1
|
Marillonnet S, Werner S. Golden Gate Cloning of Multigene Constructs Using the Modular Cloning System MoClo. Methods Mol Biol 2025; 2850:21-39. [PMID: 39363064 DOI: 10.1007/978-1-0716-4220-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for construct engineering for biological research and synthetic biology. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the modular cloning system MoClo. Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
Affiliation(s)
- Sylvestre Marillonnet
- Leibniz-Institut für Pflanzenbiochemie, Department of Cell and Metabolic Biology, Halle, Germany.
| | | |
Collapse
|
2
|
Grützner R, Marillonnet S. Golden Gate Cloning of MoClo Standard Parts. Methods Mol Biol 2025; 2850:1-19. [PMID: 39363063 DOI: 10.1007/978-1-0716-4220-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Efficient DNA assembly methods are an essential prerequisite in the field of synthetic biology. Modular cloning systems, which rely on Golden Gate cloning for DNA assembly, are designed to facilitate assembly of multigene constructs from libraries of standard parts through a series of streamlined one-pot assembly reactions. Standard parts consist of the DNA sequence of a genetic element of interest such as a promoter, coding sequence, or terminator, cloned in a plasmid vector. Standard parts for the modular cloning system MoClo, also called level 0 modules, must be flanked by two BsaI restriction sites in opposite orientations and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of level 0 modules. This protocol requires the following steps: (1) defining the type of part that needs to be cloned, (2) designing primers for amplification, (3) performing polymerase chain reaction (PCR) amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large standard parts, it is preferable to first clone sub-parts as intermediate level -1 constructs. These sub-parts are sequenced individually and are then further assembled to make the final level 0 module.
Collapse
Affiliation(s)
- Ramona Grützner
- Leibniz Institut of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle, Germany
| | - Sylvestre Marillonnet
- Leibniz Institut of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle, Germany.
| |
Collapse
|
3
|
Breuer J, Ferreira DEA, Kramer M, Bollermann J, Nowrousian M. Functional analysis of chromatin-associated proteins in Sordaria macrospora reveals similar roles for RTT109 and ASF1 in development and DNA damage response. G3 (BETHESDA, MD.) 2024; 14:jkae019. [PMID: 38261383 PMCID: PMC10917505 DOI: 10.1093/g3journal/jkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
We performed a functional analysis of two potential partners of ASF1, a highly conserved histone chaperone that plays a crucial role in the sexual development and DNA damage resistance in the ascomycete Sordaria macrospora. ASF1 is known to be involved in nucleosome assembly and disassembly, binding histones H3 and H4 during transcription, replication and DNA repair and has direct and indirect roles in histone recycling and modification as well as DNA methylation, acting as a chromatin modifier hub for a large network of chromatin-associated proteins. Here, we functionally characterized two of these proteins, RTT109 and CHK2. RTT109 is a fungal-specific histone acetyltransferase, while CHK2 is an ortholog to PRD-4, a checkpoint kinase of Neurospora crassa that performs similar cell cycle checkpoint functions as yeast RAD53. Through the generation and characterization of deletion mutants, we discovered striking similarities between RTT109 and ASF1 in terms of their contributions to sexual development, histone acetylation, and protection against DNA damage. Phenotypic observations revealed a developmental arrest at the same stage in Δrtt109 and Δasf1 strains, accompanied by a loss of H3K56 acetylation, as detected by western blot analysis. Deletion mutants of rtt109 and asf1 are sensitive to the DNA damaging agent methyl methanesulfonate, but not hydroxyurea. In contrast, chk2 mutants are fertile and resistant to methyl methanesulfonate, but not hydroxyurea. Our findings suggest a close functional association between ASF1 and RTT109 in the context of development, histone modification, and DNA damage response, while indicating a role for CHK2 in separate pathways of the DNA damage response.
Collapse
Affiliation(s)
- Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | - Mike Kramer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jonas Bollermann
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
4
|
Breuer J, Busche T, Kalinowski J, Nowrousian M. Histone binding of ASF1 is required for fruiting body development but not for genome stability in the filamentous fungus Sordaria macrospora. mBio 2024; 15:e0289623. [PMID: 38112417 PMCID: PMC10790691 DOI: 10.1128/mbio.02896-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Histone chaperones are proteins that are involved in nucleosome assembly and disassembly and can therefore influence all DNA-dependent processes including transcription, DNA replication, and repair. ASF1 is a histone chaperone that is conserved throughout eukaryotes. In contrast to most other multicellular organisms, a deletion mutant of asf1 in the fungus Sordaria macrospora is viable; however, the mutant is sterile. In this study, we could show that the histone-binding ability of ASF1 is required for fertility in S. macrospora, whereas the function of ASF1 in maintenance of genome stability does not require histone binding. We also showed that the histone modifications H3K27me3 and H3K56ac are misregulated in the Δasf1 mutant. Furthermore, we identified a large duplication on chromosome 2 of the mutant strain that is genetically linked to the Δasf1 allele present on chromosome 6, suggesting that viability of the mutant might depend on the presence of the duplicated region.
Collapse
Affiliation(s)
- Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Abstract
Djamei introduces the fungal pathogen (and culinary delicacy) Ustilago maydis.
Collapse
Affiliation(s)
- Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Wang S, Xia W, Li Y, Peng Y, Zhang Y, Tang J, Cui H, Qu L, Yao T, Yu Z, Ye Z. The Novel Effector Ue943 Is Essential for Host Plant Colonization by Ustilago esculenta. J Fungi (Basel) 2023; 9:jof9050593. [PMID: 37233304 DOI: 10.3390/jof9050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The smut fungus Ustilago esculenta obligately parasitizes Zizania latifolia and induces smut galls at the stem tips of host plants. Previous research identified a putative secreted protein, Ue943, which is required for the biotrophic phase of U. esculenta but not for the saprophytic phase. Here, we studied the role of Ue943 during the infection process. Conserved homologs of Ue943 were found in smut fungi. Ue943 can be secreted by U. esculenta and localized to the biotrophic interface between fungi and plants. It is required at the early stage of colonization. The Ue943 deletion mutant caused reactive oxygen species (ROS) production and callose deposition in the host plant at 1 and 5 days post inoculation, which led to failed colonization. The virulence deficiency was restored by overexpressing gene Ue943 or Ue943:GFP. Transcriptome analysis further showed a series of changes in plant hormones following ROS production when the host plant was exposed to ΔUe943. We hypothesize that Ue943 might be responsible for ROS suppression or avoidance of recognition by the plant immune system. The mechanism underlying Ue943 requires further study to provide more insights into the virulence of smut fungi.
Collapse
Affiliation(s)
- Shuqing Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Yani Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuyan Peng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lisi Qu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Tongfu Yao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zetao Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Heucken N, Tang K, Hüsemann L, Heßler N, Müntjes K, Feldbrügge M, Göhre V, Zurbriggen MD. Engineering and Implementation of Synthetic Molecular Tools in the Basidiomycete Fungus Ustilago maydis. J Fungi (Basel) 2023; 9:jof9040480. [PMID: 37108934 PMCID: PMC10140897 DOI: 10.3390/jof9040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The basidiomycete Ustilago maydis is a well-characterized model organism for studying pathogen-host interactions and of great interest for a broad spectrum of biotechnological applications. To facilitate research and enable applications, in this study, three luminescence-based and one enzymatic quantitative reporter were implemented and characterized. Several dual-reporter constructs were generated for ratiometric normalization that can be used as a fast-screening platform for reporter gene expression, applicable to in vitro and in vivo detection. Furthermore, synthetic bidirectional promoters that enable bicisitronic expression for gene expression studies and engineering strategies were constructed and implemented. These noninvasive, quantitative reporters and expression tools will significantly widen the application range of biotechnology in U. maydis and enable the in planta detection of fungal infection.
