1
|
Yan J, Khanal S, Cao Y, Ricchiuti N, Nani A, Chen SRW, Fill M, Bare DJ, Ai X. Alda-1 attenuation of binge alcohol-caused atrial arrhythmias through a novel mechanism of suppressed c-Jun N-terminal Kinase-2 activity. J Mol Cell Cardiol 2024; 197:11-19. [PMID: 39395657 DOI: 10.1016/j.yjmcc.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Holiday Heart Syndrome (HHS) is caused by excessive binge alcohol consumption, and atrial fibrillation (AF) is the most common arrhythmia among HHS patients. AF is associated with substantial morbidity and mortality, making its prevention and treatment of high clinical interest. This study defines the anti-AF action of Alda-1 (an established cardioprotective agent) and the underlying mechanisms of the action in our well-characterized HHS and cellular models. We found that Alda-1 effectively eliminated binge alcohol-evoked Ca2+ triggered activities (Ca2+ waves, prolonged Ca2+ transient diastolic decay) and arrhythmia inducibility in intact mouse atria. We then demonstrated that alcohol impaired human RyR2 channels (isolated from organ donors' hearts). The functional role of alcohol-caused RyR2 channel dysfunction in Ca2+ triggered arrhythmic activities was evidenced in a unique transgenic mouse model with a loss-of-function mutation (RyR2E4872Q+/-). Alda-1 is known to activate aldehyde dehydrogenase 2 (ALDH2), a key enzyme in alcohol detoxification. However, we found an increased level of ALDH2 and a preserved normal balance of pro- vs anti-apoptotic signaling in binge alcohol exposed hearts and H9c2 differentiated myocytes, which suggests that the link of alcohol-ALDH2-apoptosis is unlikely to be a key factor leading to binge alcohol-evoked arrhythmogenicity. We have previously reported that binge alcohol-activated stress response kinase JNK2 causatively drives Ca2+-triggered atrial arrhythmogenicity. Here, we found that JNK2-specific inhibition in either isolated human RyR2 channels or intact mouse atria abolished alcohol-evoked RyR2 channel dysfunction and Ca2+ triggered arrhythmic activities, suggesting a strong alcohol-JNK2-RyR2 interaction in atrial arrhythmogenicity. Furthermore, we revealed, for the first time, that Alda-1 suppresses JNK2 (but not JNK1) enzyme activity independently of ALDH2, which in turn alleviates binge alcohol-evoked Ca2+ triggered atrial arrhythmogenesis. Our findings provide novel mechanistic insights into the anti-arrhythmic action of Alda-1 and suggest that Alda-1 represents a potential preventative agent for AF management for HHS patients.
Collapse
Affiliation(s)
- Jiajie Yan
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Saugat Khanal
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Yuanyuan Cao
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Nikola Ricchiuti
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alma Nani
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, The Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Michael Fill
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Dan J Bare
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Slayden A, Mysiewicz S, North K, Dopico A, Bukiya A. Cerebrovascular Effects of Alcohol Combined with Tetrahydrocannabinol. Cannabis Cannabinoid Res 2024; 9:252-266. [PMID: 36108317 PMCID: PMC10874832 DOI: 10.1089/can.2021.0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Alcohol (ethanol) and cannabis are among the most widely used recreational drugs in the world. With increased efforts toward legalization of cannabis, there is an alarming trend toward the concomitant (including simultaneous) use of cannabis products with alcohol for recreational purpose. While each drug possesses a distinct effect on cerebral circulation, the consequences of their simultaneous use on cerebral artery diameter have never been studied. Thus, we set to address the effect of simultaneous application of alcohol and (-)-trans-Δ-9-tetrahydrocannabinol (THC) on cerebral artery diameter. Materials and Methods: We used Sprague-Dawley rats because rat cerebral circulation closely mimics morphology, ultrastructure, and function of cerebral circulation of humans. We focused on the middle cerebral artery (MCA) because it supplies blood to the largest brain territory when compared to any other cerebral artery stemming from the circle of Willis. Experiments were performed on pressurized MCA ex vivo, and in cranial windows in vivo. Ethanol and THC were probed at physiologically relevant concentrations. Researchers were "blind" to experimental group identity during data analysis to avoid bias. Results: In males, ethanol mixed with THC resulted in greater constriction of ex vivo pressurized MCA when compared to the effects exerted by separate application of each drug. In females, THC, ethanol, or their mixture failed to elicit measurable effect. Vasoconstriction by ethanol/THC mixture was ablated by either endothelium removal or pharmacological block of calcium- and voltage-gated potassium channels of large conductance (BK type) and cannabinoid receptors. Block of prostaglandin production and of endothelin receptors also blunted constriction by ethanol/THC. In males, the in vivo constriction of MCA by ethanol/THC did not differ from ethanol alone. In females, the in vivo constriction of this artery by ethanol was significantly smaller than in males. However, artery constriction by ethanol/THC did not differ from the constriction in males. Conclusions: Our data point at the complex nature of the cerebrovascular effects elicited by simultaneous use of ethanol and THC. These effects include both local and systemic components.
