1
|
Lan J, Wu Y, Chen J, Wang P, Chen H, Huang J, Lu D, Lin C, Ma X, Cao S. Enhancing plant fiber antibacterial and antiviral performance through synergistic action of amino and sulfonic acid groups. Carbohydr Polym 2024; 342:122384. [PMID: 39048195 DOI: 10.1016/j.carbpol.2024.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
As the most abundant renewable resource, cellulose fibers are potential candidates for use in health-protective clothing. Herein, we demonstrate a novel strategy for preparing cellulose fiber with prominent antibacterial and antiviral performance by the synergistic effect of amino groups and sulfonic acid groups. Specifically, guanylated chitosan oligosaccharide (GCOS) and N-sulfopropyl chitosan oligosaccharide (SCOS) were synthesized and chemically grafted onto cellulose fibers (CFs) to endow the fibers with antibacterial and antiviral properties. Moreover, a compounding strategy was applied to make the fibers with simultaneously high antibacterial and antiviral activity, especially in short contact time. The bacteriostatic rate (against S. aureus: 95.81 %, against E. coli: 92.07 %, 1 h) of the compounded fibers improved substantially when a few GCOS-CFs were mixed with SCOS-CFs; especially, it was much higher than both the individual GCOS-CFs and SCOS-CFs. By contrast, the improvement of the antiviral properties was less dramatic; however, even a few SCOS-CFs was mixed, the antiviral properties increased pronouncedly. Although the electrostatic interaction between SCOS and GCOS can make the SCOS-GCOS mixture lose some extent of antibacterial activity, the long chains of cellulose restrain the electrostatic interaction between sulfonic and amino groups, leading to their synergistic action and eventually superior antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Jinxin Lan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yao Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiazhen Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peng Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Hubei, Wuhan 430068, China
| | - Hui Chen
- Fujian Fynex Textile Science and Technology Co. Ltd., Quanzhou, Fujian 362200, China
| | - Jinfeng Huang
- Fujian Fynex Textile Science and Technology Co. Ltd., Quanzhou, Fujian 362200, China
| | - Dongdong Lu
- Key Lab for Sport Shoes Upper Materials, Fujian Huafeng New Material Co. Ltd., Putian 351164, China
| | - Changmei Lin
- College of Environmental and Biological Engineering, Putian University, Putian, Fujian 351100, China
| | - Xiaojuan Ma
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China..
| | - Shilin Cao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China..
| |
Collapse
|
2
|
Falcó I, Randazzo W, Sánchez G. Antiviral Activity of Natural Compounds for Food Safety. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:280-296. [PMID: 38884930 PMCID: PMC11422275 DOI: 10.1007/s12560-024-09605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Gastroenteritis and hepatitis are the most common illnesses resulting from the consumption of food contaminated with human enteric viruses. Several natural compounds have demonstrated antiviral activity against human enteric viruses, such as human norovirus and hepatitis A virus, while little information is available for hepatitis E virus. Many in-vitro studies have evaluated the efficacy of different natural compounds against human enteric viruses or their surrogates. However, only few studies have investigated their antiviral activity in food applications. Among them, green tea extract, grape seed extract and carrageenans have been extensively investigated as antiviral natural compounds to improve food safety. Indeed, these extracts have been studied as sanitizers on food-contact surfaces, in produce washing solutions, as active fractions in antiviral food-packaging materials, and in edible coatings. The most innovative applications of these antiviral natural extracts include the development of coatings to extend the shelf life of berries or their combination with established food technologies for improved processes. This review summarizes existing knowledge in the underexplored field of natural compounds for enhancing the safety of viral-contaminated foods and underscores the research needs to be covered in the near future.
Collapse
Affiliation(s)
- Irene Falcó
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain.
- Department of Microbiology and Ecology, University of Valencia, C/Doctor Moliner, 50, 46100, Burjassot, Valencia, Spain.
| | - Walter Randazzo
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
- Universidad Internacional de Valencia, Valencia, Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| |
Collapse
|
3
|
Lu F, Wang J, Song M, Dai X. The Inhibitory Effect of Resveratrol from Reynoutria japonica on MNV-1, a Human Norovirus Surrogate. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:241-252. [PMID: 38570420 DOI: 10.1007/s12560-024-09592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
As a natural nonflavonoid polyphenol compound, resveratrol is the main functional component of Reynoutria japonica and has anti-inflammatory, antioxidant, antiviral, and other physiological activities. In this study, the effect of resveratrol on the viability of RAW264.7 cells was examined, and murine norovirus (MNV-1) was used as a surrogate for human norovirus to evaluate the inhibitory effect of resveratrol. The concentrations of resveratrol resulting in 50% cytotoxicity (CC50) for RAW264.7 cells were 21.32 and 24.97 μg/mL after 24 and 48 h of incubation, respectively, and resveratrol at a concentration lower than the half-effective inhibitory concentration (EC50) could not damage cell DNA. The EC50 of resveratrol on MNV-1 in infected RAW264.7 cells was determined to equal 5.496 μg/mL. After RAW264.7 cells, virus, and a fresh mixture of virus and RAW264.7 cells were treated with resveratrol solution for 1 h (denoted cell pre-treatment, virus pre-treatment, and mixture coprocessing), the RAW264.7 cells obtained after cell pre-treatment exhibited lower virus infection, and MNV-1 obtained after virus pre-treatment and mixture coprocessing showed a decreased infectious capacity. The inhibition ratio of resveratrol on MNV-1 did not significantly differ between the treatments at 4 and 25 °C or among the various pH values except for the lower acidic condition (pH 2). TEM revealed significant changes in the morphology of MNV-1 after treatment with resveratrol, and molecular docking indicated that resveratrol strongly binds to the viral capsid protein of MNV-1. In addition, resveratrol regulated the expression of cytokine that protects against MNV-1 infection. Therefore, at a lower concentration, resveratrol, a natural component from Reynoutria japonica, exerts an inhibitory effect on MNV-1 growth and could be used as a safe additive in food products to improve the nutritional status and control norovirus.
