1
|
Yu M, Song T, Yu J, Cao H, Pan X, Qi Z, Du Y, Liu W, Liu Y. UvVelC is important for conidiation and pathogenicity in the rice false smut pathogen Ustilaginoidea virens. Virulence 2024; 15:2301243. [PMID: 38240294 PMCID: PMC10802205 DOI: 10.1080/21505594.2023.2301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Rice false smut disease is one of the most significant rice diseases worldwide. Ustilaginoidea virens is the causative agent of this disease. Although several developmental and pathogenic genes have been identified and functionally analyzed, the pathogenic molecular mechanisms of U. virens remain elusive. The velvet family regulatory proteins are involved in fungal development, conidiation, and pathogenicity. In this study, we demonstrated the function of the VelC homolog UvVELC in U. virens. We identified the velvet family protein UvVELC and characterized its functions using a target gene deletion-strategy. Deletion of UvVELC resulted in conidiation failure and pathogenicity. The UvVELC expression levels during infection suggested that this gene might be involved in the early infection process. UvVELC is also important in resistance to abiotic stresses, the utilization efficiency of glucose, stachyose, raffinose, and other sugars, and the expression of transport-related genes. Moreover, UvVELC could physically interact with UvVEA in yeast, and UvVELC/UvVEA double-knockout mutants also failed in conidiation and pathogenicity. These results indicate that UvVELC play a critical role in the conidiation and pathogenicity in U. virens. Functional analysis indicated that UvVELC-mediated conidiation and nutrient acquisition from rice regulates the pathogenicity of U. virens. Understanding the function of the UvVELC homolog could provide a potential molecular target for controlling rice false smut disease.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Insistant of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis. Appl Environ Microbiol 2024; 90:e0081924. [PMID: 39230285 PMCID: PMC11497805 DOI: 10.1128/aem.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in Aspergillus species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.
Collapse
Affiliation(s)
- Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Elizabeth M. Wyman
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jessica M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Hou X, Liu L, Xu D, Lai D, Zhou L. Involvement of LaeA and Velvet Proteins in Regulating the Production of Mycotoxins and Other Fungal Secondary Metabolites. J Fungi (Basel) 2024; 10:561. [PMID: 39194887 DOI: 10.3390/jof10080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fungi are rich sources of secondary metabolites of agrochemical, pharmaceutical, and food importance, such as mycotoxins, antibiotics, and antitumor agents. Secondary metabolites play vital roles in fungal pathogenesis, growth and development, oxidative status modulation, and adaptation/resistance to various environmental stresses. LaeA contains an S-adenosylmethionine binding site and displays methyltransferase activity. The members of velvet proteins include VeA, VelB, VelC, VelD and VosA for each member with a velvet domain. LaeA and velvet proteins can form multimeric complexes such as VosA-VelB and VelB-VeA-LaeA. They belong to global regulators and are mainly impacted by light. One of their most important functions is to regulate gene expressions that are responsible for secondary metabolite biosynthesis. The aim of this mini-review is to represent the newest cognition of the biosynthetic regulation of mycotoxins and other fungal secondary metabolites by LaeA and velvet proteins. In most cases, LaeA and velvet proteins positively regulate production of fungal secondary metabolites. The regulated fungal species mainly belong to the toxigenic fungi from the genera of Alternaria, Aspergillus, Botrytis, Fusarium, Magnaporthe, Monascus, and Penicillium for the production of mycotoxins. We can control secondary metabolite production to inhibit the production of harmful mycotoxins while promoting the production of useful metabolites by global regulation of LaeA and velvet proteins in fungi. Furthermore, the regulation by LaeA and velvet proteins should be a practical strategy in activating silent biosynthetic gene clusters (BGCs) in fungi to obtain previously undiscovered metabolites.
Collapse
Affiliation(s)
- Xuwen Hou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liyao Liu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Wu Y, Han S, Wang Y, Li Q, Kong L. Velvet Family Protein FpVelB Affects Virulence in Association with Secondary Metabolism in Fusarium pseudograminearum. Cells 2024; 13:950. [PMID: 38891082 PMCID: PMC11171821 DOI: 10.3390/cells13110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Fusarium pseudograminearum causes destructive crown disease in wheat. The velvet protein family is a crucial regulator in development, virulence, and secondary metabolism of fungi. We conducted a functional analysis of FpVelB using a gene replacement strategy. The deletion of FpVelB decreased radial growth and enhanced conidial production compared to that of wild type. Furthermore, FpVelB modulates the fungal responses to abiotic stress through diverse mechanisms. Significantly, virulence decreased after the deletion of FpVelB in both the stem base and head of wheat. Genome-wide gene expression profiling revealed that the regulation of genes by FpVelB is associated with several processes related to the aforementioned phenotype, including "immune", "membrane", and "antioxidant activity", particularly with regard to secondary metabolites. Most importantly, we demonstrated that FpVelB regulates pathogen virulence by influencing deoxynivalenol production and modulating the expression of the PKS11 gene. In conclusion, FpVelB is crucial for plant growth, asexual development, and abiotic stress response and is essential for full virulence via secondary metabolism in F. pseudograminearum.
Collapse
Affiliation(s)
| | | | | | | | - Lingxiao Kong
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (Y.W.)
| |
Collapse
|
5
|
Meng FZ, Wang ZQ, Luo M, Wei WK, Yin LF, Yin WX, Schnabel G, Luo CX. The velvet family proteins mediate low resistance to isoprothiolane in Magnaporthe oryzae. PLoS Pathog 2023; 19:e1011011. [PMID: 37276223 DOI: 10.1371/journal.ppat.1011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Isoprothiolane (IPT) resistance has emerged in Magnaporthe oryzae, due to the long-term usage of IPT to control rice blast in China, yet the mechanisms of the resistance remain largely unknown. Through IPT adaptation on PDA medium, we obtained a variety of IPT-resistant mutants. Based on their EC50 values to IPT, the resistant mutants were mainly divided into three distinct categories, i.e., low resistance (LR, 6.5 ≤ EC50 < 13.0 μg/mL), moderate resistance 1 (MR-1, 13.0 ≤ EC50 < 25.0 μg/mL), and moderate resistance 2 (MR-2, 25.0 ≤ EC50 < 35.0 μg/mL). Molecular analysis of MoIRR (Magnaporthe oryzae isoprothiolane resistance related) gene demonstrated that it was associated only with the moderate resistance in MR-2 mutants, indicating that other mechanisms were associated with resistance in LR and MR-1 mutants. In this study, we mainly focused on the characterization of low resistance to IPT in M. oryzae. Mycelial growth and conidial germination were significantly reduced, indicating fitness penalties in LR mutants. Based on the differences of whole genome sequences between parental isolate and LR mutants, we identified a conserved MoVelB gene, encoding the velvet family transcription factor, and genetic transformation of wild type isolate verified that MoVelB gene was associated with the low resistance. Based on molecular analysis, we further demonstrated that the velvet family proteins VelB and VeA were indispensable for IPT toxicity and the deformation of the VelB-VeA-LaeA complex played a vital role for the low IPT-resistance in M. oryzae, most likely through the down-regulation of the secondary metabolism-related genes or CYP450 genes to reduce the toxicity of IPT.
Collapse
Affiliation(s)
- Fan-Zhu Meng
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mei Luo
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Kai Wei
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang-Fen Yin
- The Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Chao-Xi Luo
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. STRESSES 2023. [DOI: 10.3390/stresses3010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fruit diseases brought on by fungus infestation leads to postharvest losses of fresh fruit. Approximately 30% of harvested fruits do not reach consumers’ plates due to postharvest losses. Fungal pathogens play a substantial part in those losses, as they cause the majority of fruit rots and consumer complaints. Understanding fungal pathogenic processes and control measures is crucial for developing disease prevention and treatment strategies. In this review, we covered the presented pathogen entry, environmental conditions for pathogenesis, fruit’s response to pathogen attack, molecular mechanisms by which fungi infect fruits in the postharvest phase, production of mycotoxin, virulence factors, fungal genes involved in pathogenesis, and recent strategies for protecting fruit from fungal attack. Then, in order to investigate new avenues for ensuring fruit production, existing fungal management strategies were then assessed based on their mechanisms for altering the infection process. The goal of this review is to bridge the knowledge gap between the mechanisms of fungal disease progression and numerous disease control strategies being developed for fruit farming.
