the activation of SAA-induced ERK, but not p38 MAPK or JNK. The results indicate that SAA stimulates FPR2-mediated activation of p38 MAPK and JNK, which are independent of a PTX-sensitive G-protein and are essential for SAA-induced CCL2 production.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Migita K, Koga T, Torigoshi T, Motokawa S, Maeda Y, Jiuchi Y, Izumi Y, Miyashita T, Nakamura M, Komori A, Ishibashi H. Induction of interleukin-23 p19 by serum amyloid A (SAA) in rheumatoid synoviocytes. Clin Exp Immunol 2010; 162:244-50. [PMID: 20840651 DOI: 10.1111/j.1365-2249.2010.04242.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the roles of serum amyloid A (SAA) in T helper 17 (Th17)-related cytokine induction in rheumatoid arthritis (RA) synoviocytes. Synoviocytes isolated from rheumatoid arthritis (RA) patients were stimulated with recombinant SAA and IL-23 expression was investigated using reverse transcriptase-polymerase chain reaction and Western blot. The involvement of mitogen-activated protein kineases (MAPKs) and nuclear factor (NF)-κB in SAA-induced interleukin (IL)-23 p19 expression was investigated using pharmacological inhibitors. In RA synoviocytes, SAA induced the expression of IL-23 p19 and p40 mRNA expression. The SAA-stimulated expression of p19 was rapid (< 3 h), and insensitive to polymyxin B treatment. This SAA-stimulated expression of IL-23 p19 was inhibited completely by inhibitors of NF-κB, p38MAPK and dexamethasone. Interestingly, the SAA-induced IL-23, p19 and p40 production was accompanied by enhanced expression of IL-1β, but not transforming growth factor-β. These results indicate that SAA is a significant inducer of IL-23 and IL-1β in RA synoviocytes and potentially activates the IL-23/IL-17 pathway in the RA synovium. Our data present a novel interaction between inflammation and autoimmunity by an acute-phase protein.
Collapse
Affiliation(s)
- K Migita
- Department of Rheumatology, NHO Nagasaki Medical Center, Kubara, Omura, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Urieli-Shoval S, Finci-Yeheskel Z, Dishon S, Galinsky D, Linke RP, Ariel I, Levin M, Ben-Shachar I, Prus D. Expression of serum amyloid a in human ovarian epithelial tumors: implication for a role in ovarian tumorigenesis. J Histochem Cytochem 2010; 58:1015-23. [PMID: 20713982 DOI: 10.1369/jhc.2010.956821] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein which is expressed primarily in the liver as a part of the systemic response to various injuries and inflammatory stimuli; its expression in ovarian tumors has not been described. Here, we investigated the expression of SAA in human benign and malignant ovarian epithelial tumors. Non-radioactive in situ hybridization applied on ovarian paraffin tissue sections revealed mostly negative SAA mRNA expression in normal surface epithelium. Expression was increased gradually as epithelial cells progressed through benign and borderline adenomas to primary and metastatic adenocarcinomas. Similar expression pattern of the SAA protein was observed by immunohistochemical staining. RT-PCR analysis confirmed the overexpression of the SAA1 and SAA4 genes in ovarian carcinomas compared with normal ovarian tissues. In addition, strong expression of SAA mRNA and protein was found in the ovarian carcinoma cell line OVCAR-3. Finally, patients with ovarian carcinoma had high SAA serum levels, which strongly correlated with high levels of CA-125 and C-reactive protein. Enhanced expression of SAA in ovarian carcinomas may play a role in ovarian tumorigenesis and may have therapeutic application.
Collapse
Affiliation(s)
- Simcha Urieli-Shoval
- Hematology Unit, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Björkman L, Raynes JG, Shah C, Karlsson A, Dahlgren C, Bylund J. The proinflammatory activity of recombinant serum amyloid A is not shared by the endogenous protein in the circulation. ACTA ACUST UNITED AC 2010; 62:1660-5. [PMID: 20201074 DOI: 10.1002/art.27440] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Elevated serum levels of the acute-phase protein serum amyloid A (SAA) are a marker for active rheumatoid arthritis (RA), and SAA can also be found in the tissues of patients with active RA. Based on a number of studies with recombinant SAA (rSAA), the protein has been suggested to be a potent proinflammatory mediator that activates human neutrophils, but whether endogenous SAA shares these proinflammatory activities has not been directly addressed. The present study was undertaken to investigate whether SAA in the plasma of patients with RA possesses proinflammatory properties and activates neutrophils in a manner similar to that of the recombinant protein. METHODS Neutrophil activation was monitored by flow cytometry, based on L-selectin shedding from cell surfaces. Whole blood samples from healthy subjects and from RA patients with highly elevated SAA levels were studied before and after stimulation with rSAA as well as purified endogenous SAA. RESULTS Recombinant SAA potently induced cleavage of L-selectin from neutrophils and in whole blood samples. Despite highly elevated SAA levels, L-selectin was not down-regulated on RA patient neutrophils as compared with neutrophils from healthy controls. Spiking SAA-rich whole blood samples from RA patients with rSAA, however, resulted in L-selectin shedding. In addition, SAA purified from human plasma was completely devoid of neutrophil- or macrophage-activating capacity. CONCLUSION The present findings show that rSAA is proinflammatory but that this activity is not shared by endogenous SAA, either when present in the circulation of RA patients or when purified from plasma during an acute-phase response.