Collapse
Affiliation(s)
- Nicole Heucken
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kun Tang
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Hüsemann
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Natascha Heßler
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kira Müntjes
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Vera Göhre
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Becker J, Liebal UW, Phan AN, Ullmann L, Blank LM. Renewable carbon sources to biochemicals and -fuels: contributions of the smut fungi Ustilaginaceae. Curr Opin Biotechnol 2023; 79:102849. [PMID: 36446145 DOI: 10.1016/j.copbio.2022.102849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
The global demand for food, fuels, and chemicals increases annually. Using renewable C-sources (i.e. biomass, CO2, and organic waste) is a prerequisite for a future free of fossil carbon. The smut fungi Ustilaginaceae naturally produce a versatile spectrum of valuable products, such as organic acids, polyols, and glycolipids, applicable in the food, energy, chemistry, and pharmaceutical sector. Combined with the use of alternative (co-)substrates (e.g. acetate, butanediol, formate, and glycerol), these microorganisms offer excellent potential for industrial biotechnology, thereby overcoming central challenges humankind faces, including CO2 release and land use. Here, we provide insight into fundamental production capacities, present genetic modifications that improve the biotechnical application, and review recent high-performance engineering of Ustilaginaceae toward relevant platform chemicals.
Collapse
Affiliation(s)
- Johanna Becker
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ulf W Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - An Nt Phan
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lena Ullmann
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
9
|
Morales J, Ehret G, Poschmann G, Reinicke T, Maurya AK, Kröninger L, Zanini D, Wolters R, Kalyanaraman D, Krakovka M, Bäumers M, Stühler K, Nowack ECM. Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr Biol 2023; 33:28-40.e7. [PMID: 36480982 DOI: 10.1016/j.cub.2022.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
The trypanosomatid Angomonas deanei is a model to study endosymbiosis. Each cell contains a single β-proteobacterial endosymbiont that divides at a defined point in the host cell cycle and contributes essential metabolites to the host metabolism. Additionally, one endosymbiont gene, encoding an ornithine cyclodeaminase (OCD), was transferred by endosymbiotic gene transfer (EGT) to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here, we used protein mass spectrometry to identify nucleus-encoded proteins that co-purify with the endosymbiont. Expression of fluorescent fusion constructs of these proteins in A. deanei confirmed seven host proteins to be recruited to specific sites within the endosymbiont. These endosymbiont-targeted proteins (ETPs) include two proteins annotated as dynamin-like protein and peptidoglycan hydrolase that form a ring-shaped structure around the endosymbiont division site that remarkably resembles organellar division machineries. The EGT-derived OCD was not among the ETPs, but instead localizes to the glycosome, likely enabling proline production in the glycosome. We hypothesize that recalibration of the metabolic capacity of the glycosomes that are closely associated with the endosymbiont helps to supply the endosymbiont with metabolites it is auxotrophic for and thus supports the integration of host and endosymbiont metabolic networks. Hence, scrutiny of endosymbiosis-induced protein re-localization patterns in A. deanei yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.
Collapse
Affiliation(s)
- Jorge Morales
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tobias Reinicke
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Davide Zanini
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca Wolters
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dhevi Kalyanaraman
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Krakovka
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
10
|
The Rheb GTPase promotes pheromone blindness via a TORC1-independent pathway in the phytopathogenic fungus Ustilago maydis. PLoS Genet 2022; 18:e1010483. [DOI: 10.1371/journal.pgen.1010483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/28/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
The target of the rapamycin (TOR) signaling pathway plays a negative role in controlling virulence in phytopathogenic fungi. However, the actual targets involved in virulence are currently unknown. Using the corn smut fungus Ustilago maydis, we tried to address the effects of the ectopic activation of TOR on virulence. We obtained gain-of-function mutations in the Rheb GTPase, one of the conserved TOR kinase regulators. We have found that unscheduled activation of Rheb resulted in the alteration of the proper localization of the pheromone receptor, Pra1, and thereby pheromone insensitivity. Since pheromone signaling triggers virulence in Ustilaginales, we believe that the Rheb-induced pheromone blindness was responsible for the associated lack of virulence. Strikingly, although these effects required the concourse of the Rsp5 ubiquitin ligase and the Art3 α-arrestin, the TOR kinase was not involved. Several eukaryotic organisms have shown that Rheb transmits environmental information through TOR-dependent and -independent pathways. Therefore, our results expand the range of signaling manners at which environmental conditions could impinge on the virulence of phytopathogenic fungi.
Collapse
|
11
|
Devan SK, Schott-Verdugo S, Müntjes K, Bismar L, Reiners J, Hachani E, Schmitt L, Höppner A, Smits SHJ, Gohlke H, Feldbrügge M. A MademoiseLLE domain binding platform links the key RNA transporter to endosomes. PLoS Genet 2022; 18:e1010269. [PMID: 35727840 PMCID: PMC9249222 DOI: 10.1371/journal.pgen.1010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.
Collapse
Affiliation(s)
- Senthil-Kumar Devan
- Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kira Müntjes
- Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Lilli Bismar
- Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eymen Hachani
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander HJ Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| |
Collapse
|
12
|
Functional Analysis of the Plasma Membrane H +-ATPases of Ustilago maydis. J Fungi (Basel) 2022; 8:jof8060550. [PMID: 35736033 PMCID: PMC9225265 DOI: 10.3390/jof8060550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Plasma membrane H+-ATPases of fungi, yeasts, and plants act as proton pumps to generate an electrochemical gradient, which is essential for secondary transport and intracellular pH maintenance. Saccharomyces cerevisiae has two genes (PMA1 and PMA2) encoding H+-ATPases. In contrast, plants have a larger number of genes for H+-ATPases. In Ustilago maydis, a biotrophic basidiomycete that infects corn and teosinte, the presence of two H+-ATPase-encoding genes has been described, one with high identity to the fungal enzymes (pma1, UMAG_02851), and the other similar to the plant H+-ATPases (pma2, UMAG_01205). Unlike S. cerevisiae, these two genes are expressed jointly in U. maydis sporidia. In the present work, mutants lacking one of these genes (Δpma1 and Δpma2) were used to characterize the role of each one of these enzymes in U. maydis physiology and to obtain some of their kinetic parameters. To approach this goal, classical biochemical assays were performed. The absence of any of these H+-ATPases did not affect the growth or fungal basal metabolism. Membrane potential tests showed that the activity of a single H+-ATPase was enough to maintain the proton-motive force. Our results indicated that in U. maydis, both H+-ATPases work jointly in the generation of the electrochemical proton gradient, which is important for secondary transport of metabolites and regulation of intracellular pH.
Collapse
|
13
|
Identification and Functional Characterization of a Putative Alternative Oxidase (Aox) in Sporisorium reilianum f. sp. zeae. J Fungi (Basel) 2022; 8:jof8020148. [PMID: 35205901 PMCID: PMC8877474 DOI: 10.3390/jof8020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
The mitochondrial electron transport chain consists of the classical protein complexes (I–IV) that facilitate the flow of electrons and coupled oxidative phosphorylation to produce metabolic energy. The canonical route of electron transport may diverge by the presence of alternative components to the electron transport chain. The following study comprises the bioinformatic identification and functional characterization of a putative alternative oxidase in the smut fungus Sporisorium reilianum f. sp. zeae. This alternative respiratory component has been previously identified in other eukaryotes and is essential for alternative respiration as a response to environmental and chemical stressors, as well as for developmental transitionaoxs during the life cycle of an organism. A growth inhibition assay, using specific mitochondrial inhibitors, functionally confirmed the presence of an antimycin-resistant/salicylhydroxamic acid (SHAM)-sensitive alternative oxidase in the respirasome of S. reilianum. Gene disruption experiments revealed that this enzyme is involved in the pathogenic stage of the fungus, with its absence effectively reducing overall disease incidence in infected maize plants. Furthermore, gene expression analysis revealed that alternative oxidase plays a prominent role in the teliospore developmental stage, in agreement with favoring alternative respiration during quiescent stages of an organism’s life cycle.