Collapse
|
7
|
Cantoral JM, Ruiz-Muñoz M, Martínez-Verdugo S, Pérez F, Fernández MH, Cordero-Bueso G. Improvement of fermentative yeasts S. cerevisiae by Non-GMO strategies for the reduction of urethanes in Sherry wines. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
During alcoholic fermentation, the yeasts responsible for the process produce various metabolites, including urea. The reaction of urea with ethanol spontaneously generates ethyl carbamate in wine, a carcinogenic metabolite whose concentration needs to be regulated. Yeasts produce urea during the arginine metabolic pathway. For this purpose, adaptive evolution has been used by using a toxic analogue of l-arginine, l-canavanine, for selective pressure, once increasing the genetic variability of the population by sporulation and subsequent conjugation. Using this strategy, five putative variants of the parental yeast have been obtained and seem to have reduced urea production, thus being able to achieve a lower concentration of ethyl carbamate.
Collapse
|
8
|
De Clerck C, Josselin L, Vangoethem V, Lassois L, Fauconnier ML, Jijakli H. Weapons against Themselves: Identification and Use of Quorum Sensing Volatile Molecules to Control Plant Pathogenic Fungi Growth. Microorganisms 2022; 10:microorganisms10122459. [PMID: 36557712 PMCID: PMC9784989 DOI: 10.3390/microorganisms10122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is often defined as a mechanism of microbial communication that can regulate microbial behaviors in accordance with population density. Much is known about QS mechanisms in bacteria, but fungal QS research is still in its infancy. In this study, the molecules constituting the volatolomes of the plant pathogenic fungi Fusarium culmorum and Cochliobolus sativus have been identified during culture conditions involving low and high spore concentrations, with the high concentration imitating overpopulation conditions (for QS stimulation). We determined that volatolomes emitted by these species in conditions of overpopulation have a negative impact on their mycelial growth, with some of the emitted molecules possibly acting as QSM. Candidate VOCs related to QS have then been identified by testing the effect of individual volatile organic compounds (VOCs) on mycelial growth of their emitting species. The antifungal effect observed for the volatolome of F. culmorum in the overpopulation condition could be attributed to ethyl acetate, 2-methylpropan-1-ol, 3-methylbutyl ethanoate, 3-methylbutan-1-ol, and pentan-1-ol, while it could be attributed to longifolene, 3-methylbutan-1-ol, 2-methylpropan-1-ol, and ethyl acetate for C. sativus in the overpopulation condition. This work could pave the way to a sustainable alternative to chemical fungicides.
Collapse
Affiliation(s)
- Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
- Correspondence:
| | - Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Valentine Vangoethem
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Ludivine Lassois
- Plant Genetics and Rhizosphere Processes Lab., Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
9
|
Kamboj H, Gupta L, Kumar P, Sen P, Sengupta A, Vijayaraghavan P. Gene expression, molecular docking, and molecular dynamics studies to identify potential antifungal compounds targeting virulence proteins/genes VelB and THR as possible drug targets against Curvularia lunata. Front Mol Biosci 2022; 9:1055945. [PMID: 36619165 PMCID: PMC9815619 DOI: 10.3389/fmolb.2022.1055945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Curvuluria lunata is a melanized fungus pathogenic to both plants and animals including humans, causing from mild, febrile to life-threatening illness if not well treated. In humans, it is an etiological agent of keratomycosis, sinusitis, and onychomycosis in immunocompromised and immunocompetent patients. The development of multiple-drug-resistant strains poses a critical treatment issue as well as public health problem. Natural products are attractive prototypes for drug discovery due to their broad-spectrum efficacy and lower side effects. The present study explores possible targets of natural antifungal compounds (α-pinene, eugenol, berberine, and curcumin) against C. lunata via gene expression analysis, molecular docking interaction, and molecular dynamics (MD) studies. Curcumin, berberine, eugenol, and α-pinene exhibited in vitro antifungal activity at 78 μg/ml, 156 μg/ml, 156 μg/ml, and 1250 μg/ml, respectively. In addition, treatment by these compounds led to the complete inhibition of conidial germination and hindered the adherence when observed on onion epidermis. Several pathogenic factors of fungi are crucial for their survival inside the host including those involved in melanin biosynthesis, hyphal growth, sporulation, and mitogen-activated protein kinase (MAPK) signalling. Relative gene expression of velB, brn1, clm1, and pks18 responsible for conidiation, melanin, and cell wall integrity was down-regulated significantly. Results of molecular docking possessed good binding affinity of compounds and have confirmed their potential targets as THR and VelB proteins. The docked structures, having good binding affinity among all, were further refined, and rescored from their docked poses through 100-ns long MD simulations. The MDS study revealed that curcumin formed a stable and energetically stabilized complex with the target protein. Therefore, the study concludes that the antifungal compounds possess significant efficacy to inhibit C. lunata growth targeting virulence proteins/genes involved in spore formation and melanin biosynthesis.
Collapse
Affiliation(s)
- Himanshu Kamboj
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Lovely Gupta
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Sen
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Sengupta
- Systems Biology and Data Analytics Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India,*Correspondence: Pooja Vijayaraghavan, ; Abhishek Sengupta,
| | - Pooja Vijayaraghavan
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India,*Correspondence: Pooja Vijayaraghavan, ; Abhishek Sengupta,
| |
Collapse
|
10
|
Chen H, He S, Zhang S, A R, Li W, Liu S. The Necrotroph Botrytis cinerea BcSpd1 Plays a Key Role in Modulating Both Fungal Pathogenic Factors and Plant Disease Development. FRONTIERS IN PLANT SCIENCE 2022; 13:820767. [PMID: 35845699 PMCID: PMC9280406 DOI: 10.3389/fpls.2022.820767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Botrytis cinerea is a necrotrophic microbe that causes gray mold disease in a broad range of hosts. In the present study, we conducted molecular microbiology and transcriptomic analyses of the host-B. cinerea interaction to investigate the plant defense response and fungal pathogenicity. Upon B. cinerea infection, plant defense responses changed from activation to repression; thus, the expression of many defense genes decreased in Arabidopsis thaliana. B. cinerea Zn(II)2Cys6 transcription factor BcSpd1 was involved in the suppression of plant defense as ΔBcSpd1 altered wild-type B05.10 virulence by recovering part of the defense responses at the early infection stage. BcSpd1 affected genes involved in the fungal sclerotium development, infection cushion formation, biosynthesis of melanin, and change in environmental pH values, which were reported to influence fungal virulence. Specifically, BcSpd1 bound to the promoter of the gene encoding quercetin dioxygenase (BcQdo) and positively affected the gene expression, which was involved in catalyzing antifungal flavonoid degradation. This study indicates BcSpd1 plays a key role in the necrotrophic microbe B. cinerea virulence toward plants by regulating pathogenicity-related compounds and thereby suppressing early plant defense.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouan Liu
- Laboratory of Molecular Plant Pathology, Jilin University, Changchun, China
| |
Collapse
|
11
|
Yu M, Yu J, Cao H, Pan X, Song T, Qi Z, Du Y, Huang S, Liu Y. The Velvet Protein UvVEA Regulates Conidiation and Chlamydospore Formation in Ustilaginoidea virens. J Fungi (Basel) 2022; 8:jof8050479. [PMID: 35628735 PMCID: PMC9148152 DOI: 10.3390/jof8050479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Rice false smut, caused by Ustilaginoidea virens, is a serious disease of rice worldwide, severely reducing the quantity and quality of rice production. The conserved fungal velvet proteins are global regulators of diverse cellular processes. We identified and functionally characterized two velvet genes, UvVEA and UvVELB, in U. virens. The deletion of these genes affected the conidiation of U. virens but had no effect on the virulence of this pathogen. Interestingly, the ΔUvVEA mutants appeared in the form of smaller false smut balls with a reduced number of chlamydospores compared with the wide-type strains. In addition, the deletion of UvVEA affected the expression of some transmembrane transport genes during chlamydospore formation and rice false smut balls development. Furthermore, the ΔUvVEA mutants were shown to be defective in the utilization of glucose. These findings proved the regulatory mechanism underlying the formation of rice false smut balls and chlamydospores and provided a basis for the further exploration of the mechanism of these processes.
