1
|
Wu C, Zhang X, Fan Y, Ye J, Dong L, Wang Y, Ren Y, Yong H, Liu R, Wang A. Vertical transfer and functional characterization of cotton seed core microbiome. Front Microbiol 2024; 14:1323342. [PMID: 38264479 PMCID: PMC10803423 DOI: 10.3389/fmicb.2023.1323342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Microbiome within plant tissues is pivotal for co-evolution with host plants. This microbiome can colonize the plant, with potential transmission via seeds between parents and offspring, affecting seedling growth and host plant adaptability to the environment. Methods We employed 16S rRNA gene amplicon analysis to investigate the vertical distribution of core microbiome in cotton seeds across ecological niches [rhizosphere, root, stem, leaf, seed and seed-P (parental seed)] of the three cotton genotypes. Results The findings demonstrated a significant decrease in microbiome diversity and network complexity from roots, stems, and leaves to seeds. The microenvironment exerted a more substantial influence on the microbiome structure of cotton than the genotypes. The core endophytic microorganisms in cotton seeds comprised 29 amplicon sequence variants (ASVs) affiliated with Acidimicrobiia, Alphaproteobacteria, Bacilli, Bacteroidia, Clostridia, Gammaproteobacteria, and unclassified_Proteobacteria. These vertically transmitted taxa are widely distributed in cotton plants. Through 16S rRNA gene-based function prediction analysis of the cotton microbiome, we preliminarily understood that there are potential differences in metabolic capabilities and phenotypic traits among microbiomes in different microhabitats. Discussion In conclusion, this study demonstrated the crucial role of the microenvironment in influencing the cotton microbiome and offered insights into the structures and functions of the cotton seed microbiome, facilitating future crop yield enhancement through core seed microbiome regulation.
Collapse
Affiliation(s)
- Chongdie Wu
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Xin Zhang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yongbin Fan
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Jingyi Ye
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Lingjun Dong
- College of Life Sciences, Shihezi University, Shihezi, China
| | - YuXiang Wang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - YinZheng Ren
- College of Life Sciences, Shihezi University, Shihezi, China
| | - HongHong Yong
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Ruina Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Aiying Wang
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps, Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| |
Collapse
|
2
|
Dominguez J, Jayachandran K, Stover E, Krystel J, Shetty KG. Endophytes and Plant Extracts as Potential Antimicrobial Agents against Candidatus Liberibacter Asiaticus, Causal Agent of Huanglongbing. Microorganisms 2023; 11:1529. [PMID: 37375030 DOI: 10.3390/microorganisms11061529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is an insidious disease in citrus and has become a threat to the sustainability of the citrus industry worldwide. In the U.S., Candidatus Liberibacter asiaticus (CLas) is the pathogen that is associated with HLB, an unculturable, phloem-limited bacteria, vectored by the Asian Citrus Psyllid (ACP, Diaphorina citri). There is no known cure nor treatment to effectively control HLB, and current control methods are primarily based on the use of insecticides and antibiotics, where effectiveness is limited and may have negative impacts on beneficial and non-target organisms. Thus, there is an urgent need for the development of effective and sustainable treatment options to reduce or eliminate CLas from infected trees. In the present study, we screened citrus-derived endophytes, their cell-free culture supernatants (CFCS), and crude plant extracts for antimicrobial activity against two culturable surrogates of CLas, Sinorhizobium meliloti and Liberibacter crescens. Candidates considered high-potential antimicrobial agents were assessed directly against CLas in vitro, using a propidium monoazide-based assay. As compared to the negative controls, statistically significant reductions of viable CLas cells were observed for each of the five bacterial CFCS. Subsequent 16S rRNA gene sequencing revealed that each of the five bacterial isolates were most closely related to Bacillus amyloliquefaciens, a species dominating the market of biological control products. As such, the aboveground endosphere of asymptomatic survivor citrus trees, grown in an organic orchard, were found to host bacterial endophytes capable of effectively disrupting CLas cell membranes. These results concur with the theory that native members of the citrus microbiome play a role in the development of HLB. Here, we identify five strains of Bacillus amyloliquefaciens demonstrating notable potential to be used as sources of novel antimicrobials for the sustainable management of HLB.
Collapse
Affiliation(s)
- Jessica Dominguez
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| | | | - Ed Stover
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Joseph Krystel
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Kateel G Shetty
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
Cheng Q, Li Z, Zhang J, Guo H, Ahmat M, Cheng J, Abbas Z, Hua Z, Wang J, Tong Y, Yang T, Si D, Zhang R. Soybean Oil Regulates the Fatty Acid Synthesis II System of Bacillus amyloliquefaciens LFB112 by Activating Acetyl-CoA Levels. Microorganisms 2023; 11:1164. [PMID: 37317138 DOI: 10.3390/microorganisms11051164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/16/2023] Open
Abstract
[Background] Bacillus LFB112 is a strain of Bacillus amyloliquefaciens screened in our laboratory. Previous studies found that it has a strong ability for fatty acid metabolism and can improve the lipid metabolism of broilers when used as feed additives. [Methods] This study aimed to confirm the fatty acid metabolism of Bacillus LFB112. Sterilized soybean oil (SSO) was added to the Beef Peptone Yeast (BPY) medium, and its effect on fatty acid content in the supernatant and bacteria, as well as expression levels of genes related to fatty acid metabolism, were studied. The control group was the original culture medium without oil. [Results] Acetic acid produced by the SSO group of Bacillus LFB112 decreased, but the content of unsaturated fatty acids increased. The 1.6% SSO group significantly increased the contents of pyruvate and acetyl-CoA in the pellets. Furthermore, the mRNA levels of enzymes involved in the type II fatty acid synthesis pathway of FabD, FabH, FabG, FabZ, FabI, and FabF were up-regulated. [Conclusions] Soybean oil increased the content of acetyl-CoA in Bacillus LFB112, activated its type II fatty acid synthesis pathway, and improved the fatty acid metabolism level of Bacillus LFB112. These intriguing results pave the way for further investigations into the intricate interplay between Bacillus LFB112 and fatty acid metabolism, with potential applications in animal nutrition and feed additive development.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zhongxuan Li
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Jing Zhang
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Henan Guo
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Marhaba Ahmat
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Junhao Cheng
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zaheer Abbas
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zhengchang Hua
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Junyong Wang
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yucui Tong
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Yang
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Nagy VD, Zhumakayev A, Vörös M, Bordé Á, Szarvas A, Szűcs A, Kocsubé S, Jakab P, Monostori T, Škrbić BD, Mohai E, Hatvani L, Vágvölgyi C, Kredics L. Development of a Multicomponent Microbiological Soil Inoculant and Its Performance in Sweet Potato Cultivation. Microorganisms 2023; 11:microorganisms11040914. [PMID: 37110337 PMCID: PMC10143537 DOI: 10.3390/microorganisms11040914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The cultivation and consumption of sweet potato (Ipomoea batatas) are increasing globally. As the usage of chemical fertilizers and pest control agents during its cultivation may lead to soil, water and air pollution, there is an emerging need for environment-friendly, biological solutions enabling increased amounts of healthy crop and efficient disease management. Microbiological agents for agricultural purposes gained increasing importance in the past few decades. Our goal was to develop an agricultural soil inoculant from multiple microorganisms and test its application potential in sweet potato cultivation. Two Trichoderma strains were selected: Trichoderma ghanense strain SZMC 25217 based on its extracellular enzyme activities for the biodegradation of plant residues, and Trichoderma afroharzianum strain SZMC 25231 for biocontrol purposes against fungal plant pathogens. The Bacillus velezensis strain SZMC 24986 proved to be the best growth inhibitor of most of the nine tested strains of fungal species known as plant pathogens, therefore it was also selected for biocontrol purposes against fungal plant pathogens. Arthrobacter globiformis strain SZMC 25081, showing the fastest growth on nitrogen-free medium, was selected as a component with possible nitrogen-fixing potential. A Pseudomonas resinovorans strain, SZMC 25872, was selected for its ability to produce indole-3-acetic acid, which is among the important traits of potential plant growth-promoting rhizobacteria (PGPR). A series of experiments were performed to test the selected strains for their tolerance to abiotic stress factors such as pH, temperature, water activity and fungicides, influencing the survivability in agricultural environments. The selected strains were used to treat sweet potato in two separate field experiments. Yield increase was observed for the plants treated with the selected microbial consortium (synthetic community) in comparison with the control group in both cases. Our results suggest that the developed microbial inoculant has the potential to be used in sweet potato plantations. To the best of our knowledge, this is the first report about the successful application of a fungal-bacterial consortium in sweet potato cultivation.
Collapse
Affiliation(s)
- Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Anuar Zhumakayev
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Ádám Bordé
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Adrienn Szarvas
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Péter Jakab
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Tamás Monostori
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Biljana D. Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Edina Mohai
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
5
|
Ching-Ju Huang, Zayabaatar E, Wang SM, Keshari S, Peng WH, Kung HN, Lee YH. Bacillus amyloliquefaciens-Inoculated GABA-Rich Rice Upregulate Neuropeptide Y to Relieve Psychological Stress through Mediations of GABAB Receptor and Vagus Nerves. BIOL BULL+ 2023. [DOI: 10.1134/s1062359022700054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Solanki MK, Solanki AC, Rai S, Srivastava S, Kashyap BK, Divvela PK, Kumar S, Yandigeri MS, Kashyap PL, Shrivastava AK, Ali B, Khan S, Jaremko M, Qureshi KA. Functional interplay between antagonistic bacteria and Rhizoctonia solani in the tomato plant rhizosphere. Front Microbiol 2022; 13:990850. [PMID: 36225362 PMCID: PMC9548980 DOI: 10.3389/fmicb.2022.990850] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022] Open
Abstract
Microbial interactions with plant roots play an imperial role in tomato plant growth and defense against the Rhizoctonia solani. This study performed a field experiment with two antagonistic bacteria (Pseudomonas and Bacillus) inoculated in healthy and Rhizoctonia solani treated soil in tomato rhizosphere to understand the metabolic pattern and microbial function during plant disease suppression. In the present study, we assessed soil and microbial enzymes, bacterial and fungal cell forming unit (CFU), and carbon utilization profiling through Bio-Eco plates of rhizoplane samples. Antagonist bacteria and pathogen interaction significantly (p < 0.05) influenced the bacterial count, soil enzymes (chitinase and glucanase), and bacterial function (siderophore and chitinase production). These results indicated that these variables had an imperial role in disease suppression during plant development. Furthermore, the metabolic profiling showed that carbon source utilization enhanced under fruit development and ripening stages. These results suggested that carbon sources were essential in plant/pathogen/antagonist interaction. Substrates like β-methyl-D-glucoside, D-mannitol, D-galacturonic acid, N-acetyl-D-glucosamine, and phenylethylamine strongly connect with the suppuration of root rot disease. These carbon sources may help to propagate a healthy microbial community to reduce the pathogen invasion in the plant root system, and these carbon sources can be stimulators of antagonists against pathogens in the future.