Collapse
Affiliation(s)
- Lena Björkman
- Sahlgrenska Academy, University of Gothenburg, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
43
|
Dufton N, Perretti M. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol Ther 2010; 127:175-88. [PMID: 20546777 DOI: 10.1016/j.pharmthera.2010.04.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/25/2010] [Indexed: 12/22/2022]
Abstract
The need for novel anti-inflammatory drugs justifies the search for innovative targets that could satisfy this goal. For quite some time now, we have proposed the study of endogenous anti-inflammation as a distinctive approach to the discovery of new drugs. This approach requires development of new compounds that activate specific receptor targets to downregulate the cellular and tissue pathways operative in the host during inflammation. Here we dwell on a family of G-protein coupled receptors (GPCR) termed FPRs, acronym for formyl-peptide receptors. With three and seven members in man and mouse, respectively, these receptors harness many biological functions, spanning odour perception and hair growth, to the control of multiple facets (pain; cell migration; oxidative burst; xenobiotic engulfment) of the inflammatory reaction. We focus on FPR biology with particular attention to molecules able to produce pharmacological effects by interacting with these GPCRs, describing endogenous agonists of FPRs and, more relevantly, the current development of synthetic agonists. Besides being potential leads for the development of the anti-inflammatory therapeutics of the future, these compounds could also help clarify the properties and roles that each FPR might play in the complex network of pathways that is inflammation. We conclude that FPR2 agonists could be valid warhorses for defining a novel philosophy for anti-inflammatory drug discovery programmes: mimicking - with new compounds - the way our body disposes of inflammation could be a viable approach to regulate aberrant inflammatory responses as in the case of several chronic rheumatic and cardiovascular pathologies.
Collapse
Affiliation(s)
- Neil Dufton
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
44
|
Bottazzi B, Doni A, Garlanda C, Mantovani A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 2010; 28:157-83. [PMID: 19968561 DOI: 10.1146/annurev-immunol-030409-101305] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The innate immune system consists of a cellular and a humoral arm. Pentraxins (e.g., the short pentraxin C reactive protein and the long pentraxin PTX3) are key components of the humoral arm of innate immunity which also includes complement components, collectins, and ficolins. In response to microorganisms and tissue damage, neutrophils, macrophages, and dendritic cells are major sources of fluid-phase pattern-recognition molecules (PRMs) belonging to different molecular classes. Humoral PRMs in turn interact with and regulate cellular effectors. Effector mechanisms of the humoral innate immune system include activation and regulation of the complement cascade; agglutination and neutralization; facilitation of recognition via cellular receptors (opsonization); and regulation of inflammation. Thus, the humoral arm of innate immunity is an integrated system consisting of different molecules and sharing functional outputs with antibodies.
Collapse
|
45
|
Tai CC, Ding ST. N-3 polyunsaturated fatty acids regulate lipid metabolism through several inflammation mediators: mechanisms and implications for obesity prevention. J Nutr Biochem 2010; 21:357-63. [PMID: 20149625 DOI: 10.1016/j.jnutbio.2009.09.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/06/2009] [Accepted: 09/17/2009] [Indexed: 12/28/2022]
Abstract
Obesity is a growing problem that threatens the health and welfare of a large proportion of the human population. The n-3 polyunsaturated fatty acids (PUFA) are dietary factors that have potential to facilitate reduction in body fat deposition and improve obesity-induced metabolic syndromes. The n-3 PUFA up-regulate several inflammation molecules including serum amyloid A (SAA), tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in hepatocytes and adipocytes. Actions of these inflammation mediators resemble those of n-3 PUFA in the modulation of many lipid metabolism-related genes. For instance, they both suppress expressions of perilipin, sterol regulatory element binding protein-1 (SREBP-1) and lipoprotein lipase (LPL) to induce lipolysis and reduce lipogenesis. This review will connect these direct or indirect regulating pathways between n-3 PUFA, inflammation mediators, lipid metabolism-related genes and body fat reduction. A thorough knowledge of these regulatory mechanisms will lead us to better utilization of n-3 PUFA to reduce lipid deposition in the liver and other tissues, therefore presenting an opportunity for developing new strategies to treat obesity.
