1
|
Zhang X, Jie Y. Importance of Circadian Rhythms in the Ocular Surface. Biomolecules 2024; 14:796. [PMID: 39062510 PMCID: PMC11274730 DOI: 10.3390/biom14070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature throughout the organism. Accumulating evidence suggests that the dysfunction of circadian rhythms due to genetic mutations or environmental factors contributes to the genesis and progress of multiple diseases. The physiological homeostasis of the ocular surface, like any other tissue or organ, is also orchestrated by circadian rhythms. In this review, we summarize the molecular clocks and the expression of clock-controlled genes in the mammalian ocular surface. Based on the circadian expression of these genes, we conclude the diurnal oscillations of cellular biological activities in the mammalian ocular surface. Moreover, we evaluate the factors entraining circadian oscillators in the ocular surface. Finally, we further discuss the latest development of the close correlation between circadian rhythms and ocular health. Briefly, this review aimed to synthesize the previous studies to aid in understanding the importance of circadian rhythms in the ocular surface and the possible opportunities for circadian rhythm-based interventional strategies to restore the homeostasis of the ocular surface.
Collapse
Affiliation(s)
| | - Ying Jie
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing 100730, China;
| |
Collapse
|
2
|
Nagasaka Y, Nakamura Y, Tran NQV, Kobayashi Y, Nakano N, Nakao A. Deficiency of BMAL1 promotes ROS generation and enhances IgE-dependent degranulation in mast cells. Biochem Biophys Res Commun 2024; 690:149295. [PMID: 38000295 DOI: 10.1016/j.bbrc.2023.149295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Bmal1 (Brain and muscle arnt-like, or Arntl) is a bHLH/PAS domain transcription factor central to the transcription/translation feedback loop of the circadian clock. Mast cells are crucial for effector functions in allergic reaction and their activity follows a circadian rhythm. However, the functional roles of Bmal1 in mast cells remain to be determined. PURPOSE This study aimed to elucidate the specific roles of Bmal1 in IgE-dependent mast cell degranulation. RESULTS IgE-dependent degranulation was enhanced in bone marrow-derived mast cells (BMMCs) derived from Bmal1-deficient mice (Bmal1-KO mice) compared to that in BMMCs derived from wild-type mice (WT mice) in the absence of 2-Mercaptoethanol (2-ME) in culture. Mast cell-deficient KitW-sh mice reconstituted with Bmal1-KO BMMCs showed more robust passive cutaneous anaphylactic (PCA) reactions, an in vivo model of IgE-dependent mast cell degranulation, than KitW-sh mice reconstituted with WT BMMCs. In the absence of 2-ME in culture, the mRNA expression of the anti-oxidative genes NF-E2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2), and heme oxygenase-1 (HO-1) was lower and reactive oxygen species (ROS) generation was higher in Bmal1-KO BMMCs than in WT BMMCs at steady state. The IgE-dependent ROS generation and degranulation were enhanced in Bmal1-KO BMMCs compared to WT BMMCs in the absence of 2-ME in culture. The addition of 2-ME into the culture abrogated or weakened the differences in anti-oxidative gene expression, ROS generation, and IgE-dependent degranulation between WT and Bmal1-KO BMMCs. CONCLUSION The current findings suggest that Bmal1 controls the expression of anti-oxidative genes in mast cells and Bmal1 deficiency enhanced IgE-dependent degranulation associated with promotion of ROS generation. Thus, Bmal1 may function as a key molecule that integrates redox homeostasis and effector functions in mast cells.
Collapse
Affiliation(s)
- Yuka Nagasaka
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yuki Nakamura
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nguyen Quoc Vuong Tran
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshiaki Kobayashi
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nobuhiro Nakano
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan; Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan; Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
3
|
Robertson CD, Davis P, Richardson RR, Iffland PH, Vieira DCO, Steyert M, McKeon PN, Romanowski AJ, Crutcher G, Jašarević E, Wolff SBE, Mathur BN, Crino PB, Bale TL, Dick IE, Poulopoulos A. Rapid modeling of an ultra-rare epilepsy variant in wild-type mice by in utero prime editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570164. [PMID: 38106154 PMCID: PMC10723435 DOI: 10.1101/2023.12.06.570164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Generating animal models for individual patients within clinically-useful timeframes holds great potential toward enabling personalized medicine approaches for genetic epilepsies. The ability to rapidly incorporate patient-specific genomic variants into model animals recapitulating elements of the patient's clinical manifestations would enable applications ranging from validation and characterization of pathogenic variants to personalized models for tailoring pharmacotherapy to individual patients. Here, we demonstrate generation of an animal model of an individual epilepsy patient with an ultra-rare variant of the NMDA receptor subunit GRIN2A, without the need for germline transmission and breeding. Using in utero prime editing in the brain of wild-type mice, our approach yielded high in vivo editing precision and induced frequent, spontaneous seizures which mirrored specific elements of the patient's clinical presentation. Leveraging the speed and versatility of this approach, we introduce PegAssist, a generalizable workflow to generate bedside-to-bench animal models of individual patients within weeks. The capability to produce individualized animal models rapidly and cost-effectively will reduce barriers to access for precision medicine, and will accelerate drug development by offering versatile in vivo platforms to identify compounds with efficacy against rare neurological conditions.
Collapse
Affiliation(s)
- Colin D Robertson
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan R Richardson
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip H Iffland
- Department of Neurology, and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daiana C O Vieira
- Department of Physiology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn Steyert
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paige N McKeon
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea J Romanowski
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Garrett Crutcher
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eldin Jašarević
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Current affiliations: MS: Department of Neurological Surgery, University of California San Francisco; EJ: Department Computational and Systems Biology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine; TB: Department of Psychiatry, University of Colorado School of Medicine
| | - Steffen B E Wolff
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian N Mathur
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter B Crino
- Department of Neurology, and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Current affiliations: MS: Department of Neurological Surgery, University of California San Francisco; EJ: Department Computational and Systems Biology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine; TB: Department of Psychiatry, University of Colorado School of Medicine
| | - Ivy E Dick
- Department of Physiology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandros Poulopoulos
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Kim YK, Choe HK. Core clock gene, Bmal1, is required for optimal second-level interval production. Anim Cells Syst (Seoul) 2023; 27:425-435. [PMID: 38125761 PMCID: PMC10732218 DOI: 10.1080/19768354.2023.2290827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Perception and production of second-level temporal intervals are critical in several behavioral and cognitive processes, including adaptive anticipation, motor control, and social communication. These processes are impaired in several neurological and psychological disorders, such as Parkinson's disease and attention-deficit hyperactivity disorder. Although evidence indicates that second-level interval timing exhibit circadian patterns, it remains unclear whether the core clock machinery controls the circadian pattern of interval timing. To investigate the role of core clock molecules in interval timing capacity, we devised a behavioral assay called the interval timing task to examine prospective motor interval timing ability. In this task, the mouse produces two separate nose pokes in a pretrained second-level interval to obtain a sucrose solution as a reward. We discovered that interval perception in wild-type mice displayed a circadian pattern, with the best performance observed during the late active phase. To investigate whether the core molecular clock is involved in the circadian control of interval timing, we employed Bmal1 knockout mice (BKO) in the interval timing task. The interval production of BKO did not display any difference between early and late active phase, without reaching the optimal interval production level observed in wild-type. In summary, we report that the core clock gene Bmal1 is required for the optimal performance of prospective motor timing typically observed during the late part of the active period.
Collapse
Affiliation(s)
- Yoon Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Republic of Korea
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
5
|
Kahnau P, Mieske P, Wilzopolski J, Kalliokoski O, Mandillo S, Hölter SM, Voikar V, Amfim A, Badurek S, Bartelik A, Caruso A, Čater M, Ey E, Golini E, Jaap A, Hrncic D, Kiryk A, Lang B, Loncarevic-Vasiljkovic N, Meziane H, Radzevičienė A, Rivalan M, Scattoni ML, Torquet N, Trifkovic J, Ulfhake B, Thöne-Reineke C, Diederich K, Lewejohann L, Hohlbaum K. A systematic review of the development and application of home cage monitoring in laboratory mice and rats. BMC Biol 2023; 21:256. [PMID: 37953247 PMCID: PMC10642068 DOI: 10.1186/s12915-023-01751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Traditionally, in biomedical animal research, laboratory rodents are individually examined in test apparatuses outside of their home cages at selected time points. However, the outcome of such tests can be influenced by various factors and valuable information may be missed when the animals are only monitored for short periods. These issues can be overcome by longitudinally monitoring mice and rats in their home cages. To shed light on the development of home cage monitoring (HCM) and the current state-of-the-art, a systematic review was carried out on 521 publications retrieved through PubMed and Web of Science. RESULTS Both the absolute (~ × 26) and relative (~ × 7) number of HCM-related publications increased from 1974 to 2020. There was a clear bias towards males and individually housed animals, but during the past decade (2011-2020), an increasing number of studies used both sexes and group housing. In most studies, animals were kept for short (up to 4 weeks) time periods in the HCM systems; intermediate time periods (4-12 weeks) increased in frequency in the years between 2011 and 2020. Before the 2000s, HCM techniques were predominantly applied for less than 12 h, while 24-h measurements have been more frequent since the 2000s. The systematic review demonstrated that manual monitoring is decreasing in relation to automatic techniques but still relevant. Until (and including) the 1990s, most techniques were applied manually but have been progressively replaced by automation since the 2000s. Independent of the year of publication, the main behavioral parameters measured were locomotor activity, feeding, and social behaviors; the main physiological parameters were heart rate and electrocardiography. External appearance-related parameters were rarely examined in the home cages. Due to technological progress and application of artificial intelligence, more refined and detailed behavioral parameters have been investigated in the home cage more recently. CONCLUSIONS Over the period covered in this study, techniques for HCM of mice and rats have improved considerably. This development is ongoing and further progress as well as validation of HCM systems will extend the applications to allow for continuous, longitudinal, non-invasive monitoring of an increasing range of parameters in group-housed small rodents in their home cages.
