1
|
Zhuang Y, Zhang Y, Liu C, Zhong Y. Interplay Between the Circadian Clock and Sirtuins. Int J Mol Sci 2024; 25:11469. [PMID: 39519022 PMCID: PMC11545976 DOI: 10.3390/ijms252111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock is an autonomous timekeeping system evolved by organisms to adapt to external changes, regulating a variety of important physiological and behavioral processes. Recent studies have shown that the sirtuin family of histone deacetylases is involved in regulating the expression of clock genes and plays an important role in maintaining the normal rhythm of clock gene expression and behavior. Moreover, sirtuins are regulated directly or indirectly by the circadian clock system. The mutual regulation between the circadian clock and sirtuins is likely involved in a variety of signal transduction and metabolism processes. In this review, we discuss the molecular mechanisms and research progress on the intertwined relationship between the circadian clock and sirtuins, mainly in mammals, highlighting sirtuins as molecular links between metabolic control and circadian rhythms and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Yan Zhuang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yantong Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chao Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yingbin Zhong
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Masuda S, Kurabayashi N, Nunokawa R, Otobe Y, Kozuka-Hata H, Oyama M, Shibata Y, Inoue JI, Koebis M, Aiba A, Yoshitane H, Fukada Y. TRAF7 determines circadian period through ubiquitination and degradation of DBP. Commun Biol 2024; 7:1280. [PMID: 39379486 PMCID: PMC11461874 DOI: 10.1038/s42003-024-07002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
D-site binding protein, DBP, is a clock-controlled transcription factor and drives daily rhythms of physiological processes through the regulation of an array of genes harboring a DNA binding motif, D-box. DBP protein levels show a circadian oscillation with an extremely robust peak/trough ratio, but it is elusive how the temporal pattern is regulated by post-translational regulation. In this study, we show that DBP protein levels are down-regulated by the ubiquitin-proteasome pathway. Analysis using 19 dominant-negative forms of E2 enzymes have revealed that UBE2G1 and UBE2T mediate the degradation of DBP. A proteomic analysis of DBP-interacting proteins and database screening have identified Tumor necrosis factor Receptor-Associated Factor 7 (TRAF7), a RING-type E3 ligase, that forms a complex with UBE2G1 and/or UBE2T. Ubiquitination analysis have revealed that TRAF7 enhances K48-linked polyubiquitination of DBP in cultured cells. Overexpression of TRAF7 down-regulates DBP protein level, while knockdown of TRAF7 up-regulates DBP in cultured cells. Knockout of TRAF7 in NIH3T3 cells have revealed that TRAF7 mediates the time-of-the-day-dependent regulation of DBP levels. Furthermore, TRAF7 has a period-shortening effect on the cellular clock. Together, TRAF7 plays an important role in circadian clock oscillation through destabilization of DBP.
Collapse
Affiliation(s)
- Shusaku Masuda
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Kurabayashi
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Rina Nunokawa
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Otobe
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuri Shibata
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Taguchi A, Ohta Y, Nagao Y, Tanizawa Y. The roles of output clock genes in regulating glucose metabolism. J Diabetes Investig 2024. [PMID: 39363587 DOI: 10.1111/jdi.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 10/05/2024] Open
Affiliation(s)
- Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yasuharu Ohta
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuko Nagao
- Health Science Center, Yamaguchi University, Yamaguchi, Japan
| | | |
Collapse
|
4
|
Wei J, Wang Y, Tu S, Zhang S, Feng Y, Hou Y, Ai H, Chen Z. Circadian rhythm disruption upregulating Per1 in mandibular condylar chondrocytes mediating temporomandibular joint osteoarthritis via GSK3β/β-CATENIN pathway. J Transl Med 2024; 22:662. [PMID: 39010104 PMCID: PMC11251328 DOI: 10.1186/s12967-024-05475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJOA) has a high incidence rate, but its pathogenesis remains unclear. Circadian rhythm is an important oscillation in the human body and influences various biological activities. However, it is still unclear whether circadian rhythm affects the onset and development of TMJOA. METHODS We disrupted the normal rhythm of rats and examined the expression of core clock genes in the mandibular condylar cartilage of the jaw and histological changes in condyles. After isolating rat mandibular condylar chondrocytes, we upregulated or downregulated the clock gene Per1, examined the expression of cartilage matrix-degrading enzymes, tested the activation of the GSK3β/β-CATENIN pathway and verified it using agonists and inhibitors. Finally, after downregulating the expression of Per1 in the mandibular condylar cartilage of rats with jet lag, we examined the expression of cartilage matrix-degrading enzymes and histological changes in condyles. RESULTS Jet lag led to TMJOA-like lesions in the rat mandibular condyles, and the expression of the clock gene Per1 and cartilage matrix-degrading enzymes increased in the condylar cartilage of rats. When Per1 was downregulated or upregulated in mandibular condylar chondrocytes, the GSK3β/β-CATENIN pathway was inhibited or activated, and the expression of cartilage matrix-degrading enzymes decreased or increased, which can be rescued by activator and inhibitor of the GSK3β/β-CATENIN pathway. Moreover, after down-regulation of Per1 in mandibular condylar cartilage in vivo, significant alleviation of cartilage degradation, cartilage loss, subchondral bone loss induced by jet lag, and inhibition of the GSK3β/β-CATENIN signaling pathway were observed. Circadian rhythm disruption can lead to TMJOA. The clock gene Per1 can promote the occurrence of TMJOA by activating the GSK3β/β-CATENIN pathway and promoting the expression of cartilage matrix-degrading enzymes. The clock gene Per1 is a target for the prevention and treatment of TMJOA.
Collapse
Affiliation(s)
- Jiaming Wei
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Yuxuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
- Department of Stomatology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shaoqin Tu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Sai Zhang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Yi Feng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Yuluan Hou
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China.
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 500630, China.
| |
Collapse
|
5
|
Zhang X, Jie Y. Importance of Circadian Rhythms in the Ocular Surface. Biomolecules 2024; 14:796. [PMID: 39062510 PMCID: PMC11274730 DOI: 10.3390/biom14070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature throughout the organism. Accumulating evidence suggests that the dysfunction of circadian rhythms due to genetic mutations or environmental factors contributes to the genesis and progress of multiple diseases. The physiological homeostasis of the ocular surface, like any other tissue or organ, is also orchestrated by circadian rhythms. In this review, we summarize the molecular clocks and the expression of clock-controlled genes in the mammalian ocular surface. Based on the circadian expression of these genes, we conclude the diurnal oscillations of cellular biological activities in the mammalian ocular surface. Moreover, we evaluate the factors entraining circadian oscillators in the ocular surface. Finally, we further discuss the latest development of the close correlation between circadian rhythms and ocular health. Briefly, this review aimed to synthesize the previous studies to aid in understanding the importance of circadian rhythms in the ocular surface and the possible opportunities for circadian rhythm-based interventional strategies to restore the homeostasis of the ocular surface.
Collapse
Affiliation(s)
| | - Ying Jie
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing 100730, China;
| |
Collapse
|
6
|
Chen S, Lei M, Liu K, Min J. Structural basis for specific DNA sequence recognition by the transcription factor NFIL3. J Biol Chem 2024; 300:105776. [PMID: 38382670 PMCID: PMC10941009 DOI: 10.1016/j.jbc.2024.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The CCAAT/enhancer-binding proteins (C/EBPs) constitute a family of pivotal transcription factors involved in tissue development, cellular function, proliferation, and differentiation. NFIL3, as one of them, plays an important role in regulating immune cell differentiation, circadian clock system, and neural regeneration, yet its specific DNA recognition mechanism remains enigmatic. In this study, we showed by the ITC binding experiments that NFIL3 prefers to bind to the TTACGTAA DNA motif. Our structural studies revealed that the α-helical NFIL3 bZIP domain dimerizes through its leucine zipper region, and binds to DNA via its basic region. The two basic regions of the NFIL3 bZIP dimer were pushed apart upon binding to DNA, facilitating the snug accommodation of the two basic regions within the major grooves of the DNA. Remarkably, our binding and structural data also revealed that both NFIL3 and C/EBPα/β demonstrate a shared preference for the TTACGTAA sequence. Furthermore, our study revealed that disease-associated mutations within the NFIL3 bZIP domain result in either reduction or complete disruption of its DNA binding ability. These discoveries not only provide valuable insights into the DNA binding mechanisms of NFIL3 but also elucidate the causal role of NFIL3 mutations in disease pathogenesis.
Collapse
Affiliation(s)
- Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China.