Collapse
Affiliation(s)
- Alexandria Slayden
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Steven Mysiewicz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kelsey North
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alex Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Anna Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Mysiewicz S, Hibl B, Dopico A, Bukiya A. Commonly used anesthetics modify alcohol and (-)-trans-delta9-tetrahydrocannabinol in vivo effects on rat cerebral arterioles. BMC Anesthesiol 2023; 23:411. [PMID: 38087263 PMCID: PMC10714523 DOI: 10.1186/s12871-023-02320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Ethyl alcohol and cannabis are widely used recreational substances with distinct effects on the brain. These drugs increase accidental injuries requiring treatment under anesthesia. Moreover, alcohol and cannabis are often used in anesthetized rodents for biomedical research. Here, we compared the influence of commonly used forms of anesthesia, injectable ketamine/xylazine (KX) versus inhalant isoflurane, on alcohol- and (-)-trans-delta9-tetrahydrocannabinol (THC) effects on cerebral arteriole diameter evaluated in vivo. METHODS Studies were performed on male and female Sprague-Dawley rats subjected to intracarotid catheter placement for drug infusion, and cranial window surgery for monitoring pial arteriole diameter. Depth of anesthesia was monitored every 10-15 min by toe-pinch. Under KX, the number of toe-pinch responders was maximal after the first dose of anesthesia and diminished over time in both males and females. In contrast, the number of toe-pinch responders under isoflurane slowly raised over time, leading to increase in isoflurane percentage until deep anesthesia was re-established. Rectal temperature under KX remained stable in males while dropping in females. As expected for gaseous anesthesia, both males and females exhibited rectal temperature drops under isoflurane. RESULTS Infusion of 50 mM alcohol (ethanol, EtOH) into the cerebral circulation rendered robust constriction in males under KX anesthesia, this alcohol action being significantly smaller, but still present under isoflurane anesthesia. In females, EtOH did not cause measurable changes in pial arteriole diameter regardless of the anesthetic. These findings indicate a strong sex bias with regards to EtOH induced vasoconstriction. Infusion of 42 nM THC in males and females under isoflurane tended to constrict cerebral arterioles in both males and females when compared to isovolumic infusion of THC vehicle (dimethyl sulfoxide in saline). Moreover, THC-driven changes in arteriole diameter significantly differed in magnitude depending on the anesthetic used. Simultaneous administration of 50 mM alcohol and 42 nM THC to males constricted cerebral arterioles regardless of the anesthetic used. In females, constriction by the combined drugs was also observed, with limited influence by anesthetic presence. CONCLUSIONS We demonstrate that two commonly used anesthetic formulations differentially influence the level of vasoconstriction caused by alcohol and THC actions in cerebral arterioles.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA
| | - Brianne Hibl
- Laboratory Animal Care Unit, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Alex Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA
| | - Anna Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA.