Collapse
Affiliation(s)
- Pia Kahnau
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Paul Mieske
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Jenny Wilzopolski
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Otto Kalliokoski
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology, National Research Council CNR, Rome, Italy
| | - Sabine M Hölter
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany
| | - Vootele Voikar
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Adriana Amfim
- Faculty of Veterinary Medicine, Spiru Haret University, Bucharest, Romania
| | - Sylvia Badurek
- Preclinical Phenotyping Facility, Vienna Biocenter Core Facilities (VBCF), member of the Vienna Biocenter (VBC), Vienna, Austria
| | - Aleksandra Bartelik
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Angela Caruso
- Istituto Superiore Di Sanità, Research Coordination and Support Service, Rome, Italy
| | - Maša Čater
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Elodie Ey
- Université de Strasbourg, CNRS, Inserm, Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104- UMR-S 1258, Illkirch, 67400, France
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology, National Research Council CNR, Rome, Italy
| | - Anne Jaap
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Dragan Hrncic
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Anna Kiryk
- Laboratory of Preclinical Testing of Higher Standard, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Benjamin Lang
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de La Souris (ICS), CELPHEDIA, PHENOMIN, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Aurelija Radzevičienė
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Marion Rivalan
- Research Institute for Experimental Medicine (FEM) and NeuroCure Cluster of Excellence, Animal Behaviour Phenotyping Facility, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Luisa Scattoni
- Istituto Superiore Di Sanità, Research Coordination and Support Service, Rome, Italy
| | - Nicolas Torquet
- Université de Strasbourg, CNRS, Inserm, IGBMC, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, UMR 7104- UMR-S 1258, Illkirch, 67400, France
| | - Julijana Trifkovic
- Department of Veterinary Medicine, Faculty of Agriculture, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Brun Ulfhake
- Div. Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Kai Diederich
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany
| | - Katharina Hohlbaum
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany.
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, 10587, Berlin, Germany.
| |
Collapse
|
6
|
Richardson R, Feigin CY, Bano-Otalora B, Johnson MR, Allen AE, Park J, McDowell RJ, Mereby SA, Lin IH, Lucas RJ, Mallarino R. The genomic basis of temporal niche evolution in a diurnal rodent. Curr Biol 2023; 33:3289-3298.e6. [PMID: 37480852 PMCID: PMC10529858 DOI: 10.1016/j.cub.2023.06.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/05/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023]
Abstract
Patterns of diel activity-how animals allocate their activity throughout the 24-h daily cycle-play key roles in shaping the internal physiology of an animal and its relationship with the external environment.1,2,3,4,5 Although shifts in diel activity patterns have occurred numerous times over the course of vertebrate evolution,6 the genomic correlates of such transitions remain unknown. Here, we use the African striped mouse (Rhabdomys pumilio), a species that transitioned from the ancestrally nocturnal diel niche of its close relatives to a diurnal one,7,8,9,10,11 to define patterns of naturally occurring molecular variation in diel niche traits. First, to facilitate genomic analyses, we generate a chromosome-level genome assembly of the striped mouse. Next, using transcriptomics, we show that the switch to daytime activity in this species is associated with a realignment of daily rhythms in peripheral tissues with respect to the light:dark cycle and the central circadian clock. To uncover selection pressures associated with this temporal niche shift, we perform comparative genomic analyses with closely related rodent species and find evidence of relaxation of purifying selection on striped mouse genes in the rod phototransduction pathway. In agreement with this, electroretinogram measurements demonstrate that striped mice have functional differences in dim-light visual responses compared with nocturnal rodents. Taken together, our results show that striped mice have undergone a drastic change in circadian organization and provide evidence that the visual system has been a major target of selection as this species transitioned to a novel temporal niche.
Collapse
Affiliation(s)
- Rose Richardson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Beatriz Bano-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology, & Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Annette E Allen
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Richard J McDowell
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - I-Hsuan Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
7
|
Qin L, Liang X, Qi Y, Luo Y, Xiao Q, Huang D, Zhou C, Jiang L, Zhou M, Zhou Y, Tang J, Tang Y. MPFC PV + interneurons are involved in the antidepressant effects of running exercise but not fluoxetine therapy. Neuropharmacology 2023:109669. [PMID: 37473999 DOI: 10.1016/j.neuropharm.2023.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Depression is a complex psychiatric disorder. Previous studies have shown that running exercise reverses depression-like behavior faster and more effectively than fluoxetine therapy. GABAergic interneurons, including the PV+ interneuron subtype, in the medial prefrontal cortex (MPFC) are involved in pathological changes of depression. It was unknown whether running exercise and fluoxetine therapy reverse depression-like behavior via GABAergic interneurons or the PV+ interneurons subtype in MPFC. To address this issue, we subjected mice with chronic unpredictable stress (CUS) to a 4-week running exercise or fluoxetine therapy. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that running exercise enriched GABAergic synaptic pathways in the MPFC of CUS-exposed mice. However, the number of PV+ interneurons but not the total number of GABAergic interneurons in the MPFC of mice exposed to CUS reversed by running exercise, not fluoxetine therapy. Running exercise increased the relative gene expression levels of the PV gene in the MPFC of CUS-exposed mice without altering other subtypes of GABAergic interneurons. Moreover, running exercise and fluoxetine therapy both significantly improved the length, area and volume of dendrites and the spine morphology of PV+ interneurons in the MPFC of mice exposed to CUS. However, running exercise but not fluoxetine therapy improved the dendritic complexity level of PV+ interneurons in the MPFC of mice exposed to CUS. In summary, the number and dendritic complexity level of PV+ interneurons may be important therapeutic targets for the mechanism by which running exercise reverses depression-like behavior faster and more effectively than fluoxetine therapy.
Collapse
Affiliation(s)
- Lu Qin
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingqiang Qi
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qian Xiao
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Radioactive Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Dujuan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chunni Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Mei Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuning Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
8
|
Hélissen O, Kermorgant M, Déjean S, Mercadie A, Le Gonidec S, Zahreddine R, Calise D, Nasr N, Galès C, Arvanitis DN, Pavy-Le Traon A. Autonomic Nervous System Adaptation and Circadian Rhythm Disturbances of the Cardiovascular System in a Ground-Based Murine Model of Spaceflight. Life (Basel) 2023; 13:life13030844. [PMID: 36983999 PMCID: PMC10057816 DOI: 10.3390/life13030844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Whether in real or simulated microgravity, Humans or animals, the kinetics of cardiovascular adaptation and its regulation by the autonomic nervous system (ANS) remain controversial. In this study, we used hindlimb unloading (HU) in 10 conscious mice. Blood pressure (BP), heart rate (HR), temperature, and locomotor activity were continuously monitored with radio-telemetry, during 3 days of control, 5 days of HU, and 2 days of recovery. Six additional mice were used to assess core temperature. ANS activity was indirectly determined by analyzing both heart rate variability (HRV) and baroreflex sensitivity (BRS). Our study showed that HU induced an initial bradycardia, accompanied by an increase in vagal activity markers of HRV and BRS, together with a decrease in water intake, indicating the early adaptation to fluid redistribution. During HU, BRS was reduced; temperature and BP circadian rhythms were altered, showing a loss in day/night differences, a decrease in cycle amplitude, a drop in core body temperature, and an increase in day BP suggestive of a rise in sympathetic activity. Reloading induced resting tachycardia and a decrease in BP, vagal activity, and BRS. In addition to cardiovascular deconditioning, HU induces disruption in day/night rhythmicity of locomotor activity, temperature, and BP.
Collapse
Affiliation(s)
- Ophélie Hélissen
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
| | - Marc Kermorgant
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
- Neurology Department, University Hospital of Toulouse, 31400 Toulouse, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219, CNRS, Université de Toulouse, UT3, 31062 Toulouse, France
| | - Aurélie Mercadie
- Institut de Mathématiques de Toulouse, UMR5219, CNRS, Université de Toulouse, UT3, 31062 Toulouse, France
| | - Sophie Le Gonidec
- CREFRE-Anexplo, Services Phénotypage et Microchirurgie, UMS006, INSERM, Université de Toulouse, UT3, ENVT, 31062 Toulouse, France
| | - Rana Zahreddine
- CREFRE-Anexplo, Services Phénotypage et Microchirurgie, UMS006, INSERM, Université de Toulouse, UT3, ENVT, 31062 Toulouse, France
| | - Denis Calise
- CREFRE-Anexplo, Services Phénotypage et Microchirurgie, UMS006, INSERM, Université de Toulouse, UT3, ENVT, 31062 Toulouse, France
| | - Nathalie Nasr
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
| | - Céline Galès
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
| | - Dina N Arvanitis
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
| | - Anne Pavy-Le Traon
- Institute of Cardiovascular and Metabolic Diseases, UMR1297, INSERM, University Hospital of Toulouse, 31400 Toulouse, France
- Neurology Department, University Hospital of Toulouse, 31400 Toulouse, France
| |
Collapse
|
9
|
The metastatic spread of breast cancer accelerates during sleep. Nature 2022; 607:156-162. [PMID: 35732738 DOI: 10.1038/s41586-022-04875-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 05/16/2022] [Indexed: 12/20/2022]
Abstract
The metastatic spread of cancer is achieved by the haematogenous dissemination of circulating tumour cells (CTCs). Generally, however, the temporal dynamics that dictate the generation of metastasis-competent CTCs are largely uncharacterized, and it is often assumed that CTCs are constantly shed from growing tumours or are shed as a consequence of mechanical insults1. Here we observe a striking and unexpected pattern of CTC generation dynamics in both patients with breast cancer and mouse models, highlighting that most spontaneous CTC intravasation events occur during sleep. Further, we demonstrate that rest-phase CTCs are highly prone to metastasize, whereas CTCs generated during the active phase are devoid of metastatic ability. Mechanistically, single-cell RNA sequencing analysis of CTCs reveals a marked upregulation of mitotic genes exclusively during the rest phase in both patients and mouse models, enabling metastasis proficiency. Systemically, we find that key circadian rhythm hormones such as melatonin, testosterone and glucocorticoids dictate CTC generation dynamics, and as a consequence, that insulin directly promotes tumour cell proliferation in vivo, yet in a time-dependent manner. Thus, the spontaneous generation of CTCs with a high proclivity to metastasize does not occur continuously, but it is concentrated within the rest phase of the affected individual, providing a new rationale for time-controlled interrogation and treatment of metastasis-prone cancers.