Collapse
Affiliation(s)
- Fangyuan Lu
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Jianfeng Wang
- Hangzhou Original Seed Farm, Hangzhou, 310045, China
| | - Meie Song
- Rural Revitalization Promotion Center of Zhejiang Province, Hangzhou, 310029, China
| | - Xianjun Dai
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Landim MG, Carneiro MLB, Joanitti GA, Anflor CTM, Marinho DD, Rodrigues JFB, de Sousa WJB, Fernandes DDO, Souza BF, Ombredane AS, do Nascimento JCF, Felice GDJ, Kubota AMA, Barbosa JSC, Ohno JH, Amoah SKS, Pena LJ, Luz GVDS, de Andrade LR, Pinheiro WO, Ribeiro BM, Formiga FR, Fook MVL, Rosa MFF, Peixoto HM, Luiz Carregaro R, Rosa SDSRF. A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations. DISCOVER NANO 2023; 18:118. [PMID: 37733165 PMCID: PMC10514013 DOI: 10.1186/s11671-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - José Filipe Bacalhau Rodrigues
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | | | | | - John Hideki Ohno
- MCI Ultrasonica LTDA, Av. Campinas, 367 - Arraial Paulista, Taboão da Serra, São Paulo, Brazil
| | - Solomon Kweku Sagoe Amoah
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Lia Fook
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | |
Collapse
|
5
|
Han S, Hyun SW, Son JW, Song MS, Lim DJ, Choi C, Park SH, Ha SD. Innovative nonthermal technologies for inactivation of emerging foodborne viruses. Compr Rev Food Sci Food Saf 2023; 22:3395-3421. [PMID: 37288815 DOI: 10.1111/1541-4337.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Various foodborne viruses have been associated with human health during the last decade, causing gastroenteritis and a huge economic burden worldwide. Furthermore, the emergence of new variants of infectious viruses is growing continuously. Inactivation of foodborne viruses in the food industry is a formidable task because although viruses cannot grow in foods, they can survive in the food matrix during food processing and storage environments. Conventional inactivation methods pose various drawbacks, necessitating more effective and environmentally friendly techniques for controlling foodborne viruses during food production and processing. Various inactivation approaches for controlling foodborne viruses have been attempted in the food industry. However, some traditionally used techniques, such as disinfectant-based or heat treatment, are not always efficient. Nonthermal techniques are considered a new platform for effective and safe treatment to inactivate foodborne viruses. This review focuses on foodborne viruses commonly associated with human gastroenteritis, including newly emerged viruses, such as sapovirus and Aichi virus. It also investigates the use of chemical and nonthermal physical treatments as effective technologies to inactivate foodborne viruses.
Collapse
Affiliation(s)
- Sangha Han
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Seok-Woo Hyun
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Jeong Won Son
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Min Su Song
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Dong Jae Lim
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
6
|
Gopal J, Muthu M, Pushparaj SSC, Sivanesan I. Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope? Antibiotics (Basel) 2023; 12:665. [PMID: 37107027 PMCID: PMC10135369 DOI: 10.3390/antibiotics12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chitosan derivatives and composites are the next generation polymers for biomedical applications. With their humble origins from the second most abundant naturally available polymer chitin, chitosan is currently one of the most promising polymer systems, with wide biological applications. This current review gives a bird's eye view of the antimicrobial applications of chitosan composites and derivatives. The antiviral activity and the mechanisms behind the inhibitory activity of these components have been reviewed. Specifically, the anti-COVID-19 aspects of chitosan composites and their derivatives have been compiled from the existing scattered reports and presented. Defeating COVID-19 is the battle of this century, and the chitosan derivative-based combat strategies naturally become very attractive. The challenges ahead and future recommendations have been addressed.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Wdowiak M, Paczesny J, Raza S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics 2022; 14:1936. [PMID: 36145682 PMCID: PMC9502844 DOI: 10.3390/pharmaceutics14091936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Phages are efficient in diagnosing, treating, and preventing various diseases, and as sensing elements in biosensors. Phage display alone has gained attention over the past decade, especially in pharmaceuticals. Bacteriophages have also found importance in research aiming to fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applications require control over the stability of virions. Phages are considered resistant to various harsh conditions. However, stability-determining parameters are usually the only additional factors in phage-related applications. Phages face instability and activity loss when preserved for extended periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and salt concentration, also lead to a phage titer fall. This review describes various formulations that impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted solutions.