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China.
| |
Collapse
|
7
|
Fernández-Martínez J, Ramírez-Casas Y, Yang Y, Aranda-Martínez P, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. From Chronodisruption to Sarcopenia: The Therapeutic Potential of Melatonin. Biomolecules 2023; 13:1779. [PMID: 38136651 PMCID: PMC10741491 DOI: 10.3390/biom13121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Sarcopenia is an age-related condition that involves a progressive decline in muscle mass and function, leading to increased risk of falls, frailty, and mortality. Although the exact mechanisms are not fully understood, aging-related processes like inflammation, oxidative stress, reduced mitochondrial capacity, and cell apoptosis contribute to this decline. Disruption of the circadian system with age may initiate these pathways in skeletal muscle, preceding the onset of sarcopenia. At present, there is no pharmacological treatment for sarcopenia, only resistance exercise and proper nutrition may delay its onset. Melatonin, derived from tryptophan, emerges as an exceptional candidate for treating sarcopenia due to its chronobiotic, antioxidant, and anti-inflammatory properties. Its impact on mitochondria and organelle, where it is synthesized and crucial in aging skeletal muscle, further highlights its potential. In this review, we discuss the influence of clock genes in muscular aging, with special reference to peripheral clock genes in the skeletal muscle, as well as their relationship with melatonin, which is proposed as a potential therapy against sarcopenia.
Collapse
Affiliation(s)
- José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China;
| | - Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
8
|
Wei JM, Tu SQ, Wang YX, Zhang S, Feng Y, Ai H, Chen Z. Clock gene Per1 regulates rat temporomandibular osteoarthritis through NF-κB pathway: an in vitro and in vivo study. J Orthop Surg Res 2023; 18:817. [PMID: 37907921 PMCID: PMC10619284 DOI: 10.1186/s13018-023-04301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
PURPOSE Temporomandibular joint osteoarthritis (TMJOA) is a common disease that negatively affects the life quality of human beings. Circadian rhythm acts an important role in life activities. However, whether the clock genes are rhythmic expressed in mandibular condylar chondrocytes, or the clock genes have an effect on the progression of TMJOA remains unknown. In this study, we aim to explore expression of clock genes and regulatory mechanism of TMJOA in rat mandibular condylar chondrocytes. METHODS After synchronized by dexamethasone, the expression of core clock genes Per1, Per2, Clock, Cry1, Cry2 and Bmal1 and cartilage matrix degrading factor gene Mmp13 were analyzed in mandibular condylar chondrocytes every 4 h with RT-qPCR. The mandibular condylar chondrocytes were stimulated with IL-1β, and expression of Per1, Mmp13, P65 and p-P65 was assessed by RT-qPCR and Western blot. Sh-Per1 lentivirus was used to assess the effect of clock gene Per1 in IL-1β-induced chondrocytes, and expression of Mmp13, P65 and p-P65 was measured. After establishing a rat TMJOA model using unilateral anterior crossbite (UAC), micro-CT, H & E, Alcian Blue & Nuclear Fast Red and Safranin O & Fast Green, cartilage thickness was utilized to assess the damage of cartilage and subchondral bone. Immunohistochemistry of PER1, MMP13 and P65 was performed in condylar sections. RESULTS All core clock genes and Mmp13 were rhythmically expressed. And Mmp13 expression curve was closed in phase and amplitude with Per1. After stimulation with IL-1β, the expression of MMP13, PER1 and P65 and ratio of p-P65/P65 increased in condylar chondrocytes. After Per1 was down-regulated in condylar chondrocytes, the expression of MMP13 and P65 and ratio of p-P65/P65 decreased. Compared with the condyles of Sham group, the bony parameters of UAC group were significantly worse. The thickness of cartilage in UAC group significantly reduced. The modified Mankin scores and the expression of PER1, MMP13 and P65 in cartilage of UAC group significantly increased compared with Sham group. CONCLUSION Core clock genes and Mmp13 are rhythmic expressed in rat mandibular condylar chondrocytes. PER1 can regulate the expression of MMP13 through NF-κB pathway in IL-1β-induced mandibular condylar chondrocytes.
Collapse
Affiliation(s)
- Jia-Ming Wei
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Shao-Qin Tu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Yu-Xuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Sai Zhang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Yi Feng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
9
|
Zhu WZ, He QY, Feng DC, Wei Q, Yang L. Circadian rhythm in prostate cancer: time to take notice of the clock. Asian J Androl 2023; 25:184-191. [PMID: 36073562 PMCID: PMC10069698 DOI: 10.4103/aja202255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The circadian clock is an evolutionary molecular product that is associated with better adaptation to changes in the external environment. Disruption of the circadian rhythm plays a critical role in tumorigenesis of many kinds of cancers, including prostate cancer (PCa). Integrating circadian rhythm into PCa research not only brings a closer understanding of the mechanisms of PCa but also provides new and effective options for the precise treatment of patients with PCa. This review begins with patterns of the circadian clock, highlights the role of the disruption of circadian rhythms in PCa at the epidemiological and molecular levels, and discusses possible new approaches to PCa therapy that target the circadian clock.
Collapse
Affiliation(s)
- Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Ying He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37:704-725. [PMID: 35018802 PMCID: PMC9587799 DOI: 10.1089/ars.2021.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
Abstract
Melatonin has not only to be seen as a regulator of circadian clocks. In addition to its chronobiotic functions, it displays other actions, especially in cell protection. This includes antioxidant, anti-inflammatory, and mitochondria-protecting effects. Although protection is also modulated by the circadian system, the respective actions of melatonin can be distinguished and differ with regard to dose requirements in therapeutic settings. It is the aim of this article to outline these differences in terms of function, signaling, and dosage. Focus has been placed on both the nexus and the dissecting properties between circadian and noncircadian mechanisms. This has to consider details beyond the classic view of melatonin's role, such as widespread synthesis in extrapineal tissues, formation in mitochondria, effects on the mitochondrial permeability transition pore, and secondary signaling, for example, via upregulation of sirtuins and by regulating noncoding RNAs, especially microRNAs. The relevance of these findings, the differences and connections between circadian and noncircadian functions of melatonin shed light on the regulation of inflammation, including macrophage/microglia polarization, damage-associated molecular patterns, avoidance of cytokine storms, and mitochondrial functions, with numerous consequences to antioxidative protection, that is, aspects of high actuality with regard to deadly viral and bacterial diseases. Antioxid. Redox Signal. 37, 704-725.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
11
|
Li T, Bai Y, Jiang Y, Jiang K, Tian Y, Gu J, Sun F. The potential impacts of circadian rhythm disturbances on male fertility. Front Endocrinol (Lausanne) 2022; 13:1001316. [PMID: 36277693 PMCID: PMC9582279 DOI: 10.3389/fendo.2022.1001316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
A circadian rhythm is an internalized timing system that synchronizes the cellular, behavioral, and physiological processes of organisms to the Earth's rotation. Because all physiological activities occur at a specific time, circadian rhythm disturbances can lead to various pathological disorders and diseases. Growing evidence has shown that the circadian clock is tightly connected to male fertility, and circadian perturbations contribute to infertility. The night shiftwork, insufficient sleep, and poor sleep quality are common causes of circadian disturbances, and many studies have reported that they impair sperm quality and increase the risk of male infertility. However, research on the impacts of light, body temperature, and circadian/circannual rhythms is relatively lacking, although some correlations have been demonstrated. Moreover, as the index of sperm quality was diverse and study designs were non-uniform, the conclusions were temporarily inconsistent and underlying mechanisms remain unclear. A better understanding of whether and how circadian disturbances regulate male fertility will be meaningful, as more scientific work schedules and rational lifestyles might help improve infertility.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ye Tian
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiang Gu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Fa Sun, ; Jiang Gu,
| | - Fa Sun
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Fa Sun, ; Jiang Gu,
| |
Collapse
|
12
|
Wang XL, Li L. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Front Cell Infect Microbiol 2021; 11:696554. [PMID: 34595127 PMCID: PMC8476957 DOI: 10.3389/fcimb.2021.696554] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The circadian clock regulates numerous key physiological processes and maintains cellular, tissue, and systemic homeostasis. Disruption of circadian clock machinery influences key activities involved in immune response and brain function. Moreover, Immune activation has been closely linked to neurodegeneration. Here, we review the molecular clock machinery and the diurnal variation of immune activity. We summarize the circadian control of immunity in both central and peripheral immune cells, as well as the circadian regulation of brain cells that are implicated in neurodegeneration. We explore the important role of systemic inflammation on neurodegeneration. The circadian clock modulates cellular metabolism, which could be a mechanism underlying circadian control. We also discuss the circadian interventions implicated in inflammation and neurodegeneration. Targeting circadian clocks could be a potential strategy for the prevention and treatment of inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Bertile F, Plumel M, Maes P, Hirschler A, Challet E. Daytime Restricted Feeding Affects Day-Night Variations in Mouse Cerebellar Proteome. Front Mol Neurosci 2021; 14:613161. [PMID: 33912010 PMCID: PMC8072461 DOI: 10.3389/fnmol.2021.613161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The cerebellum harbors a circadian clock that can be shifted by scheduled mealtime and participates in behavioral anticipation of food access. Large-scale two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry was used to identify day–night variations in the cerebellar proteome of mice fed either during daytime or nighttime. Experimental conditions led to modified expression of 89 cerebellar proteins contained in 63 protein spots. Five and 33 spots were changed respectively by time-of-day or feeding conditions. Strikingly, several proteins of the heat-shock protein family (i.e., Hsp90aa1, 90ab1, 90b1, and Hspa2, 4, 5, 8, 9) were down-regulated in the cerebellum of daytime food-restricted mice. This was also the case for brain fatty acid protein (Fabp7) and enzymes involved in oxidative phosphorylation (Ndufs1) or folate metabolism (Aldh1l1). In contrast, aldolase C (Aldoc or zebrin II) and pyruvate carboxylase (Pc), two enzymes involved in carbohydrate metabolism, and vesicle-fusing ATPase (Nsf) were up-regulated during daytime restricted feeding, possibly reflecting increased neuronal activity. Significant feeding × time-of-day interactions were found for changes in the intensity of 20 spots. Guanine nucleotide-binding protein G(o) subunit alpha (Gnao1) was more expressed in the cerebellum before food access. Neuronal calcium-sensor proteins [i.e., parvalbumin (Pvalb) and visinin-like protein 1 (Vsnl1)] were inversely regulated in daytime food-restricted mice, compared to control mice fed at night. Furthermore, expression of three enzymes modulating the circadian clockwork, namely heterogeneous nuclear ribonucleoprotein K (Hnrnpk), serine/threonine-protein phosphatases 1 (Ppp1cc and Ppp1cb subunits) and 5 (Ppp5), was differentially altered by daytime restricted feeding. Besides cerebellar proteins affected only by feeding conditions or daily cues, specific changes in in protein abundance before food access may be related to behavioral anticipation of food access and/or feeding-induced shift of the cerebellar clockwork.