Collapse
|
14
|
Philipp M, Hussnaetter KP, Reindl M, Müntjes K, Feldbrügge M, Schipper K. A Novel Potent Carrier for Unconventional Protein Export in Ustilago maydis. Front Cell Dev Biol 2022; 9:816335. [PMID: 35083222 PMCID: PMC8784666 DOI: 10.3389/fcell.2021.816335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
Recombinant proteins are ubiquitously applied in fields like research, pharma, diagnostics or the chemical industry. To provide the full range of useful proteins, novel expression hosts need to be established for proteins that are not sufficiently produced by the standard platform organisms. Unconventional secretion in the fungal model Ustilago maydis is an attractive novel option for export of heterologous proteins without N-glycosylation using chitinase Cts1 as a carrier. Recently, a novel factor essential for unconventional Cts1 secretion termed Jps1 was identified. Here, we show that Jps1 is unconventionally secreted using a fusion to bacterial β-glucuronidase as an established reporter. Interestingly, the experiment also demonstrates that the protein functions as an alternative carrier for heterologous proteins, showing about 2-fold higher reporter activity than the Cts1 fusion in the supernatant. In addition, Jps1-mediated secretion even allowed for efficient export of functional firefly luciferase as a novel secretion target which could not be achieved with Cts1. As an application for a relevant pharmaceutical target, export of functional bi-specific synthetic nanobodies directed against the SARS-CoV2 spike protein was demonstrated. The establishment of an alternative efficient carrier thus constitutes an excellent expansion of the existing secretion platform.
Collapse
Affiliation(s)
- Magnus Philipp
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai P Hussnaetter
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michèle Reindl
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kira Müntjes
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Khanal S, Schroeder L, Nava-Mercado OA, Mendoza H, Perlin MH. Role for nitrate assimilatory genes in virulence of Ustilago maydis. Fungal Biol 2021; 125:764-775. [PMID: 34537172 DOI: 10.1016/j.funbio.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Ustilago maydis can utilize nitrate as a sole source of nitrogen. This process is initiated by transporting nitrate from the extracellular environment into the cell by a nitrate transporter and followed by a two-step reduction of nitrate to ammonium via nitrate reductase and nitrite reductase enzymes, respectively. Here, we characterize the genes encoding nitrate transporter, um03849 and nitrite reductase, um03848 in U. maydis based on their roles in mating and virulence. The deletion mutants for um03848, um03849 or both genes were constructed in mating compatible haploid strains 1/2 and 2/9. In addition, CRISPR-Cas9 gene editing technique was used for um03849 gene to create INDEL mutations in U. maydis mating strains. For all the mutants, phenotypes such as growth ability, mating efficiency and pathogenesis were examined. The growth of all the mutants was diminished when grown in a medium with nitrate as the source of nitrogen. Although no clear effects on haploid filamentation or mating were observed for either single mutant, double Δum03848 Δum03849 mutants showed reduction in mating, but increased filamentation on low ammonium, particularly in the 1/2 background. With respect to pathogenesis on the host, all the mutants showed reduced degrees of disease symptoms. Further, when the deletion mutants were paired with wild type of opposite mating-type, reduced virulence was observed, in a manner specific to the genetic background of the mutant's progenitor. This background specific reduction of plant pathogenicity was correlated with differential expression of genes for the mating program in U. maydis.
Collapse
Affiliation(s)
- Sunita Khanal
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Luke Schroeder
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | | | - Hector Mendoza
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
16
|
Olicón-Hernández DR, Araiza-Villanueva MG, Vázquez-Carrada M, Guerra-Sánchez G. Chitosan resistance by the deletion of the putative high affinity glucose transporter in the yeast Ustilago maydis. Carbohydr Res 2021; 505:108335. [PMID: 33989946 DOI: 10.1016/j.carres.2021.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/08/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Chitosan is a polycationic amino-sugar polymer soluble in acidic pH. As a potential antifungal, it has been tested against several fungi. Its main mode of action is the permeabilization of cell membrane by the interaction with specific membrane sites. Ustilago maydis, an attractive fungal model used in biochemical and biotechnology research, is highly sensitive to chitosan, with extensive membrane destruction that results in cell death. Using the Golden Gate system, several mutant strains with deletions in monosaccharide transporters were obtained and tested against chitosan in order to know the implications of these membrane proteins in the sensitivity of the fungus against chitosan. Δum11514/03895 strain, a mutant with a deletion in a hypothetical high affinity glucose transporter, showed resistance to chitosan. Morphological characterization of the mutant displayed an apparent increase in mitochondrial content, but oxygen consumption as well as growth rate were not affected by the gene deletion. Alteration in cell wall surface was observed in the mutant strain. In contrast to wild type, the Δum11514/03895 strain showed integrity of cell wall and cell membrane in the presence of chitosan. The resistance against chitosan is likely associated to the modification of cell wall architecture and is not related to energy-depend process.
Collapse
Affiliation(s)
- Dario Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Minerva Georgina Araiza-Villanueva
- Institute for Microbiology, Center of Excellence on Plant Sciences (CEPLAS), Department of Biology, Heinrich-Heine University Düsseldorf, 40204, Düsseldorf, Germany
| | - Melissa Vázquez-Carrada
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Guadalupe Guerra-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Sto. Tomas, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico.
| |
Collapse
|
17
|
Anyaogu DC, Hansen AH, Hoof JB, Majewska NI, Contesini FJ, Paul JT, Nielsen KF, Hobley TJ, Yang S, Zhang H, Betenbaugh M, Mortensen UH. Glycoengineering of Aspergillus nidulans to produce precursors for humanized N-glycan structures. Metab Eng 2021; 67:153-163. [PMID: 34174425 DOI: 10.1016/j.ymben.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/15/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Filamentous fungi secrete protein with a very high efficiency, and this potential can be exploited advantageously to produce therapeutic proteins at low costs. A significant barrier to this goal is posed by the fact that fungal N-glycosylation varies substantially from that of humans. Inappropriate N-glycosylation of therapeutics results in reduced product quality, including poor efficacy, decreased serum half-life, and undesirable immune reactions. One solution to this problem is to reprogram the glycosylation pathway of filamentous fungi to decorate proteins with glycans that match, or can be remodeled into, those that are accepted by humans. In yeast, deletion of ALG3 leads to the accumulation of Man5GlcNAc2 glycan structures that can act as a precursor for remodeling. However, in Aspergilli, deletion of the ALG3 homolog algC leads to an N-glycan pool where the majority of the structures contain more hexose residues than the Man3-5GlcNAc2 species that can serve as substrates for humanized glycan structures. Hence, additional strain optimization is required. In this report, we have used gene deletions in combination with enzymatic and chemical glycan treatments to investigate N-glycosylation in the model fungus Aspergillus nidulans. In vitro analyses showed that only some of the N-glycan structures produced by a mutant A. nidulans strain, which is devoid of any of the known ER mannose transferases, can be trimmed into desirable Man3GlcNAc2 glycan structures, as substantial amounts of glycan structures appear to be capped by glucose residues. In agreement with this view, deletion of the ALG6 homolog algF, which encodes the putative α-1,3- glucosyltransferase that adds the first glucose residue to the growing ER glycan structure, dramatically reduces the amounts of Hex6-7HexNAc2 structures. Similarly, these structures are also sensitive to overexpression of the genes encoding the heterodimeric α-glucosidase II complex. Without the glucose caps, a new set of large N-glycan structures was formed. Formation of this set is mostly, perhaps entirely, due to mannosylation, as overexpression of the gene encoding mannosidase activity led to their elimination. Based on our new insights into the N-glycan processing in A. nidulans, an A. nidulans mutant strain was constructed in which more than 70% of the glycoforms appear to be Man3-5GlcNAc2 species, which may serve as precursors for further engineering in order to create more complex human-like N-glycan structures.