Collapse
|
10
|
Grimm J, Schulze H, Tziridis K. Circadian Sensitivity of Noise Trauma-Induced Hearing Loss and Tinnitus in Mongolian Gerbils. Front Neurosci 2022; 16:830703. [PMID: 35720709 PMCID: PMC9204100 DOI: 10.3389/fnins.2022.830703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Noise-induced hearing loss (HL) has a circadian component: In nocturnal mice, hearing thresholds (HT) have a significantly stronger effect to acoustic trauma when induced during the night compared to rather mild effects on hearing when induced during daytime. Here, we investigate whether such effects are also present in diurnal Mongolian gerbils and determined whether trauma-induced HL correlated with the development of a tinnitus percept in these animals. In particular, we investigated the effects of acoustic trauma (2 kHz, 115 dB SPL, 75 min) on HT and tinnitus development in 34 male gerbils exposed either at 9 AM, 1 PM, 5 PM, or 12 PM. HT was measured by acoustic brainstem response audiometry at defined times 1 day before and 1 week after the trauma. Possible tinnitus percepts were assessed behaviorally by the gap prepulse inhibition of the acoustic startle response at defined times 1 day before and 1 week after the trauma. We found daytime-dependent changes due to trauma in mean HT in a frequency-dependent manner comparable to the results in mice, but the results temporally shifted according to respective activity profiles. Additionally, we found linear correlations of these threshold changes with the strength of the tinnitus percept, with the most prominent correlations in the 5 PM trauma group. Taken together, circadian sensitivity of the HT to noise trauma can also be found in gerbils, and tinnitus strength correlates most strongly with HL only when the trauma is applied at the most sensitive times, which seem to be the evening.
Collapse
|
11
|
Per2 Expression Regulates the Spatial Working Memory of Mice through DRD1-PKA-CREB Signaling. Mol Neurobiol 2022; 59:4292-4303. [PMID: 35508866 DOI: 10.1007/s12035-022-02845-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Several individuals worldwide show cognitive impairment due to various reasons, including a prolonged lifespan and an altered lifestyle. Various causes, such as broken circadian rhythms and dopamine-related factors, have been proposed to be involved in the development of cognitive impairment. However, the underlying pathways remain elusive. Humans with circadian misalignment often face cognitive impairments, and animals with mutations in circadian rhythm-related genes display impaired cognitive functions. To analyze this in detail, this study aimed to investigate the pathways potentially involved in cognitive impairment using Period2 (Per2) transgenic animals. Spatial working memory performance in Per2 knockout (KO) and wild-type mice was assessed using the Barnes maze and Y-maze. The dopamine-related protein expression levels in the hippocampus were measured by Western blotting and enzyme-linked immunosorbent assay (ELISA). Per2 KO mice exhibited impaired spatial working memory, and the expression levels of dopamine receptor D1 (DRD1), protein kinase A (PKA), and cAMP response element-binding protein (CREB) were higher in Per2 KO mice than in control mice. Additionally, DRD1 expression levels were inversely proportional to those of PER2. Thus, memory tests were again conducted after administration of the DRD1 antagonist SCH-23390. Per2 KO mice recovered from memory impairment, and the levels of PKA and CREB decreased after treatment. The effects of Aβ on memory in Per2 mice were also investigated, and we found the increased Aβ levels did not influence the memory performance of Per2 mice after SCH-23390 treatment. These results indicate that Per2 expression levels might influence spatial working memory performance via DRD1-PKA-CREB-dependent signaling.
Collapse
|
12
|
Kim R, Witelski TP. Uncovering the dynamics of a circadian-dopamine model influenced by the light-dark cycle. Math Biosci 2021; 344:108764. [PMID: 34952036 DOI: 10.1016/j.mbs.2021.108764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The neurotransmitter dopamine (DA) is known to be influenced by the circadian timekeeping system in the mammalian brain. We have previously created a single-cell differential equations model to understand the mechanisms behind circadian rhythms of extracellular DA. In this paper, we investigate the dynamics in our model and study different behaviors such as entrainment to the 24-hour light-dark cycle and robust periodicity versus decoupling, quasiperiodicity, and chaos. Imbalances in DA are often accompanied by disrupted circadian rhythms, such as in Parkinson's disease, hyperactivity, and mood disorders. Our model provides new insights into the links between the circadian clock and DA. We show that the daily rhythmicity of DA can be disrupted by decoupling between interlocked loops of the clock circuitry or by quasiperiodic clock behaviors caused by misalignment with the light-dark cycle. The model can be used to further study how the circadian clock affects the dopaminergic system, and to help develop therapeutic strategies for disrupted DA rhythms. .
Collapse
Affiliation(s)
- Ruby Kim
- Department of Mathematics, Duke University, Durham, NC, USA.
| | | |
Collapse
|
13
|
Silva S, Bicker J, Falcão A, Fortuna A. Antidepressants and Circadian Rhythm: Exploring Their Bidirectional Interaction for the Treatment of Depression. Pharmaceutics 2021; 13:1975. [PMID: 34834391 PMCID: PMC8624696 DOI: 10.3390/pharmaceutics13111975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Scientific evidence that circadian rhythms affect pharmacokinetics and pharmacodynamics has highlighted the importance of drug dosing-time. Circadian oscillations alter drug absorption, distribution, metabolism, and excretion (ADME) as well as intracellular signaling systems, target molecules (e.g., receptors, transporters, and enzymes), and gene transcription. Although several antidepressant drugs are clinically available, less than 50% of depressed patients respond to first-line pharmacological treatments. Chronotherapeutic approaches to enhance the effectiveness of antidepressants are not completely known. Even so, experimental results found until this day suggest a positive influence of drug dosing-time on the efficacy of depression therapy. On the other hand, antidepressants have also demonstrated to modulate circadian rhythmicity and sleep-wake cycles. This review aims to evidence the potential of chronotherapy to improve the efficacy and/or safety of antidepressants. It includes pre-clinical and clinical studies that demonstrate the relevance of determining the most appropriate time of administration for antidepressant drugs. In parallel, their positive influence on the resynchronization of disrupted circadian rhythms is also herein discussed. It is expected that this review will promote the investigation of chronotherapy for the treatment of depression, contribute to a better understanding of the relationship between antidepressants and circadian rhythms, and consequently promote the development of new therapeutics.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; (S.S.); (A.F.); (A.F.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; (S.S.); (A.F.); (A.F.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; (S.S.); (A.F.); (A.F.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; (S.S.); (A.F.); (A.F.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
Hesse J, Martinelli J, Aboumanify O, Ballesta A, Relógio A. A mathematical model of the circadian clock and drug pharmacology to optimize irinotecan administration timing in colorectal cancer. Comput Struct Biotechnol J 2021; 19:5170-5183. [PMID: 34630937 PMCID: PMC8477139 DOI: 10.1016/j.csbj.2021.08.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Scheduling anticancer drug administration over 24 h may critically impact treatment success in a patient-specific manner. Here, we address personalization of treatment timing using a novel mathematical model of irinotecan cellular pharmacokinetics and -dynamics linked to a representation of the core clock and predict treatment toxicity in a colorectal cancer (CRC) cellular model. The mathematical model is fitted to three different scenarios: mouse liver, where the drug metabolism mainly occurs, and two human colorectal cancer cell lines representing an in vitro experimental system for human colorectal cancer progression. Our model successfully recapitulates quantitative circadian datasets of mRNA and protein expression together with timing-dependent irinotecan cytotoxicity data. The model also discriminates time-dependent toxicity between the different cells, suggesting that treatment can be optimized according to their cellular clock. Our results show that the time-dependent degradation of the protein mediating irinotecan activation, as well as an oscillation in the death rate may play an important role in the circadian variations of drug toxicity. In the future, this model can be used to support personalized treatment scheduling by predicting optimal drug timing based on the patient's gene expression profile.
Collapse
Affiliation(s)
- Janina Hesse
- Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg 20457, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Julien Martinelli
- INSERM U900, Saint-Cloud, France, Institut Curie, Saint Cloud, France, Paris Saclay University, France, MINES ParisTech, CBIO - Centre for Computational Biology, PSL Research University, Paris, France.,UPR 'Chronotherapy, Cancers and Transplantation', Faculty of Medicine, Paris Saclay University, Campus CNRS, 7 rue Guy Moquet, 94800 Villejuif, France.,Lifeware Group, Inria Saclay Ile-de-France, Palaiseau 91120, France
| | - Ouda Aboumanify
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany.,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin
| | - Annabelle Ballesta
- INSERM U900, Saint-Cloud, France, Institut Curie, Saint Cloud, France, Paris Saclay University, France, MINES ParisTech, CBIO - Centre for Computational Biology, PSL Research University, Paris, France.,UPR 'Chronotherapy, Cancers and Transplantation', Faculty of Medicine, Paris Saclay University, Campus CNRS, 7 rue Guy Moquet, 94800 Villejuif, France
| | - Angela Relógio
- Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg 20457, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany.,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin
| |
Collapse
|
15
|
Gilun P, Flisikowski K, Flisikowska T, Kwiatkowska J, Wąsowska B, Koziorowska-Gilun M. Role of Methylation in Period2 ( PER2) Transcription in the Context of the Presence or Absence of Light Signals: Natural and Chemical-Studies on the Pig Model. Int J Mol Sci 2021; 22:ijms22157796. [PMID: 34360562 PMCID: PMC8346033 DOI: 10.3390/ijms22157796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
It has been proposed that carbon monoxide (CO) is a chemical light carrier that is transferred by the humoral pathway from the retina to the brain. Here, we aimed to study how deeply CO is involved in regulating the expression of Period2 gene (PER2), one of the genes maintaining the intrinsic biological clock. In our in vivo experiment, we studied whether CO may be a chemical signal and is also equivalent to natural light in three groups of pigs: Normal: housed in natural conditions without any procedures, Control: adapted and kept in constant darkness, infused with blank plasma, and CO treated: adapted and kept in constant darkness infused with CO-enriched plasma. After the experiment, the animals were slaughtered at two times of day: 12 p.m. and 12 a.m. Next, hypothalamus samples were collected. Quantitative PCR, the DNA methylation of the promoter sequence containing enhancers (E-box) and a functional analysis of the PER2 promoter was performed. qPCR showed a differential pattern of PER2 mRNA expression at daytime oscillation in the examined groups. Pyrosequencing revealed daytime changes in the methylation level of regulatory sites of the examined sequence. Luciferase reporter assay confirmed that E-boxes (CANNTG) drive the expression of the porcine PER2 in vitro. In conclusion, changes in methylation over 24 h may regulate the oscillatory manner of PER2 expression.