Collapse
Affiliation(s)
- Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | | - Shalini Rai
- Department of Biotechnology, Society of Higher Education and Practical Application (SHEPA), Varanasi, UP, India
| | - Supriya Srivastava
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, UP, India
| | | | - Sudheer Kumar
- Indian Institute of Wheat and Barley Research (ICAR), Karnal, HR, India
| | - Mahesh S. Yandigeri
- National Bureau of Agricultural Insect Resources (ICAR), Bengaluru, KA, India
- *Correspondence: Mahesh S. Yandigeri,
| | - Prem Lal Kashyap
- Indian Institute of Wheat and Barley Research (ICAR), Karnal, HR, India
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shahid Khan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Swat, Peshawar, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Kamal Ahmad Qureshi,
| |
Collapse
|
7
|
Effects of Phenotypic Variation on Biological Properties of Endophytic Bacteria Bacillus mojavensis PS17. BIOLOGY 2022; 11:biology11091305. [PMID: 36138785 PMCID: PMC9495571 DOI: 10.3390/biology11091305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Microorganisms play an important role in agriculture by protecting and stimulating the growth of plants. The phenotypic activities of microbial biological agents (MBA) can change under different environmental conditions. However, to adapt to these harsh conditions, genetic mutations take place in bacteria that are seen phenotypically, which might not be beneficial or less beneficial to the plants. Some adaptative mechanisms used by microorganisms, especially bacteria, to face these environmental factors lead to the appearance of subpopulations with different morphotypes that may be more adapted to survive in stressful conditions. Moreover, in favorable conditions, these subpopulations may become dominant among the overall bacterial population. In this study, Bacillus mojavensis undergoes phase variation when grown in a minimal medium, in which two colonies, opaque (morphotype I) and translucent (morphotype II), were generated. The characteristics of the generated morphotypes were determined and compared with those of their original strain. Overall, the results obtained showed that the phenotypic characteristics of morphotype I statistically differed from morphotype II. This phenomenon may be one of the factors behind the dissimilarities in the results between the laboratory and field data on the application of MBA. Abstract The use of microorganism-based products in agricultural practices is gaining more interest as an alternative to chemical methods due to their non-toxic bactericidal and fungicidal properties. Various factors influence the efficacy of the microorganisms used as biological control agents in infield conditions as compared to laboratory conditions due to ecological and physiological aspects. Abiotic factors have been shown to trigger phase variations in bacterial microorganisms as a mechanism for adapting to hostile environments. In this study, we investigated the stability of the morphotype and the effects of phenotypic variation on the biological properties of Bacillus mojavensis strain PS17. B. mojavensis PS17 generated two variants (opaque and translucent) that were given the names morphotype I and II, respectively. The partial sequence of the 16S rRNA gene revealed that both morphotypes belonged to B. mojavensis. BOX and ERIC fingerprinting PCR also showed the same DNA profiles in both morphotypes. The characteristics of morphotype I did not differ from the original strain, while morphotype II showed a lower hydrolytic enzyme activity, phytohormone production, and antagonistic ability against phytopathogenic fungi. Both morphotypes demonstrated endophytic ability in tomato plants. A low growth rate of the strain PS17(II) in a minimal medium was observed in comparison to the PS17(I) strain. Furthermore, the capacity for biocontrol of B. mojavensis PS17(II) was not effective in the suppression of root rot disease in the tomato plants caused by Fusarium oxysporum f. sp. radices-lycopersici stain ZUM2407, compared to B. mojavensis PS17(I), whose inhibition was almost 47.9 ± 1.03% effective.
Collapse
|
8
|
Huynh T, Vörös M, Kedves O, Turbat A, Sipos G, Leitgeb B, Kredics L, Vágvölgyi C, Szekeres A. Discrimination between the Two Closely Related Species of the Operational Group B. amyloliquefaciens Based on Whole-Cell Fatty Acid Profiling. Microorganisms 2022; 10:microorganisms10020418. [PMID: 35208872 PMCID: PMC8877761 DOI: 10.3390/microorganisms10020418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Bacillus velezensis and Bacillus amyloliquefaciens are closely related members of the “operational group B. amyloliquefaciens”, a taxonomical unit above species level within the ”Bacillus subtilis species complex”. They have similar morphological, physiological, biochemical, phenotypic, and phylogenetic characteristics. Thus, separating these two taxa from each another has proven to be difficult to implement and could not be pushed easily into the line of routine analyses. (2) Methods: The aim of this study was to determine whether whole FAME profiling could be used to distinguish between these two species, using both type strains and environmental isolates. Initially, the classification was determined by partial sequences of the gyrA and rpoB genes and the classified isolates and type strains were considered as samples to develop the identification method, based on FAME profiles. (3) Results: The dissimilarities in 16:0, 17:0 iso, and 17:0 FA components have drawn a distinction between the two species and minor differences in FA 14:0, 15:0 iso, and 16:0 iso were also visible. The statistical analysis of the FA profiles confirmed that the two taxa can be distinguished into two separate groups, where the isolates are identified without misreading. (4) Conclusions: Our study proposes that the developed easy and fast-automated identification tool based on cellular FA profiles can be routinely applied to distinguish B. velezensis and B. amyloliquefaciens.
Collapse
Affiliation(s)
- Thu Huynh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71351, Vietnam
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - Adiyadolgor Turbat
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky Str. 4, H-9400 Sopron, Hungary;
| | - Balázs Leitgeb
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary;
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (T.H.); (M.V.); (O.K.); (A.T.); (L.K.); (C.V.)
- Correspondence: ; Tel.: +36-62-544516
| |
Collapse
|
9
|
Kumar P, Fulekar MH. Cadmium phytoremediation potential of Deenanath grass (Pennisetum pedicellatum) and the assessment of bacterial communities in the rhizospheric soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2936-2953. [PMID: 34382164 DOI: 10.1007/s11356-021-15667-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation technology is gaining excessive consideration as a promising method for heavy metal remediation from contaminated soil. In the present research study, a greenhouse trial was performed to assess the proficiency of Pennisetum pedicellatum as a potential plant species for the remediation of cadmium from the soil. Four sets of treatments i.e., (To) control, (T1) 25 ppm, (T2) 50 ppm, and (T3) 100 ppm were studied till 60 days. Soil and plant samples were collected at a regular interval of 15 days after the seed sowing and analysed for different physicochemical properties and Cd concentrations from each treatment. The cadmium uptake was studied in the roots and shoots independently to examine the cadmium accumulation in P. pedicellatum. The present study showed that P. pedicellatum accumulated cadmium mostly in their roots compared to the shoots resulting in the accumulation of Cd from the soil. The finding indicates that P. pedicellatum is a virtuous plant species to restore cadmium-contaminated soil. It effectively banished 83% of Cd from the 100 ppm spiked soil at the end of 60 days. The microbial characterization of rhizospheric soil was also done using serial dilution and spread plate procedures to determine the presence of bacterial species in the rhizospheric soil. Seven bacterial strains were isolated from the soil and were further assessed for their biochemical, molecular, and phylogenic characteristics. The 16S rRNA sequencing analysis confirmed the presence of different bacterial species such as Alcaligenes sp., Bacillus drentensis, Bacillus subtilis, Bacillus foraminis, Bacillus wudalianchiensis, Bacillus amyloliquefaciens, and Planococcus ruber. This study concluded that phytoremediation using P. pedicellatum is a fascinating and compelling green technology for the remediation of cadmium from soil.
Collapse
Affiliation(s)
- Pankaj Kumar
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
| | - Madhusudan Hiraman Fulekar
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
- Center of Research for Development, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
10
|
Mullins AJ, Li Y, Qin L, Hu X, Xie L, Gu C, Mahenthiralingam E, Liao X, Webster G. Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species. MICROBIOLOGY-SGM 2021; 166:1121-1128. [PMID: 33205747 PMCID: PMC7819358 DOI: 10.1099/mic.0.000986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The genomes of two historical Bacillus species strains isolated from the roots of oilseed rape and used routinely in PR China as biocontrol agents to suppress Sclerotinia disease were sequenced. Average nucleotide identity (ANI) and digital DNA–DNA hybridization analyses demonstrated that they were originally misclassified as Bacillus subtilis and now belong to the bacterial species Bacillus velezensis. A broader ANI analysis of available Bacillus genomes identified 292 B. velezensis genomes that were then subjected to core gene analysis and phylogenomics. Prediction and dereplication of specialized metabolite biosynthetic gene clusters (BGCs) defined the prevalence of multiple antimicrobial-associated BGCs and highlighted the natural product potential of B. velezensis. By defining the core and accessory antimicrobial biosynthetic capacity of the species, we offer an in-depth understanding of B. velezensis natural product capacity to facilitate the selection and testing of B. velezensis strains for use as biological control agents.