| |
Collapse
|
4
|
Lee AS, Sung YL, Pan SH, Sung KT, Su CH, Ding SL, Lu YJ, Hsieh CL, Chen YF, Liu CC, Chen WY, Chen XR, Chung FP, Wang SW, Chen CH, Mochly-Rosen D, Hung CL, Yeh HI, Lin SF. A Common East Asian aldehyde dehydrogenase 2*2 variant promotes ventricular arrhythmia with chronic light-to-moderate alcohol use in mice. Commun Biol 2023; 6:610. [PMID: 37280327 PMCID: PMC10244406 DOI: 10.1038/s42003-023-04985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Chronic heavy alcohol use is associated with lethal arrhythmias. Whether common East Asian-specific aldehyde dehydrogenase deficiency (ALDH2*2) contributes to arrhythmogenesis caused by low level alcohol use remains unclear. Here we show 59 habitual alcohol users carrying ALDH2 rs671 have longer QT interval (corrected) and higher ventricular tachyarrhythmia events compared with 137 ALDH2 wild-type (Wt) habitual alcohol users and 57 alcohol non-users. Notably, we observe QT prolongation and a higher risk of premature ventricular contractions among human ALDH2 variants showing habitual light-to-moderate alcohol consumption. We recapitulate a human electrophysiological QT prolongation phenotype using a mouse ALDH2*2 knock-in (KI) model treated with 4% ethanol, which shows markedly reduced total amount of connexin43 albeit increased lateralization accompanied by markedly downregulated sarcolemmal Nav1.5, Kv1.4 and Kv4.2 expressions compared to EtOH-treated Wt mice. Whole-cell patch-clamps reveal a more pronounced action potential prolongation in EtOH-treated ALDH2*2 KI mice. By programmed electrical stimulation, rotors are only provokable in EtOH-treated ALDH2*2 KI mice along with higher number and duration of ventricular arrhythmia episodes. The present research helps formulate safe alcohol drinking guideline for ALDH2 deficient population and develop novel protective agents for these subjects.
Collapse
Affiliation(s)
- An-Sheng Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Tzu Sung
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Huang Su
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shiao-Li Ding
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Ying-Jui Lu
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Chin-Ling Hsieh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Yun-Fang Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Chuan-Chuan Liu
- Department of Physiology Examination, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Chung-Lieh Hung
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Hung-I Yeh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Alleyne J, Dopico AM. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10011. [PMID: 35169771 PMCID: PMC8843239 DOI: 10.3389/adar.2021.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Alcohol misuse has deleterious effects on personal health, family, societal units, and global economies. Moreover, alcohol misuse usually leads to several diseases and conditions, including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse, whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple and "promiscuous" ligand that affects many targets to mediate a single biological effect. In this review, we firstly summarize the processes of excitation-contraction coupling and calcium homeostasis which are critical for the regulation of contractility in all muscle types. Secondly, we present the effects of acute and chronic alcohol exposure on the contractility of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels, and human subjects vs. animal models. The differential effects of alcohol on biological sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle contractility, involves a wide variety of molecular players, including contractile proteins, their regulatory factors, membrane ion channels and pumps, and several signaling molecules. Clear identification of these molecular players constitutes a first step for a rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the negative effects of alcohol on muscle contractility.
Collapse
Affiliation(s)
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
6
|
Seleverstov O, North K, Simakova M, Bisen S, Bickenbach A, Bursac Z, Dopico AM, Bukiya AN. Temporal Requirement for the Protective Effect of Dietary Cholesterol against Alcohol-Induced Vasoconstriction. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2020; 9:236103. [PMID: 33537157 PMCID: PMC7853201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Moderate-to-heavy episodic alcohol drinking resulting in 30-80 mM of ethanol in blood constricts cerebral arteries and constitutes a risk factor for cerebrovascular disease. Alcohol-induced constriction of cerebral arteries in vivo and ex vivo has been shown to be blunted by dietary cholesterol (CLR) in a rat model of a high-CLR diet. Such protection has been proposed to arise from the high-CLR diet-driven increase in blood CLR levels and accompanying buildup of CLR within the cerebral artery smooth muscle. Here we used a rat model of high-CLR feeding in vivo and pressurized cerebral arteries ex vivo to examine whether the degree and time-course of alcohol-induced constriction are related to blood CLR levels. We demonstrate that subjecting young (3 weeks-old, 50 g) male Sprague-Dawley rats to a high- CLR feeding up to 41 weeks, resulted in an age-dependent increase in total blood CLR levels, when compared to those of age-matched rats on isocaloric (control) chow. This increase was paralleled by a high-CLR diet-driven elevation of blood low-density lipoproteins whereas high-density lipoprotein levels matched those of age-matched, chow-fed controls. Alcohol-induced constriction was only blunted by high-CLR dietary intake when high-CLR chow was taken for up to 8-12 and 18-23 weeks. However, alcohol-constriciton was not blunted when high-CLR chow intake lasted for longer times, such as 28-32 and 38-41 weeks. Thus, alcohol-induced constriction of rat middle cerebral arteries did not critically depend on the total blood CLR levels. Alcohol-induced constriction seemed unrelated to the natural, progressive elevation of the total blood CLR level in control- or high-CLR-fed animals over time. Thus, neither the exogenously nor endogenously driven increases in blood CLR could predict cerebral artery susceptibility to alcohol-induced constriction. However, we identified a temporal requirement for the protective effect of dietary CLR against alcohol, that could be governed by the young age of the high- CLR chow recipients (3 weeks of age) and/or the short duration of high-CLR chow feeding lasting for up to 23 weeks.