Collapse
Affiliation(s)
- Przemysław Gilun
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Correspondence:
| | - Krzysztof Flisikowski
- School of Life Sciences, Chair of Livestock Biotechnology, Technical University of Munich, D-85354 Freising, Germany; (K.F.); (T.F.)
| | - Tatiana Flisikowska
- School of Life Sciences, Chair of Livestock Biotechnology, Technical University of Munich, D-85354 Freising, Germany; (K.F.); (T.F.)
| | - Joanna Kwiatkowska
- Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Barbara Wąsowska
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Magdalena Koziorowska-Gilun
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| |
Collapse
|
16
|
Adamovich Y, Ezagouri S, Dandavate V, Asher G. Monitoring daytime differences in moderate intensity exercise capacity using treadmill test and muscle dissection. STAR Protoc 2021; 2:100331. [PMID: 33598660 PMCID: PMC7868630 DOI: 10.1016/j.xpro.2021.100331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in medicine and sports in uncovering exercise modifiers that enhance or limit exercise capacity. Here, we detail a protocol for testing the daytime effect on running capacity in mice using a moderate intensity treadmill effort test. Instructions for dissecting soleus, gastrocnemius plantaris, and quadriceps muscles for further analysis are provided as well. This experimental setup is optimized for addressing questions regarding the involvement of daytime and circadian clocks in regulating exercise capacity. For complete details on the use and execution of this protocol, please refer to Ezagouri et al. (2019). Exercise capacity is influenced by the time of day Protocol for determining moderate intensity exercise capacity using treadmill test Instructions for muscle dissection
Collapse
Affiliation(s)
- Yaarit Adamovich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Saar Ezagouri
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
17
|
Whittaker AL, Liu Y, Barker TH. Methods Used and Application of the Mouse Grimace Scale in Biomedical Research 10 Years on: A Scoping Review. Animals (Basel) 2021; 11:ani11030673. [PMID: 33802463 PMCID: PMC7999303 DOI: 10.3390/ani11030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Mouse Grimace Scale (MGS) was developed 10 years ago as a method for assessing pain through the characterisation of changes in five facial features or action units. The strength of the technique is that it is proposed to be a measure of spontaneous or non-evoked pain. The time is opportune to map all of the research into the MGS, with a particular focus on the methods used and the technique's utility across a range of mouse models. A comprehensive scoping review of the academic literature was performed. A total of 48 articles met our inclusion criteria and were included in this review. The MGS has been employed mainly in the evaluation of acute pain, particularly in the pain and neuroscience research fields. There has, however, been use of the technique in a wide range of fields, and based on limited study it does appear to have utility for pain assessment across a spectrum of animal models. Use of the method allows the detection of pain of a longer duration, up to a month post initial insult. There has been less use of the technique using real-time methods and this is an area in need of further research.
Collapse
Affiliation(s)
- Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
- Correspondence:
| | - Yifan Liu
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Timothy H. Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|
18
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Kim R, Reed MC. A mathematical model of circadian rhythms and dopamine. Theor Biol Med Model 2021; 18:8. [PMID: 33596936 PMCID: PMC7891144 DOI: 10.1186/s12976-021-00139-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Background The superchiasmatic nucleus (SCN) serves as the primary circadian (24hr) clock in mammals and is known to control important physiological functions such as the sleep-wake cycle, hormonal rhythms, and neurotransmitter regulation. Experimental results suggest that some of these functions reciprocally influence circadian rhythms, creating a highly complex network. Among the clock’s downstream products, orphan nuclear receptors REV-ERB and ROR are particularly interesting because they coordinately modulate the core clock circuitry. Recent experimental evidence shows that REV-ERB and ROR are not only crucial for lipid metabolism but are also involved in dopamine (DA) synthesis and degradation, which could have meaningful clinical implications for conditions such as Parkinson’s disease and mood disorders. Methods We create a mathematical model consisting of differential equations that express how the circadian variables are influenced by light, how REV-ERB and ROR feedback to the clock, and how REV-ERB, ROR, and BMAL1-CLOCK affect the dopaminergic system. The structure of the model is based on the findings of experimentalists. Results We compare our model predictions to experimental data on clock components in different light-dark conditions and in the presence of genetic perturbations. Our model results are consistent with experimental results on REV-ERB and ROR and allow us to predict the circadian variations in tyrosine hydroxylase and monoamine oxidase seen in experiments. By connecting our model to an extant model of dopamine synthesis, release, and reuptake, we are able to predict circadian oscillations in extracellular DA and homovanillic acid that correspond well with experimental observations. Conclusions The predictions of the mathematical model are consistent with a wide variety of experimental observations. Our calculations show that the mechanisms proposed by experimentalists by which REV-ERB, ROR, and BMAL1-CLOCK influence the DA system are sufficient to explain the circadian oscillations observed in dopaminergic variables. Our mathematical model can be used for further investigations of the effects of the mammalian circadian clock on the dopaminergic system. The model can also be used to predict how perturbations in the circadian clock disrupt the dopaminergic system and could potentially be used to find drug targets that ameliorate these disruptions.
Collapse
Affiliation(s)
- Ruby Kim
- Department of Mathematics, Duke University, 120 Science Drive, Box 90320, Durham, 27708, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, 120 Science Drive, Box 90320, Durham, 27708, NC, USA.
| |
Collapse
|
20
|
Zhang X, Lin JS, Spruyt K. Sleep problems in Rett syndrome animal models: A systematic review. J Neurosci Res 2020; 99:529-544. [PMID: 32985711 DOI: 10.1002/jnr.24730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/30/2020] [Indexed: 02/01/2023]
Abstract
Due to the discovery of Rett Syndrome (RTT) genetic mutations, animal models have been developed. Sleep research in RTT animal models may unravel novel neural mechanisms for this severe neurodevelopmental heritable rare disease. In this systematic literature review we summarize the findings on sleep research of 13 studies in animal models of RTT. We found disturbed efficacy and continuity of sleep in all genetically mutated models of mice, cynomolgus monkeys, and Drosophila. Models presented highly fragmented sleep with distinct differences in 24-hr sleep/wake cyclicity and circadian arrhythmicity. Overall, animal models mimic sleep complaints reported in individuals with RTT. However, contrary to human studies, in mutant mice, attenuated sleep delta waves, and sleep apneas in non-rapid eye movement sleep were reported. Future studies may focus on sleep structure and EEG alterations, potential central mechanisms involved in sleep fragmentation and the occurrence of sleep apnea across different sleep stages. Given that locomotor dysfunction is characteristic of individuals with RTT, studies may consider to integrate its potential impact on the behavioral analysis of sleep.
Collapse
Affiliation(s)
- Xinyan Zhang
- INSERM - School of Medicine, University Claude Bernard, Lyon, France
| | - Jian-Sheng Lin
- INSERM - School of Medicine, University Claude Bernard, Lyon, France
| | - Karen Spruyt
- INSERM - School of Medicine, University Claude Bernard, Lyon, France
| |
Collapse
|
21
|
O'Donnell AJ, Prior KF, Reece SE. Host circadian clocks do not set the schedule for the within-host replication of malaria parasites. Proc Biol Sci 2020; 287:20200347. [PMID: 32781954 PMCID: PMC7575513 DOI: 10.1098/rspb.2020.0347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Circadian clocks coordinate organisms' activities with daily cycles in their environment. Parasites are subject to daily rhythms in the within-host environment, resulting from clock-control of host activities, including immune responses. Parasites also exhibit rhythms in their activities: the timing of within-host replication by malaria parasites is coordinated to host feeding rhythms. Precisely which host feeding-related rhythm(s) parasites align with and how this is achieved are unknown. Understanding rhythmic replication in malaria parasites matters because it underpins disease symptoms and fuels transmission investment. We test if rhythmicity in parasite replication is coordinated with the host's feeding-related rhythms and/or rhythms driven by the host's canonical circadian clock. We find that parasite rhythms coordinate with the time of day that hosts feed in both wild-type and clock-mutant hosts, whereas parasite rhythms become dampened in clock-mutant hosts that eat continuously. Our results hold whether infections are initiated with synchronous or with desynchronized parasites. We conclude that malaria parasite replication is coordinated to rhythmic host processes that are independent of the core-clock proteins PERIOD 1 and 2; most likely, a periodic nutrient made available when the host digests food. Thus, novel interventions could disrupt parasite rhythms to reduce their fitness, without interference by host clock-controlled homeostasis.
Collapse
Affiliation(s)
- Aidan J O'Donnell
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kimberley F Prior
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah E Reece
- Institute of Evolutionary Biology, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Amano T, Ripperger JA, Albrecht U. Changing the light schedule in late pregnancy alters birth timing in mice. Theriogenology 2020; 154:212-222. [PMID: 32650187 DOI: 10.1016/j.theriogenology.2020.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
In rats, birth timing is affected by changes in the light schedule until the middle of the pregnancy period. This phenomenon can be used to control birth timing in the animal industry and/or clinical fields. However, changes in the light schedule until the middle of the pregnancy period can damage the fetus by affecting the development of the major organs. Thus, we compared birth timing in mice kept under a 12-h light/12-h darkness schedule (L/D) throughout pregnancy with that of mice kept under a light schedule that changed from L/D to constant light (L/L) or constant darkness (D/D) from day 17.5 of pregnancy, the latter phase of the pregnancy period. On average, the pregnancy period was longer in D/D mice (19.9 days) than L/L or L/D mice (19.5 and 19.3 days, respectively, P < 0.05), confirming that light schedule affects birth timing. The average number of newborns was the same in L/L, L/D, and D/D mice (7.5, 7.8, and 7.9, respectively), but the average newborn weight of L/L mice (1.3 g) was lower than that of L/D and D/D mice (both 1.4 g, P < 0.05), indicating that constant light has detrimental effects on fetus growth. However, the percentage of dead newborns was the same between L/L, L/D, and D/D mice (11.1, 10.6, and 3.6%, respectively). The serum progesterone level on day 18.5 of pregnancy in L/D mice was 42.8 ng/ml, lower (P < 0.05) than that of D/D mice (65.3 ng/ml), suggesting that light schedule affects luteolysis. The average pregnancy period of mice lacking a circadian clock kept under D/D conditions from day 17.5 of pregnancy (KO D/D) (20.3 days) was delayed compared with wild-type (WT) D/D mice (P < 0.05). However, the average number of newborns, percentage of births with dead pups, and weight per newborn of KO D/D mice (7.6, 3.6%, and 1.4 g, respectively) were the same as WT mice kept under D/D conditions. A direct effect of the circadian clock on the mechanism(s) regulating birth timing was questionable, as the lighter average weight per KO fetus (0.6 g) versus WT fetus (0.7 g) on day 17.5 of pregnancy might have caused the delay in birth. The range of birth timing in KO D/D mice was the same as that of WT D/D mice, indicating that the circadian clock does not concentrate births at one time.