Collapse
Affiliation(s)
- Fabrice Bertile
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Marine Plumel
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Pauline Maes
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Aurélie Hirschler
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Etienne Challet
- Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
14
|
Heyde I, Begemann K, Oster H. Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism. Endocrinology 2021; 162:6102571. [PMID: 33453099 PMCID: PMC7864004 DOI: 10.1210/endocr/bqab009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/17/2022]
Abstract
The term energy metabolism comprises the entirety of chemical processes associated with uptake, conversion, storage, and breakdown of nutrients. All these must be tightly regulated in time and space to ensure metabolic homeostasis in an environment characterized by cycles such as the succession of day and night. Most organisms evolved endogenous circadian clocks to achieve this goal. In mammals, a ubiquitous network of cellular clocks is coordinated by a pacemaker residing in the hypothalamic suprachiasmatic nucleus. Adipocytes harbor their own circadian clocks, and large aspects of adipose physiology are regulated in a circadian manner through transcriptional regulation of clock-controlled genes. White adipose tissue (WAT) stores energy in the form of triglycerides at times of high energy levels that then serve as fuel in times of need. It also functions as an endocrine organ, releasing factors in a circadian manner to regulate food intake and energy turnover in other tissues. Brown adipose tissue (BAT) produces heat through nonshivering thermogenesis, a process also controlled by the circadian clock. We here review how WAT and BAT contribute to the circadian regulation of energy metabolism. We describe how adipose rhythms are regulated by the interplay of systemic signals and local clocks and summarize how adipose-originating circadian factors feed-back on metabolic homeostasis. The role of adipose tissue in the circadian control of metabolism becomes increasingly clear as circadian disruption leads to alterations in adipose tissue regulation, promoting obesity and its sequelae. Stabilizing adipose tissue rhythms, in turn, may help to combat disrupted energy homeostasis and obesity.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
- Correspondence: Henrik Oster, PhD, Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
15
|
Li D, Ikaga R, Ogawa H, Yamazaki T. Different expressions of clock genes in fatty liver induced by high-sucrose and high-fat diets. Chronobiol Int 2021; 38:762-778. [PMID: 33612041 DOI: 10.1080/07420528.2021.1889579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sucrose consumption can cause obesity and nonalcoholic fatty liver disease (NAFLD). NAFLD is associated with the disruption of circadian rhythms. We compared the alterations in NAFLD circadian rhythms induced by a high-sucrose diet (HSD) with those induced by a high-fat diet (HFD) in mice. After 8 weeks of feeding, the liver triglyceride level was increased by HSD feeding and by HFD feeding. In the liver of HSD-fed mice, the amplitude of Rorγ and the mesor (time series 24 h mean value based on the distribution of values across the cycle of the circadian rhythm) of Rorγ and Per2 were increased in comparison to those of control-diet fed mice. Compared with the HFD-fed mice, the HSD-fed mice showed increased circadian amplitude of variation in Rorγ, Per2, Cry1, and Cry2 and mesors of Rorγ, Per2, and Cry1 in the liver. Rorγ appeared to play critical roles in the entrainment of HSD into the liver circadian system, and the increased expressions of Crys and Per2 might disrupt circadian rhythms. Thus, disruption of circadian rhythms by HSD and HFD may accelerate the accumulation of liver lipid through different mechanisms.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan.,The Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Reina Ikaga
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Haruko Ogawa
- The Graduate School of Humanities and Sciences, and Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Tomomi Yamazaki
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| |
Collapse
|
16
|
Abstract
Circadian rhythms are biological systems that synchronize cellular circadian oscillators with the organism's daily feeding-fasting or rest-activity cycles in mammals. Circadian rhythms regulate nutrient absorption and utilization at the cellular level and are closely related to obesity and metabolic disorders. Bile acids are important modulators that facilitate nutrient absorption and regulate energy metabolism. Here, we provide an overview of the current connections and future perspectives between the circadian clock and bile acid metabolism as well as related metabolic diseases. Feeding and fasting cycles influence bile acid pool size and composition, and bile acid signaling can respond to acute lipid and glucose utilization and mediate energy balance. Disruption of circadian rhythms such as shift work, irregular diet, and gene mutations can contribute to altered bile acid metabolism and heighten obesity risk. High-fat diets, alcohol, and gene mutations related to bile acid signaling result in desynchronized circadian rhythms. Gut microbiome also plays a role in connecting circadian rhythms with bile acid metabolism. The underlying mechanism of how circadian rhythms interact with bile acid metabolism has not been fully explored. Sustaining bile acid homeostasis based on circadian rhythms may be a potential therapy to alleviate metabolic disturbance.
Collapse
Affiliation(s)
- Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
17
|
Zhao Y, Wu Y, Wang J, Liao C, Mi X, Chen F. Circadian transcription factor Dbp promotes rat calvarial osteoprogenitors osteogenic differentiation through Kiss1/GnRH/E2 signaling pathway loop. J Cell Biochem 2020; 122:166-179. [PMID: 32830342 DOI: 10.1002/jcb.29836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 11/06/2022]
Abstract
To determine the mechanism by which D-site-binding protein (Dbp) regulates rat calvarial osteoprogenitors (OPCs) osteogenic differentiation. α-Smooth muscle actin (α-SMA) + rat calvarial OPCs were extracted and purified using immunomagnetic beads. Cells were transduced with Dbp-lentivirus and divided into Dbp knockdown, Dbp overexpression and vehicle groups. After osteogenic induction for 21 days, Alizarin red staining and alkaline phosphatase (ALP) activity were examined. Expression levels of Runx2, Ocn, Osterix, Bmp4, Kiss1, and GnRH were determined using a quantitative real-time polymerase chain reaction. The observed changes in Kisspeptin, GnRH, ERα, and Runx2 were further validated via Western blot analysis. Furthermore, E2 and GnRH secretion levels were detected via an enzyme-linked immunosorbent assay (ELISA). Chromatin immunoprecipitation (ChIP) and luciferase assay were used to assess the effects of Dbp on the Kiss1 gene promoter. The coexpression of Dbp and Kisspeptin or GnRH was also evaluated via immunofluorescence. Following osteogenic induction, Dbp overexpression significantly increased calcium nodule formation and ALP activity, as well as Runx2, Ocn, Osterix, Bmp4, Kiss1, and GnRH messenger RNA expression, while Dbp knockdown presented the opposite results. Western blot analysis and ELISA results showed that Dbp significantly promotes Runx2, E2/ERα, Kisspeptin, and GnRH expression. These findings were confirmed by the ChIP assay, which indicated that the estrogen receptor promotes Kisspeptin expression after binding to the Kiss1 gene promoter, which is regulated by Dbp. Immunofluorescence assay showed that Dbp coexpression with Kisspeptin or GnRH varied depending on Dbp expression levels. Collectively, the circadian transcription factor Dbp promotes α-SMA + rat calvarial OPCs osteoblastic differentiation through Kiss1/GnRH/E2 signaling pathway loop.