Collapse
|
8
|
Plohl O, Fric K, Filipić A, Kogovšek P, Tušek Žnidarič M, Zemljič LF. First Insights into the Antiviral Activity of Chitosan-Based Bioactive Polymers towards the Bacteriophage Phi6: Physicochemical Characterization, Inactivation Potential, and Inhibitory Mechanisms. Polymers (Basel) 2022; 14:3357. [PMID: 36015613 PMCID: PMC9413598 DOI: 10.3390/polym14163357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The outbreak of the worrisome coronavirus disease in 2019 has caused great concern among the global public, especially regarding the need for personal protective equipment with applied antiviral agents to reduce the spread and transmission of the virus. Thus, in our research, chitosan-based bioactive polymers as potential antiviral agents were first evaluated as colloidal macromolecular solutions by elemental analysis and charge. Three different types of low and high molecular weight chitosan (LMW Ch, HMW Ch) and a LMW Ch derivative, i.e., quaternary chitosan (quart-LMW Ch), were used. To explore their antiviral activity for subsequent use in the form of coatings, the macromolecular Chs dispersions were incubated with the model virus phi6 (surrogate for SARS-CoV-2), and the success of virus inactivation was determined. Inactivation of phi6 with some chitosan-based compounds was very successful (>6 log), and the mechanisms behind this were explored. The changes in viral morphology after incubation were observed and the changes in infrared bands position were determined. In addition, dynamic and electrophoretic light scattering studies were performed to better understand the interaction between Chs and phi6. The results allowed us to better understand the antiviral mode of action of Chs agents as a function of their physicochemical properties.
Collapse
Affiliation(s)
- Olivija Plohl
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Katja Fric
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
9
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
10
|
Bello-Morales R, Andreu S, Ruiz-Carpio V, Ripa I, López-Guerrero JA. Extracellular Polymeric Substances: Still Promising Antivirals. Viruses 2022; 14:1337. [PMID: 35746808 PMCID: PMC9227104 DOI: 10.3390/v14061337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Sulfated polysaccharides and other polyanions have been promising candidates in antiviral research for decades. These substances gained attention as antivirals when they demonstrated a high inhibitory effect in vitro against human immunodeficiency virus (HIV) and other enveloped viruses. However, that initial interest was followed by wide skepticism when in vivo assays refuted the initial results. In this paper we review the use of sulfated polysaccharides, and other polyanions, in antiviral therapy, focusing on extracellular polymeric substances (EPSs). We maintain that, in spite of those early difficulties, the use of polyanions and, specifically, the use of EPSs, in antiviral therapy should be reconsidered. We base our claim in several points. First, early studies showed that the main disadvantage of sulfated polysaccharides and polyanions is their low bioavailability, but this difficulty can be overcome by the use of adequate administration strategies, such as nebulization of aerosols to gain access to respiratory airways. Second, several sulfated polysaccharides and EPSs have demonstrated to be non-toxic in animals. Finally, these macromolecules are non-specific and therefore they might be used against different variants or even different viruses.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Vicente Ruiz-Carpio
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
| | - Inés Ripa
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
11
|
Eshaghi Gorji M, Li D. Photoinactivation of bacteriophage MS2, Tulane virus and Vibrio parahaemolyticus in oysters by microencapsulated rose bengal. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Bivalve molluscan shellfish such as oysters are important vectors for the transmission of foodborne pathogens including both viruses and bacteria. Photoinactivation provides a cold-sterilization option against the contamination as excited photosensitizers could transfer electronic energy to oxygen molecules producing reactive oxygen species such as singlet oxygen, leading to oxidative damage and death of the pathogens. However, the efficacy of photoinactivation is very often compromised by the presence of food matrix due to the non-selective reactions of short-lived singlet oxygen with the organic matters other than the target pathogens.
Materials and Methods
In order to address this issue, we encapsulated a food grade photosensitizer rose bengal (RB) in alginate microbeads. An extra coating of chitosan effectively prevented the release of RB from the microbeads in seawater, and more importantly, enhanced the selectivity of the photoinactivation via the electrostatic interactions between cationic chitosan and anionic charge of the virus particles (bacteriophage MS2 and Tulane virus) and the gram-negative bacteria Vibrio parahaemolyticus.
Results
The treatment of oysters with microencapsulated RB resulted in significantly higher reductions of MS2 phage, Tulane virus and V. parahaemolyticus than free RB and non-RB carrying microbeads (P < 0.05) tested with both in vitro and in vivo experimental set-ups. (4)
Conclusions
This study demonstrated a new strategy in delivering comprehensively formulated biochemical sanitizers in bivalve shellfish through their natural filter feeding activity and thereby enhancing the mitigation efficiency of foodborne pathogen contamination.
Collapse
Affiliation(s)
- Mohamad Eshaghi Gorji
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
12
|
The inhibition effects and mechanisms of sulfated chitooligosaccharides on influenza A virus in vitro and in vivo. Carbohydr Polym 2022; 286:119316. [DOI: 10.1016/j.carbpol.2022.119316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023]
|
13
|
Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater Sci 2022; 10:4392-4423. [DOI: 10.1039/d2bm00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the...