Collapse
Affiliation(s)
- Chen C Tai
- Department of Animal Science, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
46
|
Abstract
Recent advances in understanding the mechanism(s) of how IL-6 trans-signaling regulates immune cell function and promotes inflammation in autoimmune arthritis are critically reviewed. Serum and/or synovial fluid (SF) IL-6 is markedly elevated in adult and juvenile rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS) and osteoarthritis (OA). IL-6, in concert with IL-17, determines the fate of CD4+ lymphocytes and therefore TH17 cell differentiation. IL-6 also plays a critical role in modulating B-lymphocyte activity. The recognition that IL-6 trans-signaling regulates inflammation resulted in the development of tocilizumab, a fully humanized monoclonal antibody that neutralizes the biological activity of the IL-6-receptor (IL-6R). Significant clinical benefit was demonstrated as well as reduced serum IL-6 levels with suppression of X-ray progression of disease in several clinical trials in which juvenile or adult RA patients were treated with tocilizumab monotherapy or tocilizumab plus methotrexate. However, levels of serum and/or SF IL-6 cytokine protein superfamily members, adiponectin, oncostatin M, pre-B-cell colony enhancing factor/visfatin and leukemia inhibitory factor are also elevated in RA. Additional studies will be required to determine if anti-IL-6 trans-signaling inhibition strategies with tocilizumab or recombinant soluble IL-6R reduce the level of these cytokines.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 2009; 15:369-79. [PMID: 19665431 DOI: 10.1016/j.molmed.2009.06.005] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 12/11/2022]
Abstract
The p38(MAPK) protein kinases affect a variety of intracellular responses, with well-recognized roles in inflammation, cell-cycle regulation, cell death, development, differentiation, senescence and tumorigenesis. In this review, we examine the regulatory and effector components of this pathway, focusing on their emerging roles in biological processes involved in different pathologies. We summarize how this pathway has been exploited for the development of therapeutics and discuss the potential obstacles of targeting this promiscuous protein kinase pathway for the treatment of different diseases. Furthermore, we discuss how the p38(MAPK) pathway might be best exploited for the development of more effective therapeutics with minimal side effects in a range of specific disease settings.
Collapse
Affiliation(s)
- Lydia R Coulthard
- NIHR - Leeds Musculoskeletal Biomedical Research Unit, St James's University Hospital, Leeds, LS9 7TF, UK
| | | | | | | | | |
Collapse
|
48
|
Breda L, Nozzi M, De Sanctis S, Chiarelli F. Laboratory tests in the diagnosis and follow-up of pediatric rheumatic diseases: an update. Semin Arthritis Rheum 2009; 40:53-72. [PMID: 19246077 DOI: 10.1016/j.semarthrit.2008.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/03/2008] [Accepted: 12/15/2008] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We reviewed the literature to evaluate the role of common laboratory tests and to examine the recent progress in the laboratory diagnosis of pediatric rheumatic diseases. METHODS We used the PubMed database (1950-2008) to search for the keywords "laboratory," "erythrocyte sedimentation rate" (ESR), "C-reactive protein" (CRP), "blood cytology," "procalcitonin" (PCT), "complement system," "ferritin," "antistreptolysin O titer" (ASO), "autoantibodies," "genetic studies," in conjunction with "rheumatic disease in children" and "pediatric autoimmune diseases." All relevant original and review articles in English were reviewed as well as textbooks of pediatric rheumatology. RESULTS Laboratory tests (ESR, CRP, blood cytology, complement system, ferritin, ASO titer) play an important role in confirming a diagnosis and in the follow-up of rheumatic diseases in the pediatric age group. The ESR is probably the most widely measured index of the acute phase response. Measurement of CRP is very useful in the rapid diagnosis of infection as a progressive increase can be shown in the first 48 hours. Also, the subsequent fall in serum CRP concentration on resolution of inflammation is useful for monitoring the efficacy of treatment. In chronic diseases, a combination of CRP and ESR may provide the most useful information. Cytopenia and different forms of anemia can be encountered in many rheumatic diseases: they can be related to disease activity or to therapeutic side effects. Determination of complement levels (C3 and/or C4) is useful in the follow-up of