Collapse
Affiliation(s)
- Mina Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.Y.); (S.H.)
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.Y.); (S.H.)
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
- Correspondence: ; Tel.: +86-25-8439-1002
| |
Collapse
|
12
|
A Velvet Transcription Factor Specifically Activates Mating through a Novel Mating-Responsive Protein in the Human Fungal Pathogen Cryptococcus deneoformans. Microbiol Spectr 2022; 10:e0265321. [PMID: 35471092 PMCID: PMC9241590 DOI: 10.1128/spectrum.02653-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sexual reproduction facilitates infection by the production of both a lineage advantage and infectious sexual spores in the ubiquitous human fungal pathogen Cryptococcus deneoformans. However, the regulatory determinants specific for initiating mating remain poorly understood. Here, we identified a velvet family regulator, Cva1, that strongly promotes sexual reproduction in C. deneoformans. This regulation was determined to be specific, based on a comprehensive phenotypic analysis of cva1Δ under 26 distinct in vitro and in vivo growth conditions. We further revealed that Cva1 plays a critical role in the initiation of early mating events, including sexual cell-cell fusion, but is not important for the late sexual development stages or meiosis. Thus, Cva1 specifically contributes to mating activation. Importantly, a novel mating-responsive protein, Cfs1, serves as the key target of Cva1 during mating, since its absence nearly blocks cell-cell fusion in C. deneoformans and its sister species C. neoformans. Together, our findings provide insight into how C. deneoformans ensures the regulatory specificity of mating. IMPORTANCE The human fungal pathogen C. deneoformans is a model organism for studying fungal sexual reproduction, which is considered to be important to infection. However, the specific regulatory determinants for activation of sexual reproduction remain poorly understood. In this study, by combining transcriptomic and comprehensive phenotypic analysis, we identified a velvet family regulator Cva1 that specifically and critically elicits early mating events, including sexual cell-cell fusion. Significantly, Cva1 induces mating through the novel mating-responsive protein Cfs1, which is essential for cell-cell fusion in C. deneoformans and its sister species C. neoformans. Considering that Cva1 and Cfs1 are highly conserved in species belonging to Cryptococcaeceae, they may play conserved and specific roles in the initiation of sexual reproduction in this important fungal clade, which includes multiple human fungal pathogens.
Collapse
|
13
|
Zhou Y, Song J, Wang Y, Yang L, Wu M, Li G, Zhang J. Biological characterization of the melanin biosynthesis gene Bcscd1 in the plant pathogenic fungus Botrytis cinerea. Fungal Genet Biol 2022; 160:103693. [DOI: 10.1016/j.fgb.2022.103693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/28/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
|
14
|
Xu Y, Ao K, Tian L, Qiu Y, Huang X, Liu X, Hoy R, Zhang Y, Rashid KY, Xia S, Li X. A Forward Genetic Screen in Sclerotinia sclerotiorum Revealed the Transcriptional Regulation of Its Sclerotial Melanization Pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:244-256. [PMID: 34813706 DOI: 10.1094/mpmi-10-21-0254-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most plant fungal pathogens that cause worldwide crop losses are understudied, due to various technical challenges. With the increasing availability of sequenced whole genomes of these non-model fungi, effective genetic analysis methods are highly desirable. Here, we describe a newly developed pipeline, which combines forward genetic screening with high-throughput next-generation sequencing to enable quick gene discovery. We applied this pipeline in the notorious soilborne phytopathogen Sclerotinia sclerotiorum and identified 32 mutants with various developmental and growth deficiencies. Detailed molecular studies of three melanization-deficient mutants provide a proof of concept for the effectiveness of our method. A master transcription factor was found to regulate melanization of sclerotia through the DHN (1,8-dihydroxynaphthalene) melanin biosynthesis pathway. In addition, these mutants revealed that sclerotial melanization is important for sclerotia survival under abiotic stresses, sclerotial surface structure, and sexual reproduction. Foreseeably, this pipeline can be applied to facilitate efficient in-depth studies of other non-model fungal species in the future.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xingchuan Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ryan Hoy
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yishan Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khalid Youssef Rashid
- Oilseed Crops Pathology, Science and Technology Branch, Ottawa Research and Development Centre, K.W. Neatby Building, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
16
|
Li B, Chen Y, Zhang Z, Qin G, Chen T, Tian S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in
Penicillium expansum. Compr Rev Food Sci Food Saf 2020; 19:3416-3438. [DOI: 10.1111/1541-4337.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
17
|
Lu Y, Sun J, Gao Y, Liu K, Yuan M, Gao W, Wang F, Fu D, Chen N, Xiao S, Xue C. The key iron assimilation genes ClFTR1, ClNPS6 were crucial for virulence of Curvularia lunata via initiating its appressorium formation and virulence factors. Environ Microbiol 2020; 23:613-627. [PMID: 32452607 DOI: 10.1111/1462-2920.15101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/23/2020] [Indexed: 12/01/2022]
Abstract
Iron is virtually an essential nutrient for all organisms, to understand how iron contributes to virulence of plant pathogenic fungi, we identified ClFTR1 and ClNPS6 in maize pathogen Curvularia lunata (Cochliobolus lunatus) in this study. Disruption of ClNPS6 significantly impaired siderophore biosynthesis. ClFTR1 and ClNPS6 did mediate oxidative stress but had no significant impact on vegetative growth, conidiation, cell wall integrity and sexual reproduction. Conidial germination delayed and appressoria formation reduced in ΔClftr1 comparing with wild type (WT) CX-3. Genes responsible for conidial germination, appressoria formation, non-host selective toxin biosynthesis and cell wall degrading enzymes were also downregulated in the transcriptome of ΔClftr1 and ΔClnps6 compared with WT. The conidial development, toxin biosynthesis and polygalacturonase activity were impaired in the mutant strains with ClFTR1 and ClNPS6 deletion during their infection to maize. ClFTR1 and ClNPS6 were upregulated expression at 12-24 and 48-120 hpi in WT respectively. ClFTR1 positively regulated conidial germination, appressoria formation in the biotrophy-specific phase. ClNPS6 positively regulates non-host selective toxin biosynthesis and cell wall degrading enzyme activity in the necrotrophy-specific phase. Our results indicated that ClFTR1 and ClNPS6 were key genes of pathogen known to conidia development and virulence factors.
Collapse
Affiliation(s)
- Yuanyuan Lu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jiaying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yibo Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Kexin Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Mingyue Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Weida Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Fen Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Nan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| |
Collapse
|
18
|
Zhang M, Sun C, Liu Y, Feng H, Chang H, Cao S, Li G, Yang S, Hou J, Zhu‐Salzman K, Zhang H, Qin Q. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration. MOLECULAR PLANT PATHOLOGY 2020; 21:834-853. [PMID: 32301267 PMCID: PMC7214349 DOI: 10.1111/mpp.12934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/04/2019] [Accepted: 02/19/2020] [Indexed: 05/28/2023]
Abstract
Simultaneous transcriptome analyses of both host plants and pathogens, and functional validation of the identified differentially expressed genes (DEGs) allow us to better understand the mechanisms underlying their interactions. Here, we analyse the mixed transcriptome derived from Botrytis cinerea (the causal agent of grey mould) infected tomato leaves at 24 hr after inoculation, a critical time point at which the pathogen has penetrated and developed in the leaf epidermis, whereas necrotic symptoms have not yet appeared. Our analyses identified a complex network of genes involved in the tomato-B. cinerea interaction. The expression of fungal transcripts encoding candidate effectors, enzymes for secondary metabolite biosynthesis, hormone and reactive oxygen species (ROS) production, and autophagy-related proteins was up-regulated, suggesting that these genes may be involved in the initial infection processes. Specifically, tomato genes involved in phytoalexin production, stress responses, ATP-binding cassette transporters, pathogenesis-related proteins, and WRKY DNA-binding transcription factors were up-regulated. We functionally investigated several B. cinerea DEGs via gene replacement and pathogenicity assays, and demonstrated that BcCGF1 was a novel virulence-associated factor that mediates fungal development and virulence via regulation of conidial germination, conidiation, infection structure formation, host penetration, and stress adaptation. The fungal infection-related development was controlled by BcCGF-mediated ROS production and exogenous cAMP restored the mutant infection-related development. Our findings provide new insights into the elucidation of the simultaneous tactics of pathogen attack and host defence. Our systematic elucidation of BcCGF1 in mediating fungal pathogenesis may open up new targets for fungal disease control.