Collapse
Affiliation(s)
- Olga Seleverstov
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Kelsey North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Maria Simakova
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Shivantika Bisen
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Alexandra Bickenbach
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Zoran Bursac
- Department of Biostatistics, Stempel College, Florida International University, Miami, Florida, United States of America
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anna N. Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America,Address Correspondence to Anna N. Bukiya,
| |
Collapse
|
7
|
Simakova M, Tobiasz A, Sullivan RD, Bisen S, Duncan J, Sullivan JP, Davison S, Tate DL, Barnett S, Mari G, Dopico AM, Bukiya AN. Gestational Age-Dependent Interplay between Endocannabinoid Receptors and Alcohol in Fetal Cerebral Arteries. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2019; 8:236068. [PMID: 31057979 PMCID: PMC6497414 DOI: 10.4303/jdar/236068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol (ethanol) is one of the most widely consumed drugs. Alcohol consumption by pregnant women may result in a range of fetal abnormalities termed fetal alcohol spectrum disorders (FASDs). The cerebrovascular system is emerging as a critical target of alcohol in the developing brain. We recently showed that three episodes of prenatal alcohol exposure resulting in 80 mg/dL alcohol in maternal blood during mid-pregnancy up-regulated anandamide-induced dilation of fetal cerebral arteries. Moreover, ethanol dilated fetal cerebral arteries via cannabinoid (CB) receptors. Whether a critical role of fetal cerebral artery CB system in responses to alcohol was maintained throughout the gestation, remains unknow. MAIN METHODS Pregnant baboons (second trimester equivalent) were subjected to three episodes of either alcohol or control drink infusion via gavage. Cerebral arteries from mothers and near-term female fetuses were in vitro pressurized for diameter monitoring. KEY FINDINGS Near-term fetal and maternal arteries exhibited similar ability to develop myogenic tone, to constrict in presence of 60 mM KCl, and to respond to 10 µM anandamide. Fetal and maternal arteries largely failed to dilate in presence of 63 mM ethanol. No differences were detected between arteries from control and alcohol-exposed baboon donors. Therefore, previously observed ethanol-induced dilation of fetal cerebral arteries and up-regulation of CB components in response to fetal alcohol exposure during mid-pregnancy was transient and disappeared by near-term.