Collapse
Affiliation(s)
- Diana Chinyere Anyaogu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 kgs, Lyngby, Denmark
| | - Anders Holmgaard Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Lyngby, Denmark
| | - Jakob Blæsbjerg Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 kgs, Lyngby, Denmark
| | - Natalia I Majewska
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Fabiano Jares Contesini
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 kgs, Lyngby, Denmark
| | - Jackson T Paul
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kristian Fog Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 kgs, Lyngby, Denmark
| | - Timothy John Hobley
- National Food Institute, Technical University of Denmark, Søltofts Plads, Building 222, 2800 Kgs, Lyngby, Denmark
| | - Shuang Yang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Uffe Hasbro Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 kgs, Lyngby, Denmark.
| |
Collapse
|
18
|
Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; 65:365-379. [PMID: 33860800 DOI: 10.1042/ebc20200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.
Collapse
|
19
|
Grützner R, Marillonnet S. Generation of MoClo Standard Parts Using Golden Gate Cloning. Methods Mol Biol 2021; 2205:107-123. [PMID: 32809196 DOI: 10.1007/978-1-0716-0908-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Availability of efficient DNA assembly methods is a basic requirement for synthetic biology. A variety of modular cloning systems have been developed, based on Golden Gate cloning for DNA assembly, to enable users to assemble multigene constructs from libraries of standard parts using a series of successive one-pot assembly reactions. Standard parts contain the DNA sequence coding for a genetic element of interest such as a promoter , coding sequence or terminator . Standard parts for the modular cloning system MoClo must be flanked by two BsaI restriction sites and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of basic parts. This protocol requires the following steps (1) defining the type of basic part that needs to be cloned, (2) designing primers for amplification, (3) performing PCR amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large basic parts, it is preferable to first clone subparts as intermediate level -1 constructs. These subparts are sequenced individually and are then further assembled to make the final level 0 module.
Collapse
Affiliation(s)
- Ramona Grützner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
| |
Collapse
|
20
|
Hussnaetter KP, Philipp M, Müntjes K, Feldbrügge M, Schipper K. Controlling Unconventional Secretion for Production of Heterologous Proteins in Ustilago maydis through Transcriptional Regulation and Chemical Inhibition of the Kinase Don3. J Fungi (Basel) 2021; 7:jof7030179. [PMID: 33802393 PMCID: PMC7999842 DOI: 10.3390/jof7030179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Heterologous protein production is a highly demanded biotechnological process. Secretion of the product to the culture broth is advantageous because it drastically reduces downstream processing costs. We exploit unconventional secretion for heterologous protein expression in the fungal model microorganism Ustilago maydis. Proteins of interest are fused to carrier chitinase Cts1 for export via the fragmentation zone of dividing yeast cells in a lock-type mechanism. The kinase Don3 is essential for functional assembly of the fragmentation zone and hence, for release of Cts1-fusion proteins. Here, we are first to develop regulatory systems for unconventional protein secretion using Don3 as a gatekeeper to control when export occurs. This enables uncoupling the accumulation of biomass and protein synthesis of a product of choice from its export. Regulation was successfully established at two different levels using transcriptional and post-translational induction strategies. As a proof-of-principle, we applied autoinduction based on transcriptional don3 regulation for the production and secretion of functional anti-Gfp nanobodies. The presented developments comprise tailored solutions for differentially prized products and thus constitute another important step towards a competitive protein production platform.
Collapse
|
21
|
Versatile CRISPR/Cas9 Systems for Genome Editing in Ustilago maydis. J Fungi (Basel) 2021; 7:jof7020149. [PMID: 33670568 PMCID: PMC7922307 DOI: 10.3390/jof7020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
The phytopathogenic smut fungus Ustilago maydis is a versatile model organism to study plant pathology, fungal genetics, and molecular cell biology. Here, we report several strategies to manipulate the genome of U. maydis by the CRISPR/Cas9 technology. These include targeted gene deletion via homologous recombination of short double-stranded oligonucleotides, introduction of point mutations, heterologous complementation at the genomic locus, and endogenous N-terminal tagging with the fluorescent protein mCherry. All applications are independent of a permanent selectable marker and only require transient expression of the endonuclease Cas9hf and sgRNA. The techniques presented here are likely to accelerate research in the U. maydis community but can also act as a template for genome editing in other important fungi.
Collapse
|
22
|
Plücker L, Bösch K, Geißl L, Hoffmann P, Göhre V. Genetic Manipulation of the Brassicaceae Smut Fungus Thecaphora thlaspeos. J Fungi (Basel) 2021; 7:jof7010038. [PMID: 33435409 PMCID: PMC7826943 DOI: 10.3390/jof7010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
Investigation of plant–microbe interactions greatly benefit from genetically tractable partners to address, molecularly, the virulence and defense mechanisms. The smut fungus Ustilago maydis is a model pathogen in that sense: efficient homologous recombination and a small genome allow targeted modification. On the host side, maize is limiting with regard to rapid genetic alterations. By contrast, the model plant Arabidopsis thaliana is an excellent model with a vast amount of information and techniques as well as genetic resources. Here, we present a transformation protocol for the Brassicaceae smut fungus Thecaphora thlaspeos. Using the well-established methodology of protoplast transformation, we generated the first reporter strains expressing fluorescent proteins to follow mating. As a proof-of-principle for homologous recombination, we deleted the pheromone receptor pra1. As expected, this mutant cannot mate. Further analysis will contribute to our understanding of the role of mating for infection biology in this novel model fungus. From now on, the genetic manipulation of T. thlaspeos, which is able to colonize the model plant A. thaliana, provides us with a pathosystem in which both partners are genetically amenable to study smut infection biology.
Collapse
Affiliation(s)
| | | | | | | | - Vera Göhre
- Correspondence: ; Tel.: +49-211-811-1529
| |
Collapse
|
23
|
Golden Gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Curr Genet 2020; 67:317-330. [PMID: 33367953 PMCID: PMC8032637 DOI: 10.1007/s00294-020-01143-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
The cloning of plasmids can be time-consuming or expensive. Yet, cloning is a prerequisite for many standard experiments for the functional analysis of genes, including the generation of deletion mutants and the localization of gene products. Here, we provide Golden Gate vectors for fast and easy cloning of gene fusion as well as gene deletion vectors applicable to diverse fungi. In Golden Gate cloning, restriction and ligation occur simultaneously in a one-pot reaction. Our vector set contains recognition sites for the commonly used type IIS restriction endonuclease BsaI. We generated plasmids for C- as well as N-terminal tagging with GFP, mRFP and 3xFLAG. For gene deletion, we provide five different donor vectors for selection marker cassettes. These include standard cassettes for hygromycin B, nourseothricin and phleomycin resistance genes as well as FLP/FRT-based marker recycling cassettes for hygromycin B and nourseothricin resistance genes. To make cloning most feasible, we provide robust protocols, namely (1) an overview of cloning procedures described in this paper, (2) specific Golden Gate reaction protocols and (3) standard primers for cloning and sequencing of plasmids and generation of deletion cassettes by PCR and split-marker PCR. We show that our vector set is applicable for the biotechnologically relevant Penicillium chrysogenum and the developmental model system Sordaria macrospora. We thus expect these vectors to be beneficial for other fungi as well. Finally, the vectors can easily be adapted to organisms beyond the kingdom fungi.
Collapse
|
24
|
Werner A, Otte KL, Stahlhut G, Pöggeler S. Establishment of the monomeric yellow-green fluorescent protein mNeonGreen for life cell imaging in mycelial fungi. AMB Express 2020; 10:222. [PMID: 33349910 PMCID: PMC7752937 DOI: 10.1186/s13568-020-01160-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
The engineered monomeric version of the lancelet Branchiostoma lanceolatum fluorescent protein, mNeonGreen (mNG), has several positive characteristics, such as a very bright fluorescence, high photostability and fast maturation. These features make it a good candidate for the utilization as fluorescent tool for cell biology and biochemical applications in filamentous fungi. We report the generation of plasmids for the expression of the heterologous mNG gene under the control of an inducible and a constitutive promoter in the filamentous ascomycete Sordaria macrospora and display a stable expression of mNG in the cytoplasm. To demonstrate its usefulness for labeling of organelles, the peroxisomal targeting sequence serine-lysine-leucine (SKL) was fused to mNG. Expression of this tagged version led to protein import of mNG into peroxisomes and their bright fluorescence in life cell imaging.