Collapse
Affiliation(s)
- Ming‐Zhe Zhang
- College of Plant SciencesKey Laboratory of Zoonosis ResearchMinistry of EducationJilin UniversityChangchun, JilinChina
| | - Chen‐Hao Sun
- College of Plant SciencesJilin UniversityChangchun, JilinChina
| | - Yue Liu
- College of Plant SciencesKey Laboratory of Zoonosis ResearchMinistry of EducationJilin UniversityChangchun, JilinChina
| | - Hui‐Qiang Feng
- College of Plant SciencesKey Laboratory of Zoonosis ResearchMinistry of EducationJilin UniversityChangchun, JilinChina
| | - Hao‐Wu Chang
- College of Computer Science, Technology, Symbol Computation and Knowledge EngineeringMinistry of EducationJilin UniversityChangchun, JilinChina
| | - Sheng‐Nan Cao
- College of Plant SciencesJilin UniversityChangchun, JilinChina
| | - Gui‐Hua Li
- College of Plant SciencesJilin UniversityChangchun, JilinChina
| | - Song Yang
- College of Plant SciencesJilin UniversityChangchun, JilinChina
| | - Jie Hou
- College of Plant SciencesJilin UniversityChangchun, JilinChina
- College of ForestryBeiHua UniversityJinlinChina
| | - Keyan Zhu‐Salzman
- Department of EntomologyNorman Borlaug CenterTexas A&M UniversityCollege StationTXUSA
| | - Hao Zhang
- College of Computer Science, Technology, Symbol Computation and Knowledge EngineeringMinistry of EducationJilin UniversityChangchun, JilinChina
| | - Qing‐Ming Qin
- College of Plant SciencesKey Laboratory of Zoonosis ResearchMinistry of EducationJilin UniversityChangchun, JilinChina
| |
Collapse
|
19
|
Liu Y, Xin J, Liu L, Song A, Liao Y, Guan Z, Fang W, Chen F. Ubiquitin E3 Ligase AaBre1 Responsible for H2B Monoubiquitination Is Involved in Hyphal Growth, Conidiation and Pathogenicity in Alternaria alternata. Genes (Basel) 2020; 11:genes11020229. [PMID: 32098172 PMCID: PMC7074354 DOI: 10.3390/genes11020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitination is one of several post-transcriptional modifications of histone 2B (H2B) which affect the chromatin structure and, hence, influence gene transcription. This study focuses on Alternaria alternata, a fungal pathogen responsible for leaf spot in many plant species. The experiments show that the product of AaBRE1, a gene which encodes H2B monoubiquitination E3 ligase, regulates hyphal growth, conidial formation and pathogenicity. Knockout of AaBRE1 by the homologous recombination strategy leads to the loss of H2B monoubiquitination (H2Bub1), as well as a remarkable decrease in the enrichment of trimethylated lysine 4 on histone 3 (H3K4me3). RNA sequencing assays elucidated that the transcription of genes encoding certain C2H2 zinc-finger family transcription factors, cell wall-degrading enzymes and chitin-binding proteins was suppressed in the AaBRE1 knockout cells. GO enrichment analysis showed that these proteins encoded by the set of genes differentially transcribed between the deletion mutant and wild type were enriched in the functional categories “macramolecular complex”, “cellular metabolic process”, etc. A major conclusion was that the AaBRE1 product, through its effect on histone 2B monoubiquitination and histone 3 lysine 4 trimethylation, makes an important contribution to the fungus’s hyphal growth, conidial formation and pathogenicity.
Collapse
|
20
|
Tiley AMM, White HJ, Foster GD, Bailey AM. The ZtvelB Gene Is Required for Vegetative Growth and Sporulation in the Wheat Pathogen Zymoseptoria tritici. Front Microbiol 2019; 10:2210. [PMID: 31632366 PMCID: PMC6779691 DOI: 10.3389/fmicb.2019.02210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
The ascomycete fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB), a major disease of wheat across Europe. Current understanding of the genetic components and the environmental cues which influence development and pathogenicity of this fungus is limited. The velvet B gene, velB, has conserved roles in development, secondary metabolism, and pathogenicity across fungi. The function of this gene is best characterised in the model ascomycete fungus Aspergillus nidulans, where it is involved in co-ordinating the light response with downstream processes. There is limited knowledge of the role of light in Z. tritici, and of the molecular mechanisms underpinning the light response. We show that Z. tritici is able to detect light, and that the vegetative morphology of this fungus is influenced by light conditions. We also identify and characterise the Z. tritici velB gene, ZtvelB, by gene disruption. The ΔztvelB deletion mutants were fixed in a filamentous growth pattern and are unable to form yeast-like vegetative cells. Their morphology was similar under light and dark conditions, showing an impairment in light-responsive growth. In addition, the ΔztvelB mutants produced abnormal pycnidia that were impaired in macropycnidiospore production but could still produce viable infectious micropycnidiospores. Our results show that ZtvelB is required for yeast-like growth and asexual sporulation in Z. tritici, and we provide evidence for a role of ZtvelB in integrating light perception and developmental regulation in this important plant pathogenic fungus.
Collapse
Affiliation(s)
- Anna M. M. Tiley
- Molecular Plant Pathology and Fungal Biology, School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Hannah J. White
- School of Biology and Environmental Science, O’Brien Centre for Science, University College Dublin, Dublin, Ireland
| | - Gary D. Foster
- Molecular Plant Pathology and Fungal Biology, School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andy M. Bailey
- Molecular Plant Pathology and Fungal Biology, School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
21
|
Li B, Chen Y, Zong Y, Shang Y, Zhang Z, Xu X, Wang X, Long M, Tian S. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum. Environ Microbiol 2019; 21:1124-1139. [PMID: 30680886 DOI: 10.1111/1462-2920.14542] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/17/2023]
Abstract
The patulin biosynthesis is one of model pathways in an understanding of secondary metabolite biology and network novelties in fungi. However, molecular regulation mechanism of patulin biosynthesis and contribution of each gene related to the different catalytic enzymes in the biochemical steps of the pathway remain largely unknown in fungi. In this study, the genetic components of patulin biosynthetic pathway were systematically dissected in Penicillium expansum, which is an important fungal pathogen and patulin producer in harvested fruits and vegetables. Our results revealed that all the 15 genes in the cluster are involved in patulin biosynthesis. Proteins encoded by those genes are compartmentalized in various subcellular locations, including cytosol, nucleus, vacuole, endoplasmic reticulum, plasma membrane and cell wall. The subcellular localizations of some proteins, such as PatE and PatH, are required for the patulin production. Further, the functions of eight enzymes in the 10-step patulin biosynthetic pathway were verified in P. expansum. Moreover, velvet family proteins, VeA, VelB and VelC, were proved to be involved in the regulation of patulin biosynthesis, but not VosA. These findings provide a thorough understanding of the biosynthesis pathway, spatial control and regulation mechanism of patulin in fungi.
Collapse
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjiao Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| |
Collapse
|
22
|
Zhang J, Chen H, Sumarah MW, Gao Q, Wang D, Zhang Y. veA Gene Acts as a Positive Regulator of Conidia Production, Ochratoxin A Biosynthesis, and Oxidative Stress Tolerance in Aspergillus niger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13199-13208. [PMID: 30456955 DOI: 10.1021/acs.jafc.8b04523] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The veA gene is a key regulator governing morphogenetic development and secondary metabolism in many fungi. Here, we characterized and disrupted a veA orthologue in an ochratoxigenic Aspergillus niger strain. Morphological development, ochratoxin A (OTA) biosynthesis, and oxidative stress tolerance in the wild-type and veA disruption strains were further analyzed. Accordingly, the link between the veA gene and development of specific gene brlA, OTA biosynthesis key gene pks, and oxidative-stress-tolerance-related gene cat was explored. Results demonstrated that the veA gene acts as a positive regulator of conidia production, OTA biosynthesis, and oxidative stress tolerance in A. niger, regardless of light conditions. Darkness promoted conidial production and OTA biosynthesis in the A. niger wild-type strain. Our results contribute to a better understanding of the veA regulatory mechanism and suggest the veA gene as a potential target for developing control strategies for A. niger infection and OTA biosynthesis.