Collapse
|
14
|
Jaber N, Al‐Remawi M, Al‐Akayleh F, Al‐Muhtaseb N, Al‐Adham ISI, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J Appl Microbiol 2022; 132:41-58. [PMID: 34218488 PMCID: PMC8447037 DOI: 10.1111/jam.15202] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is an abundant organic polysaccharide, which can be relatively easily obtained by chemical modification of animal or fungal source materials. Chitosan and its derivatives have been shown to exhibit direct antiviral activity, to be useful vaccine adjuvants and to have potential anti-SARS-CoV-2 activity. This thorough and timely review looks at the recent history of investigations into the role of chitosan and its derivatives as an antiviral agent and proposes a future application in the treatment of endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Nisrein Jaber
- Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Mayyas Al‐Remawi
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Faisal Al‐Akayleh
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Najah Al‐Muhtaseb
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | | | | |
Collapse
|
15
|
Nam G, Mohamed MM, Jung J. Novel treatment of Microcystis aeruginosa using chitosan-modified nanobubbles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118458. [PMID: 34740739 DOI: 10.1016/j.envpol.2021.118458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, we treated harmful Microcystis aeruginosa cyanobacteria using chitosan-modified nanobubbles. The chitosan-modified nanobubbles (255 ± 19 nm) presented a positive zeta potential (15.36 ± 1.17 mV) and generated significantly (p < 0.05) more hydroxyl radicals than the negatively charged nanobubbles (-20.68 ± 1.11 mV). Therefore, the interaction between the positively charged chitosan-modified nanobubbles and negatively charged M. aeruginosa (-34.81 ± 1.79 mV) was favored. The chitosan-modified nanobubble treatment (2.20 × 108 particles mL-1) inactivated 73.16% ± 2.23% of M. aeruginosa (2.00 × 106 cells mL-1) for 24 h without causing significant cell lysis (≤0.25%) and completely inhibited the acute toxicity of M. aeruginosa toward Daphnia magna. The inactivation was correlated (r2 = 0.97) with the formation of reactive oxygen species (ROS) in M. aeruginosa. These findings indicated that the hydroxyl radicals generated by the chitosan-modified nanobubbles disrupted cell membrane integrity and enhanced oxidative stress (ROS formation), thereby inactivating M. aeruginosa. Moreover, the penetration of the chitosan-modified nanobubbles and cell alterations in M. aeruginosa were visually confirmed. Our results suggested that the chitosan-modified nanobubble treatment is an eco-friendly method for controlling harmful algae. However, further studies are required for expanding its practical applications.
Collapse
Affiliation(s)
- Gwiwoong Nam
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Mohamed M Mohamed
- Civil and Environmental Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; National Water Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Barnes C, Barber R, Schneider KR, Danyluk MD, Wright AC, Jones MK, Montazeri N. Application of Chitosan Microparticles against Human Norovirus. J Food Prot 2021; 84:2092-2098. [PMID: 34324675 DOI: 10.4315/jfp-21-220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Human norovirus (HuNoV) is the leading cause of foodborne illness outbreaks and the second most common cause of waterborne infections in the United States. The goal of this research was to investigate the antiviral activity of chitosan microparticles (CMs) against HuNoV GII.4 Sydney and its cultivable surrogate Tulane virus (TuV) in suspensions mimicking fecally contaminated water. CMs were prepared by cross-linking chitosan molecules with sodium sulfate, and the antiviral activity of CMs was assessed with an infectivity assay on TuV and by quantitative reverse transcription PCR on TuV and HuNoV. A 3% CM suspension in phosphate-buffered saline (pH 7.2) bound to TuV particles but had a negligible impact on virus infectivity (P > 0.05). A 10-min contact time resulted in a 1.5-log reduction in genomic copies per mL of TuV and HuNoV in fecal suspensions (P < 0.05). Despite the negligible impact on viral infectivity, CMs can moderately bind to infectious virus particles and help purify environmental water by removing these particles. In this study, TuV was a suitable surrogate for HuNoV with similar log reductions in fecal suspension. These findings highlight the potential application of CM as a novel treatment to minimize the spread of waterborne viral pathogens. HIGHLIGHTS
Collapse
Affiliation(s)
- Candace Barnes
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Rebecca Barber
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Keith R Schneider
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Michelle D Danyluk
- Food Science and Human Nutrition Department, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA
| | - Anita C Wright
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Melissa K Jones
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Naim Montazeri
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
17
|
Safarzadeh M, Sadeghi S, Azizi M, Rastegari-Pouyani M, Pouriran R, Haji Molla Hoseini M. Chitin and chitosan as tools to combat COVID-19: A triple approach. Int J Biol Macromol 2021; 183:235-244. [PMID: 33930442 PMCID: PMC8078037 DOI: 10.1016/j.ijbiomac.2021.04.157] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022]
Abstract
The progressive and fatal outbreak of the newly emerged coronavirus, SARS-CoV-2, necessitates rigorous collaboration of all health care systems and researchers from all around the world to bring such a devastating pandemic under control. As there is so far no officially approved drug or ideal vaccine for this disease, investigations on this infectious disease are actively pursued. Chitin and chitosan have shown promising results against viral infections. In this review, we first delve into the problematic consequences of viral pandemics followed by an introduction on SARS-CoV-2 taxonomical classification. Then, we elaborate on the immunology of COVID-19. Common antiviral therapies and their related limitations are described and finally, the potential applicability of chitin and chitosan to fight this overwhelming viral pandemic is addressed.
Collapse
Affiliation(s)
- Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Marongiu L, Burkard M, Venturelli S, Allgayer H. Dietary Modulation of Bacteriophages as an Additional Player in Inflammation and Cancer. Cancers (Basel) 2021; 13:cancers13092036. [PMID: 33922485 PMCID: PMC8122878 DOI: 10.3390/cancers13092036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Natural compounds such as essential oils and tea have been used successfully in naturopathy and folk medicine for hundreds of years. Current research is unveiling the molecular role of their antibacterial, anti-inflammatory, and anticancer properties. Nevertheless, the effect of these compounds on bacteriophages is still poorly understood. The application of bacteriophages against bacteria has gained a particular interest in recent years due to, e.g., the constant rise of antimicrobial resistance to antibiotics, or an increasing awareness of different types of microbiota and their potential contribution to gastrointestinal diseases, including inflammatory and malignant conditions. Thus, a better knowledge of how dietary products can affect bacteriophages and, in turn, the whole gut microbiome can help maintain healthy homeostasis, reducing the risk of developing diseases such as diverse types of gastroenteritis, inflammatory bowel disease, or even cancer. The present review summarizes the effect of dietary compounds on the physiology of bacteriophages. In a majority of works, the substance class of polyphenols showed a particular activity against bacteriophages, and the primary mechanism of action involved structural damage of the capsid, inhibiting bacteriophage activity and infectivity. Some further dietary compounds such as caffeine, salt or oregano have been shown to induce or suppress prophages, whereas others, such as the natural sweeter stevia, promoted species-specific phage responses. A better understanding of how dietary compounds could selectively, and specifically, modulate the activity of individual phages opens the possibility to reorganize the microbial network as an additional strategy to support in the combat, or in prevention, of gastrointestinal diseases, including inflammation and cancer.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery—Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany;
| | - Markus Burkard
- Department of Biochemistry of Nutrition, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sascha Venturelli
- Department of Biochemistry of Nutrition, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Otfried-Müllerstr. 27, 72076 Tuebingen, Germany
- Correspondence: (S.V.); (H.A.); Tel.: +49-(0)711-459-24113 (ext. 24195) (S.V.); +49-(0)621-383-71630 (ext. 71635) (H.A.); Fax: +49-(0)-711-459-23822 (S.V.); +49-(0)-621-383-71631 (H.A.)
