1
|
Yu L. Cooperation of acylglycerol hydrolases in neuronal lipolysis. J Lipid Res 2023; 64:100462. [PMID: 37871852 PMCID: PMC10689277 DOI: 10.1016/j.jlr.2023.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Abstract
Genetic and biochemical evidence has established DDHD-domain containing 2 (DDHD2) as the principal triacylglycerol (TAG) hydrolase in neuronal lipolysis of cytosolic lipid droplets. In this issue of Journal of Lipid Research, Hofer et al. report that DDHD2 cooperates with adipose triglyceride lipase, the principal TAG hydrolase in adipose lipolysis, contributing to cytosolic hydrolysis of both TAG and diacylglycerols in murine neuroblastoma cells and primary cortical neurons via different configurations of the lipases. This finding highlights the complexity of cytosolic acylglycerol hydrolysis and raises many new questions in the field of lipid metabolism.
Collapse
Affiliation(s)
- Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Hofer P, Grabner GF, König M, Xie H, Bulfon D, Ludwig AE, Wolinski H, Zimmermann R, Zechner R, Heier C. Cooperative lipolytic control of neuronal triacylglycerol by spastic paraplegia-associated enzyme DDHD2 and ATGL. J Lipid Res 2023; 64:100457. [PMID: 37832604 PMCID: PMC10665947 DOI: 10.1016/j.jlr.2023.100457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Intracellular lipolysis-the enzymatic breakdown of lipid droplet-associated triacylglycerol (TAG)-depends on the cooperative action of several hydrolytic enzymes and regulatory proteins, together designated as lipolysome. Adipose triglyceride lipase (ATGL) acts as a major cellular TAG hydrolase and core effector of the lipolysome in many peripheral tissues. Neurons initiate lipolysis independently of ATGL via DDHD domain-containing 2 (DDHD2), a multifunctional lipid hydrolase whose dysfunction causes neuronal TAG deposition and hereditary spastic paraplegia. Whether and how DDHD2 cooperates with other lipolytic enzymes is currently unknown. In this study, we further investigated the enzymatic properties and functions of DDHD2 in neuroblastoma cells and primary neurons. We found that DDHD2 hydrolyzes multiple acylglycerols in vitro and substantially contributes to neutral lipid hydrolase activities of neuroblastoma cells and brain tissue. Substrate promiscuity of DDHD2 allowed its engagement at different steps of the lipolytic cascade: In neuroblastoma cells, DDHD2 functioned exclusively downstream of ATGL in the hydrolysis of sn-1,3-diacylglycerol (DAG) isomers but was dispensable for TAG hydrolysis and lipid droplet homeostasis. In primary cortical neurons, DDHD2 exhibited lipolytic control over both, DAG and TAG, and complemented ATGL-dependent TAG hydrolysis. We conclude that neuronal cells use noncanonical configurations of the lipolysome and engage DDHD2 as dual TAG/DAG hydrolase in cooperation with ATGL.
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Mario König
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anton E Ludwig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
3
|
Chou Y, Hsu S, Tsai Y, Lu Y, Yu K, Wu H, Liao Y, Lee Y. Biallelic DDHD2 mutations in patients with adult-onset complex hereditary spastic paraplegia. Ann Clin Transl Neurol 2023; 10:1603-1612. [PMID: 37420318 PMCID: PMC10502669 DOI: 10.1002/acn3.51850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVE Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by slowly progressive lower limb spasticity and weakness. HSP type 54 (SPG54) is autosomal recessively inherited and caused by mutations in the DDHD2 gene. This study investigated the clinical characteristics and molecular features of DDHD2 mutations in a cohort of Taiwanese patients with HSP. METHODS Mutational analysis of DDHD2 was performed for 242 unrelated Taiwanese patients with HSP. The clinical, neuroimaging, and genetic features of the patients with biallelic DDHD2 mutations were characterized. A cell-based study was performed to assess the effects of the DDHD2 mutations on protein expression. RESULTS SPG54 was diagnosed in three patients. Among them, two patients carried compound heterozygous DDHD2 mutations, p.[R112Q];[Y606*] and p.[R112Q];[p.D660H], and the other one was homozygous for the DDHD2 p.R112Q mutation. DDHD2 p.Y606* is a novel mutation, whereas DDHD2 p.D660H and p.R112Q have been reported in the literature. All three patients manifested adult onset complex HSP with additional cerebellar ataxia, polyneuropathy, or cognitive impairment. Brain proton magnetic resonance spectroscopy revealed an abnormal lipid peak in thalamus of all three patients. In vitro studies demonstrated that all the three DDHD2 mutations were associated with a considerably lower DDHD2 protein level. INTERPRETATION SPG54 was detected in approximately 1.2% (3 of 242) of the Taiwanese HSP cohort. This study expands the known mutational spectrum of DDHD2, provides molecular evidence of the pathogenicity of the DDHD2 mutations, and underlines the importance of considering SPG54 as a potential diagnosis of adult-onset HSP.