Collapse
Affiliation(s)
| | | | - Mark W Sumarah
- London Research and Development Centre , Agriculture and Agri-Food Canada , 1391 Sandford Street , London , Ontario N5V 4T3 , Canada
| | | | | | | |
Collapse
|
23
|
Global insight into the distribution of velvet-like B protein in Cochliobolus species and implication in pathogenicity and fungicide resistance. World J Microbiol Biotechnol 2018; 34:187. [PMID: 30506400 DOI: 10.1007/s11274-018-2569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The Cochliobolus genus consist of over 55 species among which the 5 most devastating are Cochliobolus carbonum, Cochliobolus heterostrophus, Cochliobolus miyabeanus, Crocus sativus and Cochliobolus lunatus causing damages in sorghum, wheat, rice, maize, cassava and soybean estimated at over 10 billion USD per annum worldwide. The dynamic pathogenicity of Cochliobolus species and the plethora of infected hosts is determined by the evolution of virulence determinants such as the velvet-like B protein (VelB). Nonetheless, the knowledge on the distribution of Cochliobolus VelB and its implication in pathogenicity and fungicide resistance are often lacking. By scanning through the annotated genomes of C. lunatus, C. heterostrophus, C. carbonum, C. victoriae, C. sativus and C. miyabeanus, it is revealed that the numbers of ortholog VelB and cognates vary. By using the phylogenetic approach, it is established that the diversification rates among velvet-domain-containing proteins for phytopathogenic Cochliobolus species could impact differently on their oxidant and fungicide resistance potentials, ability to form appressoria-like structures and infection pegs during infection. This study provides new insights into the pathogenicity evolution of Cochliobolus species at the VelB locus which is relevant for designing effective strategies for durable management of Cochliobolus diseases.
Collapse
|
24
|
Müller N, Leroch M, Schumacher J, Zimmer D, Könnel A, Klug K, Leisen T, Scheuring D, Sommer F, Mühlhaus T, Schroda M, Hahn M. Investigations on VELVET regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the pathogenesis of Botrytis cinerea. THE NEW PHYTOLOGIST 2018; 219:1062-1074. [PMID: 29790574 DOI: 10.1111/nph.15221] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/11/2018] [Indexed: 05/03/2023]
Abstract
The Botrytis cinerea VELVET complex regulates light-dependent development and virulence. The goal of this study was to identify common virulence defects of several VELVET mutants and to reveal their molecular basis. Growth, differentiation, physiology, gene expression and infection of fungal strains were analyzed, and quantitative comparisons of in planta transcriptomes and secretomes were performed. VELVET mutants showed reduced release of citric acid, the major acid secreted by the wild-type, whereas no significant role for oxalic acid was observed. Furthermore, a common set of infection-related and secreted proteins was strongly underexpressed in the mutants. Quantitative secretome analysis with 15 N metabolic labeling revealed a correlation of changes in protein and mRNA levels between wild-type and mutants, indicating that transcript levels determine the abundance of secreted proteins. Infection sites kept at low pH partially restored lesion expansion and expression of virulence genes by the mutants. Drastic downregulation of proteases in the mutants was correlated with incomplete degradation of cellular host proteins at the infection site, but no evidence was obtained that aspartyl proteases are required for lesion formation. The B. cinerea VELVET complex controls pathogenic differentiation by regulating organic acid secretion, host tissue acidification, gene expression and protein secretion.
Collapse
Affiliation(s)
- Nathalie Müller
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Michaela Leroch
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Julia Schumacher
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - David Zimmer
- Department of Biology, Computational Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Anne Könnel
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Klaus Klug
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Thomas Leisen
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - David Scheuring
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Frederik Sommer
- Department of Biology, Molecular Biotechnology & Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Department of Biology, Computational Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Michael Schroda
- Department of Biology, Molecular Biotechnology & Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Matthias Hahn
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| |
Collapse
|
25
|
Hua L, Yong C, Zhanquan Z, Boqiang L, Guozheng Q, Shiping T. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. FOOD QUALITY AND SAFETY 2018. [DOI: 10.1093/fqsafe/fyy016] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Li Hua
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
| | - Chen Yong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
| | - Zhang Zhanquan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Li Boqiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Qin Guozheng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Tian Shiping
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| |
Collapse
|
26
|
Wu Y, Xu L, Yin Z, Dai Q, Gao X, Feng H, Voegele RT, Huang L. Two members of the velvet family, VmVeA and VmVelB, affect conidiation, virulence and pectinase expression in Valsa mali. MOLECULAR PLANT PATHOLOGY 2018; 19:1639-1651. [PMID: 29127722 PMCID: PMC6638101 DOI: 10.1111/mpp.12645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 11/09/2017] [Indexed: 05/26/2023]
Abstract
Velvet protein family members are important fungal-specific regulators which are involved in conidial development, secondary metabolism and virulence. To gain a broader insight into the physiological functions of the velvet protein family of Valsa mali, which causes a highly destructive canker disease on apple, we conducted a functional analysis of two velvet protein family members (VmVeA and VmVelB) via a gene replacement strategy. Deletion mutants of VmVeA and VmVelB showed increased melanin production, conidiation and sensitivity to abiotic stresses, but exhibited reduced virulence on detached apple leaves and twigs. Further studies demonstrated that the regulation of conidiation by VmVeA and VmVelB was positively correlated with the melanin synthesis transcription factor VmCmr1. More importantly, transcript levels of pectinase genes were shown to be decreased in deletion mutants compared with those of the wild-type during infection. However, the expression of other cell wall-degrading enzyme genes, including cellulase, hemi-cellulase and ligninase genes, was not affected in the deletion mutants. Furthermore, the determination of pectinase activity and immunogold labelling of pectin demonstrated that the capacity for pectin degradation was attenuated as a result of deletions of VmVeA and VmVelB. Finally, the interaction of VmVeA with VmVelB was identified through co-immunoprecipitation assays. VmVeA and VmVelB play critical roles in conidiation and virulence, probably via the regulation of the melanin synthesis transcription factor VmCmr1 and their effect on pectinase gene expression in V. mali, respectively.
Collapse
Affiliation(s)
- Yuxing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Qingqing Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Xiaoning Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| | - Ralf T. Voegele
- Institut für Phytomedizin, Universität Hohenheim70599 StuttgartGermany
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant ProtectionNorthwest A&F UniversityShaanxiYangling 712100China
| |
Collapse
|
27
|
Akhberdi O, Zhang Q, Wang D, Wang H, Hao X, Liu Y, Wei D, Zhu X. Distinct Roles of Velvet Complex in the Development, Stress Tolerance, and Secondary Metabolism in Pestalotiopsis microspora, a Taxol Producer. Genes (Basel) 2018. [PMID: 29538316 DOI: 10.3390/genes9030164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The velvet family proteins have been shown to play critical roles in fungal secondary metabolism and development. However, variations of the roles have been observed in different fungi. We report here the observation on the role of three velvet complex components VeA, VelB, and LaeA in Pestalotiopsis microspora, a formerly reported taxol-producing fungus. Deletion of individual members led to the retardation of vegetative growth and sporulation and pigmentation, suggesting critical roles in these processes. The mutant strain △velB appeared hypersensitive to osmotic stress and the dye Congo red, whereas △veA and △laeA were little affected by the pressures, suggesting only velB was required for the integrity of the cell wall. Importantly, we found that the genes played distinct roles in the biosynthesis of secondary metabolites in P. microspora. For instance, the production of pestalotiollide B, a previously characterized polyketide, required velB and laeA. In contrast, the veA gene appeared to inhibit the pestalotiollide B (PB) role in its biosynthesis. This study suggests that the three components of the velvet complex are important global regulators, but with distinct roles in hyphal growth, asexual production, and secondary metabolism in P. microspora. This work provides information for further understanding the biosynthesis of secondary metabolism in the fungus.