Collapse
Affiliation(s)
- Tomoko Amano
- College of Agriculture, Food and Environment Sciences, Department of Sustainable Agriculture, Laboratory of Animal Genetics, Rakuno Gakuen University, 582 Midorimachi Bunkyodai, Ebetsu, Hokkaido, 069-8501, Japan.
| | - Jürgen A Ripperger
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| |
Collapse
|
23
|
Wolter ME, Svoboda KR. Doing the locomotion: Insights and potential pitfalls associated with using locomotor activity as a readout of the circadian rhythm in larval zebrafish. J Neurosci Methods 2019; 330:108465. [PMID: 31634493 DOI: 10.1016/j.jneumeth.2019.108465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Zebrafish have been used as a model to study circadian rhythms (CRs) for over 20 years by analyzing various endpoints including locomotor activity. Such studies often utilize high-throughput analysis monitoring activity of larvae placed in well plates numbering >48 wells per plate. Although the CR can be influenced by numerous factors, it is not clear if such effects are permanent. Here, we investigated the variability of CRs of larvae analyzed in different types of well plates and determined the permanency of experimentally-induced aberrations in CRs. NEW METHOD Utilized the tracking software Ethovision XT to investigate how different well plate sizes influence the CR. Re-tested subjects for recovery from long-term CR disruptions and evaluated CR patterns at the individual level. RESULTS CR tracking using locomotion as a readout is best in 24 well plates. CR consistency is not maintained in larvae tracked in 48 or 96 well plates. A perturbed CR due to constant light recovered after just 3 days of a normal light/dark cycle. COMPARISON WITH EXISTING METHODS Unlike other CR locomotor-based assays, our approach allowed for a medium-throughput analysis of individual CRs, minimized variability and allowed for the re-evaluation of larval CRs 4-5 days later. CONCLUSIONS This medium-throughput locomotor CR analysis allows for a standardized, less variable approach whereby larvae can be re-tested to identify potential long-term changes after experimental manipulations. Long-term behavioral experiments in 48 or 96 well plates may impart stress on the larvae due to space constraints which could impact nervous system function and/or behavior.
Collapse
Affiliation(s)
- Matthew E Wolter
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
24
|
Kim M, Custodio RJ, Botanas CJ, de la Peña JB, Sayson LV, Abiero A, Ryoo ZY, Cheong JH, Kim HJ. The circadian gene, Per2, influences methamphetamine sensitization and reward through the dopaminergic system in the striatum of mice. Addict Biol 2019; 24:946-957. [PMID: 30091820 DOI: 10.1111/adb.12663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023]
Abstract
Drug addiction is a chronic and relapsing brain disorder, influenced by complex interactions between endogenous and exogenous factors. Per2, a circadian gene, plays a role in drug addiction. Previous studies using Per2-knockout mice have shown a role for Per2 in cocaine, morphine and alcohol addiction. In the present study, we investigated the role of Per2 in methamphetamine (METH) addiction using Per2-overexpression and knockout mice. We observed locomotor sensitization responses to METH administration, and rewarding effects using a conditioned place preference test. In addition, we measured expression levels of dopamine and dopamine-related genes (monoamine oxidase A, DA receptor 1, DA receptor 2, DA active transporter, tyrosine hydroxylase and cAMP response element-binding protein 1) in the striatum of the mice after repeated METH treatments, using qRT-PCR. Per2-overexpressed mice showed decreased locomotor sensitization and rewarding effects of METH compared to the wildtype mice, whereas the opposite was observed in Per2 knockout mice. Both types of transgenic mice showed altered expression levels of dopamine-related genes after repeated METH administration. Specifically, we observed lower dopamine levels in Per2-overexpressed mice and higher levels in Per2-knockout mice. Taken together, Per2 expression levels may influence the addictive effects of METH through the dopaminergic system in the striatum of mice.
Collapse
Affiliation(s)
- Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Korea
| | | | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Korea
| | - Arvie Abiero
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences; Kyungpook National University; Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Korea
| |
Collapse
|
25
|
Methodology and theoretical basis of forward genetic screening for sleep/wakefulness in mice. Proc Natl Acad Sci U S A 2019; 116:16062-16067. [PMID: 31337678 DOI: 10.1073/pnas.1906774116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulatory network of genes and molecules in sleep/wakefulness remains to be elucidated. Here we describe the methodology and workflow of the dominant screening of randomly mutagenized mice and discuss theoretical basis of forward genetics research for sleep in mice. Our high-throughput screening employs electroencephalogram (EEG) and electromyogram (EMG) to stage vigilance states into a wake, rapid eye movement sleep (REMS) and non-REM sleep (NREMS). Based on their near-identical sleep/wake behavior, C57BL/6J (B6J) and C57BL/6N (B6N) are chosen as mutagenized and counter strains, respectively. The total time spent in the wake and NREMS, as well as the REMS episode duration, shows sufficient reproducibility with small coefficients of variance, indicating that these parameters are most suitable for quantitative phenotype-driven screening. Coarse linkage analysis of the quantitative trait, combined with whole-exome sequencing, can identify the gene mutation associated with sleep abnormality. Our simulations calculate the achievable LOD score as a function of the phenotype strength and the numbers of mice examined. A pedigree showing a mild decrease in total wake time resulting from a heterozygous point mutation in the Cacna1a gene is described as an example.
Collapse
|
26
|
Jiao X, Wu M, Lu D, Gu J, Li Z. Transcriptional Profiling of Daily Patterns of mRNA Expression in the C57BL/6J Mouse Cornea. Curr Eye Res 2019; 44:1054-1066. [PMID: 31136724 DOI: 10.1080/02713683.2019.1625408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose: The purpose of this study was to determine how the transcriptome of the murine cornea adapts to diurnal changes in physiology. Methods: C57BL/6J mice were maintained under a 12-h light/12-h dark (LD) cycle for two weeks. Corneas were collected from euthanized mice at Zeitgeber time (ZT) 0, 3, 6, 9, 12, 15, 18, and 21. Total RNA was extracted and subjected to RNA sequencing (RNA-Seq). A JTK_CYCLE algoithm and other software tools were used to analyze the transcriptional data to determine the periodicity, rhythmicity, and amplitude of the transcripts. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the enrichment of cycling transcripts. Results: Approximately 24% of the total transcripts from the murine corneal genome were rhythmically expressed over an LD cycle. GO analysis showed that these cycling genes are primarily involved in cellular and metabolic processes. A KEGG pathway analysis identified 6 branches and 44 pathways that encode the gene outputs necessary for basic cellular functions and processes. More importantly, most of the rhythmic genes between the day and night are enriched in their own unique pathways in addition to some common pathways. Furthermore, most of the rhythmic gene expression was concentrated in the 12-h and 24-h periods. A comparative analysis of GO and KEGG showed large differences in metabolic processes, but not cellular processes. Finally, the murine cornea also rhythmically expressed 11 canonical components of circadian clock genes over an LD cycle at the transcriptional level. Conclusions: One fourth of the corneal transcriptome follows a rhythmic expression pattern involved in basic molecular and cellular mechanisms. This implies that the time of day contributes significantly to the overall temporal organization of the corneal transcriptome.
Collapse
Affiliation(s)
- Xinwei Jiao
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Mingjuan Wu
- International Ocular Surface Research Center and Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University Medical School , Guangzhou , China
| | - Dingli Lu
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Jianqin Gu
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China
| | - Zhijie Li
- Henan Provincial People's Hospital and People's Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital , Zhengzhou , China.,International Ocular Surface Research Center and Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University Medical School , Guangzhou , China
| |
Collapse
|
27
|
Smith DF, Amin RS. OSA and Cardiovascular Risk in Pediatrics. Chest 2019; 156:402-413. [PMID: 30790552 DOI: 10.1016/j.chest.2019.02.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
OSA occurs in approximately 1% to 5% of children in the United States. Long-term cardiovascular risks associated with OSA in the adult population are well documented. Although changes in BP regulation occur in children with OSA, the pathways leading to chronic cardiovascular risks of OSA in children are less clear. Risk factors associated with cardiovascular disease in adult populations could carry the same future risk for children. It is imperative to determine whether known mechanisms of cardiovascular diseases in adults are like those that lead to pediatric disease. Early pathophysiologic changes may lead to a lifetime burden of cardiovascular disease and early mortality. With this perspective in mind, our review discusses pathways leading to cardiovascular pathology in children with OSA and provides a comprehensive overview of recent research findings related to cardiovascular sequelae in the pediatric population.
Collapse
Affiliation(s)
- David F Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Raouf S Amin
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
28
|
Pernold K, Iannello F, Low BE, Rigamonti M, Rosati G, Scavizzi F, Wang J, Raspa M, Wiles MV, Ulfhake B. Towards large scale automated cage monitoring - Diurnal rhythm and impact of interventions on in-cage activity of C57BL/6J mice recorded 24/7 with a non-disrupting capacitive-based technique. PLoS One 2019; 14:e0211063. [PMID: 30716111 PMCID: PMC6361443 DOI: 10.1371/journal.pone.0211063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/02/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIMS Automated recording of laboratory animal's home cage behavior is receiving increasing attention since such non-intruding surveillance will aid in the unbiased understanding of animal cage behavior potentially improving animal experimental reproducibility. MATERIAL AND METHODS Here we investigate activity of group held female C57BL/6J mice (mus musculus) housed in standard Individually Ventilated Cages across three test-sites: Consiglio Nazionale delle Ricerche (CNR, Rome, Italy), The Jackson Laboratory (JAX, Bar Harbor, USA) and Karolinska Insititutet (KI, Stockholm, Sweden). Additionally, comparison of female and male C57BL/6J mice was done at KI. Activity was recorded using a capacitive-based sensor placed non-intrusively on the cage rack under the home cage collecting activity data every 250 msec, 24/7. The data collection was analyzed using non-parametric analysis of variance for longitudinal data comparing sites, weekdays and sex. RESULTS The system detected an increase in activity preceding and peaking around lights-on followed by a decrease to a rest pattern. At lights off, activity increased substantially displaying a distinct temporal variation across this period. We also documented impact on mouse activity that standard animal handling procedures have, e.g. cage-changes, and show that such procedures are stressors impacting in-cage activity. These key observations replicated across the three test-sites, however, it is also clear that, apparently minor local environmental differences generate significant behavioral variances between the sites and within sites across weeks. Comparison of gender revealed differences in activity in the response to cage-change lasting for days in male but not female mice; and apparently also impacting the response to other events such as lights-on in males. Females but not males showed a larger tendency for week-to-week variance in activity possibly reflecting estrous cycling. CONCLUSIONS These data demonstrate that home cage monitoring is scalable and run in real time, providing complementary information for animal welfare measures, experimental design and phenotype characterization.