Collapse
Affiliation(s)
- Ying‐Tsen Chou
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Shao‐Lun Hsu
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologyNational Yang Ming Chiao Tung University School of MedicineTaipeiTaiwan
| | - Yu‐Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Jiun Lu
- Department of NeurosurgeryNeurological Institute, Taipei Veterans General HospitalTaipeiTaiwan
| | - Kai‐Wei Yu
- Department of RadiologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Hsiu‐Mei Wu
- Department of RadiologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Yi‐Chu Liao
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologyNational Yang Ming Chiao Tung University School of MedicineTaipeiTaiwan
- Brain Research Center, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Chung Lee
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologyNational Yang Ming Chiao Tung University School of MedicineTaipeiTaiwan
- Brain Research Center, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Biological Science and Technology, College of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDSB), National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| |
Collapse
|
4
|
Angelotti T. Exploring the eukaryotic Yip and REEP/Yop superfamily of membrane-shaping adapter proteins (MSAPs): A cacophony or harmony of structure and function? Front Mol Biosci 2022; 9:912848. [PMID: 36060263 PMCID: PMC9437294 DOI: 10.3389/fmolb.2022.912848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Polytopic cargo proteins are synthesized and exported along the secretory pathway from the endoplasmic reticulum (ER), through the Golgi apparatus, with eventual insertion into the plasma membrane (PM). While searching for proteins that could enhance cell surface expression of olfactory receptors, a new family of proteins termed “receptor expression-enhancing proteins” or REEPs were identified. These membrane-shaping hairpin proteins serve as adapters, interacting with intracellular transport machinery, to regulate cargo protein trafficking. However, REEPs belong to a larger family of proteins, the Yip (Ypt-interacting protein) family, conserved in yeast and higher eukaryotes. To date, eighteen mammalian Yip family members, divided into four subfamilies (Yipf, REEP, Yif, and PRAF), have been identified. Yeast research has revealed many intriguing aspects of yeast Yip function, functions that have not completely been explored with mammalian Yip family members. This review and analysis will clarify the different Yip family nomenclature that have encumbered prior comparisons between yeast, plants, and eukaryotic family members, to provide a more complete understanding of their interacting proteins, membrane topology, organelle localization, and role as regulators of cargo trafficking and localization. In addition, the biological role of membrane shaping and sensing hairpin and amphipathic helical domains of various Yip proteins and their potential cellular functions will be described. Lastly, this review will discuss the concept of Yip proteins as members of a larger superfamily of membrane-shaping adapter proteins (MSAPs), proteins that both shape membranes via membrane-sensing and hairpin insertion, and well as act as adapters for protein-protein interactions. MSAPs are defined by their localization to specific membranes, ability to alter membrane structure, interactions with other proteins via specific domains, and specific interactions/effects on cargo proteins.
Collapse
|
5
|
Xu X, Lu F, Du S, Zhao X, Li H, Zhang L, Tang J. Case report: Novel compound heterozygous missense mutations in the DDHD2 gene in a Chinese patient associated with spastic paraplegia type 54. Front Pediatr 2022; 10:997274. [PMID: 36090575 PMCID: PMC9458848 DOI: 10.3389/fped.2022.997274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Spastic paraplegia type 54 (SPG54) is a rare inherited autosomal recessive disorder, and a complex hereditary spastic paraplegia (HSP) caused by mutations in the phospholipase DDHD2 gene. SPG54 is characterized by early onset of spastic paraplegia, intellectual disability and dysplasia of corpus callosum. CASE PRESENTATION We report a 9 years and 5 months old Chinese girl with progressive spasm of the lower limbs, muscle weakness and intellectual disability. Brain magnetic resonance imaging (MRI) showed periventricular leukomalacia and thinning of the corpus callosum. According to the Wechsler Intelligence Scale, her IQ is 42. By whole exome sequencing, novel compound heterozygous missense mutations in the DDHD2 gene [c.168G>C, p.(Trp56Cys) and c.1505T>C, p.(Phe502Ser)] were identified in the proband. Comparative amino acid sequence alignment across different species revealed that Trp56 and Phe502 in the DDHD2 protein were highly conserved during evolution. And multiple in silico prediction tools suggested that both mutations were deleterious. CONCLUSIONS Our study reports a very rare case of complicated HSP caused by two novel compound heterozygous mutations in the DDHD2 gene. Our findings expand the genetic spectrum of SPG54.
Collapse
Affiliation(s)
- Xin Xu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fen Lu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Senjie Du
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongying Li
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Tang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
7
|
Maemoto Y, Maruyama T, Nemoto K, Baba T, Motohashi M, Ito A, Tagaya M, Tani K. DDHD1, but Not DDHD2, Suppresses Neurite Outgrowth in SH-SY5Y and PC12 Cells by Regulating Protein Transport From Recycling Endosomes. Front Cell Dev Biol 2020; 8:670. [PMID: 32850804 PMCID: PMC7396612 DOI: 10.3389/fcell.2020.00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
DDHD1 and DDHD2 are both intracellular phospholipases A1 and hydrolyze phosphatidic acid in vitro. Given that phosphatidic acid participates in neurite outgrowth, we examined whether DDHD1 and DDHD2 regulate neurite outgrowth. Depletion of DDHD1 from SH-SY5Y and PC12 cells caused elongation of neurites, whereas DDHD2 depletion prevented neurite elongation. Rescue experiments demonstrated that the enzymatic activity of DDHD1 is necessary for the prevention of neurite elongation. Depletion of DDHD1 caused enlargement of early endosomes and stimulated tubulation of recycling endosomes positive for phosphatidic acid-binding proteins syndapin2 and MICAL-L1. Knockout of DDHD1 enhanced transferrin recycling from recycling endosomes to the cell surface. Our results suggest that DDHD1 negatively controls the formation of a local phosphatidic acid-rich domain in recycling endosomes that serves as a membrane source for neurite outgrowth.