Collapse
Affiliation(s)
- Yanhui Zhao
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Yanan Wu
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Jie Wang
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Chongshan Liao
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Xiaohui Mi
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Fengshan Chen
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Shivshankar P, Fekry B, Eckel-Mahan K, Wetsel RA. Circadian Clock and Complement Immune System-Complementary Control of Physiology and Pathology? Front Cell Infect Microbiol 2020; 10:418. [PMID: 32923410 PMCID: PMC7456827 DOI: 10.3389/fcimb.2020.00418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian species contain an internal circadian (i.e., 24-h) clock that is synchronized to the day and night cycles. Large epidemiological studies, which are supported by carefully controlled studies in numerous species, support the idea that chronic disruption of our circadian cycles results in a number of health issues, including obesity and diabetes, defective immune response, and cancer. Here we focus specifically on the role of the complement immune system and its relationship to the internal circadian clock system. While still an incompletely understood area, there is evidence that dysregulated proinflammatory cytokines, complement factors, and oxidative stress can be induced by circadian disruption and that these may feed back into the oscillator at the level of circadian gene regulation. Such a feedback cycle may contribute to impaired host immune response against pathogenic insults. The complement immune system including its activated anaphylatoxins, C3a and C5a, not only facilitate innate and adaptive immune response in chemotaxis and phagocytosis, but they can also amplify chronic inflammation in the host organism. Consequent development of autoimmune disorders, and metabolic diseases associated with additional environmental insults that activate complement can in severe cases, lead to accelerated tissue dysfunction, fibrosis, and ultimately organ failure. Because several promising complement-targeted therapeutics to block uncontrolled complement activation and treat autoimmune diseases are in various phases of clinical trials, understanding fully the circadian properties of the complement system, and the reciprocal regulation by these two systems could greatly improve patient treatment in the long term.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
19
|
Luo PH, Shu YM, Ni RJ, Liu YJ, Zhou JN. A Characteristic Expression Pattern of Core Circadian Genes in the Diurnal Tree Shrew. Neuroscience 2020; 437:145-160. [PMID: 32339628 DOI: 10.1016/j.neuroscience.2020.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
The day-active tree shrew may serve as an animal model of human-like diurnal rhythms. However, the molecular basis for circadian rhythms in this species has remained unclear. In the present study, we investigated the expression patterns of core circadian genes involved in transcriptional/translational feedback loops (TTFLs) in both central and peripheral tissues of the tree shrew. The expression of 12 core circadian genes exhibited similar rhythmic patterns in the olfactory bulb, prefrontal cortex, hippocampus, and cerebellum, while the hypothalamus exhibited the weakest oscillations. The rhythms in peripheral tissues, especially the liver, were much more robust than those in brain tissues. ARNTL and NPAS2 were weakly rhythmic in brain tissues but exhibited almost the strongest rhythmicity in peripheral tissues. CLOCK and CRY2 exhibited the weakest rhythms in both central and peripheral tissues, while NR1D1 and CIART exhibited robust rhythms in both tissues. Most of these circadian genes were highly expressed at light/dark transitions in both brain and peripheral tissues, such as ARNTL and NPAS2 peaking at dusk while PERs peaking at dawn. Additionally, the peripheral clock was phase-advanced relative to the brain clock, as there was a significant advance (2-4 h) for PER3, DBP, NR1D1 and NR1D2. Furthermore, these genes exhibited an anti-phasic relationship between the diurnal tree shrew and the nocturnal mouse (i.e., 12-h phasing differential). Collectively, our findings demonstrate a characteristic expression pattern of core circadian genes in the tree shrew, which may provide a means for elucidating molecular mechanisms of diurnal rhythms.
Collapse
Affiliation(s)
- Peng-Hao Luo
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yu-Mian Shu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Rong-Jun Ni
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
20
|
Saran AR, Dave S, Zarrinpar A. Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology 2020; 158:1948-1966.e1. [PMID: 32061597 PMCID: PMC7279714 DOI: 10.1053/j.gastro.2020.01.050] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Circadian clock proteins are endogenous timing mechanisms that control the transcription of hundreds of genes. Their integral role in coordinating metabolism has led to their scrutiny in a number of diseases, including nonalcoholic fatty liver disease (NAFLD). Discoordination between central and peripheral circadian rhythms is a core feature of nearly every genetic, dietary, or environmental model of metabolic syndrome and NAFLD. Restricting feeding to a defined daily interval (time-restricted feeding) can synchronize the central and peripheral circadian rhythms, which in turn can prevent or even treat the metabolic syndrome and hepatic steatosis. Importantly, a number of proteins currently under study as drug targets in NAFLD (sterol regulatory element-binding protein [SREBP], acetyl-CoA carboxylase [ACC], peroxisome proliferator-activator receptors [PPARs], and incretins) are modulated by circadian proteins. Thus, the clock can be used to maximize the benefits and minimize the adverse effects of pharmaceutical agents for NAFLD. The circadian clock itself has the potential for use as a target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Anand R. Saran
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Shravan Dave
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, California; Veterans Affairs Health Sciences San Diego, La Jolla, California; Institute of Diabetes and Metabolic Health, University of California, San Diego, La Jolla, California; Center for Microbiome Innovation, University of California, San Diego, La Jolla, California.
| |
Collapse
|
21
|
Gonzalez R, Gonzalez SD, McCarthy MJ. Using Chronobiological Phenotypes to Address Heterogeneity in Bipolar Disorder. MOLECULAR NEUROPSYCHIATRY 2020; 5:72-84. [PMID: 32399471 DOI: 10.1159/000506636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder characterized by recurrent episodes of mania and depression in addition to disruptions in sleep, energy, appetite, and cognitive functions-rhythmic behaviors that typically change on daily cycles. BD symptoms can also be provoked by seasonal changes, sleep, and/or circadian disruption, indicating that chronobiological factors linked to the circadian clock may be a common feature in the disorder. Research indicates that BD exists on a clinical spectrum, with distinct subtypes often intersecting with other psychiatric disorders. This heterogeneity has been a major challenge to BD research and contributes to problems in diagnostic stability and treatment outcomes. To address this heterogeneity, we propose that chronobiologically related biomarkers could be useful in classifying BD into objectively measurable phenotypes to establish better diagnoses, inform treatments, and perhaps lead to better clinical outcomes. Presently, we review the biological basis of circadian time keeping in humans, discuss the links of BD to the circadian clock, and pre-sent recent studies that evaluated chronobiological measures as a basis for establishing BD phenotypes. We conclude that chronobiology may inform future research using other novel techniques such as genomics, cell biology, and advanced behavioral analyses to establish new and more biologically based BD phenotypes.
Collapse
Affiliation(s)
- Robert Gonzalez
- Department of Psychiatry and Behavioral Health, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Suzanne D Gonzalez
- Department of Psychiatry and Behavioral Health, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.,Department of Pharmacology, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Michael J McCarthy
- VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry and Center for Chronobiology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network. J Mol Biol 2020; 432:3618-3638. [PMID: 31926953 DOI: 10.1016/j.jmb.2019.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
Collapse
Affiliation(s)
- Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Mariana Astiz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Keno Ole Heinen
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Oliver Rawashdeh
- The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
| |
Collapse
|
23
|
Ji Y, Elkin K, Yip J, Guan L, Han W, Ding Y. From circadian clocks to non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:1107-1112. [PMID: 31645151 DOI: 10.1080/17474124.2019.1684899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The circadian rhythm is an integral regulator of various endocrine processes in the body, including sleep-wake cycles, hormonal regulation, and metabolism. In addition to metabolic, genetic, and environmental factors, a dysregulated circadian rhythm resulting from lifestyle changes has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An accumulating body of evidence also supports strong association between NAFLD and metabolic disorder, the pathogenesis of which is related to periodic fluctuations in hormonal homeostasis. It is clear that endocrine and circadian rhythms are tightly interconnected. Generally, the circadian rhythm regulates flux patterns of physiological functions. The present review will discuss the modulation of bodily processes by the circadian rhythm with specific attention to the regulation of NAFLD by leptin and related hormones.Areas covered: PubMed/MEDLINE was searched for articles related to concomitant occurrence of NAFLD and T2DM between January 1995 and September 2019. Areas covered included epidemiological, physiology and pathophysiology aspects.Expert opinion: NAFLD and NASH are increasingly prevalent and may be largely mitigated with effective lifestyle modification and, potentially, circadian rhythm stabilization. Improved knowledge of the specific pathogenesis of NAFLD in addition to enhanced diagnostic screening tools and prediction of future disease burden is imperative.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Yip
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Longfei Guan
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
24
|
Yoshitane H, Asano Y, Sagami A, Sakai S, Suzuki Y, Okamura H, Iwasaki W, Ozaki H, Fukada Y. Functional D-box sequences reset the circadian clock and drive mRNA rhythms. Commun Biol 2019; 2:300. [PMID: 31428688 PMCID: PMC6687812 DOI: 10.1038/s42003-019-0522-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023] Open
Abstract
The circadian clock drives gene expression rhythms, leading to daily changes in physiology and behavior. In mammals, Albumin D-site-Binding Protein (DBP) rhythmically activates transcription of various genes through a DNA cis-element, D-box. The DBP-dependent transactivation is repressed by competitive binding of E4BP4 to the D-box. Despite the elaborate regulation, physiological roles of the D-box in the circadian clockwork are still elusive. Here we identified 1490 genomic regions recognized commonly by DBP and E4BP4 in the mouse liver. We comprehensively defined functional D-box sequences using an improved bioinformatics method, MOCCS2. In RNA-Seq analysis of E4bp4-knockout and wild type liver, we showed the importance of E4BP4-mediated circadian repression in gene expression rhythms. In addition to the circadian control, we found that environmental stimuli caused acute induction of E4BP4 protein, evoking phase-dependent phase shifts of cellular circadian rhythms and resetting the clock. Collectively, D-box-mediated transcriptional regulation plays pivotal roles in input and output in the circadian clock system.