Collapse
Affiliation(s)
- Maria Simakova
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ana Tobiasz
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ryan D Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shivantika Bisen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jose Duncan
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - J Pierce Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Davison
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Danielle L Tate
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Barnett
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Giancarlo Mari
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
8
|
North KC, Chang J, Bukiya AN, Dopico AM. Extra-endothelial TRPV1 channels participate in alcohol and caffeine actions on cerebral artery diameter. Alcohol 2018; 73:45-55. [PMID: 30268908 DOI: 10.1016/j.alcohol.2018.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
Alcohol (ethyl alcohol; ethanol) and caffeine are the two most widely used psychoactive substances in the world. Caffeine and ethanol have both been reported to constrict cerebral arteries in several species, including humans. We have recently shown that application of 10-μM caffeine mixed with 50 mM ethanol to in vitro pressurized cerebral arteries of rats reduced ethanol-induced constriction. This effect was dependent on the presence of nitric oxide (NO•) and could be observed in de-endothelialized arteries supplied with the NO donor sodium nitroprusside (SNP). The molecular target(s) of ethanol-caffeine interaction in cerebral arteries has remained unknown. In the present work, we used rat and mouse middle cerebral arteries (MCA) to identify the extra-endothelial effectors of NO-mediated, caffeine-induced protection against ethanol-evoked arterial constriction. Constriction of intact MCA of rat by either 50 mM ethanol or 10 μM caffeine was ablated in the presence of a selective TRPV1 pharmacological blocker. TRPV1 pharmacological block, but not block of TRPA1, PKG, or BK channels, removed caffeine-induced protection against ethanol-evoked rat MCA constriction, whether evaluated in arteries with intact endothelium or in SNP-supplemented, de-endothelialized arteries. In mouse arteries, caffeine-induced protection against ethanol-induced MCA constriction was significantly amplified, resulting in actual vasodilation, upon pharmacological block of TRPV1, and in TRPV1 knock-out arteries. Despite some species-specific differences, our study unequivocally demonstrates the presence of functional, extra-endothelial TRPV1 that participates in both endothelium-independent MCA constriction by separate exposure to ethanol or caffeine and caffeine-induced protection against ethanol-evoked MCA constriction.
Collapse
Affiliation(s)
- Kelsey C North
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Jennifer Chang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| |
Collapse
|
9
|
Bukiya AN, Dopico AM. Fetal Cerebral Circulation as Target of Maternal Alcohol Consumption. Alcohol Clin Exp Res 2018; 42:1006-1018. [PMID: 29672868 PMCID: PMC5984173 DOI: 10.1111/acer.13755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/08/2018] [Indexed: 12/29/2022]
Abstract
Alcohol (ethanol [EtOH]) is one of the most widely used psychoactive substances worldwide. Alcohol consumption during pregnancy may result in a wide range of morphological and neurodevelopmental abnormalities termed fetal alcohol spectrum disorders (FASD), with the most severe cases diagnosed as fetal alcohol syndrome (FAS). FAS and FASD are not readily curable and currently represent the leading preventable causes of birth defect and neurodevelopmental delay in the United States. The etiology of FAS/FASD remains poorly understood. This review focuses on the effects of prenatal alcohol exposure (PAE) on fetal cerebrovascular function. A brief introduction to the epidemiology of alcohol consumption and the developmental characteristics of fetal cerebral circulation is followed by several sections that discuss current evidence documenting alcohol-driven alterations of fetal cerebral blood flow, artery function, and microvessel networks. The material offers mechanistic insights at the vascular level itself into the pathophysiology of PAE.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
10
|
Bukiya AN, Seleverstov O, Bisen S, Dopico AM. Age-Dependent Susceptibility to Alcohol-Induced Cerebral Artery Constriction. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2016; 5:236002. [PMID: 29391966 PMCID: PMC5790172 DOI: 10.4303/jdar/236002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Age has been recognized as an important contributor into susceptibility to alcohol-driven pathology. PURPOSE We aimed at determining whether alcohol-induced constriction of cerebral arteries was age-dependent. STUDY DESIGN We used rat middle cerebral artery (MCA) in vitro diameter monitoring, patch-clamping and fluorescence labeling of myocytes to study an age-dependent increase in the susceptibility to alcohol in 3 (50 g), 8 (250 g), and 15 (440 g) weeks-old rats. RESULTS An age-dependent increase in alcohol-induced constriction of MCA could be observed in absence of endothelium, which is paralleled by an age-dependent increase in both protein level of the calcium-/voltage-gated potassium channel of large conductance (BK) accessory β1 subunit and basal BK channel activity. Ethanol-induced BK channel inhibition is increased with age. CONCLUSIONS We demonstrate an increased susceptibility of MCA to ethanol-induced constriction in a period equivalent to adolescence and early adulthood when compared to pre-adolescence. Our work suggests that BK β1 constitutes a significant contributor to age-dependent changes in the susceptibility of cerebral arteries to ethanol.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Olga Seleverstov