Collapse
Affiliation(s)
- Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Tomohiro Maruyama
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kazuaki Nemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.,Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine and Faculty of Medicine, Akita University, Akita, Japan
| | - Manae Motohashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
8
|
Matoba N, Liang D, Sun H, Aygün N, McAfee JC, Davis JE, Raffield LM, Qian H, Piven J, Li Y, Kosuri S, Won H, Stein JL. Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Transl Psychiatry 2020; 10:265. [PMID: 32747698 PMCID: PMC7400671 DOI: 10.1038/s41398-020-00953-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative cohorts of individuals with ASD have led to the identification of a limited number of common genome-wide significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD risk given the high heritability. Here, we performed a genome-wide association study (GWAS) on 6222 case-pseudocontrol pairs from the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD. We identified one novel GWS locus from the SPARK GWAS and four significant loci, including an additional novel locus from meta-analysis with a previous GWAS. We replicated the previous observation of significant enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that disruption of gene regulation during neurodevelopment is critical for ASD risk. We further employed a massively parallel reporter assay (MPRA) and identified a putative causal variant at the novel locus from SPARK GWAS with strong impacts on gene regulation (rs7001340). Expression quantitative trait loci data demonstrated an association between the risk allele and decreased expression of DDHD2 (DDHD domain containing 2) in both adult and prenatal brains. In conclusion, by integrating genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huaigu Sun
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica E Davis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Quantitative and Computational Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huijun Qian
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Piven
- Department of Psychiatry and the Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sriam Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Quantitative and Computational Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Loss of DDHD2, whose mutation causes spastic paraplegia, promotes reactive oxygen species generation and apoptosis. Cell Death Dis 2018; 9:797. [PMID: 30038238 PMCID: PMC6056544 DOI: 10.1038/s41419-018-0815-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/08/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
Abstract
DDHD2/KIAA0725p is a mammalian intracellular phospholipase A1 that exhibits phospholipase and lipase activities. Mutation of the DDHD2 gene causes hereditary spastic paraplegia (SPG54), an inherited neurological disorder characterized by lower limb spasticity and weakness. Although previous studies demonstrated lipid droplet accumulation in the brains of SPG54 patients and DDHD2 knockout mice, the cause of SPG54 remains elusive. Here, we show that ablation of DDHD2 in mice induces age-dependent apoptosis of motor neurons in the spinal cord. In vitro, motor neurons and embryonic fibroblasts from DDHD2 knockout mice fail to survive and are susceptible to apoptotic stimuli. Chemical and probe-based analysis revealed a substantial decrease in cardiolipin content and an increase in reactive oxygen species generation in DDHD2 knockout cells. Reactive oxygen species production in DDHD2 knockout cells was reversed by the expression of wild-type DDHD2, but not by an active-site DDHD2 mutant, DDHD2 mutants related to hereditary spastic paraplegia, or DDHD1, another member of the intracellular phospholipase A1 family whose mutation also causes spastic paraplegia (SPG28). Our results demonstrate the protective role of DDHD2 for mitochondrial integrity and provide a clue to the pathogenic mechanism of SPG54.
Collapse
|
10
|
Heier C, Kien B, Huang F, Eichmann TO, Xie H, Zechner R, Chang PA. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain. J Biol Chem 2017; 292:19087-19098. [PMID: 28887301 PMCID: PMC5704489 DOI: 10.1074/jbc.m117.792978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/31/2017] [Indexed: 01/04/2023] Open
Abstract
Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Benedikt Kien
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Feifei Huang
- Key Laboratory of Molecular Biology, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Hao Xie
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria, and
| | - Ping-An Chang
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria,
- Key Laboratory of Molecular Biology, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
11
|
Elsaid MF, Ibrahim K, Chalhoub N, Elsotouhy A, El Mudehki N, Abdel Aleem A. NT5C2 novel splicing variant expands the phenotypic spectrum of Spastic Paraplegia (SPG45): case report of a new member of thin corpus callosum SPG-Subgroup. BMC MEDICAL GENETICS 2017; 18:33. [PMID: 28327087 PMCID: PMC5359868 DOI: 10.1186/s12881-017-0395-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/07/2017] [Indexed: 01/06/2023]
Abstract