| | - Heike Allgayer
- Department of Experimental Surgery—Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany;
- Correspondence: (S.V.); (H.A.); Tel.: +49-(0)711-459-24113 (ext. 24195) (S.V.); +49-(0)621-383-71630 (ext. 71635) (H.A.); Fax: +49-(0)-711-459-23822 (S.V.); +49-(0)-621-383-71631 (H.A.)
| |
Collapse
|
19
|
Kim SJ, Nguyen VG, Kim CU, Park BK, Huynh TML, Shin S, Jung WK, Park YH, Chung HC. Application of chitosan as a natural disinfectant against porcine epidemic diarrhoea virus. Acta Vet Hung 2021; 69:94-99. [PMID: 33764897 DOI: 10.1556/004.2021.00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022]
Abstract
Porcine epidemic diarrhoea virus (PEDV) is one of the major pathogens causing acute enteritis, which is characterised by vomiting and watery diarrhoea and commonly leads to high rates of mortality and morbidity in suckling piglets. Chitosan has been regarded as a promising natural disinfectant. In this study, the disinfectant effect and mammalian-cell toxicity of chitosan were evaluated against PEDV using Vero cells. A 0.01% solution of chitosan was determined to be an effective disinfectant. In addition, no evidence of toxicity was observed during the cell toxicity test; on the contrary, chitosan promoted cell proliferation. In conclusion, chitosan is a promising candidate for an effective and safe disinfectant against PEDV as well as other coronaviruses.
Collapse
Affiliation(s)
- Sung Jae Kim
- 1Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University GwanAk-Ro 1, GwanAk-Gu, Seoul 151-742, Korea
| | - Van Giap Nguyen
- 2Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Cheong Ung Kim
- 3Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bong Kyun Park
- 1Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University GwanAk-Ro 1, GwanAk-Gu, Seoul 151-742, Korea
| | - Thi-My Le Huynh
- 2Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Sook Shin
- 3Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Woo Kyung Jung
- 3Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong Ho Park
- 3Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Chun Chung
- 1Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University GwanAk-Ro 1, GwanAk-Gu, Seoul 151-742, Korea
| |
Collapse
|
20
|
Pan Y, Deng Z, Shahidi F. Natural bioactive substances for the control of food-borne viruses and contaminants in food. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [PMCID: PMC7700915 DOI: 10.1186/s43014-020-00040-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Food-borne viruses and contaminants, as an important global food safety problem, are caused by chemical, microbiological, zoonotic, and other risk factors that represent a health hazard. Natural bioactive substances, originating from plants, animals, or microorganisms, might offer the possibility of preventing and controlling food-borne diseases. In this contribution, the common bioactive substances such as polyphenols, essential oils, proteins, and polysaccharides which are effective in the prevention and treatment of food-borne viruses and contaminants are discussed. Meanwhile, the preventive effects of natural bioactive substances and the possible mechanisms involved in food protection are discussed and detailed. The application and potential effects of natural bioactive substances in the adjuvant treatment for food-borne diseases is also described.
Graphical abstract
Collapse
|
21
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Riccio G, Ruocco N, Mutalipassi M, Costantini M, Zupo V, Coppola D, de Pascale D, Lauritano C. Ten-Year Research Update Review: Antiviral Activities from Marine Organisms. Biomolecules 2020; 10:biom10071007. [PMID: 32645994 PMCID: PMC7407529 DOI: 10.3390/biom10071007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.