Collapse
Affiliation(s)
- Oren Akhberdi
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Qian Zhang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dan Wang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Haichuan Wang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xiaoran Hao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Dongsheng Wei
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
28
|
El Hajj Assaf C, Snini SP, Tadrist S, Bailly S, Naylies C, Oswald IP, Lorber S, Puel O. Impact of veA on the development, aggressiveness, dissemination and secondary metabolism of Penicillium expansum. MOLECULAR PLANT PATHOLOGY 2018; 19:1971-1983. [PMID: 29517851 PMCID: PMC6638001 DOI: 10.1111/mpp.12673] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 05/18/2023]
Abstract
Penicillium expansum, the causal agent of blue mould disease, produces the mycotoxins patulin and citrinin amongst other secondary metabolites. Secondary metabolism is associated with fungal development, which responds to numerous biotic and abiotic external triggers. The global transcription factor VeA plays a key role in the coordination of secondary metabolism and differentiation processes in many fungal species. The specific role of VeA in P. expansum remains unknown. A null mutant PeΔveA strain and a complemented PeΔveA:veA strain were generated in P. expansum and their pathogenicity on apples was studied. Like the wild-type and the complemented strains, the null mutant PeΔveA strain was still able to sporulate and to colonize apples, but at a lower rate. However, it could not form coremia either in vitro or in vivo, thus limiting its dissemination from natural substrates. The impact of veA on the expression of genes encoding proteins involved in the production of patulin, citrinin and other secondary metabolites was evaluated. The disruption of veA drastically reduced the production of patulin and citrinin on synthetic media, associated with a marked down-regulation of all genes involved in the biosynthesis of the two mycotoxins. Moreover, the null mutant PeΔveA strain was unable to produce patulin on apples. The analysis of gene expression revealed a global impact on secondary metabolism, as 15 of 35 backbone genes showed differential regulation on two different media. These findings support the hypothesis that VeA contributes to the pathogenicity of P. expansum and modulates its secondary metabolism.
Collapse
Affiliation(s)
- Christelle El Hajj Assaf
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
- Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Technology and Food Science UnitMelle 9090Belgium
| | - Selma P. Snini
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
- Present address:
Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPSToulouseFrance
| | - Souria Tadrist
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Sylviane Bailly
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP‐Purpan, UPS31027 ToulouseFrance
| |
Collapse
|
29
|
Zhou Y, Yang L, Wu M, Chen W, Li G, Zhang J. A Single-Nucleotide Deletion in the Transcription Factor Gene bcsmr1 Causes Sclerotial-Melanogenesis Deficiency in Botrytis cinerea. Front Microbiol 2017; 8:2492. [PMID: 29312200 PMCID: PMC5733056 DOI: 10.3389/fmicb.2017.02492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
Botrytis cinerea is an important plant pathogenic fungus with a wide range of host. It usually produces black-colored sclerotia (BS) due to deposition of 1,8-dihydroxynaphthalene melanin in sclerotial melanogenesis. Our previous study (Zhou et al., 2018) reported six B. cinerea isolates producing orange-colored sclerotia (OS) with deficiency in sclerotial melanogenesis. Comparison of ecological fitness (conidia, mycelia, sclerotia), natural distribution, and melanogenesis of selected BS and OS isolates suggests that sclerotia play an important role in the disease cycle caused by B. cinerea. However, the molecular mechanism for formation of the OS B. cinerea remains unknown. This study was done to unravel the molecular mechanism for the sclerotial melanogenesis deficiency in the OS isolates. We found that all the five sclerotial melanogenesis genes (bcpks12, bcygh1, bcbrn1/2, bcscd1) were down-regulated in OS isolates, compared to the genes in the BS isolates. However, the sclerotial melanogenesis-regulatory gene bcsmr1 had similar expression in both types of sclerotia, suggesting the sclerotial melanogenesis deficiency is due to loss-of-function of bcsmr1, rather than lack of expression of bcsmr1. Therefore, we cloned bcsmr1 from OS (bcsmr1OS ) and BS (bcsmr1BS ) isolates, and found a single-nucleotide deletion in bcsmr1OS . The single-nucleotide deletion caused formation of a premature stop codon in the open reading frame of bcsmr1OS , resulting in production of a 465-aa truncated protein. The transcription activity of the truncated protein was greatly reduced, compared to that of the 935-aa full-length protein encoded by bcsmr1BS in the BS isolates. The function of bcsmr1OS was partially complemented by bcsmr1BS . This study not only elucidated the molecular mechanism for formation of orange-colored sclerotia by the spontaneous mutant XN-1 of B. cinerea, but also confirmed the regulatory function of bcsmr1 in sclerotial melanogenesis of B. cinerea.
Collapse
Affiliation(s)
- Yingjun Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Laboratory of Biological Processing, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, United States
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
|
31
|
Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways. ACTA ACUST UNITED AC 2017; 44:525-535. [DOI: 10.1007/s10295-016-1830-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/15/2016] [Indexed: 01/11/2023]
Abstract
Abstract
Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the production of novel secondary metabolites, particularly of those secondary metabolites which are produced in trace amounts encoded by silent or near-silent gene clusters.
Collapse
|
32
|
Gao JX, Yu CJ, Wang M, Sun JN, Li YQ, Chen J. Involvement of a velvet protein ClVelB in the regulation of vegetative differentiation, oxidative stress response, secondary metabolism, and virulence in Curvularia lunata. Sci Rep 2017; 7:46054. [PMID: 28393907 PMCID: PMC5385503 DOI: 10.1038/srep46054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/10/2017] [Indexed: 12/04/2022] Open
Abstract
The ortholog of Aspergillus nidulans VelB, which is known as ClVelB, was studied to gain a broader insight into the functions of a velvet protein in Curvularia lunata. With the expected common and specific functions of ClVelB, the deletion of clvelB results in similar though not identical phenotypes. The pathogenicity assays revealed that ΔClVelB was impaired in colonizing the host tissue, which corresponds to the finding that ClVelB controls the production of conidia and the methyl 5-(hydroxymethyl) furan-2-carboxylate toxin in C. lunata. However, the deletion of clvelB led to the increase in aerial hyphae and melanin formation. In addition, ΔClVelB showed a decreased sensitivity to iprodione and fludioxonil fungicides and a decreased resistance to cell wall-damaging agents and osmotic stress and tolerance to H2O2. The ultrastructural analysis indicated that the cell wall of ΔClVelB became thinner, which agrees with the finding that the accumulated level of glycerol in ΔClVelB is lower than the wild-type. Furthermore, the interaction of ClVelB with ClVeA and ClVosA was identified in the present research through the yeast two-hybrid and bimolecular fluorescence complementation assays. Results indicate that ClVelB plays a vital role in the regulation of various cellular processes in C. lunata.
Collapse
Affiliation(s)
- Jin-Xin Gao
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chuan-Jin Yu
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jia-Nan Sun
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ya-Qian Li
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
33
|
Soukup AA, Fischer GJ, Luo J, Keller NP. The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genet Biol 2017; 100:13-21. [PMID: 28089630 PMCID: PMC5337145 DOI: 10.1016/j.fgb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 01/18/2023]
Abstract
P bodies and stress granules are RNA-containing structures governing mRNA degradation and translational arrest, respectively. Saccharomyces cerevisiae Pbp1 protein localizes to stress granules and promotes their formation and is involved in proper polyadenylation, suppression of RNA-DNA hybrids, and preventing aberrant rDNA recombination. A genetic screen for Aspergillus nidulans mutants aberrant in secondary metabolism identified the Pbp1 homolog, PbpA. Using Dcp1 (mRNA decapping) as a marker for P-body formation and FabM (Pab1, poly-A binding protein) to track stress granule accumulation, we examine the dynamics of RNA granule formation in A. nidulans cells lacking pub1, edc3, and pbpA. Although PbpA acts as a functional homolog of yeast PBP1, PbpA had little impact on either P-body or stress granule formation in A. nidulans in contrast to Pub1 and Edc3. However, we find that PbpA is critical for sexual development and its loss increases the production of some secondary metabolites including the carcinogen sterigmatocystin.