Background Hereditary Spastic Paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative diseases. Thin Corpus Callosum (TCC) associated HSP is a distinguished subgroup of complex forms. Purines and pyrimidine, the basic DNA and RNA components, are regulating the cell metabolism, having roles in signal transduction, energy preservation and cellular repair. Genetic defects in nucleotide metabolism related genes have been only recently implicated in brain and neurodegenerative diseases’ pathogenesis. Case presentation We present a consanguineous Qatari family with two brothers, 9 and 3 years, who displayed a characteristic phenotype of early onset and markedly-severe spasticity with tiptoe walking, delayed dysarthric speech, persistent truncal hypotonia, and multiple variable-sized areas of brownish skin discoloration appearing at different places on the body. A clinical diagnosis suggestive of complex hereditary spastic paraplegia (HSP) was set after the family had the second affected child. Whole genome sequencing identified a novel homozygous NT5C2 splice site mutation (NM_012229.4/NM_001134373.2: c.1159 + 1G > T) that recessively segregated in family members. Brain MRI revealed dysgenic and thin corpus callosum (TCC) with peri-trigonal white matter cystic changes in both affected boys, whereas a well-developed corpus callosum with normal white matter was shown in their apparently normal brother, who found to be a carrier for the mutant variant. This mutation led to skipping of exon 14 with removal of 58 amino acid residues at the C-terminal half. The aberrantly spliced NT5C2 showed substantial reduction in expression level in the in-vitro study, indicating marked instability of the mutant NT5C2 protein. Conclusion The present report expands the phenotypic spectrum of SPG45 and confirms NT5C2-SPG45 as a member of the rare TCC SPG-subtypes. Homozygous alteration in NT5C2 seems essential to produce central white matter developmental defects. The study highlights the importance of cytosolic II 5’-nucleotidase (NT5C2) in maintaining the normal balance of purines’ pool in the brain, which seems to play a pivotal role in the normal development of central white matter structures. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0395-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahmoud F Elsaid
- Pediatric Neurology Department, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Ibrahim
- Pediatric Neurology Department, Hamad Medical Corporation, Doha, Qatar
| | - Nader Chalhoub
- Neurogenetics Research program, Neurology Department, Weill Cornell Medical College, Qatar Foundation- Education City, 24144, Doha, Qatar.,Neurology Department, Weill Cornell Medical College, New York, USA
| | - Ahmed Elsotouhy
- Radiology Department, Hamad Medical Corporation, Doha, Qatar
| | - Noora El Mudehki
- Physiotherapy Department, Hamad Medical Corporation, Doha, Qatar
| | - Alice Abdel Aleem
- Neurogenetics Research program, Neurology Department, Weill Cornell Medical College, Qatar Foundation- Education City, 24144, Doha, Qatar. .,Neurology Department, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
12
|
Araki M, Ohshima N, Aso C, Konishi A, Obinata H, Tatei K, Izumi T. Enzymatic characterization of recombinant rat DDHD2: a soluble diacylglycerol lipase. J Biochem 2016; 160:269-279. [PMID: 27198176 DOI: 10.1093/jb/mvw034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
DDHD2 has been reported to exhibit phospholipase A1, triacylglycerol (TG) lipase and diacylglycerol (DG) lipase activities. However, the detailed enzymatic properties of DDHD2 have not yet been elucidated. In the current study, the substrate specificity of DDHD2 towards DG, TG and phosphatidic acid (PA) has been examined using highly purified recombinant rat DDHD2 (rDDHD2) with a liquid chromatography mass spectrometer. The k cat/Km value for DG (18:0/20:4) was much higher than those for TG (18:1/18:1/18:1), and PA (18:0/20:4) in the presence of sodium deoxycholate. The enzyme activity of rDDHD2 towards DG (18:0/20:4) was highest among all of the substrates tested. In addition, rDDHD2 was highly specific to DG substrates with a polyunsaturated fatty acid at their sn-2 position. The levels of 2-arachidonoylglycerol (2-AG) in CHO cells were quantified by gas chromatography-tandem mass spectrometry, showing that CHO cells expressing recombinant rDDHD2 contained higher levels of 2-AG when cells were treated with a monoacylglycerol lipase inhibitor, URB602. These results therefore support the idea that DDHD2 functions as a DG lipase in vivo and produces 2-AG.
Collapse
Affiliation(s)
- Mari Araki
- Department of Biochemistry.,Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | - Chizu Aso
- National Hospital Organization Takasaki General Medical Center, Takasaki, Gunma 370-0829, Japan
| | | | | | | | | |
Collapse
|
13
|
Aso C, Araki M, Ohshima N, Tatei K, Hirano T, Obinata H, Kishi M, Kishimoto K, Konishi A, Goto F, Sugimoto H, Izumi T. Protein purification and cloning of diacylglycerol lipase from rat brain. J Biochem 2016; 159:585-97. [PMID: 26790472 DOI: 10.1093/jb/mvw002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/08/2015] [Indexed: 11/14/2022] Open
Abstract
Diacylglycerol (DG) lipase, which hydrolyses 1-stearoyl-2-arachidonyl-sn-glycerol to produce an endocannabinoid, 2-arachidonoylglycerol, was purified from the soluble fraction of rat brain lysates. DG lipase was purified about 1,200-fold by a sequential column chromatographic procedure. Among proteins identified by mass spectrometry analysis in the partially purified DG lipase sample, only DDHD domain containing two (DDHD2), which was formerly regarded as a phospholipase A1, exhibited significant DG lipase activity. Rat DDHD2 expressed in Chinese hamster ovary cells showed similar enzymatic properties to partially purified DG lipase from rat brain. The source of DG lipase activity in rat brain was immunoprecipitated using anti-DDHD2 antibody. Thus, we concluded that the DG lipase activity in the soluble fraction of rat brain is derived from DDHD2. DDHD2 is distributed widely in the rat brain. Immunohistochemical analysis revealed that DDHD2 is expressed in hippocampal neurons, but not in glia.