Collapse
Affiliation(s)
- Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Yoshimasa Asano
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Aya Sagami
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Seinosuke Sakai
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5,, Kashiwa Chiba, 277-8568 Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimo-Adachi-cho 46-29, Kyoto, 606-8501 Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575 Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577 Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku Tokyo, 113-0033 Japan
| |
Collapse
|
25
|
Kim HS, Sohn H, Jang SW, Lee GR. The transcription factor NFIL3 controls regulatory T-cell function and stability. Exp Mol Med 2019; 51:1-15. [PMID: 31311918 PMCID: PMC6802641 DOI: 10.1038/s12276-019-0280-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
Regulatory T (Treg) cells are a CD4 T-cell subset with an important role in immune tolerance; however, the mechanisms underlying Treg cell differentiation and function are incompletely understood. Here, we show that NFIL3/E4BP4, a transcription factor, plays a key role in Treg cell differentiation and function. Microarray analysis showed that Treg cells had lower Nfil3 expression than all other CD4 T-cell subsets. Overexpression of Nfil3 in Treg cells led to diminished expression of Foxp3 and other signature Treg genes, including Il2ra, Icos, Tnfrsf18, and Ctla4. Furthermore, Nfil3-overexpressing Treg cells exhibited impaired immunosuppressive activity in vitro and in vivo. We discovered that NFIL3 directly binds to and negatively regulates the expression of Foxp3. In addition, bisulfite sequencing revealed that NFIL3 induces methylation at Foxp3 locus regulatory CpG sites, which contributes to the control of Treg cell stability. Together, these data indicate that NFIL3 impairs Treg cell function through the downregulation of Foxp3 expression.
Collapse
Affiliation(s)
- Hyeong Su Kim
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Hyogon Sohn
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Sung Woong Jang
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea.
| |
Collapse
|
26
|
Shi D, Chen J, Wang J, Yao J, Huang Y, Zhang G, Bao Z. Circadian Clock Genes in the Metabolism of Non-alcoholic Fatty Liver Disease. Front Physiol 2019; 10:423. [PMID: 31139087 PMCID: PMC6517678 DOI: 10.3389/fphys.2019.00423] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease, which is characterized by the accumulation of triglycerides in the hepatocytes without excess alcohol intake. Circadian rhythms can participate in lipid, glucose, and cholesterol metabolism and are closely related to metabolism seen in this disease. Circadian clock genes can modulate liver lipid metabolism. Desynchrony of circadian rhythms and the influences imparted by external environmental stimuli can increase morbidity. By contrast, synchronizing circadian rhythms can help to alleviate the metabolic disturbance seen in NAFLD. In this review, we have discussed the current research connections that exist between the circadian clock and the metabolism of NAFLD, and we have specifically focused on the key circadian clock genes, Bmal1, Clock, Rev-Erbs, Rors, Pers, Crys, Nocturnin, and DECs.
Collapse
Affiliation(s)
- Dongmei Shi
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.,Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jiaofeng Wang
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.,Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianfeng Yao
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yiqin Huang
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Gansheng Zhang
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.,Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
28
|
Kolbe I, Brehm N, Oster H. Interplay of central and peripheral circadian clocks in energy metabolism regulation. J Neuroendocrinol 2019; 31:e12659. [PMID: 30415480 DOI: 10.1111/jne.12659] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Metabolic health founds on a homeostatic balance that has to integrate the daily changes of rest/activity and feeding/fasting cycles. A network of endogenous 24-hour circadian clocks helps to anticipate daily recurring events and adjust physiology and behavioural functions accordingly. Circadian clocks are self-sustained cellular oscillators based on a set of clock genes/proteins organised in interlocked transcriptional-translational feedback loops. The body's clocks need to be regularly reset and synchronised with each other to achieve coherent rhythmic output signals. This synchronisation is achieved by interplay of a master clock, which resides in the suprachiasmatic nucleus, and peripheral tissue clocks. This clock network is reset by time signals such as the light/dark cycle, food intake and activity. The balanced interplay of clocks is easily disturbed in modern society by shiftwork or high-energy diets, which may further promote the development of metabolic disorders. In this review, we summarise the current model of central-peripheral clock interaction in metabolic health. Different established mouse models for central or peripheral clock disruption and their metabolic phenotypes are compared and the possible relevance of clock network interaction for the development of therapeutic approaches in humans is discussed.
Collapse
Affiliation(s)
- Isa Kolbe
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| | - Niklas Brehm
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| |
Collapse
|
29
|
Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism. Int J Mol Sci 2018; 19:ijms19082418. [PMID: 30115857 PMCID: PMC6121908 DOI: 10.3390/ijms19082418] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/04/2023] Open
Abstract
Antibiotics lead to increased susceptibility to colonization by pathogenic organisms, with different effects on the host-microbiota relationship. Here, we show that metronidazole treatment of specific pathogen-free (SPF) mice results in a significant increase of the bacterial phylum Proteobacteria in fecal pellets. Furthermore, metronidazole in SPF mice decreases hind limb muscle weight and results in smaller fibers in the tibialis anterior muscle. In the gastrocnemius muscle, metronidazole causes upregulation of Hdac4, myogenin, MuRF1, and atrogin1, which are implicated in skeletal muscle neurogenic atrophy. Metronidazole in SPF mice also upregulates skeletal muscle FoxO3, described as involved in apoptosis and muscle regeneration. Of note, alteration of the gut microbiota results in increased expression of the muscle core clock and effector genes Cry2, Ror-β, and E4BP4. PPARγ and one of its important target genes, adiponectin, are also upregulated by metronidazole. Metronidazole in germ-free (GF) mice increases the expression of other core clock genes, such as Bmal1 and Per2, as well as the metabolic regulators FoxO1 and Pdk4, suggesting a microbiota-independent pharmacologic effect. In conclusion, metronidazole in SPF mice results in skeletal muscle atrophy and changes the expression of genes involved in the muscle peripheral circadian rhythm machinery and metabolic regulation.
Collapse
|
30
|
Gα i3 signaling is associated with sexual dimorphic expression of the clock-controlled output gene Dbp in murine liver. Oncotarget 2018; 9:30213-30224. [PMID: 30100984 PMCID: PMC6084400 DOI: 10.18632/oncotarget.25727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2018] [Indexed: 11/25/2022] Open
Abstract
The albumin D-box binding protein (DBP) is a member of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family and functions as important regulator of circadian core and output gene expression. Gene expression of DBP itself is under the control of E-box-dependent binding by the Bmal1-Clock heterodimer and CRE-dependent binding by the cAMP responsive element binding protein (CREB). However, the signaling mechanism mediating CREB-dependent regulation of DBP expression in the peripheral clock remains elusive. In this study, we examined the role of the GPCR (G-protein-coupled receptor)/Gαi3 (Galphai3) controlled cAMP-CREB signaling pathway in the regulation of hepatic expression of core clock and clock-regulated genes, including Dbp. Analysis of circadian gene expression revealed that rhythmicity of hepatic transcript levels of the majority of core clock (including Per1) and clock-regulated genes were not affected by Gαi3 deficiency. Consistently, the period length of primary Gαi3 deficient tail fibroblasts expressing a Bmal1-Luciferase reporter was not affected. Interestingly, however, Gαi3 deficient female but not male mice showed a tendentiously increased activation of CREB (nuclear pSer133-CREB) accompanied by an advanced peak in Dbp gene expression and elevated mRNA levels of the cytochrome P450 family member Cyp3a11, a target gene of DBP. Accordingly, selective inhibition of CREB led to a strongly decreased expression of DBP and CYP3A4 (human Cyp3a11 homologue) in HepG2 liver cells. In summary, our data suggest that the Gαi3-pCREB signalling pathway functions as a regulator of sexual-dimorphic expression of DBP and its xenobiotic target enzymes Cyp3a11/CYP3A4.