Collapse
Affiliation(s)
- Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Yinshui Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Lu Qin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xiaojia Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Lihua Xie
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Chiming Gu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Xing Liao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
11
|
Wilkes TI, Warner DJ, Edmonds-Brown V, Davies KG, Denholm I. The Tripartite Rhizobacteria-AM Fungal-Host Plant Relationship in Winter Wheat: Impact of Multi-Species Inoculation, Tillage Regime and Naturally Occurring Rhizobacteria Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:1357. [PMID: 34371559 PMCID: PMC8309287 DOI: 10.3390/plants10071357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Soils and plant root rhizospheres have diverse microorganism profiles. Components of this naturally occurring microbiome, arbuscular mycorrhizal (AM) fungi and plant growth promoting rhizobacteria (PGPR), may be beneficial to plant growth. Supplementary application to host plants of AM fungi and PGPR either as single species or multiple species inoculants has the potential to enhance this symbiotic relationship further. Single species interactions have been described; the nature of multi-species tripartite relationships between AM fungi, PGPR and the host plant require further scrutiny. The impact of select Bacilli spp. rhizobacteria and the AM fungus Rhizophagus intraradices as both single and combined inoculations (PGPR[i] and AMF[i]) within field extracted arable soils of two tillage treatments, conventional soil inversion (CT) and zero tillage (ZT) at winter wheat growth stages GS30 and GS39 have been conducted. The naturally occurring soil borne species (PGPR[s] and AMF[s]) have been determined by qPCR analysis. Significant differences (p < 0.05) were evident between inocula treatments and the method of seedbed preparation. A positive impact on wheat plant growth was noted for B. amyloliquefaciens applied as both a single inoculant (PGPR[i]) and in combination with R. intraradices (PGPR[i] + AMF[i]); however, the two treatments did not differ significantly from each other. The findings are discussed in the context of the inocula applied and the naturally occurring soil borne PGPR[s] present in the field extracted soil under each method of tillage.
Collapse
Affiliation(s)
- Thomas I. Wilkes
- Department of Psychology, Sport and Geography, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; (V.E.-B.); (K.G.D.); (I.D.)
| | - Douglas J. Warner
- Agriculture and Environment Research Unit, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK;
| | - Veronica Edmonds-Brown
- Department of Psychology, Sport and Geography, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; (V.E.-B.); (K.G.D.); (I.D.)
| | - Keith G. Davies
- Department of Psychology, Sport and Geography, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; (V.E.-B.); (K.G.D.); (I.D.)
| | - Ian Denholm
- Department of Psychology, Sport and Geography, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; (V.E.-B.); (K.G.D.); (I.D.)
| |
Collapse
|
12
|
Ngalimat MS, Yahaya RSR, Baharudin MMAA, Yaminudin SM, Karim M, Ahmad SA, Sabri S. A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms 2021; 9:microorganisms9030614. [PMID: 33802666 PMCID: PMC8002464 DOI: 10.3390/microorganisms9030614] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive, endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A resurgence in genome mining has caused an increased focus on the biotechnological applications of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics for animals and fishes. Genome mining has revealed the potential applications of members of OGBa for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial products available based on these bacteria are also highlighted. This review will better facilitate understandings of members of OGBa and their biotechnological applications.
Collapse
Affiliation(s)
- Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Radin Shafierul Radin Yahaya
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Mohamad Malik Al-adil Baharudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Syafiqah Mohd. Yaminudin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.Y.); (M.K.)
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.Y.); (M.K.)
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-97698298
| |
Collapse
|
13
|
Gharib-Naseri K, Dorigam JCP, Doranalli K, Morgan N, Swick RA, Choct M, Wu SB. Bacillus amyloliquefaciens CECT 5940 improves performance and gut function in broilers fed different levels of protein and/or under necrotic enteritis challenge. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:185-197. [PMID: 33997347 PMCID: PMC8110864 DOI: 10.1016/j.aninu.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022]
Abstract
Two studies were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) as a probiotic on growth performance, amino acid digestibility and bacteria population in broiler chickens under a subclinical necrotic enteritis (NE) challenge and/or fed diets with different levels of crude protein (CP). Both studies consisted of a 2 × 2 factorial arrangement of treatments with 480 Ross 308 mix-sexed broiler chickens. In study 1, treatments included 1) NE challenge (+/-), and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/-). In study 2, all birds were under NE challenge, and treatments were 1) CP level (Standard/Reduced [2% less than standard]) and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/-). After inducing NE infection, blood samples were taken on d 16 for uric acid evaluation, and cecal samples were collected for bacterial enumeration. In both studies, ileal digesta was collected on d 35 for nutrient digestibility evaluation. In study 1, the NE challenge reduced body weight gain (BWG), supressed feed conversion ratio (FCR) and serum uric acid levels (P < 0.001). Supplementation of BA increased BWG (P < 0.001) and reduced FCR (P = 0.043) across dietary treatments, regardless of challenge. Bacillus (P = 0.030) and Ruminococcus (P = 0.029) genomic DNA copy numbers and concentration of butyrate (P = 0.017) were higher in birds fed the diets supplemented with BA. In study 2, reduced protein (RCP) diets decreased BWG (P = 0.010) and uric acid levels in serum (P < 0.001). Supplementation of BA improved BWG (P = 0.001) and FCR (P = 0.005) and increased Ruminococcus numbers (P = 0.018) and butyrate concentration (P = 0.033) in the ceca, regardless of dietary CP level. Further, addition of BA reduced Clostridium perfringens numbers only in birds fed with RCP diets (P = 0.039). At d 35, BA supplemented diets showed higher apparent ileal digestibility of cystine (P = 0.013), valine (P = 0.020), and lysine (P = 0.014). In conclusion, this study suggests positive effects of BA supplementation in broiler diets via modulating gut microflora and improving nutrient uptake.
Collapse
Affiliation(s)
- Kosar Gharib-Naseri
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Juliano C P Dorigam
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Kiran Doranalli
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Natalie Morgan
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Robert A Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Mingan Choct
- University of New England, Armidale 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
14
|
Zhang S, Ma Y, Jiang W, Meng L, Cao X, Hu J, Chen J, Li J. Development of a Strain-Specific Quantification Method for Monitoring Bacillus amyloliquefaciens TF28 in the Rhizospheric Soil of Soybean. Mol Biotechnol 2020; 62:521-533. [PMID: 32840729 DOI: 10.1007/s12033-020-00268-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Bacillus amyloliquefaciens TF28 can be used to control soybean root disease. To assess its commercial potential as a biocontrol agent, it is necessary to develop a strain-specific quantification method to monitor its colonization dynamics in the rhizospheric soil of soybean under field conditions. Based on genomic comparison with the same species in NCBI databases, a strain-unique gene ukfpg was used as molecular marker to develop strain-specific PCR assay. Among three primer pairs, only primer pairs (F2/R2) could specifically differentiate TF28 from other strains of B. amyloliquefaciens with the detection limit of 10 fg and 100 CFU/g for DNA extracted from pure culture and dry soil, respectively. Then, a colony count coupled with PCR assay was used to monitor the population of TF28 in the rhizospheric soil of soybean in the field. The results indicated that TF28 successfully colonized in the rhizospheric soil of soybean. The colonization population of TF28 changed dynamically within the 120-day growth period with high population at the branching (V6) and flowering stages (R2). This study provides an efficient method to quantitatively monitor the colonization dynamics of TF28 in the rhizospheric soil of soybean in the field and demonstrates the potential of TF28 as a biocontrol agent for commercial development.
Collapse
Affiliation(s)
- Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Yinpeng Ma
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Wei Jiang
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Xu Cao
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Jihua Hu
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Jingyu Chen
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China
| | - Jing Li
- Institute of Microbiology, Heilongjiang Academy of Sciences, 68 Zhaolin Street, Daoli District, Harbin, 150010, Heilongjiang, China.
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, China.
| |
Collapse
|
15
|
Kumar P, Fulekar MH, Hiranmai RY, Kumar R, Kumar R. 16S rRNA molecular profiling of heavy metal tolerant bacterial communities isolated from soil contaminated by electronic waste. Folia Microbiol (Praha) 2020; 65:995-1007. [PMID: 32696197 DOI: 10.1007/s12223-020-00808-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Electronic waste is an evolving source of harmful pollutants in our surrounding environments and considered to be perilous as it contains toxic metals such as chromium, cadmium, lead, mercury, zinc, and nickel in huge quantities. Heavy metals are harmful contaminants and accumulated in the environment due to various anthropogenic activities. The present study was conducted to isolate and characterize different heavy metal tolerant bacterial species, based on molecular techniques from soil contaminated by electronic waste. The contaminated soil samples were analyzed for various physicochemical properties such as pH, electrical conductivity, soil moisture, water holding capacity, organic carbon, organic matter, available phosphorus, total nitrogen, and potassium using standard procedures. The soil samples were found to contain a higher amount of different heavy metals such as copper, chromium, lead, iron, cadmium, and nickel. Serial dilution and spread plate techniques have been used for bacterial isolation. The identification and molecular characterization of isolated bacterial species were done by biochemical tests and 16S rRNA gene sequencing technique. The 16S rRNA sequencing analysis confirmed the presence of different bacterial species as, Micrococcus aloeverae, Kocuria turfanensis, Bacillus licheniformis, Bacillus jeotgali, Bacillus velezensis, and Bacillus haikouensis. The findings indicated that the e-waste dumping sites are the storehouse of elite bacterial species. The present research study offers a platform for systematic analysis of e-waste sites by microbial profiling that may help in the innovation of novel microorganisms of scientific importance and better biotechnological potential.