Collapse
Affiliation(s)
- Chizu Aso
- Department of Biochemistry; Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511; and
| | | | | | | | | | | | | | | | | | - Fumio Goto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511; and
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | |
Collapse
|
14
|
Alrayes N, Mohamoud HSA, Jelani M, Ahmad S, Vadgama N, Bakur K, Simpson M, Al-Aama JY, Nasir J. Truncating mutation in intracellular phospholipase A₁ gene (DDHD2) in hereditary spastic paraplegia with intellectual disability (SPG54). BMC Res Notes 2015; 8:271. [PMID: 26113134 PMCID: PMC4482296 DOI: 10.1186/s13104-015-1227-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/11/2015] [Indexed: 11/23/2022] Open
Abstract
Background Hereditary spastic paraplegias (HSP), a group of genetically heterogeneous neurological disorders with more than 56 documented loci (SPG1-56), are described either as uncomplicated (or pure), or complicated where in addition to spasticity and weakness of lower extremeties, additional neurological symptoms are present, including dementia, loss of vision, epilepsy, mental retardation and ichthyosis. We identified a large consanguineous family of Indian descent with four affected members with childhood onset HSP (SPG54), presenting with upper and lower limb spasticity, mental retardation and agenesis of the corpus callosum. Results A common region of homozygosity on chromosome 8 spanning seven megabases (Mb) was identified in the affected individuals using the Illumina human cytoSNP-12 DNA Analysis BeadChip Kit. Exome sequencing identified a homozygous stop gain mutation (pR287X) in the phospholipase A1 gene DDHD2, in the affected individuals, resulting in a premature stop codon and a severely truncated protein lacking the SAM and DDHD domains crucial for phosphoinositide binding and phospholipase activity. Conclusion This mutation adds to the knowledge of HSP, suggests a possible founder effect for the pR287X mutation, and adds to the list of genes involved in lipid metabolism with a role in HSP and other neurodegenerative disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1227-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nuha Alrayes
- Princess Al-Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, 80205, Kingdom of Saudi Arabia. .,Division of Biomedical Sciences (BMS), Human Genetics Research Center, St. George's University of London (SGUL), London, SW17 0RE, UK.
| | - Hussein Sheikh Ali Mohamoud
- Princess Al-Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, 80205, Kingdom of Saudi Arabia. .,Division of Biomedical Sciences (BMS), Human Genetics Research Center, St. George's University of London (SGUL), London, SW17 0RE, UK.
| | - Musharraf Jelani
- Princess Al-Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, 80205, Kingdom of Saudi Arabia. .,Medical Genetics and Molecular Biology Unit, Biochemistry Department, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25000, Pakistan.
| | - Saleem Ahmad
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Nirmal Vadgama
- Division of Biomedical Sciences (BMS), Human Genetics Research Center, St. George's University of London (SGUL), London, SW17 0RE, UK.
| | - Khadijah Bakur
- Princess Al-Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, 80205, Kingdom of Saudi Arabia.
| | - Michael Simpson
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, 80205, Kingdom of Saudi Arabia. .,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Jamal Nasir
- Division of Biomedical Sciences (BMS), Human Genetics Research Center, St. George's University of London (SGUL), London, SW17 0RE, UK.
| |
Collapse
|
15
|
Lu YW, Claypool SM. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Front Genet 2015; 6:3. [PMID: 25691889 PMCID: PMC4315098 DOI: 10.3389/fgene.2015.00003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/06/2015] [Indexed: 01/14/2023] Open
Abstract
The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron–sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
16
|
Wortmann SB, Espeel M, Almeida L, Reimer A, Bosboom D, Roels F, de Brouwer APM, Wevers RA. Inborn errors of metabolism in the biosynthesis and remodelling of phospholipids. J Inherit Metab Dis 2015; 38:99-110. [PMID: 25178427 DOI: 10.1007/s10545-014-9759-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022]
Abstract
Since the proposal to define a separate subgroup of inborn errors of metabolism involved in the biosynthesis and remodelling of phospholipids, sphingolipids and long chain fatty acids in 2013, this group is rapidly expanding. This review focuses on the disorders involved in the biosynthesis of phospholipids. Phospholipids are involved in uncountable cellular processes, e.g. as structural components of membranes, by taking part in vesicle and mitochondrial fusion and fission or signal transduction. Here we provide an overview on both pathophysiology and the extremely heterogeneous clinical presentations of the disorders reported so far (Sengers syndrome (due to mutations in AGK), MEGDEL syndrome (or SERAC defect, SERAC1), Barth syndrome (or TAZ defect, TAZ), congenital muscular dystrophy due to CHKB deficiency (CHKB). Boucher-Neuhäuser/Gordon Holmes syndrome (PNPLA6), PHARC syndrome (ABHD12), hereditary spastic paraplegia type 28, 54 and 56 (HSP28, DDHD1; HSP54, DDHD2; HSP56, CYP2U1), Lenz Majewski syndrome (PTDSS1), spondylometaphyseal dysplasia with cone-rod dystrophy (PCYT1A), atypical haemolytic-uremic syndrome due to DGKE deficiency (DGKE).