Collapse
Affiliation(s)
- Antonia Werner
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Kolja L. Otte
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Gertrud Stahlhut
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Romero-Aguilar L, Cárdenas-Monroy C, Garrido-Bazán V, Aguirre J, Guerra-Sánchez G, Pardo JP. On the use of n-octyl gallate and salicylhydroxamic acid to study the alternative oxidase role. Arch Biochem Biophys 2020; 694:108603. [PMID: 32986977 DOI: 10.1016/j.abb.2020.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
The alternative oxidase (AOX) catalyzes the transfer of electrons from ubiquinol to oxygen without the translocation of protons across the inner mitochondrial membrane. This enzyme has been proposed to participate in the regulation of cell growth, sporulation, yeast-mycelium transition, resistance to reactive oxygen species, infection, and production of secondary metabolites. Two approaches have been used to evaluate AOX function: incubation of cells for long periods of time with AOX inhibitors or deletion of AOX gene. However, AOX inhibitors might have different targets. To test non-specific effects of n-octyl gallate (nOg) and salicylhydroxamic acid (SHAM) on fungal physiology we measured the growth and respiratory capacity of two fungal strains lacking (Ustilago maydis-Δaox and Saccharomyces cerevisiae) and three species containing the AOX gene (U. maydis WT, Debaryomyces hansenii, and Aspergillus nidulans). For U. maydis, a strong inhibition of growth and respiratory capacity by SHAM was observed, regardless of the presence of AOX. Similarly, A. nidulans mycelial growth was inhibited by low concentrations of nOg independently of AOX expression. In contrast, these inhibitors had no effect or had a minor effect on S. cerevisiae and D. hansenii growth. These results show that nOg and SHAM have AOX independent effects which vary in different microorganisms, indicating that studies based on long-term incubation of cells with these inhibitors should be considered as inconclusive.
Collapse
Affiliation(s)
- Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Christian Cárdenas-Monroy
- Ciencia Forense, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Verónica Garrido-Bazán
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Jesus Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N., Miguel Hidalgo, 11350, Ciudad de México, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
26
|
Lee J, Hilgers F, Loeschke A, Jaeger KE, Feldbrügge M. Ustilago maydis Serves as a Novel Production Host for the Synthesis of Plant and Fungal Sesquiterpenoids. Front Microbiol 2020; 11:1655. [PMID: 32849341 PMCID: PMC7396576 DOI: 10.3389/fmicb.2020.01655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Sesquiterpenoids are important secondary metabolites with various pharma- and nutraceutical properties. In particular, higher basidiomycetes possess a versatile biosynthetic repertoire for these bioactive compounds. To date, only a few microbial production systems for fungal sesquiterpenoids have been established. Here, we introduce Ustilago maydis as a novel production host. This model fungus is a close relative of higher basidiomycetes. It offers the advantage of metabolic compatibility and potential tolerance for substances toxic to other microorganisms. We successfully implemented a heterologous pathway to produce the carotenoid lycopene that served as a straightforward read-out for precursor pathway engineering. Overexpressing genes encoding enzymes of the mevalonate pathway resulted in increased lycopene levels. Verifying the subcellular localization of the relevant enzymes revealed that initial metabolic reactions might take place in peroxisomes: despite the absence of a canonical peroxisomal targeting sequence, acetyl-CoA C-acetyltransferase Aat1 localized to peroxisomes. By expressing the plant (+)-valencene synthase CnVS and the basidiomycete sesquiterpenoid synthase Cop6, we succeeded in producing (+)-valencene and α-cuprenene, respectively. Importantly, the fungal compound yielded about tenfold higher titers in comparison to the plant substance. This proof of principle demonstrates that U. maydis can serve as promising novel chassis for the production of terpenoids.
Collapse
Affiliation(s)
- Jungho Lee
- Bioeconomy Science Centre, Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabienne Hilgers
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschke
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Feldbrügge
- Bioeconomy Science Centre, Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Reindl M, Stock J, Hussnaetter KP, Genc A, Brachmann A, Schipper K. A Novel Factor Essential for Unconventional Secretion of Chitinase Cts1. Front Microbiol 2020; 11:1529. [PMID: 32733418 PMCID: PMC7358432 DOI: 10.3389/fmicb.2020.01529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Subcellular targeting of proteins is essential to orchestrate cytokinesis in eukaryotic cells. During cell division of Ustilago maydis, for example, chitinases must be specifically targeted to the fragmentation zone at the site of cell division to degrade remnant chitin and thus separate mother and daughter cells. Chitinase Cts1 is exported to this location via an unconventional secretion pathway putatively operating in a lock-type manner. The underlying mechanism is largely unexplored. Here, we applied a forward genetic screen based on UV mutagenesis to identify components essential for Cts1 export. The screen revealed a novel factor termed Jps1 lacking known protein domains. Deletion of the corresponding gene confirmed its essential role for Cts1 secretion. Localization studies demonstrated that Jps1 colocalizes with Cts1 in the fragmentation zone of dividing yeast cells. While loss of Jps1 leads to exclusion of Cts1 from the fragmentation zone and strongly reduced unconventional secretion, deletion of the chitinase does not disturb Jps1 localization. Yeast-two hybrid experiments indicate that the two proteins might interact. In essence, we identified a novel component of unconventional secretion that functions in the fragmentation zone to enable export of Cts1. We hypothesize that Jps1 acts as an anchoring factor for Cts1.
Collapse
Affiliation(s)
- Michèle Reindl
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Janpeter Stock
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Kai P. Hussnaetter
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Aycin Genc
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
28
|
Müntjes K, Philipp M, Hüsemann L, Heucken N, Weidtkamp-Peters S, Schipper K, Zurbriggen MD, Feldbrügge M. Establishing Polycistronic Expression in the Model Microorganism Ustilago maydis. Front Microbiol 2020; 11:1384. [PMID: 32670239 PMCID: PMC7326815 DOI: 10.3389/fmicb.2020.01384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic microorganisms use monocistronic mRNAs to encode proteins. For synthetic biological approaches like metabolic engineering, precise co-expression of several proteins in space and time is advantageous. A straightforward approach is the application of viral 2A peptides to design synthetic polycistronic mRNAs in eukaryotes. During translation of these peptides the ribosome stalls, the peptide chain is released and the ribosome resumes translation. Thus, two independent polypeptide chains can be encoded from a single mRNA when a 2A peptide sequence is placed inbetween the two open reading frames. Here, we establish such a system in the well-studied model microorganism Ustilago maydis. Using two fluorescence reporter proteins, we compared the activity of five viral 2A peptides. Their activity was evaluated in vivo using fluorescence microscopy and validated using fluorescence resonance energy transfer (FRET). Activity ranged from 20 to 100% and the best performing 2A peptide was P2A from porcine teschovirus-1. As proof of principle, we followed regulated gene expression efficiently over time and synthesised a tri-cistronic mRNA encoding biosynthetic enzymes to produce mannosylerythritol lipids (MELs). In essence, we evaluated 2A peptides in vivo and demonstrated the applicability of 2A peptide technology for U. maydis in basic and applied science.