Collapse
|
31
|
Sadowski SM, Pusztaszeri M, Brulhart-Meynet MC, Petrenko V, De Vito C, Sobel J, Delucinge-Vivier C, Kebebew E, Regazzi R, Philippe J, Triponez F, Dibner C. Identification of Differential Transcriptional Patterns in Primary and Secondary Hyperparathyroidism. J Clin Endocrinol Metab 2018; 103:2189-2198. [PMID: 29659895 DOI: 10.1210/jc.2017-02506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/02/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Hyperparathyroidism is associated with hypercalcemia and the excess of parathyroid hormone secretion; however, the alterations in molecular pattern of functional genes during parathyroid tumorigenesis have not been unraveled. We aimed at establishing transcriptional patterns of normal and pathological parathyroid glands (PGs) in sporadic primary (HPT1) and secondary hyperparathyroidism (HPT2). OBJECTIVE To evaluate dynamic alterations in molecular patterns as a function of the type of PG pathology, a comparative transcript analysis was conducted in subgroups of healthy samples, sporadic HPT1 adenoma and hyperplasia, and HPT2. DESIGN Normal, adenomatous, HPT1, and HPT2 hyperplastic PG formalin-fixed paraffin-embedded samples were subjected to NanoString analysis. In silico microRNA (miRNA) analyses and messenger RNA-miRNA network in PG pathologies were conducted. Individual messenger RNA and miRNA levels were assessed in snap-frozen PG samples. RESULTS The expression levels of c-MET, MYC, TIMP1, and clock genes NFIL3 and PER1 were significantly altered in HPT1 adenoma compared with normal PG tissue when assessed by NanoString and quantitative reverse transcription polymerase chain reaction. RET was affected in HPT1 hyperplasia, whereas CaSR and VDR transcripts were downregulated in HPT2 hyperplastic PG tissue. CDH1, c-MET, MYC, and CaSR were altered in adenoma compared with hyperplasia. Correlation analyses suggest that c-MET, MYC, and NFIL3 exhibit collective expression level changes associated with HPT1 adenoma development. miRNAs, predicted in silico to target these genes, did not exhibit a clear tendency upon experimental validation. CONCLUSIONS The presented gene expression analysis provides a differential molecular characterization of PG adenoma and hyperplasia pathologies, advancing our understanding of their etiology.
Collapse
Affiliation(s)
- Samira Mercedes Sadowski
- Department of Thoracic and Endocrine Surgery, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Pusztaszeri
- Division of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology, Jewish General Hospital and McGill University, Montreal, Canada
| | - Marie-Claude Brulhart-Meynet
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospitals of Geneva, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospitals of Geneva, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- iGE3 Genomics Platform, University of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio De Vito
- Division of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jacques Philippe
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospitals of Geneva, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédéric Triponez
- Department of Thoracic and Endocrine Surgery, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospitals of Geneva, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- iGE3 Genomics Platform, University of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Zhao M, Zhang T, Yu F, Guo L, Wu B. E4bp4 regulates carboxylesterase 2 enzymes through repression of the nuclear receptor Rev-erbα in mice. Biochem Pharmacol 2018; 152:293-301. [PMID: 29653076 DOI: 10.1016/j.bcp.2018.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
Carboxylesterases (CES) are a family of phase I enzymes that play an important role in xenobiotic clearance and lipid metabolism. Here, we investigate a potential role of E4 promoter-binding protein 4 (E4bp4) in regulation of Ces and CPT-11 (irinotecan, a first-line drug for treating colorectal cancer) pharmacokinetics in mice. Mouse hepatoma Hepa-1c1c7 cells were transfected with Rev-erbα expression plasmid or siRNA targeting E4bp4. The relative mRNA and protein levels of Ces enzymes in the cells or the livers of wild-type and E4bp4-deficient (E4bp4-/-) mice were determined by qPCR and Western blotting, respectively. Transcriptional regulation of Ces by E4bp4/Rev-erbα were investigated using luciferase reporter, mobility shift, and co-immunoprecipitation (Co-IP) assays. Pharmacokinetic studies were performed with wild-type and E4bp4-/- mice after intraperitoneal injection of CPT-11. E4bp4 ablation down-regulated an array of hepatic Ces genes in mice. E4bp4-/- mice also showed reduced Ces-mediated metabolism and elevated systemic exposure of CPT-11, a well-known Ces substrate. Consistently, E4bp4 knockdown reduced the expression of Ces genes (Ces2b, Ces2e and Ces2f) in Hepa-1c1c7 cells. Furthermore, Rev-erbα repressed the transcription of Ces2b, whereas E4bp4 antagonized this repressive action. Co-IP experiment confirmed a direct interaction between E4bp4 and Rev-erbα. Through a combination of promoter analysis and mobility shift assays, we demonstrated that Rev-erbα trans-repressed Ces (Ces2b) through its specific binding to the -767 to-754 bp promoter region. In conclusion, E4bp4 regulates Ces enzymes through inhibition of the transrepression activity of Rev-erbα, thereby impacting the metabolism and pharmacokinetics of Ces substrates.
Collapse
Affiliation(s)
- Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.
| |
Collapse
|
33
|
Suzuki K, Yoshida K, Ueha T, Kaneshiro K, Nakai A, Hashimoto N, Uchida K, Hashimoto T, Kawasaki Y, Shibanuma N, Nakagawa N, Sakai Y, Hashiramoto A. Methotrexate upregulates circadian transcriptional factors PAR bZIP to induce apoptosis on rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 2018; 20:55. [PMID: 29566767 PMCID: PMC5863822 DOI: 10.1186/s13075-018-1552-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Effects of methotrexate (MTX) on the proliferation of rheumatoid arthritis (RA) synovial fibroblasts are incompletely understood. We explored actions of MTX in view of circadian transcriptions of synovial fibroblasts. Methods Under treatment with MTX, expression of core circadian clock genes, circadian transcriptional factor proline and acidic amino acid-rich basic leucine zipper (PAR bZIP), and proapoptotic molecule Bcl-2 interacting killer (Bik) was examined by real-time polymerase chain reaction. Protein expression of circadian clock gene PERIOD2 (PER2) and CYTOCHROME C was also examined by western blotting and ELISA. Promoter activities of Per2 and Bik were measured by Luciferase assay. Expression of PER2, BIK, and CYTOCHROME C and morphological changes of the nucleus were observed by fluorescent immunostaining. Synovial fibroblasts were transfected with Per2/Bik small interfering RNA, and successively treated with MTX to determine cell viabilities. Finally, synovial fibroblasts were treated with MTX according to the oscillation of Per2/Bik expression. Results MTX (10 nM) significantly decreased cell viabilities, but increased messenger RNA expression of Per2, Bik, and PAR ZIP including D site of the albumin promoter binding protein (Dbp), hepatic leukemia factor (Hlf), and thyrotroph embryonic factor (Tef). MTX also increased protein expression of PER2 and CYTOCHROME C, and promoter activities of Per2 and Bik via D-box. Under fluorescent observations, expression of PER2, BIK, and CYTOCHROME C was increased in apoptotic cells. Cytotoxicity of MTX was attenuated by silencing of Per2 and/or Bik, and revealed that MTX was significantly effective in situations where Per2/Bik expression was high. Conclusions We present here novel unique action of MTX on synovial fibroblasts that upregulates PAR bZIP to transcribe Per2 and Bik, resulting in apoptosis induction. MTX is important in modulating circadian environments to understand a new aspect of pathogenesis of RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1552-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kohjin Suzuki
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Kohsuke Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Takeshi Ueha
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Ayako Nakai
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Naonori Hashimoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Koto Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan
| | - Teppei Hashimoto
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, 657-0068, Japan
| | - Yoshiko Kawasaki
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, 657-0068, Japan
| | - Nao Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, 657-0068, Japan
| | - Natsuko Nakagawa
- Department of Rheumatology, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, 675-0003, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, Kobe, 654-0142, Japan.
| |
Collapse
|
34
|
Lu Y, Mei Y, Chen L, Wu L, Wang X, Zhang Y, Fu B, Chen X, Xie Y, Cai G, Bai X, Li Q, Chen X. The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis. Cell Mol Immunol 2018; 16:735-745. [PMID: 29568121 DOI: 10.1038/s41423-018-0020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/10/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023] Open
Abstract
Mesangial proliferative glomerulonephritis (MsPGN) is an inflammatory disease, but both the nature of disease progression and its regulation remain unclear. In the present study, we monitored the course of anti-Thy1 nephritis from days 1 to 5 and established gene expression profiles at each time point using microarrays to explore the development of inflammation. According to the gene expression profiles, macrophage infiltration (triggered by CCL2 activation) was evident on day 1 and enhanced inflammation over the next few days. We screened for genes with expression levels similar to CCL2 and found that the upregulation of the circadian gene albumin D-site-binding protein (DBP) was involved in CCL2 activation in mesangial cells. More importantly, CCL2 expression showed oscillatory changes similar to DBP, and DBP induced peak CCL2 expression at 16:00 a clock on day 1 in the anti-Thy1 nephritis model. We knocked down DBP through transfection with a small interfering RNA (siRNA) and used RNA sequencing to identify the DBP-regulated TNF-α-CCL2 pathway. We performed chromatin immunoprecipitation sequencing (ChIP-Seq) and the dual luciferase assay to show that DBP bound to the TRIM55 promoter, regulating gene expression and in turn controlling the TNF-α-CCL2 pathway. In conclusion, DBP-regulated circadian CCL2 expression by the TRIM55-TNF pathway in injured mesangial cells at an early stage, which promoted macrophage recruitment and in turn triggered infiltration and inflammation in a model of anti-Thy1 nephritis.