Collapse
Affiliation(s)
- Saskia B Wortmann
- Nijmegen Centre for Mitochondrial Disorders (NCMD) at the Amalia Children's Hospital, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kunduri G, Yuan C, Parthibane V, Nyswaner KM, Kanwar R, Nagashima K, Britt SG, Mehta N, Kotu V, Porterfield M, Tiemeyer M, Dolph PJ, Acharya U, Acharya JK. Phosphatidic acid phospholipase A1 mediates ER-Golgi transit of a family of G protein-coupled receptors. ACTA ACUST UNITED AC 2014; 206:79-95. [PMID: 25002678 PMCID: PMC4085702 DOI: 10.1083/jcb.201405020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytosolic phosphatidic acid phospholipase A1 interacts with COPII protein family members and is required for the anterograde trafficking of GPCRs. The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.
Collapse
Affiliation(s)
- Govind Kunduri
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702
| | - Changqing Yuan
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702
| | - Velayoudame Parthibane
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702
| | - Katherine M Nyswaner
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702
| | - Ritu Kanwar
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Steven G Britt
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Nickita Mehta
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Varshika Kotu
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Mindy Porterfield
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Patrick J Dolph
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Usha Acharya
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jairaj K Acharya
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
18
|
Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014; 261:518-39. [PMID: 24954637 DOI: 10.1016/j.expneurol.2014.06.011] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurological disorders characterized by pathophysiologic hallmark of length-dependent distal axonal degeneration of the corticospinal tracts. The prominent features of this pathological condition are progressive spasticity and weakness of the lower limbs. To date, 72 spastic gait disease-loci and 55 spastic paraplegia genes (SPGs) have been identified. All modes of inheritance (autosomal dominant, autosomal recessive, and X-linked) have been described. Recently, a late onset spastic gait disorder with maternal trait of inheritance has been reported, as well as mutations in genes not yet classified as spastic gait disease. Several cellular processes are involved in its pathogenesis, such as membrane and axonal transport, endoplasmic reticulum membrane modeling and shaping, mitochondrial function, DNA repair, autophagy, and abnormalities in lipid metabolism and myelination processes. Moreover, recent evidences have been found about the impairment of endosome membrane trafficking in vesicle formation and about the involvement of oxidative stress and mtDNA polymorphisms in the onset of the disease. Interactome networks have been postulated by bioinformatics and biological analyses of spastic paraplegia genes, which would contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Temistocle Lo Giudice
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Lombardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Filippo Maria Santorelli
- Unità Operativa Complessa di Medicina Molecolare, Neurogenetica e Malattie Neurodegenerative, IRCCS Stella Maris, Pisa, Italy
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
19
|
Klinkenberg D, Long KR, Shome K, Watkins SC, Aridor M. A cascade of ER exit site assembly that is regulated by p125A and lipid signals. J Cell Sci 2014; 127:1765-78. [PMID: 24522181 DOI: 10.1242/jcs.138784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The inner and outer layers of COPII mediate cargo sorting and vesicle biogenesis. Sec16A and p125A (officially known as SEC23IP) proteins interact with both layers to control coat activity, yet the steps directing functional assembly at ER exit sites (ERES) remain undefined. By using temperature blocks, we find that Sec16A is spatially segregated from p125A-COPII-coated ERES prior to ER exit at a step that required p125A. p125A used lipid signals to control ERES assembly. Within p125A, we defined a C-terminal DDHD domain found in phospholipases and PI transfer proteins that recognized PA and phosphatidylinositol phosphates in vitro and was targeted to PI4P-rich membranes in cells. A conserved central SAM domain promoted self-assembly and selective lipid recognition by the DDHD domain. A basic cluster and a hydrophobic interface in the DDHD and SAM domains, respectively, were required for p125A-mediated functional ERES assembly. Lipid recognition by the SAM-DDHD module was used to stabilize membrane association and regulate the spatial segregation of COPII from Sec16A, nucleating the coat at ERES for ER exit.
Collapse
Affiliation(s)
- David Klinkenberg
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
20
|
Schuurs-Hoeijmakers JHM, Vulto-van Silfhout AT, Vissers LELM, van de Vondervoort IIGM, van Bon BWM, de Ligt J, Gilissen C, Hehir-Kwa JY, Neveling K, del Rosario M, Hira G, Reitano S, Vitello A, Failla P, Greco D, Fichera M, Galesi O, Kleefstra T, Greally MT, Ockeloen CW, Willemsen MH, Bongers EMHF, Janssen IM, Pfundt R, Veltman JA, Romano C, Willemsen MA, van Bokhoven H, Brunner HG, de Vries BBA, de Brouwer APM. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J Med Genet 2013; 50:802-11. [PMID: 24123876 DOI: 10.1136/jmedgenet-2013-101644] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. OBJECTIVES We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. METHODS AND RESULTS Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. CONCLUSIONS We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.
Collapse
|
21
|
Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 2013; 126:307-28. [PMID: 23897027 DOI: 10.1007/s00401-013-1115-8] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), "mutilating sensory neuropathy with spastic paraplegia" owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.