Collapse
Affiliation(s)
- Pankaj Kumar
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
| | - M H Fulekar
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
- Center of Research for Development, Parul University, Vadodara, Gujarat, 391760, India
| | - R Y Hiranmai
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Ramesh Kumar
- Department of Environmental Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rajesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| |
Collapse
|
16
|
Reva ON, Swanevelder DZH, Mwita LA, Mwakilili AD, Muzondiwa D, Joubert M, Chan WY, Lutz S, Ahrens CH, Avdeeva LV, Kharkhota MA, Tibuhwa D, Lyantagaye S, Vater J, Borriss R, Meijer J. Genetic, Epigenetic and Phenotypic Diversity of Four Bacillus velezensis Strains Used for Plant Protection or as Probiotics. Front Microbiol 2019; 10:2610. [PMID: 31803155 PMCID: PMC6873887 DOI: 10.3389/fmicb.2019.02610] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Bacillus velezensis strains are applied as ecologically safe biopesticides, plant growth promoting rhizobacteria (PGPR), and in veterinary probiotics. They are abundant in various environments including soil, plants, marine habitats, the intestinal micro-flora, etc. The mechanisms underlying this adaptive plasticity and bioactivity are not well understood, nor is it clear why several strains outperform other same species isolates by their bioactivities. The main objective of this work was to demonstrate versatility of bioactivities and lifestyle strategies of the selected B. velezensis strains suitable to serve as model organisms in future studies. Here, we performed a comparative study of newly sequenced genomes of four B. velezensis isolates with distinct phenotypes and isolation origin, which were assessed by RNA sequencing under the effect of root exudate stimuli and profiled by epigenetic modifications of chromosomal DNA. Among the selected strains, UCMB5044 is an oligotrophic PGPR strain adapted to nutrient poor desert soils. UCMB5113 and At1 are endophytes that colonize plants and require nutrient rich media. In contrast, the probiotic strain, UCMB5007, is a copiotroph, which shows no propensity to colonize plants. PacBio and Illumina sequencing approaches were used to generate complete genome assemblies, tracing epigenetic modifications, and determine gene expression profiles. All sequence data was deposited at NCBI. The strains, UCMB5113 and At1, show 99% sequence identity and similar phenotypes despite being isolated from geographically distant regions. UCMB5007 and UCMB5044 represent another group of organisms with almost identical genomes but dissimilar phenotypes and plant colonization propensity. The two plant associated strains, UCMB5044 and UCMB5113, share 398 genes putatively associated with root colonization, which are activated by exposure to maize root exudates. In contrast, UCMB5007 did not respond to root exudate stimuli. It was hypothesized that alterations in the global methylation pattern and some other epigenetic modifications enable adaptation of strains to different habitats and therefore may be of importance in terms of the biotechnological applicability of these bacteria. Contrary, the ability to grow on root exudates as a sole source of nutrients or a strong antagonism against phytopathogens showed by the strains in vitro cannot be considered as good predictors of PGPR activities.
Collapse
Affiliation(s)
- Oleg N Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Liberata A Mwita
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Aneth David Mwakilili
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania.,Department of Plant Protection, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Dillon Muzondiwa
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Monique Joubert
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Wai Yin Chan
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, DST-NRF Centre of Excellence in Tree Health Biotechnology, University of Pretoria, Pretoria, South Africa
| | - Stefanie Lutz
- Agroscope, Molecular Diagnostics, Genomics and Bioinformatics and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Molecular Diagnostics, Genomics and Bioinformatics and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Lylia V Avdeeva
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology, Kyiv, Ukraine
| | - Maksim A Kharkhota
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology, Kyiv, Ukraine
| | - Donatha Tibuhwa
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Sylvester Lyantagaye
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | | | - Rainer Borriss
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Johan Meijer
- Department of Plant Biology, Linnéan Center for Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Sultana S, Paul SC, Parveen S, Alam S, Rahman N, Jannat B, Hoque S, Rahman MT, Karim MM. Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Can J Microbiol 2019; 66:144-160. [PMID: 31714812 DOI: 10.1139/cjm-2019-0323] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth and productivity of rice are negatively affected by soil salinity. However, some salt-tolerant rhizosphere-inhabiting bacteria can improve salt resistance of plants, thereby augmenting plant growth and production. Here, we isolated a total of 53 plant-growth-promoting rhizobacteria (PGPR) from saline and non-saline areas in Bangladesh where electrical conductivity was measured as >7.45 and <1.80 dS/m, respectively. Bacteria isolated from saline areas were able to grow in a salt concentration of up to 2.60 mol/L, contrary to the isolates collected from non-saline areas that did not survive beyond 854 mmol/L. Among the salt-tolerant isolates, Bacillus aryabhattai, Achromobacter denitrificans, and Ochrobactrum intermedium, identified by comparing respective sequences of 16S rRNA using the NCBI GenBank, exhibited a higher amount of atmospheric nitrogen fixation, phosphate solubilization, and indoleacetic acid production at 200 mmol/L salt stress. Salt-tolerant isolates exhibited greater resistance to heavy metals and antibiotics, which could be due to the production of an exopolysaccharide layer outside the cell surface. Oryza sativa L. fertilized with B. aryabhattai MS3 and grown under 200 mmol/L salt stress was found to be favoured by enhanced expression of a set of at least four salt-responsive plant genes: BZ8, SOS1, GIG, and NHX1. Fertilization of rice with osmoprotectant-producing PGPR, therefore, could be a climate-change-preparedness strategy for coastal agriculture.
Collapse
Affiliation(s)
- Shahnaz Sultana
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sumonta C Paul
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samia Parveen
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saiful Alam
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Naziza Rahman
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Bushra Jannat
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sirajul Hoque
- Department of Soil, Water & Environment, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | |
Collapse
|
18
|
Solanki MK, Yandigeri MS, Kumar S, Singh RK, Srivastava AK. Co-inoculation of different antagonists can enhance the biocontrol activity against Rhizoctonia solani in tomato. Antonie Van Leeuwenhoek 2019; 112:1633-1644. [DOI: 10.1007/s10482-019-01290-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
|
19
|
Hazarika DJ, Goswami G, Gautom T, Parveen A, Das P, Barooah M, Boro RC. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol 2019; 19:71. [PMID: 30940070 PMCID: PMC6444643 DOI: 10.1186/s12866-019-1440-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/22/2019] [Indexed: 01/20/2023] Open
Abstract
Background The use of chemical fungicides against fungal pathogens adversely affects soil and plant health thereby resulting in overall environmental hazards. Therefore, biological source for obtaining antifungal agents is considered as an environment-friendly alternative for controlling fungal pathogens. Results In this study, seven endophytic bacteria were isolated from sugarcane leaves and screened for its antifungal activity against 10 fungal isolates belonging to the genera Alternaria, Cochliobolus, Curvularia, Fusarium, Neodeightonia, Phomopsis and Saccharicola isolated from diseased leaves of sugarcane. Among the seven bacterial isolates, SCB-1 showed potent antagonistic activity against the tested fungi. Based on the phenotypic data, Fatty Acid Methyl Esters (FAME) and 16S rRNA gene sequence analysis, the isolate SCB-1 was identified as Bacillus subtilis. The bacterial isolate was screened negative for chitinase production; however, chloroform and methanol extracts of the bacterial culture caused significant inhibition in the growth of the fungal isolates on semisolid media. Volatile component assay showed highest inhibitory activity against Saccharicola bicolor (SC1.4). A PCR based study detected the presence of the genes involved in biosynthesis of surfactin, bacillaene, difficidin, macrolactins and fengycin. Mass spectrometric analysis of the bacterial extract detected the presence of antifungal lipopeptide surfactin, but other metabolites were not detected. The biocontrol activity of the bacterial isolate was established when bacterial pretreated mung bean seeds were able to resist Fusarium infection, however, the untreated seeds failed to germinate. Conclusion The antifungal potential of isolate Bacillus subtilis SCB-1 was established against taxonomically diverse fungal pathogens including the genera Saccharicola, Cochliobolus, Alternaria and Fusarium. The potent antifungal compound surfactin as well as volatiles produced by the bacterial isolate could be responsible for its bio-control activity against fungal infections. Electronic supplementary material The online version of this article (10.1186/s12866-019-1440-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Gunajit Goswami
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Trishnamoni Gautom
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Assma Parveen
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Pompi Das
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India.
| |
Collapse
|
20
|
Isothermal microcalorimetry for thermal viable count of microorganisms in pure cultures and stabilized formulations. BMC Microbiol 2019; 19:65. [PMID: 30898089 PMCID: PMC6429831 DOI: 10.1186/s12866-019-1432-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Quantification of viable microorganisms is an important step in microbiological research as well as in microbial product formulation to develop biological control products or probiotics. Often, the efficiency of the resulting product is dependent on the microbial cell density and their viability, which may decrease over time. Commonly, the number of viable cells is determined by serial dilution and plating techniques or flow cytometry. In 2017, we developed a mathematical model for isothermal microcalorimetry (IMC) data analysis and showed that the new method allows for a more rapid quantification of viable fresh and freeze-dried anaerobic Lactobacillus reuteri cells than traditional viable count methods. RESULTS This study developed the new method further by applying it to well-known aerophilic plant-beneficial microbial species (Pseudomonas brassicacearum, Bacillus amyloliquefaciens subsp. plantarum and Clonostachys rosea) used in biological control products. We utilized IMC to quantify viable cells in microbial pure cultures as well as when coated onto wheat seeds. The results from this study confirmed that thermal viable count methods are more rapid and sensitive than traditional viable count techniques. Most interestingly, a thermal viable count method was able to quantify microbes coated on seeds despite the presence of the natural microbiota of the seeds. Our results also showed that, in contrast to plating techniques for which clustered cells skew the results, IMC does not require single cells for accurate viable counts. CONCLUSIONS Thermal viable count methods are novel methods for the rapid quantification of divergent bacterial and fungal species and enhance the speed, sensitivity, and accuracy of routine viable counts of pure cultures and controlled microbiomes such as plant seed coatings.