systemic lupus erythematosus (SLE) and membranoproliferative glomerulonephritis. Ferritin is a laboratory hallmark of primary and secondary hemophagocytic lymphohistiocytosis. ASO titer should be obtained to confirm a diagnosis of acute rheumatic fever; other important antibody markers of streptococcal infection include antihyaluronidase, antideoxyribonuclease B, and antistreptokinase antibodies. We also found that, in the pediatric age, the main indication for synovial fluid analysis is suspected joint infection. Antinuclear antibodies, anti-Smith antigen, and anti-double-stranded DNA antibodies are important in the diagnosis of SLE, are useful prognostic markers, and facilitate clinical and treatment follow-up. Anti-SSA/Ro and anti-SSB/La antibodies are associated with Sjögren's syndrome and congenital heart block, while the anti-U1 small nuclear ribonucleoprotein antibodies show high specificity for mixed connective tissue disease. Repetitive spontaneous abortions, thrombocytopenia, and many types of venous or arterial thrombosis are associated with antiphospholipid antibodies. The presence of cytoplasmic antineutrophil antibodies is essential in the diagnosis of Wegener granulomatosis. The discovery of underlying single causative gene defects led to the identification of several autoinflammatory diseases, a group of genetic disorders characterized by recurrent attacks of inflammation (hereditary periodic fever syndromes). These include familial Mediterranean fever due to mutations in the Mediterranean fever (MEFV) gene, hyperimmunoglobulinemia D syndrome due to mutations in the MK gene for mevalonate kinase, cryopyrinopathies such as Muckle-Wells syndrome or neonatal-onset multisystemic inflammatory disease (neonatal-onset multisystemic inflammatory disease or chronic infantile neurological cutaneous and articular (CINCA)) associated with cold-induced autoinflammatory syndrome 1 gene mutations, and tumor necrosis factor receptor-associated periodic syndrome due to mutation of TNF receptor I gene. CONCLUSIONS Laboratory investigations play an important role in the diagnosis and follow-up of inflammatory rheumatic diseases in children. A good history and a complete physical examination are the best screening tests. Routine laboratory tests are useful to confirm a suspected diagnosis, to assess disease activity, and to measure the response and toxicity to treatment. Only a few tests represent diagnostic criteria such as antinuclear antibodies and anti-double-stranded DNA in SLE or cytoplasmic antineutrophil cytoplasmic autoantibodies in Wegener's granulomatosis. Recent advances in molecular genetics have impacted diagnosis, pathogenesis, and treatment in genetic fever syndromes.
Collapse
Affiliation(s)
- Luciana Breda
- Department of Pediatrics, Reumathology Unit, University of Chieti, Chieti, Italy.
| | | | | | | |
Collapse
|
49
|
Lee HY, Kim SD, Shim JW, Lee SY, Lee H, Cho KH, Yun J, Bae YS. Serum amyloid A induces CCL2 production via formyl peptide receptor-like 1-mediated signaling in human monocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:4332-9. [PMID: 18768891 DOI: 10.4049/jimmunol.181.6.4332] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the presence of an elevated level of serum amyloid A (SAA) has been regarded as a cardiovascular risk factor, the role of SAA on the progress of atherosclerosis has not been fully elucidated. In the present study, we investigated the effect of SAA on the production of CCL2, an important mediator of monocyte recruitment, and the mechanism underlying the action of SAA in human monocytes. The stimulation of human monocytes with SAA elicited CCL2 production in a concentration-dependent manner. The production of CCL2 by SAA was found to be mediated by the activation of NF-kappaB. Moreover, the signaling events induced by SAA included the activation of ERK and the induction of cyclooxygenase-2, which were required for the production of CCL2. Moreover, SAA-induced CCL2 induction was inhibited by a formyl peptide receptor-like 1 (FPRL1) antagonist. We also found that the stimulation of FPRL1-expressing RBL-2H3 cells induced CCL2 mRNA accumulation, but the vector-expressing RBL-2H3 cells combined with SAA did not. Taken together, our findings suggest that SAA stimulates CCL2 production and, thus, contributes to atherosclerosis. Moreover, FPRL1 was found to be engaged in SAA-induced CCL2 induction, and cyclooxygenase-2 induction was found to be essential for SAA-induced CCL2 expression. These results suggest that SAA and FPRL1 offer a developmental starting point for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|