Collapse
Affiliation(s)
- Kira Müntjes
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Magnus Philipp
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lisa Hüsemann
- Institute of Synthetic Biology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicole Heucken
- Institute of Synthetic Biology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Kerstin Schipper
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
29
|
Cas9HF1 enhanced specificity in Ustilago maydis. Fungal Biol 2020; 124:228-234. [DOI: 10.1016/j.funbio.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
|
30
|
Schmitz L, Kronstad JW, Heimel K. Conditional gene expression reveals stage-specific functions of the unfolded protein response in the Ustilago maydis-maize pathosystem. MOLECULAR PLANT PATHOLOGY 2020; 21:258-271. [PMID: 31802604 PMCID: PMC6988420 DOI: 10.1111/mpp.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ustilago maydis is a model organism for the study of biotrophic plant-pathogen interactions. The sexual and pathogenic development of the fungus are tightly connected since fusion of compatible haploid sporidia is prerequisite for infection of the host plant, maize (Zea mays). After plant penetration, the unfolded protein response (UPR) is activated and required for biotrophic growth. The UPR is continuously active throughout all stages of pathogenic development in planta. However, since development of UPR deletion mutants stops directly after plant penetration, the role of an active UPR at later stages of development remained to be determined. Here, we established a gene expression system for U. maydis that uses endogenous, conditionally active promoters to either induce or repress expression of a gene of interest during different stages of plant infection. Integration of the expression constructs into the native genomic locus and removal of resistance cassettes were required to obtain a wild-type-like expression pattern. This indicates that genomic localization and chromatin structure are important for correct promoter activity and gene expression. By conditional expression of the central UPR regulator, Cib1, in U. maydis, we show that a functional UPR is required for continuous plant defence suppression after host infection and that U. maydis relies on a robust control system to prevent deleterious UPR hyperactivation.
Collapse
Affiliation(s)
- Lara Schmitz
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| | - James W. Kronstad
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
- Michael Smith LaboratoriesDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Kai Heimel
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| |
Collapse
|
31
|
Complementing the intrinsic repertoire of Ustilago maydis for degradation of the pectin backbone polygalacturonic acid. J Biotechnol 2020; 307:148-163. [DOI: 10.1016/j.jbiotec.2019.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
|
32
|
Abstract
Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for complex pathway engineering. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the Modular Cloning system MoClo. Making constructs using the MoClo system requires users to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
Affiliation(s)
- Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
| | | |
Collapse
|
33
|
Becker J, Hosseinpour Tehrani H, Gauert M, Mampel J, Blank LM, Wierckx N. An Ustilago maydis chassis for itaconic acid production without by-products. Microb Biotechnol 2019; 13:350-362. [PMID: 31880860 PMCID: PMC7017832 DOI: 10.1111/1751-7915.13525] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 11/28/2022] Open
Abstract
Ustilago maydis is a promising yeast for the production of a range of valuable metabolites, including itaconate, malate, glycolipids and triacylglycerols. However, wild-type strains generally produce a potpourri of all of these metabolites, which hinders efficient production of single target chemicals. In this study, the diverse by-product spectrum of U. maydis was reduced through strain engineering using CRISPR/Cas9 and FLP/FRT, greatly increasing the metabolic flux into the targeted itaconate biosynthesis pathway. With this strategy, a marker-free chassis strain could be engineered, which produces itaconate from glucose with significantly enhanced titre, rate and yield. The lack of by-product formation not only benefited itaconate production, it also increases the efficiency of downstream processing improving cell handling and product purity.
Collapse
Affiliation(s)
- Johanna Becker
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Hamed Hosseinpour Tehrani
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Marc Gauert
- BRAIN AG (Biotechnology, Research and Information Network), Darmstädter Str. 34-36, Zwingenberg, 64673, Germany
| | - Jörg Mampel
- BRAIN AG (Biotechnology, Research and Information Network), Darmstädter Str. 34-36, Zwingenberg, 64673, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
34
|
Nogueira-López G, Padilla-Arizmendi F, Inwood S, Lyne S, Steyaert JM, Nieto-Jacobo MF, Stewart A, Mendoza-Mendoza A. TrichoGate: An Improved Vector System for a Large Scale of Functional Analysis of Trichoderma Genes. Front Microbiol 2019; 10:2794. [PMID: 31921006 PMCID: PMC6915037 DOI: 10.3389/fmicb.2019.02794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Species of the genus Trichoderma are ubiquitous in the environment and are widely used in agriculture, as biopesticides, and in the industry for the production of plant cell wall-degrading enzymes. Trichoderma represents an important genus of endophytes, and several Trichoderma species have become excellent models for the study of fungal biology and plant–microbe interactions; moreover, are exceptional biotechnological factories for the production of bioactive molecules useful in agriculture and medicine. Next-generation sequencing technology coupled with systematic construction of recombinant DNA molecules provides powerful tools that contribute to the functional analysis of Trichoderma genetics, thus allowing for a better understanding of the underlying factors determining its biology. Here, we present the creation of diverse vectors containing (i) promoter-specific vectors for Trichoderma, (ii) gene deletions (using hygromycin phosphotransferase as selection marker), (iii) protein localization (mCherry and eGFP, which were codon-optimized for Trichoderma), (iv) gene complementation (neomycin phosphotransferase) and (v) overexpression of encoding gene proteins fused to fluorescent markers, by using the Golden Gate cloning technology. Furthermore, we present the design and implementation of a binary vector for Agrobacterium-mediated transformation in Trichoderma to increase the homologous recombination rate and the generation of a novel selection marker based on carboxin resistance.
Collapse
Affiliation(s)
| | | | - Sarah Inwood
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sarah Lyne
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Johanna M Steyaert
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Lincoln Agritech Ltd, Lincoln, New Zealand
| | - Maria Fernanda Nieto-Jacobo
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Plant & Food Research Gerald St, Lincoln, New Zealand
| | - Alison Stewart
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Foundation For Arable Research, Templeton, New Zealand
| | | |
Collapse
|
35
|
Aschenbroich J, Hussnaetter KP, Stoffels P, Langner T, Zander S, Sandrock B, Bölker M, Feldbrügge M, Schipper K. The germinal centre kinase Don3 is crucial for unconventional secretion of chitinase Cts1 in Ustilago maydis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140154. [DOI: 10.1016/j.bbapap.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/02/2023]
|
36
|
Bardetti P, Castanheira SM, Valerius O, Braus GH, Pérez-Martín J. Cytoplasmic retention and degradation of a mitotic inducer enable plant infection by a pathogenic fungus. eLife 2019; 8:e48943. [PMID: 31621584 PMCID: PMC6887120 DOI: 10.7554/elife.48943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
In the fungus Ustilago maydis, sexual pheromones elicit mating resulting in an infective filament able to infect corn plants. Along this process a G2 cell cycle arrest is mandatory. Such as cell cycle arrest is initiated upon the pheromone recognition in each mating partner, and sustained once cell fusion occurred until the fungus enter the plant tissue. We describe that the initial cell cycle arrest resulted from inhibition of the nuclear transport of the mitotic inducer Cdc25 by targeting its importin, Kap123. Near cell fusion to take place, the increase on pheromone signaling promotes Cdc25 degradation, which seems to be important to ensure the maintenance of the G2 cell cycle arrest to lead the formation of the infective filament. This way, premating cell cycle arrest is linked to the subsequent steps required for establishment of the infection. Disabling this connection resulted in the inability of fungal cells to infect plants.