Collapse
Affiliation(s)
- Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Jerry Luo
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, WI, United States.
| |
Collapse
|
34
|
Fan R, Klosterman SJ, Wang C, Subbarao KV, Xu X, Shang W, Hu X. Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae. Fungal Genet Biol 2017; 98:1-11. [DOI: 10.1016/j.fgb.2016.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
|
35
|
Estiarte N, Lawrence C, Sanchis V, Ramos A, Crespo-Sempere A. LaeA and VeA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternata. Int J Food Microbiol 2016; 238:153-164. [DOI: 10.1016/j.ijfoodmicro.2016.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/29/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
|
36
|
Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I, Simon A, Pradier JM, Amselem J, Collado IG, Viaud M. The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genet Biol 2016; 96:33-46. [DOI: 10.1016/j.fgb.2016.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022]
|
37
|
Zhang X, Liu X, Zhao Y, Cheng J, Xie J, Fu Y, Jiang D, Chen T. Histone H3 Lysine 9 Methyltransferase DIM5 Is Required for the Development and Virulence of Botrytis cinerea. Front Microbiol 2016; 7:1289. [PMID: 27597848 PMCID: PMC4992730 DOI: 10.3389/fmicb.2016.01289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 12/31/2022] Open
Abstract
Histone methylation is widely present in animals, plants and fungi, and the methylation modification of histone H3 has important biological functions. Methylation of Lys9 of histone H3 (H3K9) has been proven to regulate chromatin structure, gene silencing, transcriptional activation, plant metabolism, and other processes. In this work, we investigated the functions of a H3K9 methyltransferase gene BcDIM5 in Botrytis cinerea, which contains a PreSET domain, a SET domain and a PostSET domain. Characterization of BcDIM5 knockout transformants showed that the hyphal growth rate and production of conidiophores and sclerotia were significantly reduced, while complementary transformation of BcDIM5 could restore the phenotypes to the levels of wild type. Pathogenicity assays revealed that BcDIM5 was essential for full virulence of B. cinerea. BcDIM5 knockout transformants exhibited decreased virulence, down-regulated expression of some pathogenic genes and drastically decreased H3K9 trimethylation level. However, knockout transformants of other two genes heterochromatin protein 1 (HP1) BcHP1 and DNA methyltransferase (DIM2) BcDIM2 did not exhibit significant change in the growth phenotype and virulence compared with the wild type. Our results indicate that H3K9 methyltransferase BcDIM5 is required for H3K9 trimethylation to regulate the development and virulence of B. cinerea.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xinqiang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
38
|
Cohrs KC, Simon A, Viaud M, Schumacher J. Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ Microbiol 2016; 18:4068-4086. [PMID: 27347834 DOI: 10.1111/1462-2920.13431] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Botrytis cinerea is a plant pathogenic fungus known for its utilization of light as environmental cue to regulate asexual differentiation: conidia are formed in the light, while sclerotia are formed in the dark. As no orthologues of known regulators of conidiation (e.g., Aspergillus nidulans BrlA, Neurospora crassa FL) exist in the Leotiomycetes, we initiated a de novo approach to identify the functional counterpart in B. cinerea. The search revealed the light-responsive C2H2 transcription factor BcLTF2 whose expression - usually restricted to light conditions - is necessary and sufficient to induce conidiation and simultaneously to suppress sclerotial development. Light-induced expression of bcltf2 is mediated via a so far unknown pathway, and is attenuated in a (blue) light-dependent fashion by the White Collar complex, BcLTF1 and the VELVET complex. Mutation of either component leads to increased bcltf2 expression and causes light-independent conidiation (always conidia phenotype). Hence, the tight regulation of bcltf2 governs the balance between vegetative growth that allows for the colonization of the substrate and subsequent reproduction via conidia in the light. The orthologue ssltf2 in the closely related species Sclerotinia sclerotiorum is not significantly expressed suggesting that its deregulation may cause the lack of the conidiation program in this fungus.
Collapse
Affiliation(s)
- Kim C Cohrs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU) Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, 78850, France
| | - Muriel Viaud
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, 78850, France
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU) Münster, Schlossplatz 8, Münster, 48143, Germany
| |
Collapse
|
39
|
Wang R, Leng Y, Shrestha S, Zhong S. Coordinated and independent functions of velvet-complex genes in fungal development and virulence of the fungal cereal pathogen Cochliobolus sativus. Fungal Biol 2016; 120:948-960. [PMID: 27521627 DOI: 10.1016/j.funbio.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
LaeA and velvet proteins regulate fungal development and secondary metabolism through formation of multimeric complexes in many fungal species, but their functions in the cereal fungal pathogen Cochliobolus sativus are not well understood. In this study, four velvet complex genes (CsLaeA, CsVeA, CsVelB, and CsVelC) in C. sativus were identified and characterized using knockout mutants generated for each of the genes. Both ΔCsVeA and ΔCsVelB showed significant reduction in aerial mycelia growth. ΔCsVelB also exhibited a hypermorphic conidiation phenotype with indeterminate growth of the conidial tip cells and premature germination of conidia. ΔCsLaeA, ΔCsVeA, and ΔCsVelB produced more conidia under constant dark conditions than under constant light conditions whereas no differences were observed under the two conditions for the wild type. These three mutants also showed significantly reduced conidiation under constant light conditions, but produced more small sized conidia under constant dark conditions compared to the wild type. All knockout mutants (ΔCsLaeA, ΔCsVeA, ΔCsVelB and ΔCsVelC) showed some extent of reduction in virulence on susceptible barley plants compared to the wild type strain. The results revealed the conserved and unique roles of velvet-complex proteins as regulators in mediating fungal development and secondary metabolism in C. sativus.
Collapse
Affiliation(s)
- Rui Wang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Subidhya Shrestha
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
40
|
Schumacher J. DHN melanin biosynthesis in the plant pathogenic fungusBotrytis cinereais based on two developmentally regulated key enzyme (PKS)-encoding genes. Mol Microbiol 2015; 99:729-48. [DOI: 10.1111/mmi.13262] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP); Westfälische Wilhelms-Universität (WWU) Münster; Schlossplatz 8 48143 Münster Germany
| |
Collapse
|
41
|
Zhang C, He Y, Zhu P, Chen L, Wang Y, Ni B, Xu L. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1091-101. [PMID: 26035129 DOI: 10.1094/mpmi-04-15-0085-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Botrytis cinerea is a necrotrophic pathogen that causes gray mold disease in a broad range of plants. Dihydroxynaphthalene (DHN) melanin is a major component of the extracellular matrix of B. cinerea, but knowledge of the exact role of melanin biosynthesis in this pathogen is unclear. In this study, we characterize two genes in B. cinerea, bcpks13 and bcbrn1, encoding polyketide synthase and tetrahydroxynaphthalene (THN) reductases, respectively, and both have predicted roles in DHN melanin biosynthesis. The ∆bcpks13 and ∆bcbrn1 mutants show white and orange pigmentation, respectively, and the mutants are also deficient in conidiation in vitro but show enhanced growth rates and virulence on hosts. Moreover, the mutants display elevated acidification of the complete medium (CM), probably due to oxalic acid secretion and secretion of cell wall-degrading enzymes, and preferably utilize plant cell-wall components as carbon sources for mycelium growth in vitro. In contrast, overexpression of bcbrn1 (OE::bcbrn1 strain) results in attenuated hydrolytic enzyme secretion, acidification ability, and virulence. Taken together, these results indicate that bcpks13 and bcbrn1 participate in diverse cellular and developmental processes, such as melanization and conidiation in B. cinerea in vitro, but they negatively regulate the virulence of this pathogen.