Collapse
Affiliation(s)
- Yang Lu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yan Mei
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Lei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yingjie Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xizhao Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuansheng Xie
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Qinggang Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| |
Collapse
|
35
|
Gil-Ibañez P, García-García F, Dopazo J, Bernal J, Morte B. Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types. Cereb Cortex 2018; 27:706-717. [PMID: 26534908 DOI: 10.1093/cercor/bhv273] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormones, thyroxine, and triiodothyronine (T3) are crucial for cerebral cortex development acting through regulation of gene expression. To define the transcriptional program under T3 regulation, we have performed RNA-Seq of T3-treated and untreated primary mouse cerebrocortical cells. The expression of 1145 genes or 7.7% of expressed genes was changed upon T3 addition, of which 371 responded to T3 in the presence of cycloheximide indicating direct transcriptional regulation. The results were compared with available transcriptomic datasets of defined cellular types. In this way, we could identify targets of T3 within genes enriched in astrocytes and neurons, in specific layers including the subplate, and in specific neurons such as prepronociceptin, cholecystokinin, or cortistatin neurons. The subplate and the prepronociceptin neurons appear as potentially major targets of T3 action. T3 upregulates mostly genes related to cell membrane events, such as G-protein signaling, neurotransmission, and ion transport and downregulates genes involved in nuclear events associated with the M phase of cell cycle, such as chromosome organization and segregation. Remarkably, the transcriptomic changes induced by T3 sustain the transition from fetal to adult patterns of gene expression. The results allow defining in molecular terms the elusive role of thyroid hormones on neocortical development.
Collapse
Affiliation(s)
- Pilar Gil-Ibañez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Francisco García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.,Functional Genomics Node, INB at CIPF, Valencia, Spain
| | - Juan Bernal
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Beatriz Morte
- Center for Biomedical Research on Rare Diseases, Madrid, Spain
| |
Collapse
|
36
|
Gunawardhana KL, Hardin PE. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila. Curr Biol 2017; 27:3442-3453.e4. [PMID: 29103936 DOI: 10.1016/j.cub.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLNv) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms.
Collapse
Affiliation(s)
- Kushan L Gunawardhana
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
37
|
Yin J, Zhang J, Lu Q. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases. Clin Immunol 2017; 180:5-10. [PMID: 28365317 DOI: 10.1016/j.clim.2017.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/03/2023]
Abstract
Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies.
Collapse
Affiliation(s)
- Jinghua Yin
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139, Renmin Road, Changsha 410011, China
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH43210, USA.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139, Renmin Road, Changsha 410011, China.
| |
Collapse
|
38
|
Morishita Y, Miura D, Kida S. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter. Biosci Biotechnol Biochem 2016; 80:1131-40. [PMID: 27022680 DOI: 10.1080/09168451.2015.1136885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/22/2015] [Indexed: 01/29/2023]
Abstract
The circadian rhythm generated by circadian clock underlies a molecular mechanism of rhythmic transcriptional regulation by transcription factor BMAL1/CLOCK. Importantly, the circadian clock is coordinated by exogenous cues to accommodate to changes in the external environment. However, the molecular mechanisms by which intracellular-signaling pathways mediate the adjustments of the circadian transcriptional rhythms remain unclear. In this study, we found that pharmacological inhibition or shRNA-mediated knockdown of phosphatidylinositol 3-kinase (PI3K) blocked upregulation of Dbp mRNA induced by serum shock in NIH 3T3 cells. Moreover, the inhibition of PI3K significantly reduced the promoter activity of the Dbp gene, as well as decreased the recruitment of BMAL1/CLOCK to the E-box in the Dbp promoter. Interestingly, the inhibition of PI3K blocked heterodimerization of BMAL1 and CLOCK. Our findings suggest that PI3K signaling plays a modulatory role in the regulation of the transcriptional rhythm of the Dbp gene by targeting BMAL1 and CLOCK.
Collapse
Affiliation(s)
- Yoshikazu Morishita
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Daiki Miura
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Satoshi Kida
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
- b Core Research for Evolutional Science and Technology, Japan Science and Technology Agency , Saitama , Japan
| |
Collapse
|
39
|
Honma K, Hikosaka M, Mochizuki K, Goda T. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver. Metabolism 2016; 65:482-91. [PMID: 26975540 DOI: 10.1016/j.metabol.2015.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/19/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. MATERIALS/METHODS We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. RESULTS Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. CONCLUSIONS These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice.
Collapse
Affiliation(s)
- Kazue Honma
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Maki Hikosaka
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kazuki Mochizuki
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
40
|
Circadian-relevant genes are highly polymorphic in autism spectrum disorder patients. Brain Dev 2016; 38:91-9. [PMID: 25957987 DOI: 10.1016/j.braindev.2015.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/27/2015] [Accepted: 04/10/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND The genetic background of autism spectrum disorder (ASD) is considered a multi-genetic disorder with high heritability. Autistic children present with a higher prevalence of sleep disorders than has been observed in children with normal development. Some circadian-relevant genes have been associated with ASD (e.g., PER1, PER2, NPAS2, MTNR1A, and MTNR1B). METHODS We analyzed 28 ASD patients (14 with sleep disorders and 14 without) and 23 control subjects of Japanese descent. The coding regions of 18 canonical clock genes and clock-controlled genes were sequenced. Detected mutations were verified by direct sequencing analysis, and additional control individuals were screened. RESULTS Thirty-six base changes with amino acid changes were detected in 11 genes. Six missense changes were detected only in individuals with ASD with sleep disturbance: p.F498S in TIMELESS, p.S20R in NR1D1, p.R493C in PER3, p.H542R in CLOCK, p.L473S in ARNTL2, and p.A325V in MTNR1B. Six missense changes were detected only in individuals with ASD without sleep disturbance: p.S1241N in PER1, p.A325T in TIMELESS, p.S13T in ARNTL, p.G24E in MTNR1B, p.G24E in PER2, and p.T1177A in PER3. The p.R493C mutation in PER3 was detected in both groups. One missense change, p.P932L in PER2, was detected only in the control group. Mutations in NR1D1, CLOCK, and ARNTL2 were detected only in individuals with ASD with sleep disorder. The prevalence of the mutations detected only single time differed significantly among all ASD patients and controls (p=0.003). Two kinds of mutations detected only in individuals with ASD with sleep disorder, p.F498S in TIMELESS and p.R366Q in PER3, were considered to affect gene function by three different methods: PolyPhen-2, scale-invariant feature transform (SIFT) prediction, and Mutation Taster (www.mutationtaster.org). The mutations p.S20R in NR1D1, p.H542R in CLOCK, p.L473S in ARNTL2, p.A325T in TIMELESS, p.S13T in ARNTL, and p.G24E in PER2 were diagnosed to negatively affect gene function by more than one of these methods. CONCLUSION Mutations in circadian-relevant genes affecting gene function are more frequent in patients with ASD than in controls. Circadian-relevant genes may be involved in the psychopathology of ASD.
Collapse
|
41
|
Tanoue S, Fujimoto K, Myung J, Hatanaka F, Kato Y, Takumi T. DEC2-E4BP4 Heterodimer Represses the Transcriptional Enhancer Activity of the EE Element in the Per2 Promoter. Front Neurol 2015; 6:166. [PMID: 26257703 PMCID: PMC4512152 DOI: 10.3389/fneur.2015.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
The circadian oscillation of clock gene expression in mammals is based on the interconnected transcriptional/translational feedback loops of Period (Per) and Bmal1. The Per feedback loop initiates transcription through direct binding of the BMAL1–CLOCK (NPAS2) heterodimer to the E-box of the Per2 promoter region. Negative feedback of PER protein on this promoter subsequently represses transcription. Other circadian transcription regulators, particularly E4BP4 and DEC2, regulate the amplitude and phase of Per2 expression rhythms. Moreover, a direct repeat of E-box-like (EE) elements in the Per2 promoter is required for its cell-autonomous circadian rhythm. However, the detailed mechanism for repression of the two core sequences of the EE element in the Per2 promoter region is unknown. Here, we show that E4BP4 binds to the Per2 EE element with DEC2 to repress transcription and identify the DEC2–E4BP4 heterodimer as a key repressor of the tightly interlocked Per2 feedback loop in the mammalian circadian oscillator. Our results suggest an additional modulatory mechanism for tuning of the phase of cell-autonomous Per2 gene expression cycling.
Collapse
Affiliation(s)
- Shintaro Tanoue
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan
| | - Katsumi Fujimoto
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan
| | - Jihwan Myung
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan ; RIKEN Brain Science Institute , Wako, Saitama , Japan
| | - Fumiyuki Hatanaka
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan ; RIKEN Brain Science Institute , Wako, Saitama , Japan
| | - Yukio Kato
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan
| | - Toru Takumi
- Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima , Japan ; RIKEN Brain Science Institute , Wako, Saitama , Japan ; CREST, Japan Science and Technology Agency , Tokyo , Japan
| |
Collapse
|
42
|
Abstract
Innate lymphoid cells (ILCs) are a recently described family of lymphoid effector cells that have important roles in immune defence, inflammation and tissue remodelling. It has been proposed that ILCs represent 'innate' homologues of differentiated effector T cells, and they have been categorized into three groups — namely, ILC1s, ILC2s and ILC3s — on the basis of their expression of cytokines and transcription factors that are typically associated with T helper 1 (T(H)1)-, T(H)2- and T(H)17-type immune responses, respectively. Indeed, remarkable similarity is seen between the specific transcription factors required for the development and diversification of different ILC groups and those that drive effector T cell differentiation. The recent identification of dedicated ILC precursors has provided a view of the mechanisms that control this first essential stage of ILC development. Here, we discuss the transcriptional mechanisms that regulate ILC development and diversification into distinct effector subsets with key roles in immunity and tissue homeostasis. We further caution against the current distinction between 'helper' versus 'killer' subsets in the evolving area of ILC nomenclature.