Collapse
Affiliation(s)
- Paola Bardetti
- Instituto de Biología Funcional y Genómica (CSIC)SalamancaSpain
| | | | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsGeorg-August-UniversityGöttingenGermany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsGeorg-August-UniversityGöttingenGermany
| | | |
Collapse
|
37
|
Zhang Y, Liu H, Cao Q, Ge Q, Cui H, Yu X, Ye Z. Cloning and characterization of the UePrf1 gene in Ustilago esculenta. FEMS Microbiol Lett 2019; 365:4956762. [PMID: 29617942 DOI: 10.1093/femsle/fny081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/29/2018] [Indexed: 11/12/2022] Open
Abstract
Ustilago esculenta, an obligate parasite of Zizania latifolia, is a typical dimorphic fungus which induces host stem swelling and inhibits host inflorescence development, but is not found in host leaves. Previous studies have shown that dimorphic switching is essential for fungal pathogenicity and is regulated by protein kinase A and mitogen-activated protein kinase (MAPK) signaling pathways that are integrated by Prf1 in Ustilago maydis. In this study we identified a Prf1 homolog in U. esculenta, designated UePrf1, encoding 830 amino acids with a conserved high mobility group domain located between amino acids 124 and 195. UePrf1 was upregulated during the mating process, which induces dimorphism in U. esculenta. In vitro, UePrf1 mutants showed defects in the mating process, including cell fusion and hyphal growth. UePrf1 mutants also show reduced expression of a genes, even during the cell fusion process. Additionally, the defect in hyphal growth of the UeKpp2 and UeKpp6 mutants (MAPK signaling pathway mutants) was partially counteracted by UePrf1 overexpression, along with induced b gene expression. These results provide evidence that UePrf1 is a key factor coordinating dimorphism in U. esculenta and suggest a conserved role for UePrf1 in the regulation of the a and b genes.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Honglei Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
38
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
39
|
Zhang Y, Wu M, Ge Q, Yang M, Xia W, Cui H, Yu X, Zhang S, Ye Z. Cloning and disruption of the UeArginase in Ustilago esculenta: evidence for a role of arginine in its dimorphic transition. BMC Microbiol 2019; 19:208. [PMID: 31488050 PMCID: PMC6727352 DOI: 10.1186/s12866-019-1588-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Ustilago esculenta, a typical dimorphic fungus could infect Zizania latifolia and induce host stem swollen to form an edible vegetable called Jiaobai in China. The strains differentiation especially in the mating ability and pathogenicity is closely related to different phenotypes of Jiaobai formed in the fields. Dimorphic switching, a tightly regulated processes, is essential for the pathogenetic development of dimorphic fungi. In responses to environment cues, dimorphic switching can be activated through two conserved cell signaling pathways-PKA and MAPK pathways. Previous study indicated that exogenous arginine could induce hyphal formation in several dimorphic fungi through hydrolysis by arginase, but inhibit the dimorphic transition of U. esculenta. We conducted this study to reveal the function of arginine on dimorphic transition of U. esculenta. RESULTS In this study, we found that arginine, but not its anabolites, could slow down the dimorphic transition of U. esculenta proportionally to the concentration of arginine. Besides, UeArginase, predicated coding arginase in U. esculenta was cloned and characterized. UeArginase mutants could actually increase the content of endogenous arginine, and slow down the dimorphic transition on either nutritious rich or poor medium. Either adding exogenous arginine or UeArginase deletion lead to down regulated expressions of UePkaC, UePrf1, mfa1.2, mfa2.1, pra1 and pra2, along with an increased content of arginine during mating process. CONCLUSION Results of this study indicated a direct role of arginine itself on the inhibition of dimorphic transition of U. esculenta, independent of its hydrolysis by UeArginase.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Min Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Mengfei Yang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Shangfa Zhang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
40
|
Jankowski S, Pohlmann T, Baumann S, Müntjes K, Devan SK, Zander S, Feldbrügge M. The multi PAM2 protein Upa2 functions as novel core component of endosomal mRNA transport. EMBO Rep 2019; 20:e47381. [PMID: 31338952 PMCID: PMC6726905 DOI: 10.15252/embr.201847381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
mRNA transport determines spatiotemporal protein expression. Transport units are higher-order ribonucleoprotein complexes containing cargo mRNAs, RNA-binding proteins and accessory proteins. Endosomal mRNA transport in fungal hyphae belongs to the best-studied translocation mechanisms. Although several factors are known, additional core components are missing. Here, we describe the 232 kDa protein Upa2 containing multiple PAM2 motifs (poly[A]-binding protein [Pab1]-associated motif 2) as a novel core component. Loss of Upa2 disturbs transport of cargo mRNAs and associated Pab1. Upa2 is present on almost all transport endosomes in an mRNA-dependent manner. Surprisingly, all four PAM2 motifs are dispensable for function during unipolar hyphal growth. Instead, Upa2 harbours a novel N-terminal effector domain as important functional determinant as well as a C-terminal GWW motif for specific endosomal localisation. In essence, Upa2 meets all the criteria of a novel core component of endosomal mRNA transport and appears to carry out crucial scaffolding functions.
Collapse
Affiliation(s)
- Silke Jankowski
- Institute for MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Thomas Pohlmann
- Institute for MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sebastian Baumann
- Institute for MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
- Present address:
Cell and Developmental BiologyCentre for Genomic Regulation (CRG)BarcelonaSpain
| | - Kira Müntjes
- Institute for MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Senthil Kumar Devan
- Institute for MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sabrina Zander
- Institute for MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Michael Feldbrügge
- Institute for MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
41
|
Protein Phosphatase Ppz1 Is Not Regulated by a Hal3-Like Protein in Plant Pathogen Ustilago maydis. Int J Mol Sci 2019; 20:ijms20153817. [PMID: 31387236 PMCID: PMC6695811 DOI: 10.3390/ijms20153817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Ppz enzymes are type-1 related Ser/Thr protein phosphatases that are restricted to fungi. In S. cerevisiae and other fungi, Ppz1 is involved in cation homeostasis and is regulated by two structurally-related inhibitory subunits, Hal3 and Vhs3, with Hal3 being the most physiologically relevant. Remarkably, Hal3 and Vhs3 have moonlighting properties, as they participate in an atypical heterotrimeric phosphopantothenoyl cysteine decarboxylase (PPCDC), a key enzyme for Coenzyme A biosynthesis. Here we identify and functionally characterize Ppz1 phosphatase (UmPpz1) and its presumed regulatory subunit (UmHal3) in the plant pathogen fungus Ustilago maydis. UmPpz1 is not an essential protein in U. maydis and, although possibly related to the cell wall integrity pathway, is not involved in monovalent cation homeostasis. The expression of UmPpz1 in S. cerevisiae Ppz1-deficient cells partially mimics the functions of the endogenous enzyme. In contrast to what was found in C. albicans and A. fumigatus, UmPpz1 is not a virulence determinant. UmHal3, an unusually large protein, is the only functional PPCDC in U. maydis and, therefore, an essential protein. However, when overexpressed in U. maydis or S. cerevisiae, UmHal3 does not reproduce Ppz1-inhibitory phenotypes. Indeed, UmHal3 does not inhibit UmPpz1 in vitro (although ScHal3 does). Therefore, UmHal3 might not be a moonlighting protein.
Collapse
|
42
|
Herzog R, Solovyeva I, Bölker M, Lugones LG, Hennicke F. Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita. Mol Genet Genomics 2019; 294:663-677. [PMID: 30778675 DOI: 10.1007/s00438-018-01528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022]
Abstract
Agrocybe aegerita is a cultivated edible mushroom in numerous countries, which also serves as a model basidiomycete to study fruiting body formation. Aiming to create an easily expandable customised molecular toolset for transformation and constitutive gene of interest expression, we first created a homologous dominant marker for transformant selection. Progeny monokaryons of the genome-sequenced dikaryon A. aegerita AAE-3 used here were identified as sensitive to the systemic fungicide carboxin. We cloned the wild-type gene encoding the iron-sulphur protein subunit of succinate dehydrogenase AaeSdi1 including its up- and downstream regions, and introduced a single-point mutation (His237 to Leu) to make it confer carboxin resistance. PEG-mediated transformation of protoplasts derived from either oidia or vegetative monokaryotic mycelium with the resulting carboxin resistance marker (CbxR) plasmid pSDI1E3 yielded carboxin-resistant transformants in both cases. Plasmid DNA linearised within the selection marker resulted in transformants with ectopic multiple insertions of plasmid DNA in a head-to-tail repeat-like fashion. When circular plasmid was used, ectopic single integration into the fungal genome was favoured, but also gene conversion at the homologous locus was seen in 1 out of 11 analysed transformants. Employing CbxR as selection marker, two versions of a reporter gene construct were assembled via Golden Gate cloning which allows easy recombination of its modules. These consisted of an eGFP expression cassette controlled by the native promoter PAaeGPDII and the heterologous terminator Tnos, once with and once without an intron in front of the eGFP start codon. After protoplast transformation with either construct as circular plasmid DNA, GFP fluorescence was detected with either transformants, indicating that expression of eGFP is intron-independent in A. aegerita. This paves the way for functional genetics approaches to A. aegerita, e.g., via constitutive expression of fruiting-related genes.