Collapse
Affiliation(s)
- Karin Pernold
- Departments of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - B. E. Low
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - G. Rosati
- Tecniplast SpA, Buguggiate (Va), Italy
| | - F. Scavizzi
- National Research Council, CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, Rome, Italy
| | - J. Wang
- Departments of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M. Raspa
- National Research Council, CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, Rome, Italy
| | - M. V. Wiles
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - B. Ulfhake
- Departments of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
29
|
Barrios BE, Maccio-Maretto L, Nazar FN, Correa SG. A selective window after the food-intake period favors tolerance induction in mesenteric lymph nodes. Mucosal Immunol 2019; 12:108-116. [PMID: 30327533 DOI: 10.1038/s41385-018-0095-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 02/04/2023]
Abstract
Biological rhythms are periodic oscillations that occur in the physiology of the organism and the cells. The rhythms of the immune system are strictly regulated and the circadian alteration seems to have serious consequences. Even so, it is not clear how the immune cells of the intestinal mucosa synchronize with the external environment. Besides, little is known about the way in which biological rhythms affect the critical functions of intestinal immunity, such as oral tolerance. We studied fluctuations in the relevant parameters of intestinal immunity at four different times throughout the day. By using multivariate statistical tools, we found that these oscillations represent at least three different time frames with different conditions for tolerance induction that are altered in Per2ko mice lacking one of the clock genes. Our results allowed us to characterize a window in the final stage of the dark phase that promotes the induction of specific regulatory populations and favors its location in the lamina propria. We show here that, at the end of the intake, the entry of luminal antigens, soluble factors, and leukocyte populations converge in the mesenteric lymph nodes (MLN) and display the greatest potential of the tolerogenic machinery.
Collapse
Affiliation(s)
- Bibiana E Barrios
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lisa Maccio-Maretto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - F Nicolás Nazar
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC) e Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Silvia G Correa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
| |
Collapse
|
30
|
Population-level rhythms in human skin with implications for circadian medicine. Proc Natl Acad Sci U S A 2018; 115:12313-12318. [PMID: 30377266 DOI: 10.1073/pnas.1809442115] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skin is the largest organ in the body and serves important barrier, regulatory, and sensory functions. The epidermal layer shows rhythmic physiological responses to daily environmental variation (e.g., DNA repair). We investigated the role of the circadian clock in the transcriptional regulation of epidermis using a hybrid experimental design, in which a limited set of human subjects (n = 20) were sampled throughout the 24-h cycle and a larger population (n = 219) were sampled once. We found a robust circadian oscillator in human epidermis at the population level using pairwise correlations of clock and clock-associated genes in 298 epidermis samples. We then used CYCLOPS to reconstruct the temporal order of all samples, and identified hundreds of rhythmically expressed genes at the population level in human epidermis. We compared these results with published time-series skin data from mice and found a strong concordance in circadian phase across species for both transcripts and pathways. Furthermore, like blood, epidermis is readily accessible and a potential source of biomarkers. Using ZeitZeiger, we identified a biomarker set for human epidermis that is capable of reporting circadian phase to within 3 hours from a single sample. In summary, we show rhythms in human epidermis that persist at the population scale and describe a path to develop robust single-sample circadian biomarkers.
Collapse
|
31
|
Wu P, Bao L, Zhang R, Li Y, Liu L, Wu Y, Zhang J, He Z, Chu W. Impact of Short-Term Fasting on The Rhythmic Expression of the Core Circadian Clock and Clock-Controlled Genes in Skeletal Muscle of Crucian Carp ( Carassius auratus). Genes (Basel) 2018; 9:genes9110526. [PMID: 30380676 PMCID: PMC6265890 DOI: 10.3390/genes9110526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The peripheral tissue pacemaker is responsive to light and other zeitgebers, especially food availability. Generally, the pacemaker can be reset and entrained independently of the central circadian structures. Studies involving clock-gene expressional patterns in fish peripheral tissues have attracted considerable attention. However, the rhythmic expression of clock genes in skeletal muscle has only scarcely been investigated. The present study was designed to investigate the core clock and functional gene expression rhythms in crucian carp. Meanwhile, the synchronized effect of food restrictions (short-term fasting) on these rhythms in skeletal muscle was carefully examined. In fed crucian carp, three core clock genes (Clock, Bmal1a, and Per1) and five functional genes (Epo, Fas, IGF1R2, Jnk1, and MyoG) showed circadian rhythms. By comparison, four core clock genes (Clock, Bmal1a, Cry3, and Per2) and six functional genes (Epo, GH, IGF2, Mstn, Pnp5a, and Ucp1) showed circadian rhythms in crucian carp muscle after 7-day fasting. In addition, three core clock genes (Clock, Per1, and Per3) and six functional genes (Ampk1a, Lpl, MyoG, Pnp5a, PPARα, and Ucp1) showed circadian rhythms in crucian carp muscle after 15-day fasting. However, all gene rhythmic expression patterns differed from each other. Furthermore, it was found that the circadian genes could be altered by feed deprivation in crucian carp muscle through the rhythms correlation analysis of the circadian genes and functional genes. Hence, food-anticipatory activity of fish could be adjusted through the food delivery restriction under a light⁻dark cycle. These results provide a potential application in promoting fish growth by adjusting feeding conditions and nutritional state.
Collapse
Affiliation(s)
- Ping Wu
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Lingsheng Bao
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Ruiyong Zhang
- Aquatic Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Yulong Li
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Li Liu
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Yuanan Wu
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Jianshe Zhang
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Zhigang He
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Wuying Chu
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
32
|
Wong DCS, O’Neill JS. Non-transcriptional processes in circadian rhythm generation. CURRENT OPINION IN PHYSIOLOGY 2018; 5:117-132. [PMID: 30596188 PMCID: PMC6302373 DOI: 10.1016/j.cophys.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
'Biological clocks' orchestrate mammalian biology to a daily rhythm. Whilst 'clock gene' transcriptional circuits impart rhythmic regulation to myriad cellular systems, our picture of the biochemical mechanisms that determine their circadian (∼24 hour) period is incomplete. Here we consider the evidence supporting different models for circadian rhythm generation in mammalian cells in light of evolutionary factors. We find it plausible that the circadian timekeeping mechanism in mammalian cells is primarily protein-based, signalling biological timing information to the nucleus by the post-translational regulation of transcription factor activity, with transcriptional feedback imparting robustness to the oscillation via hysteresis. We conclude by suggesting experiments that might distinguish this model from competing paradigms.
Collapse
|
33
|
von Allmen DC, Francey LJ, Rogers GM, Ruben MD, Cohen AP, Wu G, Schmidt RE, Ishman SL, Amin RS, Hogenesch JB, Smith DF. Circadian Dysregulation: The Next Frontier in Obstructive Sleep Apnea Research. Otolaryngol Head Neck Surg 2018; 159:948-955. [PMID: 30200807 DOI: 10.1177/0194599818797311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To review the effects of the circadian clock on homeostasis, the functional interaction between the circadian clock and hypoxia-inducible factors, and the role of circadian dysregulation in the progression of cardiopulmonary disease in obstructive sleep apnea (OSA). DATA SOURCES The MEDLINE database was accessed through PubMed. REVIEW METHODS A general review is presented on molecular pathways disrupted in OSA, circadian rhythms and the role of the circadian clock, hypoxia signaling, crosstalk between the circadian and hypoxia systems, the role of the circadian clock in cardiovascular disease, and implications for practice. Studies included in this State of the Art Review demonstrate the potential contribution of the circadian clock and hypoxia in animal models or human disease. CONCLUSIONS Molecular crosstalk between the circadian clock and hypoxia-inducible factors has not been evaluated in disease models of OSA. IMPLICATIONS FOR PRACTICE Pediatric OSA is highly prevalent and, if left untreated, may lead to cardiopulmonary sequelae. Changes in inflammatory markers that normally demonstrate circadian rhythmicity are also seen among patients with OSA. Hypoxia-inducible transcription factors interact with core circadian clock transcription factors; however, the interplay between these pathways has not been elucidated in the cardiopulmonary system. This gap in knowledge hinders our ability to identify potential biomarkers of OSA and develop alternative therapeutic strategies. A deeper understanding of the mechanisms by which OSA impinges on clock function and the impact of clock dysregulation on the cardiopulmonary system may lead to future advancements for the care of patients with OSA. The aim of this review is to shed light on this important clinical topic.
Collapse
Affiliation(s)
- Douglas C von Allmen
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lauren J Francey
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Garrett M Rogers
- 3 College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Marc D Ruben
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aliza P Cohen
- 4 Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gang Wu
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert E Schmidt
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stacey L Ishman
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- 4 Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- 5 Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raouf S Amin
- 5 Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- 6 Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - John B Hogenesch
- 2 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- 6 Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - David F Smith
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- 4 Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- 5 Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
Kim M, de la Peña JB, Cheong JH, Kim HJ. Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2. Biomol Ther (Seoul) 2018; 26:358-367. [PMID: 29223143 PMCID: PMC6029676 DOI: 10.4062/biomolther.2017.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - June Bryan de la Peña
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
35
|
Li Y, Yin A, Sun X, Zhang M, Zhang J, Wang P, Xie R, Li W, Fan Z, Zhu Y, Wang H, Dong H, Wu S, Xiong L. Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior. J Clin Invest 2017; 127:4270-4284. [PMID: 29058689 DOI: 10.1172/jci94455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children. Although an imbalance of excitatory and inhibitory inputs has been proposed as contributing to this disorder, the mechanisms underlying this highly heterogeneous disease remain largely unknown. Here, we show that N-myc downstream-regulated gene 2 (NDRG2) deficiency is involved in the development of ADHD in both mice and humans. Ndrg2-knockout (Ndrg2-/-) mice exhibited ADHD-like symptoms characterized by attention deficits, hyperactivity, impulsivity, and impaired memory. Furthermore, interstitial glutamate levels and excitatory transmission were markedly increased in the brains of Ndrg2-/- mice due to reduced astroglial glutamate clearance. We developed an NDRG2 peptide that rescued astroglial glutamate clearance and reduced excitatory glutamate transmission in NDRG2-deficient astrocytes. Additionally, NDRG2 peptide treatment rescued ADHD-like hyperactivity in the Ndrg2-/- mice, while routine methylphenidate treatment had no effect on hyperactivity in these animals. Finally, children who were heterozygous for rs1998848, a SNP in NDRG2, had a higher risk of ADHD than children who were homozygous for rs1998848. Our results indicate that NDRG2 deficiency leads to ADHD phenotypes and that impaired astroglial glutamate clearance, a mechanism distinct from the well-established dopamine deficit hypothesis for ADHD, underlies the resultant behavioral abnormalities.