Collapse
|
22
|
Gonzalez M, Nampoothiri S, Kornblum C, Oteyza AC, Walter J, Konidari I, Hulme W, Speziani F, Schöls L, Züchner S, Schüle R. Mutations in phospholipase DDHD2 cause autosomal recessive hereditary spastic paraplegia (SPG54). Eur J Hum Genet 2013; 21:1214-8. [PMID: 23486545 DOI: 10.1038/ejhg.2013.29] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 11/09/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a genetically heterogeneous group of disorders characterized by a distal axonopathy of the corticospinal tract motor neurons leading to progressive lower limb spasticity and weakness. Intracellular membrane trafficking, mitochondrial dysfunction and myelin formation are key functions involved in HSP pathogenesis. Only recently defects in metabolism of complex lipids have been implicated in a number of HSP subtypes. Mutations in the 23 known autosomal recessive HSP genes explain less than half of autosomal recessive HSP cases. To identify novel autosomal recessive HSP disease genes, exome sequencing was performed in 79 index cases with autosomal recessive forms of HSP. Resulting variants were filtered and intersected between families to allow identification of new disease genes. We identified two deleterious mutations in the phospholipase DDHD2 gene in two families with complicated HSP. The phenotype is characterized by early onset of spastic paraplegia, mental retardation, short stature and dysgenesis of the corpus callosum. Phospholipase DDHD2 is involved in intracellular membrane trafficking at the golgi/ endoplasmic reticulum interface and has been shown to possess phospholipase A1 activity in vitro. Discovery of DDHD2 mutations in HSP might therefore provide a link between two key pathogenic themes in HSP: membrane trafficking and lipid metabolism.
Collapse
Affiliation(s)
- Michael Gonzalez
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baba T, Yamamoto A, Tagaya M, Tani K. A lysophospholipid acyltransferase antagonist, CI-976, creates novel membrane tubules marked by intracellular phospholipase A1 KIAA0725p. Mol Cell Biochem 2013; 376:151-61. [PMID: 23378048 DOI: 10.1007/s11010-013-1563-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/18/2013] [Indexed: 01/30/2023]
Abstract
CI-976 is a lysophospholipid acyltransferase antagonist that is known to affect secretory and endocytic membrane-trafficking pathways likely by increasing the lysophospholipid content in membranes. Our previous study suggested that lysophospholipids formed through the action of an intracellular phospholipase A(1), KIAA0725p (also known as DDHD2 and iPLA(1)γ), may be important for the association of this enzyme with membranes. In this study, we examined the effect of CI-976 on the membrane association of KIAA0725p. While in HeLa cells KIAA0725p is localized in the Golgi and cytosol, in mouse embryonic fibroblasts (MEFs), it was found to be principally localized in the cytosol with some on post-endoplasmic reticulum compartments including the cis-Golgi. Treatment of MEFs with CI-976 induced the redistribution of KIAA0725p to membrane tubules, which were in vicinity to fragmented mitochondria. These tubules were not decorated with canonical organelle markers including Golgi proteins. A human KIAA0725p mutant, which exhibits decreased membrane-binding ability, was also redistributed to membrane structures upon CI-976 treatment. Our data suggest that the association of KIAA0725p with membranes is regulated by lipid metabolism, and that CI-976 may create unique membrane structures that can be marked by KIAA0725p.
Collapse
Affiliation(s)
- Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Bechler ME, Brown WJ. PAFAH Ib phospholipase A2 subunits have distinct roles in maintaining Golgi structure and function. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:595-601. [PMID: 23262398 DOI: 10.1016/j.bbalip.2012.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/27/2022]
Abstract
Recent studies showed that the phospholipase subunits of Platelet Activating Factor Acetylhydrolase (PAFAH) Ib, α1 and α2 partially localize to the Golgi complex and regulate its structure and function. Using siRNA knockdown of individual subunits, we find that α1 and α2 perform overlapping and unique roles in regulating Golgi morphology, assembly, and secretory cargo trafficking. Knockdown of either α1 or α2 reduced secretion of soluble proteins, but neither single knockdown reduced secretion to the same degree as knockdown of both. Knockdown of α1 or α2 inhibited reassembly of an intact Golgi complex to the same extent as knockdown of both. Transport of VSV-G was slowed but at different steps in the secretory pathway: reduction of α1 slowed trans Golgi network to plasma membrane transport, whereas α2 loss reduced endoplasmic reticulum to Golgi trafficking. Similarly, knockdown of either subunit alone disrupted the Golgi complex but with markedly different morphologies. Finally, knockdown of α1, or double knockdown of α1 and α2, resulted in a significant redistribution of kinase dead protein kinase D from the Golgi to the plasma membrane, whereas loss of α2 alone had no such effect. These studies reveal an unexpected complexity in the regulation of Golgi structure and function by PAFAH Ib. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
25
|
Schuurs-Hoeijmakers J, Geraghty M, Kamsteeg EJ, Ben-Salem S, de Bot S, Nijhof B, van de Vondervoort I, van der Graaf M, Nobau A, Otte-Höller I, Vermeer S, Smith A, Humphreys P, Schwartzentruber J, Ali B, Al-Yahyaee S, Tariq S, Pramathan T, Bayoumi R, Kremer H, van de Warrenburg B, van den Akker W, Gilissen C, Veltman J, Janssen I, Vulto-van Silfhout A, van der Velde-Visser S, Lefeber D, Diekstra A, Erasmus C, Willemsen M, Vissers L, Lammens M, van Bokhoven H, Brunner H, Wevers R, Schenck A, Al-Gazali L, de Vries B, de Brouwer A. Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet 2012; 91:1073-1081. [PMID: 23176823 PMCID: PMC3516595 DOI: 10.1016/j.ajhg.2012.10.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/17/2012] [Accepted: 10/22/2012] [Indexed: 02/05/2023] Open
Abstract
We report on four families affected by a clinical presentation of complex hereditary spastic paraplegia (HSP) due to recessive mutations in DDHD2, encoding one of the three mammalian intracellular phospholipases A(1) (iPLA(1)). The core phenotype of this HSP syndrome consists of very early-onset (<2 years) spastic paraplegia, intellectual disability, and a specific pattern of brain abnormalities on cerebral imaging. An essential role for DDHD2 in the human CNS, and perhaps more specifically in synaptic functioning, is supported by a reduced number of active zones at synaptic terminals in Ddhd-knockdown Drosophila models. All identified mutations affect the protein's DDHD domain, which is vital for its phospholipase activity. In line with the function of DDHD2 in lipid metabolism and its role in the CNS, an abnormal lipid peak indicating accumulation of lipids was detected with cerebral magnetic resonance spectroscopy, which provides an applicable diagnostic biomarker that can distinguish the DDHD2 phenotype from other complex HSP phenotypes. We show that mutations in DDHD2 cause a specific complex HSP subtype (SPG54), thereby linking a member of the PLA(1) family to human neurologic disease.