Collapse
Affiliation(s)
- Robert Herzog
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Environmental Biotechnology, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Irina Solovyeva
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Michael Bölker
- LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Luis G Lugones
- Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands
| | - Florian Hennicke
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany. .,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
43
|
New Insights of Ustilago maydis as Yeast Model for Genetic and Biotechnological Research: A Review. Curr Microbiol 2019; 76:917-926. [DOI: 10.1007/s00284-019-01629-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023]
|
44
|
Zhang Y, Yin Y, Hu P, Yu J, Xia W, Ge Q, Cao Q, Cui H, Yu X, Ye Z. Mating-type loci of Ustilago esculenta are essential for mating and development. Fungal Genet Biol 2019; 125:60-70. [PMID: 30685508 DOI: 10.1016/j.fgb.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/19/2022]
Abstract
Ustilago esculenta is closely related to the smut fungus Ustilago maydis and, in an endophytic-like life in the plant Zizania latifolia, only infects host stems and causes swollen stems to form edible galls called Jiaobai in China. In order to study its different modes of invasion and sites of symptom development from other smut fungi at the molecular level, we first characterized the a and b mating-type loci of U. esculenta. The a loci contained three a mating-type alleles, encoding two pheromones and one pheromone receptor per allele. The pheromone/receptor system controlled the conjugation formation, the initial step of mating, in which each pheromone was specific for recognition by only one mating partner. In addition, there are at least three b alleles identified in U. esculenta, encoding two subunits of heterodimeric homeodomain transcription factors bE and bW, responsible for hyphal growth and invasiveness. Hyphal formation, elongation and invasion after mating of two compatible partners occurred, only when a heterodimer complex was formed by the bE and bW proteins derived from different alleles. We also demonstrated that even with only one paired pheromone-pheromone receptor, the active b locus heterodimer triggered hyphal growth and infection.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yumei Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Peng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiajia Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
45
|
Geddes BA, Mendoza-Suárez MA, Poole PS. A Bacterial Expression Vector Archive (BEVA) for Flexible Modular Assembly of Golden Gate-Compatible Vectors. Front Microbiol 2019; 9:3345. [PMID: 30692983 PMCID: PMC6339899 DOI: 10.3389/fmicb.2018.03345] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/27/2018] [Indexed: 11/13/2022] Open
Abstract
We present a Bacterial Expression Vector Archive (BEVA) for the modular assembly of bacterial vectors compatible with both traditional and Golden Gate cloning, utilizing the Type IIS restriction enzyme Esp3I, and have demonstrated its use for Golden Gate cloning in Escherichia coli. Ideal for synthetic biology and other applications, this modular system allows a rapid, low-cost assembly of new vectors tailored to specific tasks. Using the principles outlined here, new modules (e.g., origin of replication for plasmids in other bacteria) can easily be designed for specific applications. It is hoped that this vector construction system will be expanded by the scientific community over time by creation of novel modules through an open source approach. To demonstrate the potential of the system, three example vectors were constructed and tested. The Golden Gate level 1 vector pOGG024 (pBBR1-based broad-host range and medium copy number) was used for gene expression in laboratory-cultured Rhizobium leguminosarum. The Golden Gate level 1 vector pOGG026 (RK2-based broad-host range, lower copy number and stable in the absence of antibiotic selection) was used to demonstrate bacterial gene expression in nitrogen-fixing nodules on pea plant roots formed by R. leguminosarum. Finally, the level 2 cloning vector pOGG216 (RK2-based broad-host range, medium copy number) was used to construct a dual reporter plasmid expressing green and red fluorescent proteins.
Collapse
Affiliation(s)
| | | | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Abstract
Efficient DNA assembly methods are essential tools for synthetic biology and metabolic engineering. Among several recently developed methods that allow assembly of multiple DNA fragments in a single step, DNA assembly using type IIS enzymes provides many advantages for complex pathway engineering. In particular, it provides the ability for the user to quickly assemble multigene constructs using a series of simple one-pot assembly steps starting from libraries of cloned and sequenced parts. We describe here a protocol for assembly of multigene constructs using the modular cloning system (MoClo). Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. Basic parts that are not yet available need to be made. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
Affiliation(s)
- Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz-Institut für Pflanzenbiochemie, Halle, Germany.
| | | |
Collapse
|
47
|
Haag C, Klein T, Feldbrügge M. ESCRT Mutant Analysis and Imaging of ESCRT Components in the Model Fungus Ustilago maydis. Methods Mol Biol 2019; 1998:251-271. [PMID: 31250308 DOI: 10.1007/978-1-4939-9492-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ESCRT machinery (endosomal sorting complex required for transport) is an evolutionarily highly conserved multiprotein complex involved in numerous cellular processes like endocytosis, membrane repair, or endosomal long-distance transport. In fungal hyphae, endocytosis and long-distance mRNA transport are tightly linked, as endocytotic vesicles are also the key carrier vehicles for mRNAs. Studying the regulatory component Did2 (CHMP1) in the plant pathogen Ustilago maydis revealed that loss of Did2 resulted in disturbed endosomal maturation, thereby causing defects in microtubule-dependent transport of early endosomes. Here, we describe methods and protocols that allow studying the role of ESCRT components during endosomal transport. We present experimental strategies to analyze U. maydis ESCRT mutant phenotypes and test complementation with heterologous components, such as ESCRT regulators from Drosophila melanogaster.
Collapse
Affiliation(s)
- Carl Haag
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
48
|
Terfrüchte M, Wewetzer S, Sarkari P, Stollewerk D, Franz-Wachtel M, Macek B, Schlepütz T, Feldbrügge M, Büchs J, Schipper K. Tackling destructive proteolysis of unconventionally secreted heterologous proteins in Ustilago maydis. J Biotechnol 2018; 284:37-51. [DOI: 10.1016/j.jbiotec.2018.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
|
49
|
Hernanz-Koers M, Gandía M, Garrigues S, Manzanares P, Yenush L, Orzaez D, Marcos JF. FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology. Fungal Genet Biol 2018; 116:51-61. [DOI: 10.1016/j.fgb.2018.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
|
50
|
Wang T, Wang D, Lyu Y, Feng E, Zhu L, Liu C, Wang Y, Liu X, Wang H. Construction of a high-efficiency cloning system using the Golden Gate method and I-SceI endonuclease for targeted gene replacement in Bacillus anthracis. J Biotechnol 2018; 271:8-16. [PMID: 29438783 DOI: 10.1016/j.jbiotec.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/30/2022]
Abstract
To investigate gene function in Bacillus anthracis, a high-efficiency cloning system is required with an increased rate of allelic exchange. Golden Gate cloning is a molecular cloning strategy allowing researchers to simultaneously and directionally assemble multiple DNA fragments to construct target plasmids using type IIs restriction enzymes and T4 DNA ligase in the same reaction system. Here, a B. anthracis S-layer protein EA1 allelic exchange vector was successfully constructed using the Golden Gate method. No new restriction sites were introduced into this knockout vector, and seamless assembly of the DNA fragments was achieved. To elevate the efficiency of homologous recombination between the allelic exchange vector and chromosomal DNA, we introduced an I-SceI site into the allelic exchange vector. The eag gene was successfully knocked out in B. anthracis using this vector. Simultaneously, the allelic exchange vector construction method was developed into a system for generating B. anthracis allelic exchange vectors. To verify the effectiveness of this system, some other allelic exchange vectors were constructed and gene replacements were performed in B. anthracis. It is speculated that this gene knockout vector construction system and high-efficiency targeted gene replacement using I-SceI endonuclease can be applied to other Bacillus spp.
Collapse
Affiliation(s)
- Tiantian Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| | - Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| | - Erling Feng
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| | - Li Zhu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| | - Chunjie Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| | - Yanchun Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| | - Hengliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijng 100071, China.
| |
Collapse
|