Collapse
|
43
|
Lin LL, Huang HC, Juan HF. Circadian systems biology in Metazoa. Brief Bioinform 2015; 16:1008-24. [PMID: 25758249 DOI: 10.1093/bib/bbv006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 12/30/2022] Open
Abstract
Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.
Collapse
|
44
|
Abstract
Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.
Collapse
Affiliation(s)
- Géraldine M Mang
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne-Dorigny, Switzerland,
| | | |
Collapse
|
45
|
Clock gene expression in different synovial cells of patients with rheumatoid arthritis and osteoarthritis. Acta Histochem 2014; 116:1199-207. [PMID: 25109449 DOI: 10.1016/j.acthis.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 01/17/2023]
Abstract
Patients with rheumatoid arthritis (RA) show modulated circadian rhythms of inflammatory cytokines and cortisol, which may be associated with a modified expression of clock genes. The expression of major clock genes was previously studied in synovial tissues and fibroblasts of patients with RA and osteoarthritis (OA). We therefore especially aimed to examine the localization of clock genes at the cellular level in synovial tissue. Furthermore we were interested in studying the expression of the D site of albumin promoter (albumin D-box) binding protein (DBP) at the immunohistochemical level in human samples. Methods used include the in situ expression of the clock genes Brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal 1), Circadian Locomotor Output Cycles Kaput (Clock), Period 1 and 2 (Per 1 and Per 2), and DBP was examined by immunohistochemistry in synovial tissues of patients with RA or OA. Additionally, expression profiles of different clock genes were determined over 24h by real time PCR in synovial fibroblasts (SFs) after a 2h serum shock or TNF-α. Results show that all clock genes investigated were found to be expressed both in RA and OA synovial tissues. Double staining against cell specific markers revealed that clock proteins were especially seen in macrophages, SFs and B-lymphocytes. Cell counting showed that clock proteins were found in approximately 5-20% of cells. Additionally, preliminary cell culture experiments showed that TNF-α treatment resulted in differential 24h expression profiles between RA and OA samples and also compared to the results obtained from the serum shock experiments. From our study we conclude that the major clock genes, including DBP, are expressed in samples from RA and OA patients, especially in macrophages and synovial fibroblasts, but also in B-lymphocytes. Preliminary experiments suggest that TNF-α seems to be able to modify clock gene expression in synovial fibroblasts.
Collapse
|
46
|
Keniry M, Dearth RK, Persans M, Parsons R. New Frontiers for the NFIL3 bZIP Transcription Factor in Cancer, Metabolism and Beyond. Discoveries (Craiova) 2014; 2:e15. [PMID: 26539561 PMCID: PMC4629104 DOI: 10.15190/d.2014.7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bZIP transcription factor NFIL3 (Nuclear factor Interleukin 3 regulated, also known as E4 binding protein 4, E4BP4) regulates diverse biological processes from circadian rhythm to cellular viability. Recently, a host of novel roles have been identified for NFIL3 in immunological signal transduction, cancer, aging and metabolism. Elucidating the signaling pathways that are impacted by NFIL3 and the regulatory mechanisms that it targets, inhibits or activates will be critical for developing a clearer picture of its physiological roles in disease and normal processes. This review will discuss the recent advances and emerging issues regarding NFIL3-mediated transcriptional regulation of CEBPb and FOXO1 activated genes and signal transduction.
Collapse
Affiliation(s)
- Megan Keniry
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Robert K Dearth
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Michael Persans
- Department of Biology, University of Texas- Pan American, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave HCSM 6-117, New York, NY 10029, USA
| |
Collapse
|
47
|
Ramanathan C, Xu H, Khan SK, Shen Y, Gitis PJ, Welsh DK, Hogenesch JB, Liu AC. Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet 2014; 10:e1004244. [PMID: 24699442 PMCID: PMC3974647 DOI: 10.1371/journal.pgen.1004244] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/02/2014] [Indexed: 12/02/2022] Open
Abstract
In animals, circadian rhythms in physiology and behavior result from coherent rhythmic interactions between clocks in the brain and those throughout the body. Despite the many tissue specific clocks, most understanding of the molecular core clock mechanism comes from studies of the suprachiasmatic nuclei (SCN) of the hypothalamus and a few other cell types. Here we report establishment and genetic characterization of three cell-autonomous mouse clock models: 3T3 fibroblasts, 3T3-L1 adipocytes, and MMH-D3 hepatocytes. Each model is genetically tractable and has an integrated luciferase reporter that allows for longitudinal luminescence recording of rhythmic clock gene expression using an inexpensive off-the-shelf microplate reader. To test these cellular models, we generated a library of short hairpin RNAs (shRNAs) against a panel of known clock genes and evaluated their impact on circadian rhythms. Knockdown of Bmal1, Clock, Cry1, and Cry2 each resulted in similar phenotypes in all three models, consistent with previous studies. However, we observed cell type-specific knockdown phenotypes for the Period and Rev-Erb families of clock genes. In particular, Per1 and Per2, which have strong behavioral effects in knockout mice, appear to play different roles in regulating period length and amplitude in these peripheral systems. Per3, which has relatively modest behavioral effects in knockout mice, substantially affects period length in the three cellular models and in dissociated SCN neurons. In summary, this study establishes new cell-autonomous clock models that are of particular relevance to metabolism and suitable for screening for clock modifiers, and reveals previously under-appreciated cell type-specific functions of clock genes. Various aspects of our daily rhythms in physiology and behavior such as the sleep-wake cycle are regulated by endogenous circadian clocks that are present in nearly every cell. It is generally accepted that these oscillators share a similar biochemical negative feedback mechanism, consisting of transcriptional activators and repressors. In this study, we developed cell-autonomous, metabolically relevant clock models in mouse hepatocytes and adipocytes. Each clock model has an integrated luciferase reporter that allows for kinetic luminescence recording with an inexpensive microplate reader and thus is feasible for most laboratories. These models are amenable to high throughput screening of small molecules or genomic entities for impacts on cell-autonomous clocks relevant to metabolism. We validated these new models by RNA interference via lentivirus-mediated knockdown of known clock genes. As expected, we found that many core clock components have similar functions across cell types. To our surprise, however, we also uncovered previously under-appreciated cell type-specific functions of core clock genes, particularly Per1, Per2, and Per3. Because the circadian system is integrated with, and influenced by, the local physiology that is under its control, our studies provide important implications for future studies into cell type-specific mechanisms of various circadian systems.
Collapse
Affiliation(s)
- Chidambaram Ramanathan
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Haiyan Xu
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Sanjoy K. Khan
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Yang Shen
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Paula J. Gitis
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
- Center for Chronobiology, University of California, San Diego, La Jolla, California, United States of America
| | - David K. Welsh
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
- Center for Chronobiology, University of California, San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - John B. Hogenesch
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Andrew C. Liu
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
- Feinstone Genome Research Center, University of Memphis, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
48
|
Yoshida K, Hashiramoto A, Okano T, Yamane T, Shibanuma N, Shiozawa S. TNF-α modulates expression of the circadian clock genePer2in rheumatoid synovial cells. Scand J Rheumatol 2013; 42:276-80. [DOI: 10.3109/03009742.2013.765031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Diversity of human clock genotypes and consequences. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:51-81. [PMID: 23899594 DOI: 10.1016/b978-0-12-396971-2.00003-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular clock consists of a number of genes that form transcriptional and posttranscriptional feedback loops, which function together to generate circadian oscillations that give rise to circadian rhythms of our behavioral and physiological processes. Genetic variations in these clock genes have been shown to be associated with phenotypic effects in a repertoire of biological processes, such as diurnal preference, sleep, metabolism, mood regulation, addiction, and fertility. Consistently, rodent models carrying mutations in clock genes also demonstrate similar phenotypes. Taken together, these studies suggest that human clock-gene variants contribute to the phenotypic differences observed in various behavioral and physiological processes, although to validate this requires further characterization of the molecular consequences of these polymorphisms. Investigating the diversity of human genotypes and the phenotypic effects of these genetic variations shall advance our understanding of the function of the circadian clock and how we can employ the clock to improve our overall health.
Collapse
|
50
|
Arjona A, Silver AC, Walker WE, Fikrig E. Immunity's fourth dimension: approaching the circadian-immune connection. Trends Immunol 2012; 33:607-12. [PMID: 23000010 PMCID: PMC3712756 DOI: 10.1016/j.it.2012.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022]
Abstract
The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Alvaro Arjona
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Thomson Reuters IP & Science, London, UK
| | - Adam C. Silver
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wendy E. Walker
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD
- To whom correspondence should be addressed: Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, P.O Box 208022, New Haven, Connecticut 06520-8022, USA. Phone: (203) 785-4140; Fax: (203) 785-3864;
| |
Collapse
|