Collapse
Affiliation(s)
- Yan Li
- 1, Department of Anesthesiology and Perioperative Medicine.,2, Institute of Neuroscience.,3, Department of Biochemistry and Molecular Biology, and
| | - Anqi Yin
- 1, Department of Anesthesiology and Perioperative Medicine
| | - Xin Sun
- 4, Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ming Zhang
- 1, Department of Anesthesiology and Perioperative Medicine.,5, General Hospital of Chengdu Military Command, Chengdu, Sichuan, China
| | - Jianfang Zhang
- 6, Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ping Wang
- 4, Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rougang Xie
- 1, Department of Anesthesiology and Perioperative Medicine.,2, Institute of Neuroscience
| | - Wen Li
- 1, Department of Anesthesiology and Perioperative Medicine
| | - Ze Fan
- 1, Department of Anesthesiology and Perioperative Medicine
| | | | - Han Wang
- 7, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Hailong Dong
- 1, Department of Anesthesiology and Perioperative Medicine
| | | | - Lize Xiong
- 1, Department of Anesthesiology and Perioperative Medicine
| |
Collapse
|
36
|
Ihara T, Mitsui T, Nakamura Y, Kanda M, Tsuchiya S, Kira S, Nakagomi H, Sawada N, Hirayama Y, Shibata K, Shigetomi E, Shinozaki Y, Yoshiyama M, Nakao A, Takeda M, Koizumi S. The Circadian expression of Piezo1
, TRPV4
, Connexin26
, and VNUT
, associated with the expression levels of the clock genes in mouse primary cultured urothelial cells. Neurourol Urodyn 2017; 37:942-951. [DOI: 10.1002/nau.23400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/06/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Tatsuya Ihara
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Takahiko Mitsui
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Yuki Nakamura
- Department of Immunology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Mie Kanda
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Sachiko Tsuchiya
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Satoru Kira
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Hiroshi Nakagomi
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Norifumi Sawada
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Yuri Hirayama
- Department of Neuropharmacology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Keisuke Shibata
- Department of Neuropharmacology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Yoichi Shinozaki
- Department of Neuropharmacology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Mitsuharu Yoshiyama
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Atsuhito Nakao
- Department of Immunology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Masayuki Takeda
- Department of Urology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology; Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| |
Collapse
|
37
|
Abstract
Circadian rhythms are a critical part of the body's homeostatic mechanisms. These rhythms repeat with a cycle-length of approximately 24 h and are generated by a transcriptional-translational feedback loop. These rhythms are critical for proper behavioral, physiological, and molecular functions. CHRONO, a novel circadian clock gene, forms a complex with other clock proteins and modulates the circadian machinery. CHRONO also interacts with histone deacetylase (HDAC) to modulate the epigenetic status of the transcriptional regulation. Chrono knockout mice display a longer period of circadian behavior and an elevated stress response. This paper reviews the molecular function of CHRONO with a focus on epigenetic regulation and speculates on the possible function of CHRONO in physiological processes. Key messages Chrono is a circadian clock gene whose transcription exhibits a robust circadian oscillation. CHRONO is a repressor of circadian transcriptional/translational feedback loops. CHRONO may function to link epigenetic control mechanisms to stress responses.
Collapse
Affiliation(s)
| | - Toru Takumi
- a RIKEN Brain Science Institute , Wako , Saitama , Japan
| |
Collapse
|
38
|
Abstract
Circadian oscillators found across a variety of species are subject to periodic external light-dark forcing. Entrainment to light-dark cycles enables the circadian system to align biological functions with appropriate times of day or night. Phase response curves (PRCs) have been used for decades to gain valuable insights into entrainment; however, PRCs may not accurately describe entrainment to photoperiods with substantial amounts of both light and dark due to their reliance on a single limit cycle attractor. We have developed a new tool, called an entrainment map, that overcomes this limitation of PRCs and can assess whether, and at what phase, a circadian oscillator entrains to external forcing with any photoperiod. This is a 1-dimensional map that we construct for 3 different mathematical models of circadian clocks. Using the map, we are able to determine conditions for existence and stability of phase-locked solutions. In addition, we consider the dependence on various parameters such as the photoperiod and intensity of the external light as well as the mismatch in intrinsic oscillator frequency with the light-dark cycle. We show that the entrainment map yields more accurate predictions for phase locking than methods based on the PRC. The map is also ideally suited to calculate the amount of time required to achieve entrainment as a function of initial conditions and the bifurcations of stable and unstable periodic solutions that lead to loss of entrainment.
Collapse
Affiliation(s)
- Casey O. Diekman
- Department of Mathematical Sciences, New Jersey Institute of
Technology, Newark, New Jersey
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of
Technology, Newark, New Jersey
| |
Collapse
|
39
|
Ihara T, Mitsui T, Nakamura Y, Kira S, Miyamoto T, Nakagomi H, Sawada N, Hirayama Y, Shibata K, Shigetomi E, Shinozaki Y, Yoshiyama M, Andersson KE, Nakao A, Takeda M, Koizumi S. The Clock
mutant mouse is a novel experimental model for nocturia and nocturnal polyuria. Neurourol Urodyn 2016; 36:1034-1038. [DOI: 10.1002/nau.23062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Tatsuya Ihara
- Department of Urology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Yuki Nakamura
- Department of Immunology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Satoru Kira
- Department of Urology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Tatsuya Miyamoto
- Department of Urology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Hiroshi Nakagomi
- Department of Urology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Yoichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Mitsuharu Yoshiyama
- Department of Urology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University; Winston Salem North Carolina
| | - Atsuhito Nakao
- Department of Immunology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine; University of Yamanashi; Chuo Yamanashi Japan
| |
Collapse
|
40
|
Day and night variations in the repair of ionizing-radiation-induced DNA damage in mouse splenocytes. DNA Repair (Amst) 2015; 28:37-47. [DOI: 10.1016/j.dnarep.2015.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 12/27/2022]
|
41
|
HERICHOVÁ I, AMBRUŠOVÁ J, MOLČAN Ľ, VESELÁ A, SVITOK P, ZEMAN M. Different Effects of Phase Advance and Delay in Rotating Light-Dark Regimens on Clock and Natriuretic Peptide Gene Expression in the Rat Heart. Physiol Res 2014; 63:S573-84. [DOI: 10.33549/physiolres.932937] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Under physiological conditions the mammalian circadian system is synchronized to a cyclic environment. The central oscillator in the suprachiasmatic nuclei (SCN) responds predominantly to an external light (L) dark (D) cycle. Peripheral oscillators are more efficiently synchronized by metabolic cues. When the circadian system is exposed to opposing synchronizing cues, peripheral oscillators uncouple from the SCN. To consider influence of phase advances and delays in light regimens mimicking shift work, we analyzed the expression of clock genes (per2, bmal1) and natriuretic peptides (anp, bnp) in the heart of male rats. Experimental groups were exposed to a rotating LD regimen with either 8 h phase advance or delay for 11 weeks. Samples were taken for a 24 h cycle in 4 h intervals. Peripheral oscillators responded to rotating phase advance by decreasing rhythm robustness, while phase delay mostly influenced the phase angle between the acrophase of rhythmic gene expression and the external LD cycle. The expression of anp was arrhythmic in the heart of control rats and was not influenced by rotating LD regimens. The expression of bnp showed a daily rhythm with a nadir during the active phase. The daily rhythm in bnp expression diminished under rotating LD regimen conditions.
Collapse
Affiliation(s)
- I. HERICHOVÁ
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
42
|
Razzoli M, Karsten C, Yoder JM, Bartolomucci A, Engeland WC. Chronic subordination stress phase advances adrenal and anterior pituitary clock gene rhythms. Am J Physiol Regul Integr Comp Physiol 2014; 307:R198-205. [PMID: 24829500 PMCID: PMC4101617 DOI: 10.1152/ajpregu.00101.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/11/2014] [Indexed: 12/24/2022]
Abstract
Circadian rhythms in glucocorticoids are the product of interactions between the hypothalamic-pituitary-adrenal (HPA) axis and the mammalian clock gene system. The adrenal clock can generate the glucocorticoid rhythm that in turn synchronizes other peripheral clocks to maintain homeostasis. Stress acutely activates and chronically upregulates the HPA axis, suggesting that the adrenal clock could be modulated by stress. However, there is no direct evidence that stress affects the adrenal clock rhythm. We tested the hypothesis that a model of chronic subordination stress (CSS) that has a major impact on HPA axis regulation, metabolism, and emotional behavior alters adrenal and pituitary clock gene rhythms. Clock gene rhythms were assessed using mPER2::Luciferase (PER2Luc) knockin mice in which in vitro bioluminescence rhythms reflect the Per2 clock gene expression. PER2Luc mice that experienced CSS for 2 wk showed positive energy balance reflected by increased body weight and food intake. Additionally, CSS phase advanced the adrenal (∼2 h) and the pituitary (∼1 h) PER2Luc rhythm compared with control mice. The activity rhythm was not affected. The adrenal clock phase shift was associated with increased feed conversion efficiency, suggesting that the metabolic phenotype in CSS mice may be related to altered adrenal clock rhythmicity. Interestingly, a single subordination experience followed by 8 h sensory housing also phase advanced the adrenal, but not the pituitary, PER2Luc rhythm. Overall, these data demonstrate a stress-induced phase shift in a peripheral clock gene rhythm and differential stress sensitivity of two peripheral clocks within the HPA axis, suggesting a link between clock desynchrony and individual vulnerability to stress.
Collapse
Affiliation(s)
- Maria Razzoli
- Departments of Integrative Biology and Physiology and
| | - Carley Karsten
- Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - J Marina Yoder
- Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
43
|
Functional development of the circadian clock in the zebrafish pineal gland. BIOMED RESEARCH INTERNATIONAL 2014; 2014:235781. [PMID: 24839600 PMCID: PMC4009245 DOI: 10.1155/2014/235781] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/13/2014] [Indexed: 11/17/2022]
Abstract
The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model.