Collapse
|
21
|
Gautam S, Chauhan A, Sharma R, Sehgal R, Shirkot CK. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microb Pathog 2019; 130:196-203. [PMID: 30878620 DOI: 10.1016/j.micpath.2019.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
Abstract
A total of 150 rhizobacteria and endorhizobacteria previously isolated from three different horticultural crops; strawberry, apple and apricot were screened for antagonistic activitiy against Clavibacter michiganensis ssp. michiganensis. Among them strain S1, exhibiting significantly higher antagonistic and plant growth promoting ability was characterized as Bacillus amyloliquefaciens based on morphological, biochemical and partial gene sequence analysis of 16S rRNA. B. amyloliquefaciens strain S1 showed maximum growth inhibition of C. michiganensis (12 mm). Moreover, B. amyloliquefaciens strain S1 exhibit significant phosphorus solubilization (94.16 %SEl) and indole acetic acid (27 μg ml-1) production under in vitro conditions. Antagonistic activity of Bacillus amyloliquefaciens strain S1 was compared with other four strains KU2S1, R2S(1), RG1(3) and AG1(7) against bacterial canker of tomato under net house conditions. Minimum bacterial canker disease incidence (30.0%) was recorded in B. amyloliquefaciens S1 followed by RG1(3) after 30 days of inoculation. The bio-control efficacy was higher in B. amyloliquefaciens S1 treated plants, followed by RG1(3).
Collapse
Affiliation(s)
- S Gautam
- Department of Basic Sciences, Dr YS P University of Horticulture and Forestry, Nauni, Solan, 173 230, HP, India.
| | - A Chauhan
- Department of Soil Science and Water Management , Dr YS P University of Horticulture and Forestry, Nauni, Solan, 173 230, HP, India
| | - R Sharma
- Department of Microbiology, DAV University, Jalandhar, Punjab, 144012, India
| | - R Sehgal
- Department of Basic Sciences, Dr YS P University of Horticulture and Forestry, Nauni, Solan, 173 230, HP, India
| | - C K Shirkot
- Department of Basic Sciences, Dr YS P University of Horticulture and Forestry, Nauni, Solan, 173 230, HP, India
| |
Collapse
|
22
|
Bóka B, Manczinger L, Kocsubé S, Shine K, Alharbi NS, Khaled JM, Münsterkötter M, Vágvölgyi C, Kredics L. Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties. World J Microbiol Biotechnol 2019; 35:52. [PMID: 30868269 PMCID: PMC6435635 DOI: 10.1007/s11274-019-2625-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 11/03/2022]
Abstract
Several Bacillus strains are used as biocontrol agents, as they frequently have strong antagonistic effects against microbial plant pathogens. Bacillus strain SZMC 6179J, isolated from tomato rhizosphere, was previously shown to have excellent in vitro antagonistic properties against the most important fungal pathogens of tomato (Alternaria solani, Botrytis cinerea, Phytophthora infestans and Sclerotinia sclerotiorum) as well as several Fusarium species. Taxonomic investigations revealed that it is a member of the B. subtilis subsp. subtilis group and very closely related with the reference type strain B. subtilis subsp. subtilis 168. The sequenced genome of strain SZMC 6179J contains the genes responsible for the synthesis of the extracellular antibiotics surfactin, fengycin and bacilysin. Compared to strain 168, a prophage-like region is missing from the genome of SZMC 6179J, while there are 106 single nucleotide polymorphisms and 23 deletion-insertion polymorphisms. The high biocontrol potential of strain SZMC 6179J may results from a single base deletion in the sfp gene encoding the transcription factor of the surfactin and fengycin operons. Hypermutated regions reflecting short-time evolutionary processes could be detected in SZMC 6179J. The deletion-insertion polymorphism in the sfp gene and the detected hypermutations can be suggested as genetic determinants of biocontrol features in B. subtilis.
Collapse
Affiliation(s)
- Bettina Bóka
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - László Manczinger
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Kadaikunnan Shine
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Martin Münsterkötter
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky u. 4, Sopron, 9401, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
23
|
Shahzad R, Khan AL, Waqas M, Ullah I, Bilal S, Kim YH, Asaf S, Kang SM, Lee IJ. Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 during methanol utilization. Metabolomics 2019; 15:16. [PMID: 30830445 DOI: 10.1007/s11306-018-1467-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Methanol utilization by bacteria is important for various industrial processes. Methylotrophic bacteria are taxonomically diverse and some species promote plant growth and induce stress tolerance. However, methylotrophic potential of bacterial endophytes is poorly understood. OBJECTIVE The current study aimed to evaluate the metabolomic and proteomic changes in endophytic Bacillus amyloliquefaciens RWL-1 caused by its methanol utilization and the resultant influence on its phytohormone production. METHODS B. amyloliquefaciens RWL-1 was grown in LB medium with different concentrations [0 (control), 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4%) of methanol to examine its methylotrophic potential. SDS-PAGE analysis was carried out for bacterial protein confirmation. Moreover, the phytohormones (indole 3 acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA)) produced by RWL-1 in methanol supplemented medium were quantified by GC-MS/SIM (6890N Network GC system, and 5973 Network Mass Selective Detector; Agilent Technologies, Santa Clara, CA, USA), while the antioxidants were estimated spectrophotometrically (T60 UV-VIS spectrophotometer, Leicester, UK). The amino acid quantification was carried out by amino acid analyzer (HITACHI L-8900, Japan). Furthermore, Nano-liquid chromatography (LC)-MS/MS analysis was performed with an Agilent system (Wilmington, DE, USA) for proteomic analysis while mascot algorithm (Matrix science, USA) was used to identify peptide sequences present in the protein sequence database. RESULTS RWL-1 showed significant growth in media supplemented with 2 and 3.5% methanol, when compared with other concentrations. Mass spectroscopy analysis revealed that RWL-1 utilizes methanol efficiently as a carbon source. In the presence of methanol, RWL-1 produced significantly higher levels of IAA but lower levels of ABA, when compared with the control. Further, enzymatic antioxidants and functional amino acids were significantly up-regulated, with predominant expression of glutamic acid and alanine. Nano-liquid chromatography, quadrupole time-of-flight analysis, and quantitative analysis of methanol-treated bacterial cells showed expression of eight different types of proteins, including detoxification proteins, unrecognized and unclassified enzymes with antioxidant properties, proteases, metabolism enzymes, ribosomal proteins, antioxidant proteins, chaperones, and heat shock proteins. CONCLUSION Results demonstrate that RWL-1 can significantly enhance its growth by utilizing methanol, and could produce phytohormones when growing in methanol-supplemented media, with increased expression of specific proteins and different biochemicals. These results will be useful in devising strategies for utilizing methylotrophic bacterial endophytes as alternative promoters of plant growth. Understanding RWL-1 ability to utilize methanol. The survival and phytohormones production by Bacillus amyloliquefaciens RWL-1 in methanol supplemented media whistle inducing metabolic and proteomic changes.
Collapse
Affiliation(s)
- Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abdul Latif Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Muhammad Waqas
- Department of Agriculture Extension, Buner, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan Ullah
- Department of Biological Sciences, Faculty of science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Sang-Mo Kang
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
24
|
Xie L, Lehvävirta S, Timonen S, Kasurinen J, Niemikapee J, Valkonen JPT. Species-specific synergistic effects of two plant growth-promoting microbes on green roof plant biomass and photosynthetic efficiency. PLoS One 2018; 13:e0209432. [PMID: 30596699 PMCID: PMC6312232 DOI: 10.1371/journal.pone.0209432] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022] Open
Abstract
Rhizophagus irregularis, an arbuscular mycorrhizal fungus, and Bacillus amyloliquefaciens, a bacterium, are microorganisms that promote plant growth. They associate with plant roots and facilitate nutrient absorption by their hosts, increase resistance against pathogens and pests, and regulate plant growth through phytohormones. In this study, eight local plant species in Finland (Antennaria dioica, Campanula rotundifolia, Fragaria vesca, Geranium sanguineum, Lotus corniculatus, Thymus serpyllum, Trifolium repens, and Viola tricolor) were inoculated with R. irregularis and/or B. amyloliquefaciens in autoclaved substrates to evaluate the plant growth-promoting effects of different plant/microbe combinations under controlled conditions. The eight plant species were inoculated with R. irregularis, B. amyloliquefaciens, or both microbes or were not inoculated as a control. The impact of the microbes on the plants was evaluated by measuring dry shoot weight, colonization rate by the arbuscular mycorrhizal fungus, bacterial population density, and chlorophyll fluorescence using a plant phenotyping facility. Under dual inoculation conditions, B. amyloliquefaciens acted as a "mycorrhiza helper bacterium" to facilitate arbuscular mycorrhizal fungus colonization in all tested plants. In contrast, R. irregularis did not demonstrate reciprocal facilitation of the population density of B. amyloliquefaciens. Dual inoculation with B. amyloliquefaciens and R. irregularis resulted in the greatest increase in shoot weight and photosynthetic efficiency in T. repens and F. vesca.