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Shivantika Bisen
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
11
|
Dopico AM, Bukiya AN, Kuntamallappanavar G, Liu J. Modulation of BK Channels by Ethanol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:239-79. [PMID: 27238266 PMCID: PMC5257281 DOI: 10.1016/bs.irn.2016.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In alcohol-naïve systems, ethanol (<100mM) exposure of calcium-gated BK channels perturbs physiology and behavior. Brief (several minutes) ethanol exposure usually leads to increased BK current, which results from ethanol interaction with a pocket mapped to the BK channel-forming slo1 protein cytosolic tail domain. The importance of this region in ethanol-induced intoxication has been independently supported by an unbiased screen of Caenorhabditis elegans slo1 mutants. However, ethanol-induced BK activation is not universal as refractoriness and inhibition have been reported. The final effect depends on many factors, including intracellular calcium levels, slo1 isoform, BK beta subunit composition, posttranslational modification of BK proteins, channel lipid microenvironment, and type of ethanol administration. Studies in Drosophila melanogaster, C. elegans, and rodents show that protracted/repeated ethanol administration leads to tolerance to ethanol-induced modification of BK-driven physiology and behavior. Unveiling the mechanisms underlying tolerance is of major importance, as tolerance to ethanol has been proposed as predictor of risk for alcoholism.
Collapse
Affiliation(s)
- A M Dopico
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - A N Bukiya
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - G Kuntamallappanavar
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - J Liu
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Chang J, Fedinec AL, Kuntamallappanavar G, Leffler CW, Bukiya AN, Dopico AM. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction. J Pharmacol Exp Ther 2015; 356:106-15. [PMID: 26555891 DOI: 10.1124/jpet.115.229054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022] Open
Abstract
Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without significantly disrupting endothelium-independent, alcohol-induced cerebral artery constriction itself.
Collapse
Affiliation(s)
- Jennifer Chang
- Department of Pharmacology (J.C., G.K., A.N.B., A.M.D.) and Department of Physiology (A.L.F., C.W.L.), College of Medicine, Health Science Center, University of Tennessee, Memphis, Tennessee
| | - Alexander L Fedinec
- Department of Pharmacology (J.C., G.K., A.N.B., A.M.D.) and Department of Physiology (A.L.F., C.W.L.), College of Medicine, Health Science Center, University of Tennessee, Memphis, Tennessee
| | - Guruprasad Kuntamallappanavar
- Department of Pharmacology (J.C., G.K., A.N.B., A.M.D.) and Department of Physiology (A.L.F., C.W.L.), College of Medicine, Health Science Center, University of Tennessee, Memphis, Tennessee
| | - Charles W Leffler
- Department of Pharmacology (J.C., G.K., A.N.B., A.M.D.) and Department of Physiology (A.L.F., C.W.L.), College of Medicine, Health Science Center, University of Tennessee, Memphis, Tennessee
| | - Anna N Bukiya
- Department of Pharmacology (J.C., G.K., A.N.B., A.M.D.) and Department of Physiology (A.L.F., C.W.L.), College of Medicine, Health Science Center, University of Tennessee, Memphis, Tennessee
| | - Alex M Dopico
- Department of Pharmacology (J.C., G.K., A.N.B., A.M.D.) and Department of Physiology (A.L.F., C.W.L.), College of Medicine, Health Science Center, University of Tennessee, Memphis, Tennessee
| |
Collapse
|
13
|
Dopico AM, Bukiya AN, Martin GE. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior. Front Physiol 2014; 5:466. [PMID: 25538625 PMCID: PMC4256990 DOI: 10.3389/fphys.2014.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/13/2014] [Indexed: 11/30/2022] Open
Abstract
In most tissues, the function of Ca2+- and voltage-gated K+ (BK) channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (Ca2+i), BK subunit composition and post-translational modifications, and the channel's lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1) subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus), acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophyseal axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Gilles E Martin
- Department of Psychiatry, The University of Massachusetts Medical School Worcester, MA, USA
| |
Collapse
|