Collapse
|
44
|
Nakamura Y, Nakano N, Ishimaru K, Hara M, Ikegami T, Tahara Y, Katoh R, Ogawa H, Okumura K, Shibata S, Nishiyama C, Nakao A. Circadian regulation of allergic reactions by the mast cell clock in mice. J Allergy Clin Immunol 2013; 133:568-75. [PMID: 24060274 DOI: 10.1016/j.jaci.2013.07.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND It remains elusive how allergic symptoms exhibit prominent 24-hour variations. In mammals the circadian clocks present in nearly all cells, including mast cells, drive the daily rhythms of physiology. Recently, we have shown that the circadian clocks drive the daily rhythms in IgE/mast cell-mediated allergic reactions. However, the precise mechanisms, particularly the specific roles of the mast cell-intrinsic clockwork in temporal regulation, remain unclear. OBJECTIVE We determined whether the mast cell clockwork contributes to the temporal regulation of IgE/mast cell-mediated allergic reaction. METHODS The kinetics of a time of day-dependent variation in passive cutaneous anaphylactic reactions were compared between mast cell-deficient mice reconstituted with bone marrow-derived cultured mast cells generated from mice with a wild-type allele and a dominant negative type mutation of the key clock gene Clock. We also examined the temporal responses of wild-type and Clock-mutated bone marrow-derived cultured mast cells to IgE stimulation in vitro. Furthermore, factors influencing the mast cell clockwork were determined by using in vivo imaging. RESULTS The Clock mutation in mast cells resulted in the absence of temporal variations in IgE-mediated degranulation in mast cells both in vivo and in vitro associated with the loss of temporal regulation of FcεRI expression and signaling. Additionally, adrenalectomy abolished the mast cell clockwork in vivo. CONCLUSION The mast cell-intrinsic clockwork, entrained by humoral factors from the adrenal gland, primarily contributes to the temporal regulation of IgE/mast cell-mediated allergic reactions. Our results reveal a novel regulatory mechanism for IgE-mediated mast cell responses that might underlie the circadian pathophysiology in patients with allergic diseases.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nobuhiro Nakano
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Kayoko Ishimaru
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Mutsuko Hara
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Takako Ikegami
- Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yu Tahara
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryohei Katoh
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hideoki Ogawa
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigenobu Shibata
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Chiharu Nishiyama
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan; Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
45
|
Erzberger A, Hampp G, Granada AE, Albrecht U, Herzel H. Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range. J R Soc Interface 2013; 10:20130221. [PMID: 23676895 DOI: 10.1098/rsif.2013.0221] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light-dark cycle. Vertebrates possess multiple, functionally overlapping homologues of the core clock genes. Furthermore, vertebrate clocks entrain to a range of periods three times as narrow as that of other organisms. We asked whether genetic redundancies play a role in governing entrainment properties and analysed locomotor activity rhythms of genetically modified mice lacking one set of clock homologues. Exposing them to non-24 h light-dark cycles, we found that the mutant mice have a wider entrainment range than the wild types. Spectral analysis furthermore revealed nonlinear phenomena of periodically forced self-sustained oscillators for which the entrainment range relates inversely to oscillator amplitude. Using the forced oscillator model to explain the observed differences in entrainment range between mutant and wild-type mice, we sought to quantify the overall oscillator amplitude of their clocks from the activity rhythms and found that mutant mice have weaker circadian clocks than wild types. Our results suggest that genetic redundancy strengthens the circadian clock leading to a narrow entrainment range in vertebrates.
Collapse
Affiliation(s)
- A Erzberger
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
| | | | | | | | | |
Collapse
|
46
|
Shi SQ, Ansari T, McGuinness OP, Wasserman DH, Johnson CH. Circadian disruption leads to insulin resistance and obesity. Curr Biol 2013; 23:372-81. [PMID: 23434278 PMCID: PMC3595381 DOI: 10.1016/j.cub.2013.01.048] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/11/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Disruption of circadian (daily) timekeeping enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. While clinical observations have suggested that insulin action is not constant throughout the 24 hr cycle, its magnitude and periodicity have not been assessed. Moreover, when circadian rhythmicity is absent or severely disrupted, it is not known whether insulin action will lock to the peak, nadir, or mean of the normal periodicity of insulin action. RESULTS We used hyperinsulinemic-euglycemic clamps to show a bona fide circadian rhythm of insulin action; mice are most resistant to insulin during their daily phase of relative inactivity. Moreover, clock-disrupted Bmal1-knockout mice are locked into the trough of insulin action and lack rhythmicity in insulin action and activity patterns. When rhythmicity is rescued in the Bmal1-knockout mice by expression of the paralogous gene Bmal2, insulin action and activity patterns are restored. When challenged with a high-fat diet, arhythmic mice (either Bmal1-knockout mice or wild-type mice made arhythmic by exposure to constant light) were obese prone. Adipose tissue explants obtained from high-fat-fed mice have their own periodicity that was longer than animals on a chow diet. CONCLUSIONS This study provides rigorous documentation for a circadian rhythm of insulin action and demonstrates that disturbing the natural rhythmicity of insulin action will disrupt the rhythmic internal environment of insulin sensitive tissue, thereby predisposing the animals to insulin resistance and obesity.
Collapse
Affiliation(s)
- Shu-qun Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 USA
| | - Tasneem Ansari
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235 USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235 USA
| | - David H. Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235 USA
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
47
|
Olmedo M, O’Neill JS, Edgar RS, Valekunja UK, Reddy AB, Merrow M. Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2012; 109:20479-84. [PMID: 23185015 PMCID: PMC3528576 DOI: 10.1073/pnas.1211705109] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circadian clocks provide a temporal structure to processes from gene expression to behavior in organisms from all phyla. Most clocks are synchronized to the environment by alternations of light and dark. However, many organisms experience only muted daily environmental cycles due to their lightless spatial niches (e.g., caves or soil). This has led to speculation that they may dispense with the daily clock. However, recent reports contradict this notion, showing various behavioral and molecular rhythms in Caenorhabditis elegans and in blind cave fish. Based on the ecology of nematodes, we applied low-amplitude temperature cycles to synchronize populations of animals through development. This entrainment regime reveals rhythms on multiple levels: in olfactory cued behavior, in RNA and protein abundance, and in the oxidation state of a broadly conserved peroxiredoxin protein. Our work links the nematode clock with that of other clock model systems; it also emphasizes the importance of daily rhythms in sensory functions that are likely to impact on organism fitness and population structure.
Collapse
Affiliation(s)
- Maria Olmedo
- Department of Molecular Chronobiology, Faculty of Mathematics and Natural Science, University of Groningen, 9474 AG Groningen, The Netherlands
- Institute of Medical Psychology, Medical Faculty, Ludwig-Maximilians-Universität-München, 80336 Munich, Germany; and
| | - John S. O’Neill
- Department of Clinical Neuroscience, Institute of Metabolic Science, National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Rachel S. Edgar
- Department of Clinical Neuroscience, Institute of Metabolic Science, National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Utham K. Valekunja
- Department of Clinical Neuroscience, Institute of Metabolic Science, National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Akhilesh B. Reddy
- Department of Clinical Neuroscience, Institute of Metabolic Science, National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Martha Merrow
- Department of Molecular Chronobiology, Faculty of Mathematics and Natural Science, University of Groningen, 9474 AG Groningen, The Netherlands
- Institute of Medical Psychology, Medical Faculty, Ludwig-Maximilians-Universität-München, 80336 Munich, Germany; and
| |
Collapse
|
48
|
Gómez-Abellán P, Díez-Noguera A, Madrid JA, Luján JA, Ordovás JM, Garaulet M. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures. PLoS One 2012; 7:e50435. [PMID: 23251369 PMCID: PMC3519463 DOI: 10.1371/journal.pone.0050435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/22/2012] [Indexed: 11/23/2022] Open
Abstract
AIMS to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. SUBJECTS AND METHODS VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2)) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. RESULTS CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. CONCLUSIONS 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.
Collapse
Affiliation(s)
| | - Antoni Díez-Noguera
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Juan A. Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Juan A. Luján
- General Surgery Service, University Hospital “Virgen de la Arrixaca”, Murcia, Spain
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, at Tufts University, Boston, Massachusetts, United States of America
- Department of Epidemiology, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA-FOOD), Madrid, Spain
| | - Marta Garaulet
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
49
|
Takasu NN, Kurosawa G, Tokuda IT, Mochizuki A, Todo T, Nakamura W. Circadian regulation of food-anticipatory activity in molecular clock-deficient mice. PLoS One 2012; 7:e48892. [PMID: 23145013 PMCID: PMC3492221 DOI: 10.1371/journal.pone.0048892] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/03/2012] [Indexed: 12/13/2022] Open
Abstract
In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/-) mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/-) mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/-) mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.
Collapse
Affiliation(s)
- Nana N. Takasu
- Laboratory of Oral Chronobiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Gen Kurosawa
- Theoretical Biology Laboratory, RIKEN Advanced Science Institute, Wako, Japan
| | - Isao T. Tokuda
- Department of Micro System Technology, Ritsumeikan University, Shiga, Japan
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN Advanced Science Institute, Wako, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Wataru Nakamura
- Laboratory of Oral Chronobiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
50
|
van der Veen DR, Shao J, Xi Y, Li L, Duffield GE. Cardiac atrial circadian rhythms in PERIOD2::LUCIFERASE and per1:luc mice: amplitude and phase responses to glucocorticoid signaling and medium treatment. PLoS One 2012; 7:e47692. [PMID: 23110090 PMCID: PMC3479129 DOI: 10.1371/journal.pone.0047692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022] Open
Abstract
Circadian rhythms in cardiac function are apparent in e.g., blood pressure, heart rate, and acute adverse cardiac events. A circadian clock in heart tissue has been identified, but entrainment pathways of this clock are still unclear. We cultured tissues of mice carrying bioluminescence reporters of the core clock genes, period 1 or 2 (per1luc or PER2LUC) and compared in vitro responses of atrium to treatment with medium and a synthetic glucocorticoid (dexamethasone [DEX]) to that of the suprachiasmatic nucleus (SCN) and liver. We observed that PER2LUC, but not per1luc is rhythmic in atrial tissue, while both per1luc and PER2LUC exhibit rhythmicity in other cultured tissues. In contrast to the SCN and liver, both per1luc and PER2LUC bioluminescence amplitudes were increased in response to DEX treatment, and the PER2LUC amplitude response was dependent on the time of treatment. Large phase-shift responses to both medium and DEX treatments were observed in the atrium, and phase responses to medium treatment were not attributed to serum content but the treatment procedure itself. The phase-response curves of atrium to both DEX and medium treatments were found to be different to the liver. Moreover, the time of day of the culturing procedure itself influenced the phase of the circadian clock in each of the cultured tissues, but the magnitude of this response was uniquely large in atrial tissue. The current data describe novel entrainment signals for the atrial circadian clock and specifically highlight entrainment by mechanical treatment, an intriguing observation considering the mechanical nature of cardiac tissue.
Collapse
Affiliation(s)
- Daan R. van der Veen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Jinping Shao
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Physiology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Yang Xi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Physiology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Physiology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Giles E. Duffield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|