Collapse
Affiliation(s)
- Long Xie
- Department of Agricultural Sciences, FI, University of Helsinki, Helsinki, Finland
| | - Susanna Lehvävirta
- Department of Biosciences, FI, University of Helsinki, Helsinki, Finland
| | - Sari Timonen
- Department of Microbiology, FI, University of Helsinki, Helsinki, Finland
| | - Jutta Kasurinen
- Department of Microbiology, FI, University of Helsinki, Helsinki, Finland
| | - Juhamatti Niemikapee
- Department of Bio- and Environmental Sciences, FI, University of Helsinki, Helsinki, Finland
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, FI, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Posada LF, Álvarez J, Romero-Tabarez M, de-Bashan L, Villegas-Escobar V. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol Res 2018; 217:69-80. [DOI: 10.1016/j.micres.2018.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
|
26
|
Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front Microbiol 2018; 9:2491. [PMID: 30386322 PMCID: PMC6198173 DOI: 10.3389/fmicb.2018.02491] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bacillus velezensis FZB42, the model strain for Gram-positive plant-growth-promoting and biocontrol rhizobacteria, has been isolated in 1998 and sequenced in 2007. In order to celebrate these anniversaries, we summarize here the recent knowledge about FZB42. In last 20 years, more than 140 articles devoted to FZB42 have been published. At first, research was mainly focused on antimicrobial compounds, apparently responsible for biocontrol effects against plant pathogens, recent research is increasingly directed to expression of genes involved in bacteria–plant interaction, regulatory small RNAs (sRNAs), and on modification of enzymes involved in synthesis of antimicrobial compounds by processes such as acetylation and malonylation. Till now, 13 gene clusters involved in non-ribosomal and ribosomal synthesis of secondary metabolites with putative antimicrobial action have been identified within the genome of FZB42. These gene clusters cover around 10% of the whole genome. Antimicrobial compounds suppress not only growth of plant pathogenic bacteria and fungi, but could also stimulate induced systemic resistance (ISR) in plants. It has been found that besides secondary metabolites also volatile organic compounds are involved in the biocontrol effect exerted by FZB42 under biotic (plant pathogens) and abiotic stress conditions. In order to facilitate easy access to the genomic data, we have established an integrating data bank ‘AmyloWiki’ containing accumulated information about the genes present in FZB42, available mutant strains, and other aspects of FZB42 research, which is structured similar as the famous SubtiWiki data bank.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Cong Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany.,Nord Reet UG, Greifswald, Germany
| |
Collapse
|
27
|
Gadhave KR, Devlin PF, Ebertz A, Ross A, Gange AC. Soil Inoculation with Bacillus spp. Modifies Root Endophytic Bacterial Diversity, Evenness, and Community Composition in a Context-Specific Manner. MICROBIAL ECOLOGY 2018; 76:741-750. [PMID: 29511840 PMCID: PMC6132550 DOI: 10.1007/s00248-018-1160-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
The use of microbial inoculants containing plant growth-promoting rhizobacteria as a promoter of plant fitness and health is becoming increasingly popular in agriculture. However, whether and how these bacteria affect indigenous bacterial communities in field conditions is sparsely explored. We studied the effects of seed inoculation and field soil application of ubiquitous soil bacteria, B. cereus, B. subtilis, and B. amyloliquefaciens, on the diversity, evenness, and richness of endophytic bacterial communities in sprouting broccoli roots using high-throughput metagenome sequencing. The multiple operational taxonomic units (OTUs) assigned to different bacterial taxa clearly showed changes in ecological measures and relative abundances of certain taxa between control and treatment groups. The Bacillus inocula, themselves, failed to flourish as endophytes; however, the effects they extended on the endophytic bacterial community were both generic as well as species specific. In each case, Pseudomonadales, Rhizobiales, Xanthomonadales, and Burkholderiales were the most abundant orders in the endosphere. B. amyloliquefaciens drastically reduced the most abundant genus, Pseudomonas, while increasing the relative abundance of a range of minor taxa. The Shannon-Weiner diversity and Buzas and Gibson's evenness indices showed that the diversity and evenness were increased in both B. amyloliquefaciens and mixed treated plants. The UniFrac measurement of beta diversity showed that all treatments affected the specific composition of the endophytic bacterial community, with an apparent interspecies competition in the mixed treatment. Taken together, Bacillus species influenced the diversity, evenness, and composition of the endophytic bacterial community. However, these effects varied between different Bacillus spp. in a context-specific manner.
Collapse
Affiliation(s)
- Kiran R Gadhave
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Paul F Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
- Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| | - Andreas Ebertz
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Arabella Ross
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Alan C Gange
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
28
|
Pitzschke A. Molecular dynamics in germinating, endophyte-colonized quinoa seeds. PLANT AND SOIL 2018; 422:135-154. [PMID: 29416180 PMCID: PMC5798591 DOI: 10.1007/s11104-017-3184-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/17/2017] [Indexed: 06/08/2023]
Abstract
AIMS The pseudo-cereal quinoa has an outstanding nutritional value. Seed germination is unusually fast, and plant tolerance to salt stress exceptionally high. Seemingly all seeds harbor bacterial endophytes. This work examines mitogen-activated protein kinase (MAPK) activities during early development. It evaluates possible contribution of endophytes to rapid germination and plant robustness. METHODS MAPK activities were monitored in water- and NaCl-imbibed seeds over a 4-h-period using an immunoblot-based approach. Cellulolytic and pectinolytic abilities of bacteria were assessed biochemically, and cellular movement, biofilm, elicitor and antimicrobial compound synthesis genes sequenced. GyrA-based, cultivation-independent studies provided first insight into endophyte diversity. RESULTS Quinoa seeds and seedlings exhibit remarkably complex and dynamic MAPK activity profiles. Depending on seed origin, variances exist in MAPK patterns and probably also in endophyte assemblages. Mucilage-degrading activities enable endophytes to colonize seed surfaces of a non-host species, chia, without apparent adverse effects. CONCLUSIONS Owing to their motility, cell wall-loosening and elicitor-generating abilities, quinoa endophytes have the potential to drive cell expansion, move across cell walls, generate damage-associated molecular patterns and activate MAPKs in their host. Bacteria may thus facilitate rapid germination and confer a primed state directly upon seed rehydration. Transfer into non-native crops appears both desirable and feasible.
Collapse
Affiliation(s)
- Andrea Pitzschke
- Division of Plant Physiology, Department of Cell Biology, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria
| |
Collapse
|
29
|
Sierra-García IN, Romero-Tabarez M, Orduz-Peralta S. Determinación de la actividad antimicrobiana e insecticida de extractos producidos por bacterias aisladas de suelo. ACTUALIDADES BIOLÓGICAS 2017. [DOI: 10.17533/96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Colombia es considerado uno de los países con mayor diversidad biológica, sin embargo, muy poca de esa diversidad ha sido explorada para identificar sustancias biológicamente activas. Los metabolitos secundarios bacterianos pueden presentar actividad frente a patógenos de plantas y animales y representan alternativas biotecnológicas para la industria. El objetivo de este estudio fue evaluar el potencial de diferentes cepas bacterianas aisladas de suelo, para producir sustancias biológicamente activas como antibacterianos, antifúngicos e insecticidas. Un total de 92 extractos metanólicos de metabolitos secundarios bacterianos fueron evaluados. La actividad antibacterial y antifúngica se evaluó mediante el ensayo de difusión en agar frente a diversas bacterias como Bacillus subtilis, Enterococcus faecalis, Escherichia coli y Staphylococcus aureus frente a diferentes hongos Alternaria sp., Colletotrichum sp., Fusarium sp., Pestalotia sp. y Verticillium sp. La actividad insecticida se evaluó determinando el efecto de los extractos sobre la mortalidad de larvas de Aedes aegypti (Diptera) y Spodoptera frugiperda (Lepidoptera). Se determinó que el 50% de los aislamientos bacterianos tuvieron algún tipo de actividad, aunque la mayor actividad biológica se detectó en los extractos producidos por bacterias del género Bacillus, identificados por medio de análisis del ADN ribosomal 16S y por caracterización bioquímica con API® 50 CHB, MicroLogTM y Biolog. Las especies del género Bacillus identificadas han sido caracterizadas como productoras de compuestos antimicrobianos de amplio espectro o de varios compuestos con diferentes actividades. La actividad biológica presentada por los extractos evidencian que los microorganismos terrestres y especialmente, las especies de Bacillus son productores prolíficos de diversas sustancias bioactivas.
Collapse
|
30
|
Asari S, Ongena M, Debois D, De Pauw E, Chen K, Bejai S, Meijer J. Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. ANNALS OF BOTANY 2017; 120:551-562. [PMID: 28961818 PMCID: PMC5737243 DOI: 10.1093/aob/mcx089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/09/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Certain micro-organisms can improve plant protection against pathogens. The protective effect may be direct, e.g. due to antibiotic compounds, or indirect, by priming of plant defence as induced systemic resistance (ISR). The plant growth-promoting rhizobacterium Bacillus amyloliquefaciens UCMB5113 shows potential for disease management of oilseed rape. To investigate the mode of action of this protection, especially in relation to jasmonic acid-dependent ISR, Bacillus UCMB5113 was tested with Arabidopsis thaliana mutants and several important fungal pathogens of Brassica species. METHODS Secreted lipopeptide fractions from Bacillus UCMB5113, together with synthetic peptide mimics, were evaluated for their effects on fungal phytopathogens and A. thaliana . The structures of secreted lipopeptides were analysed using mass spectrometry. Plant mutants and reporter lines were used to identify signalling steps involved in disease suppression by lipopeptides. KEY RESULTS In plate tests Bacillus UCMB5113 and lipopeptide extracts suppressed growth of several fungal pathogens infecting Brassica plants. Separation of secreted lipopeptides using reversed-phase high-performance liquid chromatography revealed several fractions that inhibited fungal growth. Analysis by mass spectrometry identified the most potent compounds as novel linear forms of antifungal fengycins, with synthetic peptide mimics confirming the biological activity. Application of the lipopeptide extracts on Arabidopsis roots provided systemic protection against Alternaria brassicicola on leaves. Arabidopsis signalling mutants and PDF1.2 and VSP2 promoter-driven GUS lines indicated that the lipopeptide fraction involved jasmonic-acid-dependent host responses for suppression of fungal growth indicative of ISR. CONCLUSIONS The ability of Bacillus UCMB5113 to counteract pathogens using both antagonistic lipopeptides and through ISR provides a promising tool for sustainable crop production.