Collapse
Affiliation(s)
- Janneke H.M. Schuurs-Hoeijmakers
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Michael T. Geraghty
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Erik-Jan Kamsteeg
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
| | - Salma Ben-Salem
- Departments of Pathology and Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO box 17666, Al-Ain, United Arab Emirates
| | - Susanne T. de Bot
- Department of Neurology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| | - Bonnie Nijhof
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| | - Ilse I.G.M. van de Vondervoort
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Departments of Pediatrics and Radiology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Anna Castells Nobau
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| | - Irene Otte-Höller
- Department of Pathology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Sascha Vermeer
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
| | - Amanda C. Smith
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa ON K1H 8L1, Canada
| | - Peter Humphreys
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | | | | | - Bassam R. Ali
- Departments of Pathology and Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO box 17666, Al-Ain, United Arab Emirates
| | - Saeed A. Al-Yahyaee
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, PO box 35, Al Khod, Muscat 123, Oman
| | - Said Tariq
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO box 17666, Al-Ain, United Arab Emirates
| | - Thachillath Pramathan
- Departments of Pathology and Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO box 17666, Al-Ain, United Arab Emirates
| | - Riad Bayoumi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, PO box 35 Al Khod, Muscat 123, Oman
| | - Hubertus P.H. Kremer
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Bart P. van de Warrenburg
- Department of Neurology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| | - Willem M.R. van den Akker
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Joris A. Veltman
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Irene M. Janssen
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
| | - Anneke T. Vulto-van Silfhout
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| | - Saskia van der Velde-Visser
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk J. Lefeber
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Department of Neurology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Adinda Diekstra
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
| | - Corrie E. Erasmus
- Department of Pediatric Neurology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Michèl A. Willemsen
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
- Department of Pediatric Neurology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Martin Lammens
- Department of Pathology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| | - Han G. Brunner
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Ron A. Wevers
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Laboratory of Genetic, Endocrine, and Metabolic Diseases, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| | - Lihadh Al-Gazali
- Departments of Pathology and Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO box 17666, Al-Ain, United Arab Emirates
| | - Bert B.A. de Vries
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| | - Arjan P.M. de Brouwer
- Department of Human Genetics 855, Radboud University Nijmegen Medical Centre, PO box 9101, 6500 HB Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
26
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
27
|
Inoue H, Baba T, Sato S, Ohtsuki R, Takemori A, Watanabe T, Tagaya M, Tani K. Roles of SAM and DDHD domains in mammalian intracellular phospholipase A1 KIAA0725p. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:930-9. [DOI: 10.1016/j.bbamcr.2012.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
|
28
|
Bechler ME, de Figueiredo P, Brown WJ. A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 2011; 22:116-24. [PMID: 22130221 DOI: 10.1016/j.tcb.2011.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/14/2022]
Abstract
The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi intermediate compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-β (GVIA-2 iPLA(2)) and iPLA(1)γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α and iPLA(2)-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. We review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
29
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
30
|
Arimitsu N, Kogure T, Baba T, Nakao K, Hamamoto H, Sekimizu K, Yamamoto A, Nakanishi H, Taguchi R, Tagaya M, Tani K. p125/Sec23-interacting protein (Sec23ip) is required for spermiogenesis. FEBS Lett 2011; 585:2171-6. [PMID: 21640725 DOI: 10.1016/j.febslet.2011.05.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 11/28/2022]
Abstract
p125/Sec23ip is a phospholipase A(1)-like protein that interacts with Sec23, a coat component of COPII vesicles that bud from endoplasmic reticulum exit sites. To understand its physiological function, we produced p125 knockout mice. The p125 knockout mice grew normally, but males were subfertile. Sperm from p125-deficient mice had round heads and lacked the acrosome, an organelle containing the enzymes responsible for fertilization. p125 was found to be expressed at stages I-XII of spermatogenesis, similar to the expression pattern of proteins involved in acrosome biogenesis. These results suggest that p125 plays an important role in spermiogenesis.
Collapse
Affiliation(s)
- Nagisa Arimitsu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|