Collapse
Affiliation(s)
- Gennaro Riccio
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Nadia Ruocco
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Mirko Mutalipassi
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Maria Costantini
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Valerio Zupo
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Daniela Coppola
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Donatella de Pascale
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Correspondence: ; Tel.: +39-081-5833-221
| |
Collapse
|
23
|
Antimicrobial Activity of Chitosan-Based Films Enriched with Green Tea Extracts on Murine Norovirus, Escherichia coli, and Listeria innocua. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:3941924. [PMID: 32714970 PMCID: PMC7355381 DOI: 10.1155/2020/3941924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Edible films can be designed to serve as carriers of antimicrobial agents and be used to control pathogenic foodborne viruses and bacteria. This research tested this concept by dissolving green tea extract (GTE) in chitosan film-forming solutions (FFS) and using it to prepare dried chitosan edible films. As a control, the GTE was also dissolved in deionized water (DW). The FFS and the dried chitosan films with the GTE and the DW without chitosan were all evaluated against murine norovirus (MNV-1), Escherichia coli K12, and Listeria innocua. Both the FFS and the DW with GTE were incubated with ~107 PFU/ml of the virus suspensions for 3 h. The chitosan films with GTE were incubated for 4 and 24 h at 23 ± 1°C. The results showed that the DW containing 1, 1.5, and 2.5% aqueous GTE, significantly (p < 0.05) reduced MNV-1 plaques by 1.7, 2.5, and 3.3 logs after 3 h exposure, respectively. Similarly, FFS containing 2.5 and 5.0% GTE reduced MNV-1 counts by 2.5 and 4.0 logs, respectively, after 3 h exposure. The dried chitosan films with 5, 10, and 15% GTE were also effective against MNV-1 infectivity. After 24 h incubation, the 5 and 10% chitosan GTE films produced significant (p < 0.05) titer reductions of 1.6 and 4.5 logs, respectively. Chitosan films containing 15% GTE reduced MNV-1 plaques to undetectable levels in 24 h. All chitosan GTE films reduced E. coli K12 and L. innocua populations to undetectable levels in tryptic soy broth after 24 h exposure. The results of this study showed that edible films enriched with GTE have potential to reduce both foodborne viruses and bacteria.
Collapse
|
24
|
Zhu S, Barnes C, Bhar S, Hoyeck P, Galbraith AN, Devabhaktuni D, Karst SM, Montazeri N, Jones MK. Survival of Human Norovirus Surrogates in Water upon Exposure to Thermal and Non-Thermal Antiviral Treatments. Viruses 2020; 12:E461. [PMID: 32325896 PMCID: PMC7232373 DOI: 10.3390/v12040461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
Human noroviruses are the leading cause of foodborne gastroenteritis worldwide and disease outbreaks have been linked to contaminated surface waters as well as to produce consumption. Noroviruses are extremely stable in water and their presence is being detected with increasing frequency, yet there are no viable methods for reducing norovirus contamination in environmental water. Despite this, there is little knowledge regarding the physical and chemical factors that influence the environmental persistence of this pathogen. This study evaluated the impact of common chemical and physical properties of surface water on the stability of murine norovirus and examined the effect of food-safe chitosan microparticles on infectivity of two human norovirus surrogates. While chemical additives had a minor impact on virus survival, chitosan microparticles significantly reduced infectious titers of both murine norovirus and MS2 bacteriophage.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA; (S.Z.); (D.D.); (S.M.K.)
| | - Candace Barnes
- Department of Food Science and Human Nutrition, IFAS, University of Florida, Gainesville, FL 32611, USA; (C.B.); (N.M.)
| | - Sutonuka Bhar
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA; (S.B.); (P.H.); (A.N.G.)
| | - Papa Hoyeck
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA; (S.B.); (P.H.); (A.N.G.)
| | - Annalise N. Galbraith
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA; (S.B.); (P.H.); (A.N.G.)
| | - Divya Devabhaktuni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA; (S.Z.); (D.D.); (S.M.K.)
| | - Stephanie M. Karst
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA; (S.Z.); (D.D.); (S.M.K.)
| | - Naim Montazeri
- Department of Food Science and Human Nutrition, IFAS, University of Florida, Gainesville, FL 32611, USA; (C.B.); (N.M.)
| | - Melissa K. Jones
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA; (S.B.); (P.H.); (A.N.G.)
| |
Collapse
|
25
|
Hao C, Yu G, He Y, Xu C, Zhang L, Wang W. Marine glycan–based antiviral agents in clinical or preclinical trials. Rev Med Virol 2019; 29:e2043. [PMID: 30942528 DOI: 10.1002/rmv.2043] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Cui Hao
- Systems Biology and Medicine Center for Complex DiseasesAffiliated Hospital of Qingdao University Qingdao PR China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of EducationOcean University of China Qingdao PR China
| | - Yanli He
- Systems Biology and Medicine Center for Complex DiseasesAffiliated Hospital of Qingdao University Qingdao PR China
| | - Cuijing Xu
- Key Laboratory of Marine Drugs, Ministry of EducationOcean University of China Qingdao PR China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex DiseasesAffiliated Hospital of Qingdao University Qingdao PR China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of EducationOcean University of China Qingdao PR China
| |
Collapse
|
26
|
Bosch A, Gkogka E, Le Guyader FS, Loisy-Hamon F, Lee A, van Lieshout L, Marthi B, Myrmel M, Sansom A, Schultz AC, Winkler A, Zuber S, Phister T. Foodborne viruses: Detection, risk assessment, and control options in food processing. Int J Food Microbiol 2018; 285:110-128. [PMID: 30075465 PMCID: PMC7132524 DOI: 10.1016/j.ijfoodmicro.2018.06.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023]
Abstract
In a recent report by risk assessment experts on the identification of food safety priorities using the Delphi technique, foodborne viruses were recognized among the top rated food safety priorities and have become a greater concern to the food industry over the past few years. Food safety experts agreed that control measures for viruses throughout the food chain are required. However, much still needs to be understood with regard to the effectiveness of these controls and how to properly validate their performance, whether it is personal hygiene of food handlers or the effects of processing of at risk foods or the interpretation and action required on positive virus test result. This manuscript provides a description of foodborne viruses and their characteristics, their responses to stress and technologies developed for viral detection and control. In addition, the gaps in knowledge and understanding, and future perspectives on the application of viral detection and control strategies for the food industry, along with suggestions on how the food industry could implement effective control strategies for viruses in foods. The current state of the science on epidemiology, public health burden, risk assessment and management options for viruses in food processing environments will be highlighted in this review.