Collapse
Affiliation(s)
- Shashidar Asari
- Department of Plant Biology, Uppsala Biocenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, University of Liège/Gembloux Agro-Bio Tech, B-5030 Gembloux, Belgium
| | - Delphine Debois
- Mass Spectrometry Laboratory, University of Liège, B-4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, B-4000 Liège, Belgium
| | - Kunling Chen
- Department of Plant Biology, Uppsala Biocenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarosh Bejai
- Department of Plant Biology, Uppsala Biocenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
| | - Johan Meijer
- Department of Plant Biology, Uppsala Biocenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
| |
Collapse
|
31
|
Fan B, Blom J, Klenk HP, Borriss R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex. Front Microbiol 2017; 8:22. [PMID: 28163698 PMCID: PMC5247444 DOI: 10.3389/fmicb.2017.00022] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 11/13/2022] Open
Abstract
The plant growth promoting model bacterium FZB42T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as "B. amyloliquefaciens." Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7T, the type strain of B. amyloliquefaciens. We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7T. Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens, (2) Bacillus siamensis, and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus, and B. amyloliquefaciens subsp. plantarum. The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when B. amyloliquefaciens DSM7T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as "operational group B. amyloliquefaciens" consisting of the soil borne B. amyloliquefaciens, and plant associated B. siamensis and B. velezensis, whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University Nanjing, China
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen Giessen, Germany
| | | | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt Universität zu BerlinBerlin, Germany; Nord Reet UGGreifswald, Germany
| |
Collapse
|
32
|
Mingmongkolchai S, Panbangred W. In vitro evaluation of candidate Bacillus spp. for animal feed. J GEN APPL MICROBIOL 2017; 63:147-156. [DOI: 10.2323/jgam.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sirima Mingmongkolchai
- Department of Biotechnology, Faculty of Science, Mahidol University
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MUOU:CRC), Faculty of Science, Mahidol University
| | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MUOU:CRC), Faculty of Science, Mahidol University
| |
Collapse
|
33
|
Asari S, Tarkowská D, Rolčík J, Novák O, Palmero DV, Bejai S, Meijer J. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. PLANTA 2017; 245:15-30. [PMID: 27541497 PMCID: PMC5226999 DOI: 10.1007/s00425-016-2580-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/02/2016] [Indexed: 05/19/2023]
Abstract
MAIN CONCLUSION This study showed that Bacillus amyloliquefaciens UCMB5113 colonizing Arabidopsis roots changed root structure and promoted growth implying the usability of this strain as a novel tool to support sustainable crop production. Root architecture plays a crucial role for plants to ensure uptake of water, minerals and nutrients and to provide anchorage in the soil. The root is a dynamic structure with plastic growth and branching depending on the continuous integration of internal and environmental factors. The rhizosphere contains a complex microbiota, where some microbes can colonize plant roots and support growth and stress tolerance. Here, we report that the rhizobacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5113 stimulated the growth of Arabidopsis thaliana Col-0 by increased lateral root outgrowth and elongation and root-hair formation, although primary root elongation was inhibited. In addition, the growth of the above ground tissues was stimulated by UCMB5113. Specific hormone reporter gene lines were tested which suggested a role for at least auxin and cytokinin signaling during rhizobacterial modulation of Arabidopsis root architecture. UCMB5113 produced cytokinins and indole-3-acetic acid, and the formation of the latter was stimulated by root exudates and tryptophan. The plant growth promotion effect by UCMB5113 did not appear to depend on jasmonic acid in contrast to the disease suppression effect in plants. UCMB5113 exudates inhibited primary root growth, while a semi-purified lipopeptide fraction did not and resulted in the overall growth promotion indicating an interplay of many different bacterial compounds that affect the root growth of the host plant. This study illustrates that beneficial microbes interact with plants in root development via classic and novel signals.
Collapse
Affiliation(s)
- Shashidar Asari
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnéan Center for Plant Biology, Box 7080, S75007, Uppsala, Sweden
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - David Velázquez Palmero
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnéan Center for Plant Biology, Box 7080, S75007, Uppsala, Sweden
| | - Sarosh Bejai
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnéan Center for Plant Biology, Box 7080, S75007, Uppsala, Sweden
| | - Johan Meijer
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnéan Center for Plant Biology, Box 7080, S75007, Uppsala, Sweden.
| |
Collapse
|
34
|
Grabova GY, Dragovoz IV, Zelena LB, Ostapchuk AN, Avdeeva LV. Polyphasic taxonomic analysis of Bacillus sp. strain C6—the antagonist of phytopathogenic microorganisms. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Ficarra FA, Santecchia I, Lagorio SH, Alarcón S, Magni C, Espariz M. Genome mining of lipolytic exoenzymes from Bacillus safensis S9 and Pseudomonas alcaliphila ED1 isolated from a dairy wastewater lagoon. Arch Microbiol 2016; 198:893-904. [PMID: 27270463 DOI: 10.1007/s00203-016-1250-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
Abstract
Dairy production plants produce highly polluted wastewaters rich in organic molecules such as lactose, proteins and fats. Fats generally lead to low overall performance of the treatment system. In this study, a wastewater dairy lagoon was used as microbial source and different screening strategies were conducted to select 58 lipolytic microorganisms. Exoenzymes and RAPD analyses revealed genetic and phenotypic diversity among isolates. Bacillus safensis, Pseudomonas alcaliphila and the potential pathogens, B. cereus, Aeromonas and Acinetobacter were identified by 16S-rRNA, gyrA, oprI and/or oprL sequence analyses. Five out of 10 selected isolates produced lipolytic enzymes and grew in dairy wastewater. Based on these abilities and their safety, B. safensis S9 and P. alcaliphila ED1 were selected and their genome sequences determined. The genome of strain S9 and ED1 consisted of 3,794,315 and 5,239,535 bp and encoded for 3990 and 4844 genes, respectively. Putative extracellular enzymes with lipolytic (12 and 16), proteolytic (20) or hydrolytic (10 and 15) activity were identified for S9 and ED1 strains, respectively. These bacteria also encoded other technological relevant proteins such as amylases, proteases, glucanases, xylanases and pectate lyases.
Collapse
Affiliation(s)
- Florencia A Ficarra
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, S2002LRK, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Ignacio Santecchia
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, S2002LRK, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Sebastián H Lagorio
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Sergio Alarcón
- Instituto de Química de Rosario (IQUIR-CONICET), Suipacha 531, S2002LRK, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Christian Magni
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, S2002LRK, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Martín Espariz
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, S2002LRK, Rosario, Argentina. .,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
36
|
Posada LF, Alvarez JC, Hu CH, de-Bashan LE, Bashan Y. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. J Microbiol Methods 2016; 128:125-129. [PMID: 27263830 DOI: 10.1016/j.mimet.2016.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.
Collapse
Affiliation(s)
- Luisa F Posada
- Department of Process Engineering, Cra 49 #7 sur-50, Universidad EAFIT, Medellín, Colombia
| | - Javier C Alvarez
- Departament of Biological Sciences, Cra 49 #7 sur-50, Universidad EAFIT, Medellín, Colombia
| | - Chia-Hui Hu
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Luz E de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Ct., AL 36830, USA; Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Yoav Bashan
- The Bashan Institute of Science, 1730 Post Oak Ct., AL 36830, USA; Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| |
Collapse
|
37
|
Mwita L, Chan WY, Pretorius T, Lyantagaye SL, Lapa SV, Avdeeva LV, Reva ON. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates. Gene 2016; 590:18-28. [PMID: 27259668 DOI: 10.1016/j.gene.2016.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/04/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.
Collapse
Affiliation(s)
- Liberata Mwita
- Centre for Bioinformatics and Computational Biology, Dep. Biochemistry, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Wai Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Theresa Pretorius
- Department of Microbiology and Plant Pathology, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Sylvester L Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania
| | - Svitlana V Lapa
- Dep. Antibiotics, D. K. Zabolotnogo Institute of Microbiology and Virology, 154 Zabolotnogo Str., Kiev, Ukraine
| | - Lilia V Avdeeva
- Dep. Antibiotics, D. K. Zabolotnogo Institute of Microbiology and Virology, 154 Zabolotnogo Str., Kiev, Ukraine
| | - Oleg N Reva
- Centre for Bioinformatics and Computational Biology, Dep. Biochemistry, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa.
| |
Collapse
|
38
|
Asari S, Matzén S, Petersen MA, Bejai S, Meijer J. Multiple effects ofBacillus amyloliquefaciensvolatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol Ecol 2016; 92:fiw070. [DOI: 10.1093/femsec/fiw070] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/18/2023] Open
|
39
|
Wu L, Wu HJ, Qiao J, Gao X, Borriss R. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants. Front Microbiol 2015; 6:1395. [PMID: 26696998 PMCID: PMC4674565 DOI: 10.3389/fmicb.2015.01395] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the expectations of the appliers. In this review we use the well-known plant-associated Bacillus amyloliquefaciens type strain FZB42 as example for the successful application of different techniques offered today by comparative, evolutionary and functional genomics, site-directed mutagenesis and strain construction including marker removal, for paving the way for preparing a novel generation of BC agents.
Collapse
Affiliation(s)
- Liming Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Hui-Jun Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Junqing Qiao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China ; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences Nanjing, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin Berlin, Germany ; Nord Reet UG Greifswald, Germany
| |
Collapse
|
40
|
Gagné-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26. PLoS One 2015; 10:e0130456. [PMID: 26103151 PMCID: PMC4477885 DOI: 10.1371/journal.pone.0130456] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal crops.
Collapse
Affiliation(s)
- François Gagné-Bourque
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd. Ste-Anne-de-Bellevue, Québec, CANADA, H9X 3V9
| | - Boris F. Mayer
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd. Ste-Anne-de-Bellevue, Québec, CANADA, H9X 3V9
| | - Jean-Benoit Charron
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd. Ste-Anne-de-Bellevue, Québec, CANADA, H9X 3V9
- * E-mail: (SJ); (JBC)
| | - Hojatollah Vali
- Facility of Electron Microscopy Research (FEMR) McGill University, 3640 University Street, Montréal, Québec, CANADA, H3A 0C7
| | - Annick Bertrand
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Québec City, Québec, CANADA, G1V 2J3
| | - Suha Jabaji
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd. Ste-Anne-de-Bellevue, Québec, CANADA, H9X 3V9
- * E-mail: (SJ); (JBC)
| |
Collapse
|
41
|
Yamamoto S, Shiraishi S, Kawagoe Y, Mochizuki M, Suzuki S. Impact of Bacillus amyloliquefaciens S13-3 on control of bacterial wilt and powdery mildew in tomato. PEST MANAGEMENT SCIENCE 2015; 71:722-727. [PMID: 24889125 DOI: 10.1002/ps.3837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/09/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Biological control is a non-hazardous technique to control plant diseases. Researchers have explored microorganisms that show high plant-disease control efficiency for use as biological control agents. RESULTS A single soil application of Bacillus amyloliquefaciens strain S13-3 suppressed tomato bacterial wilt caused by Ralstonia solanacearum, a soilborne bacterial pathogen, through production of antibiotics augmented possibly by induction of systemic acquired resistance. Soil application also controlled tomato powdery mildew disease through induction of systemic acquired resistance. CONCLUSION S13-3 showing bifunctional activity with a single application to soil may be an innovative biological control agent against bacterial wilt and powdery mildew in tomato.