Collapse
Affiliation(s)
- Chenghua Zhang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yifan He
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Pinkuan Zhu
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Lu Chen
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yiwen Wang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Bing Ni
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Ling Xu
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
42
|
Wang R, Leng Y, Zhong S. The regulatory gene VosA affects conidiogenesis and is involved in virulence of the fungal cereal pathogen Cochliobolus sativus. Fungal Biol 2015; 119:884-900. [DOI: 10.1016/j.funbio.2015.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/25/2022]
|
43
|
Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:573. [PMID: 26300892 PMCID: PMC4527079 DOI: 10.3389/fpls.2015.00573] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/13/2015] [Indexed: 05/18/2023]
Abstract
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecen, Hungary
| | - Imre J. Holb
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, University of DebrecenDebrecen, Hungary
- Department of Plant Pathology, Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of SciencesDebrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, Hungary
| |
Collapse
|
44
|
Emri T, Szarvas V, Orosz E, Antal K, Park H, Han KH, Yu JH, Pócsi I. Core oxidative stress response in Aspergillus nidulans. BMC Genomics 2015; 16:478. [PMID: 26115917 PMCID: PMC4482186 DOI: 10.1186/s12864-015-1705-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The b-Zip transcription factor AtfA plays a key role in regulating stress responses in the filamentous fungus Aspergillus nidulans. To identify the core regulons of AtfA, we examined genome-wide expression changes caused by various stresses in the presence/absence of AtfA using A. nidulans microarrays. We also intended to address the intriguing question regarding the existence of core environmental stress response in this important model eukaryote. RESULTS Examination of the genome wide expression changes caused by five different oxidative stress conditions in wild type and the atfA null mutant has identified a significant number of stereotypically regulated genes (Core Oxidative Stress Response genes). The deletion of atfA increased the oxidative stress sensitivity of A. nidulans and affected mRNA accumulation of several genes under both unstressed and stressed conditions. The numbers of genes under the AtfA control appear to be specific to a stress-type. We also found that both oxidative and salt stresses induced expression of some secondary metabolite gene clusters and the deletion of atfA enhanced the stress responsiveness of additional clusters. Moreover, certain clusters were down-regulated by the stresses tested. CONCLUSION Our data suggest that the observed co-regulations were most likely consequences of the overlapping physiological effects of the stressors and not of the existence of a general environmental stress response. The function of AtfA in governing various stress responses is much smaller than anticipated and/or other regulators may play a redundant or overlapping role with AtfA. Both stress inducible and stress repressive regulations of secondary metabolism seem to be frequent features in A. nidulans.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Vera Szarvas
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Erzsébet Orosz
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly College, Eszterházy út 1, H-3300, Eger, Hungary.
| | - HeeSoo Park
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, 565-701, Wanju, Republic of Korea.
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| |
Collapse
|
45
|
Schumacher J, Simon A, Cohrs KC, Traeger S, Porquier A, Dalmais B, Viaud M, Tudzynski B. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:659-74. [PMID: 25625818 DOI: 10.1094/mpmi-12-14-0411-r] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Botrytis cinerea, the gray mold fungus, is an important plant pathogen. Field populations are characterized by variability with regard to morphology, the mode of reproduction (conidiation or sclerotia formation), the spectrum of secondary metabolites (SM), and virulence. Natural variation in bcvel1 encoding the ortholog of Aspergillus nidulans VeA, a member of the VELVET complex, was previously shown to affect light-dependent differentiation, the formation of oxalic acid (OA), and virulence. To gain broader insight into the B. cinerea VELVET complex, an ortholog of A. nidulans LaeA, BcLAE1, a putative interaction partner of BcVEL1, was studied. BcVEL1 but not its truncated versions interacts with BcLAE1 and BcVEL2 (VelB ortholog). In accordance with the expected common as well as specific functions of BcVEL1 and BcLAE1, the deletions of both genes result in similar though not identical phenotypes. Both mutants lost the ability to produce OA, to colonize the host tissue, and to form sclerotia. However, mutants differ with regard to aerial hyphae and conidia formation. Genome-wide expression analyses revealed that BcVEL1 and BcLAE1 have common and distinct target genes. Some of the genes that are underexpressed in both mutants, e.g., those encoding SM-related enzymes, proteases, and carbohydrate-active enzymes, may account for their reduced virulence.
Collapse
Affiliation(s)
| | - Adeline Simon
- 2 BIOGER, INRA, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Kim C Cohrs
- 1 IBBP, WWU Münster, Schlossplatz 8, 48143 Münster, Germany
| | | | - Antoine Porquier
- 2 BIOGER, INRA, Avenue Lucien Brétignières, 78850 Grignon, France
- 3 Université Paris-Sud, 91405 Orsay, France
| | | | - Muriel Viaud
- 2 BIOGER, INRA, Avenue Lucien Brétignières, 78850 Grignon, France
| | | |
Collapse
|
46
|
BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Curr Genet 2015; 61:545-53. [DOI: 10.1007/s00294-015-0474-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
47
|
|
48
|
Bok JW, Wiemann P, Garvey GS, Lim FY, Haas B, Wortman J, Keller NP. Illumina identification of RsrA, a conserved C2H2 transcription factor coordinating the NapA mediated oxidative stress signaling pathway in Aspergillus. BMC Genomics 2014; 15:1011. [PMID: 25416206 PMCID: PMC4252986 DOI: 10.1186/1471-2164-15-1011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022] Open
Abstract
Background Chemical mutagenesis screens are useful to identify mutants involved in biological processes of interest. Identifying the mutation from such screens, however, often fails when using methodologies involving transformation of the mutant to wild type phenotype with DNA libraries. Results Here we analyzed Illumina sequence of a chemically derived mutant of Aspergillus nidulans and identified a gene encoding a C2H2 transcription factor termed RsrA for regulator of stress response. RsrA is conserved in filamentous fungal genomes, and upon deleting the gene in three Aspergillus species (A. nidulans, A. flavus and A. fumigatus), we found two conserved phenotypes: enhanced resistance to oxidative stress and reduction in sporulation processes. For all species, rsrA deletion mutants were more resistant to hydrogen peroxide treatment. In depth examination of this latter characteristic in A. nidulans showed that upon exposure to hydrogen peroxide, RsrA loss resulted in global up-regulation of several components of the oxidative stress metabolome including the expression of napA and atfA, the two bZIP transcription factors mediating resistance to reactive oxygen species (ROS) as well as NapA targets in thioredoxin and glutathione systems. Coupling transcriptional data with examination of ΔrsrAΔatfA and ΔrsrAΔnapA double mutants indicate that RsrA primarily operates through NapA-mediated stress response pathways. A model of RsrA regulation of ROS response in Aspergillus is presented. Conclusion RsrA, found in a highly syntenic region in Aspergillus genomes, coordinates a NapA mediated oxidative response in Aspergillus fungi. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1011) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
49
|
Karimi Aghcheh R, Németh Z, Atanasova L, Fekete E, Paholcsek M, Sándor E, Aquino B, Druzhinina IS, Karaffa L, Kubicek CP. The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS One 2014; 9:e112799. [PMID: 25386652 PMCID: PMC4227869 DOI: 10.1371/journal.pone.0112799] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 11/25/2022] Open
Abstract
Trichoderma reesei is the industrial producer of cellulases and hemicellulases for biorefinery processes. Their expression is obligatorily dependent on the function of the protein methyltransferase LAE1. The Aspergillus nidulans orthologue of LAE1 - LaeA - is part of the VELVET protein complex consisting of LaeA, VeA and VelB that regulates secondary metabolism and sexual as well as asexual reproduction. Here we have therefore investigated the function of VEL1, the T. reesei orthologue of A. nidulans VeA. Deletion of the T. reesei vel1 locus causes a complete and light-independent loss of conidiation, and impairs formation of perithecia. Deletion of vel1 also alters hyphal morphology towards hyperbranching and formation of thicker filaments, and with consequently reduced growth rates. Growth on lactose as a sole carbon source, however, is even more strongly reduced and growth on cellulose as a sole carbon source eliminated. Consistent with these findings, deletion of vel1 completely impaired the expression of cellulases, xylanases and the cellulase regulator XYR1 on lactose as a cellulase inducing carbon source, but also in resting mycelia with sophorose as inducer. Our data show that in T. reesei VEL1 controls sexual and asexual development, and this effect is independent of light. VEL1 is also essential for cellulase gene expression, which is consistent with the assumption that their regulation by LAE1 occurs by the VELVET complex.
Collapse
Affiliation(s)
- Razieh Karimi Aghcheh
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
| | - Zoltán Németh
- Department of Biochemical Engineering, Faculty of Sciences and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lea Atanasova
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Sciences and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erzsébet Sándor
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, H-4032 Debrecen, Hungary
| | - Benigno Aquino
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
| | - Irina S. Druzhinina
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
- Austrian Center of Industrial Biotechnology, c/o Institute of Chemical Engineering, Vienna University of Technology, 1060 Vienna, Austria
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Sciences and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Christian P. Kubicek
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Microbiology Group, Vienna University of Technology, 1060 Vienna, Austria
- Austrian Center of Industrial Biotechnology, 8010 Graz, Austria
- * E-mail:
| |
Collapse
|
50
|
Kim HJ, Han JH, Kim KS, Lee YH. Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 2014; 66:33-43. [DOI: 10.1016/j.fgb.2014.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 11/27/2022]
|