Collapse
Affiliation(s)
- Albert Bosch
- University of Barcelona, Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, and Institute of Nutrition and Food Safety, Diagonal 643, 8028 Barcelona, Spain.
| | - Elissavet Gkogka
- Arla Innovation Centre, Arla R&D, Agro Food Park 19, 8200 Aarhus N, Denmark,.
| | - Françoise S Le Guyader
- IFREMER, Environment and Microbiology Laboratory, Rue de l'Ile d'Yeu, BP 21103, 44311 Nantes, France.
| | - Fabienne Loisy-Hamon
- bioMérieux, Centre Christophe Mérieux, 5 rue des berges, 38025 Grenoble, France.
| | - Alvin Lee
- Illinois Institute of Technology, Moffett Campus, 6502 South Archer Road, 60501-1957 Bedford Park, IL, United States.
| | - Lilou van Lieshout
- The International Life Sciences Institute, Av. E. Mounier 83/B.6, 1200 Brussels, Belgium.
| | - Balkumar Marthi
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands; DaQsh Consultancy Services, 203, Laxmi Residency, Kothasalipeta, Visakhapatnam 530 002, India
| | - Mette Myrmel
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, P.O. Box 8146, 0033 Oslo, Norway.
| | - Annette Sansom
- Campden BRI Group, Station Road, Chipping Campden, GL55 6LD Gloucestershire, United Kingdom.
| | - Anna Charlotte Schultz
- National Food Institute Technical University of Denmark, Mørkhøj Bygade 19, Building H, Room 204, 2860 Søborg, Denmark.
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809 Krefeld, Germany.
| | - Sophie Zuber
- Nestlé Research Centre, Institute of Food Safety and Analytical Science, Vers-chez-les-Blanc, Box 44, 1000 Lausanne, Switzerland.
| | - Trevor Phister
- PepsiCo Europe, Beaumont Park 4, Leycroft Road, LE4 1ET Leicester, United Kingdom.
| |
Collapse
|
27
|
Ghosh S, Malik YS, Kobayashi N. Therapeutics and Immunoprophylaxis Against Noroviruses and Rotaviruses: The Past, Present, and Future. Curr Drug Metab 2018; 19:170-191. [PMID: 28901254 PMCID: PMC5971199 DOI: 10.2174/1389200218666170912161449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 03/19/2017] [Indexed: 12/20/2022]
Abstract
Background: Noroviruses and rotaviruses are important viral etiologies of severe gastroenteritis. Noroviruses are the primary cause of nonbacterial diarrheal outbreaks in humans, whilst rotaviruses are a major cause of childhood diarrhea. Although both enteric pathogens substantially impact human health and economies, there are no approved drugs against noroviruses and rotaviruses so far. On the other hand, whilst the currently licensed rotavirus vaccines have been successfully implemented in over 100 countries, the most advanced norovirus vaccine has recently completed phase-I and II trials. Methods: We performed a structured search of bibliographic databases for peer-reviewed research litera-ture on advances in the fields of norovirus and rotavirus therapeutics and immunoprophylaxis. Results: Technological advances coupled with a proper understanding of viral morphology and replication over the past decade has facilitated pioneering research on therapeutics and immunoprophylaxis against noroviruses and rotaviruses, with promising outcomes in human clinical trials of some of the drugs and vaccines. This review focuses on the various developments in the fields of norovirus and rotavirus thera-peutics and immunoprophylaxis, such as potential antiviral drug molecules, passive immunotherapies (oral human immunoglobulins, egg yolk and bovine colostral antibodies, llama-derived nanobodies, and anti-bodies expressed in probiotics, plants, rice grains and insect larvae), immune system modulators, probiot-ics, phytochemicals and other biological substances such as bovine milk proteins, therapeutic nanoparti-cles, hydrogels and viscogens, conventional viral vaccines (live and inactivated whole virus vaccines), and genetically engineered viral vaccines (reassortant viral particles, virus-like particles (VLPs) and other sub-unit recombinant vaccines including multi-valent viral vaccines, edible plant vaccines, and encapsulated viral particles). Conclusions: This review provides important insights into the various approaches to therapeutics and im-munoprophylaxis against noroviruses and rotaviruses..
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies.,Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yashpal Singh Malik
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
28
|
Randazzo W, Fabra MJ, Falcó I, López-Rubio A, Sánchez G. Polymers and Biopolymers with Antiviral Activity: Potential Applications for Improving Food Safety. Compr Rev Food Sci Food Saf 2018; 17:754-768. [DOI: 10.1111/1541-4337.12349] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Walter Randazzo
- Dept. of Microbiology and Ecology; Univ. of Valencia.; Av. Dr. Moliner, 50. 46100 Burjassot Valencia Spain
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| | - María José Fabra
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| | - Irene Falcó
- Dept. of Microbiology and Ecology; Univ. of Valencia.; Av. Dr. Moliner, 50. 46100 Burjassot Valencia Spain
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| | - Amparo López-Rubio
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| | - Gloria Sánchez
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| |
Collapse
|
29
|
Moore MD, Jaykus LA. Virus-Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences. Viruses 2018; 10:E61. [PMID: 29393885 PMCID: PMC5850368 DOI: 10.3390/v10020061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic virus-bacteria interactions have recently become an emerging topic of study due to multiple significant examples related to human pathogens of clinical interest. However, such omnipresent and likely important interactions for viruses and bacteria relevant to the applied and agricultural sciences have not been reviewed or compiled. The fundamental basis of this review is that these interactions have importance and deserve more investigation, as numerous potential consequences and applications arising from their discovery are relevant to the applied sciences. The purpose of this review is to highlight and summarize eukaryotic virus-bacteria findings in the food/water, horticultural, and animal sciences. In many cases in the agricultural sciences, mechanistic understandings of the effects of virus-bacteria interactions remain unstudied, and many studies solely focus on co-infections of bacterial and viral pathogens. Given recent findings relative to human viral pathogens, further research related to virus-bacteria interactions would likely result in numerous discoveries and beneficial applications.