Collapse
|
42
|
Comparison of three Bacillus amyloliquefaciens strains growth behaviour and evaluation of the spoilage risk during bread shelf-life. Food Microbiol 2015; 45:2-9. [DOI: 10.1016/j.fm.2014.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 11/22/2022]
|
43
|
Hossain MJ, Ran C, Liu K, Ryu CM, Rasmussen-Ivey CR, Williams MA, Hassan MK, Choi SK, Jeong H, Newman M, Kloepper JW, Liles MR. Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum. FRONTIERS IN PLANT SCIENCE 2015; 6:631. [PMID: 26347755 PMCID: PMC4538294 DOI: 10.3389/fpls.2015.00631] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/30/2015] [Indexed: 05/03/2023]
Abstract
To understand the growth-promoting and disease-inhibiting activities of plant growth-promoting rhizobacteria (PGPR) strains, the genomes of 12 Bacillus subtilis group strains with PGPR activity were sequenced and analyzed. These B. subtilis strains exhibited high genomic diversity, whereas the genomes of B. amyloliquefaciens strains (a member of the B. subtilis group) are highly conserved. A pairwise BLASTp matrix revealed that gene family similarity among Bacillus genomes ranges from 32 to 90%, with 2839 genes within the core genome of B. amyloliquefaciens subsp. plantarum. Comparative genomic analyses of B. amyloliquefaciens strains identified genes that are linked with biological control and colonization of roots and/or leaves, including 73 genes uniquely associated with subsp. plantarum strains that have predicted functions related to signaling, transportation, secondary metabolite production, and carbon source utilization. Although B. amyloliquefaciens subsp. plantarum strains contain gene clusters that encode many different secondary metabolites, only polyketide biosynthetic clusters that encode difficidin and macrolactin are conserved within this subspecies. To evaluate their role in plant pathogen biocontrol, genes involved in secondary metabolite biosynthesis were deleted in a B. amyloliquefaciens subsp. plantarum strain, revealing that difficidin expression is critical in reducing the severity of disease, caused by Xanthomonas axonopodis pv. vesicatoria in tomato plants. This study defines genomic features of PGPR strains and links them with biocontrol activity and with host colonization.
Collapse
Affiliation(s)
| | - Chao Ran
- Department of Biological Sciences, Auburn UniversityAuburn, AL, USA
| | - Ke Liu
- Department of Entomology and Plant Pathology, Auburn UniversityAuburn, AL, USA
| | - Choong-Min Ryu
- Superbacteria Research Center, Korea Research Institute of Bioscience & BiotechnologyDaejeon, South Korea
| | | | | | - Mohammad K. Hassan
- Department of Entomology and Plant Pathology, Auburn UniversityAuburn, AL, USA
| | - Soo-Keun Choi
- Superbacteria Research Center, Korea Research Institute of Bioscience & BiotechnologyDaejeon, South Korea
| | - Haeyoung Jeong
- Superbacteria Research Center, Korea Research Institute of Bioscience & BiotechnologyDaejeon, South Korea
| | - Molli Newman
- Department of Entomology and Plant Pathology, Auburn UniversityAuburn, AL, USA
| | - Joseph W. Kloepper
- Department of Entomology and Plant Pathology, Auburn UniversityAuburn, AL, USA
| | - Mark R. Liles
- Department of Biological Sciences, Auburn UniversityAuburn, AL, USA
- *Correspondence: Mark R. Liles, Department of Biological Sciences, Auburn University, Room 101, Rouse Life Sciences Building, 120 West Samford Avenue, Auburn, AL 36849, USA
| |
Collapse
|
44
|
Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays. Antonie van Leeuwenhoek 2014; 106:1247-57. [DOI: 10.1007/s10482-014-0295-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023]
|
45
|
Niazi A, Manzoor S, Asari S, Bejai S, Meijer J, Bongcam-Rudloff E. Genome analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. PLoS One 2014; 9:e104651. [PMID: 25119988 PMCID: PMC4138018 DOI: 10.1371/journal.pone.0104651] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022] Open
Abstract
The Bacillus amyloliquefaciens subsp. plantarum strain UCMB5113 is a Gram-positive rhizobacterium that can colonize plant roots and stimulate plant growth and defense based on unknown mechanisms. This reinforcement of plants may provide protection to various forms of biotic and abiotic stress. To determine the genetic traits involved in the mechanism of plant-bacteria association, the genome sequence of UCMB5113 was obtained by assembling paired-end Illumina reads. The assembled chromosome of 3,889,532 bp was predicted to encode 3,656 proteins. Genes that potentially contribute to plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis and siderophore production were identified. Moreover, annotation identified putative genes responsible for non-ribosomal synthesis of secondary metabolites and genes supporting environment fitness of UCMB5113 including drug and metal resistance. A large number of genes encoding a diverse set of secretory proteins, enzymes of primary and secondary metabolism and carbohydrate active enzymes were found which reflect a high capacity to degrade various rhizosphere macromolecules. Additionally, many predicted membrane transporters provides the bacterium with efficient uptake capabilities of several nutrients. Although, UCMB5113 has the possibility to produce antibiotics and biosurfactants, the protective effect of plants to pathogens seems to be indirect and due to priming of plant induced systemic resistance. The availability of the genome enables identification of genes and their function underpinning beneficial interactions of UCMB5113 with plants.
Collapse
Affiliation(s)
- Adnan Niazi
- Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Shahid Manzoor
- Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- University of the Punjab, Lahore, Pakistan
| | - Shashidar Asari
- Department of Plant Biology, Linnéan Center for Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sarosh Bejai
- Department of Plant Biology, Linnéan Center for Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Meijer
- Department of Plant Biology, Linnéan Center for Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
46
|
Niazi A, Manzoor S, Bejai S, Meijer J, Bongcam-Rudloff E. Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5033. Stand Genomic Sci 2014; 9:718-25. [PMID: 25197456 PMCID: PMC4148973 DOI: 10.4056/sigs.4758653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus amyloliquefaciens subsp. plantarum UCMB5033 is of special interest for its ability to promote host plant growth through production of stimulating compounds and suppression of soil borne pathogens by synthesizing antibacterial and antifungal metabolites or priming plant defense as induced systemic resistance. The genome of B. amyloliquefaciens UCMB5033 comprises a 4,071,167 bp long circular chromosome that consists of 3,912 protein-coding genes, 86 tRNA genes and 10 rRNA operons.
Collapse
Affiliation(s)
- Adnan Niazi
- Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shahid Manzoor
- Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden . ; University of the Punjab, Lahore, Pakistan
| | - Sarosh Bejai
- Department of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnéan Center for Plant Biology, Uppsala, Sweden
| | - Johan Meijer
- Department of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnéan Center for Plant Biology, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
47
|
Borshchevskaya LN, Kalinina AN, Sineokii SP. Design of a PCR test based on the gyrA gene sequence for the identification of closely related species of the Bacillus subtilis group. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813070028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Draft Genome Sequence of Bacillus atrophaeus UCMB-5137, a Plant Growth-Promoting Rhizobacterium. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00233-13. [PMID: 23788535 PMCID: PMC3707584 DOI: 10.1128/genomea.00233-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus atrophaeus UCMB-5137 shows an extraordinary activity in root colonization and plant and crop protection. Its draft genome sequence comprises 21 contigs of 4.11 Mb, harboring 4,167 coding sequences (CDS). The genome carries several genes encoding antimicrobial lipopeptides and polyketides. Multiple horizontally acquired genes of possible importance for plant colonization were also found.
Collapse
|
49
|
Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:1-9. [PMID: 23454292 DOI: 10.1016/j.plaphy.2013.01.020] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/28/2013] [Indexed: 05/04/2023]
Abstract
Growth and productivity of rice and soil inhabiting microbial population is negatively affected by soil salinity. However, some salt resistant, rhizosphere competent bacteria improve plant health in saline stress. Present study evaluated the effect of salt tolerant Bacillus amyloliquefaciens NBRISN13 (SN13) inoculation on rice plants in hydroponic and soil conditions exposed to salinity. SN13 increased plant growth and salt tolerance (NaCl 200 mM) and expression of at least 14 genes under hydroponic and soil conditions in rice. Among these 14 genes 4 (NADP-Me2, EREBP, SOSI, BADH and SERK1) were up-regulated and 2 (GIG and SAPK4) repressed under salt stress in hydroponic condition. In greenhouse experiment, salt stress resulted in accumulation of MAPK5 and down-regulation of the remaining 13 transcripts was observed. SN13 treatment, with or without salt gave similar expression for all tested genes as compared to control. Salt stress caused changes in the microbial diversity of the rice rhizosphere and stimulated population of betaine-, sucrose-, trehalose-, and glutamine-utilizing bacteria in salt-treated rice rhizosphere (SN13 + salt). The observations imply that SN13 confers salt tolerance in rice by modulating differential transcription in a set of at least 14 genes. Stimulation of osmoprotectant utilizing microbial population as a mechanism of inducing salt tolerance in rice is reported for the first time in this study to the best of our knowledge.
Collapse
|
50
|
Genome Sequence of a Plant-Associated Bacterium, Bacillus amyloliquefaciens Strain UCMB5036. GENOME ANNOUNCEMENTS 2013; 1:e0011113. [PMID: 23516223 PMCID: PMC3622975 DOI: 10.1128/genomea.00111-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We announce here the genome sequence of Bacillus amyloliquefaciens strain UCMB5036, a plant growth-promoting bacterium isolated from a cotton plant. Its genome contains gene clusters involved in nonribosomal synthesis of secondary metabolites known for their antimicrobial activities. The availability of this genome will provide novel insights into plant-bacterium-associated activities.
Collapse
|