Collapse
Affiliation(s)
- Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
30
|
Abstract
There remains today a critical need for new antiviral agents, particularly in view of the alarming increase in drug resistance and associated issues. The marine environment has been a prolific contributor towards the identification of novel therapeutic agents in the recent few decades. Added to this, glycans (or carbohydrate- or sugar-based compounds) have in very recent decades made outstanding contributions to the development of novel therapeutics. This review brings together these significant facets of modern drug discovery by presenting the reported literature on glycans derived from marine organisms that possess antiviral activity.The glycans have been grouped together based on the marine organism they were isolated from, namely, (1) bacteria, (2) chromists, (3) plants and (4) animals. For chromists, glycans are further subsectioned into Ochrophyta (brown algae), Miozoa (according to www.algaebase.org ; also called Myzozoa according to WoRMS, www.marinespecies.org ) (dinoflagellates) and Bacillariophyta (diatoms). For plants, glycans are further subsectioned into Chlorophyta, Rhodophyta and Tracheophyta. Glycans isolated to date are reported as alginates, chitosan, extracellular polysaccharides, fucans (e.g. fucoidans), galactans (e.g. carrageenans), glycolipids, glycosaminoglycans, glycosides, glycosylated haemocyanin, laminarans, mannans, polysaccharides (not defined), rhamnans and xylomannans. Interestingly, many of the glycans displaying antiviral properties are sulfated.Reports indicate that marine-sourced glycans have exhibited antiviral activity against African swine fever virus, cytomegalovirus, dengue virus, Epstein-Barr virus, encephalomyocarditis virus, human immunodeficiency virus, hepatitis C virus, herpes simplex virus, human cytomegalovirus, human papilloma virus, human rhino virus, influenza virus, Japanese encephalitis virus, murine leukaemia virus, murine sarcoma virus, Newcastle disease virus, parainfluenza virus, respiratory syncytial virus, Semliki Forest virus, tobacco mosaic virus, vaccinia virus, varicella zoster virus, viral haemorrhagic septicaemia virus and vesicular stomatitis virus. Selected representative glycan structures are presented in Fig. 20.1.
Collapse
|
31
|
Villa TG, Feijoo-Siota L, Rama JLR, Ageitos JM. Antivirals against animal viruses. Biochem Pharmacol 2017; 133:97-116. [PMID: 27697545 PMCID: PMC7092833 DOI: 10.1016/j.bcp.2016.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/29/2016] [Indexed: 01/19/2023]
Abstract
Antivirals are compounds used since the 1960s that can interfere with viral development. Some of these antivirals can be isolated from a variety of sources, such as animals, plants, bacteria or fungi, while others must be obtained by chemical synthesis, either designed or random. Antivirals display a variety of mechanisms of action, and while some of them enhance the animal immune system, others block a specific enzyme or a particular step in the viral replication cycle. As viruses are mandatory intracellular parasites that use the host's cellular machinery to survive and multiply, it is essential that antivirals do not harm the host. In addition, viruses are continually developing new antiviral resistant strains, due to their high mutation rate, which makes it mandatory to continually search for, or develop, new antiviral compounds. This review describes natural and synthetic antivirals in chronological order, with an emphasis on natural compounds, even when their mechanisms of action are not completely understood, that could serve as the basis for future development of novel and/or complementary antiviral treatments.
Collapse
Affiliation(s)
- T G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - L Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - J L R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - J M Ageitos
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain.
| |
Collapse
|
32
|
Lee JH, Bae SY, Oh M, Seok JH, Kim S, Chung YB, Gowda K G, Mun JY, Chung MS, Kim KH. Antiviral effects of black raspberry (Rubus coreanus) seed extract and its polyphenolic compounds on norovirus surrogates. Biosci Biotechnol Biochem 2016; 80:1196-204. [PMID: 26983677 DOI: 10.1080/09168451.2016.1151337] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Black raspberry seeds, a byproduct of wine and juice production, contain large quantities of polyphenolic compounds. The antiviral effects of black raspberry seed extract (RCS) and its fraction with molecular weight less than 1 kDa (RCS-F1) were examined against food-borne viral surrogates, murine norovirus-1 (MNV-1) and feline calicivirus-F9 (FCV-F9). The maximal antiviral effect was achieved when RCS or RCS-F1 was added simultaneously to cells with MNV-1 or FCV-F9, reaching complete inhibition at 0.1-1 mg/mL. Transmission electron microscopy (TEM) images showed enlarged viral capsids or disruption (from 35 nm to up to 100 nm) by RCS-F1. Our results thus suggest that RCS-F1 can interfere with the attachment of viral surface protein to host cells. Further, two polyphenolic compounds derived from RCS-F1, cyanidin-3-glucoside (C3G) and gallic acid, identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against the viruses. C3G was suggested to bind to MNV-1 RNA polymerase and to enlarge viral capsids using differential scanning fluorimetry and TEM, respectively.
Collapse
Affiliation(s)
- Ji-Hye Lee
- a Department of Biotechnology & Bioinformatics , Korea University , Sejong , Korea
| | - Sun Young Bae
- b Department of Food and Nutrition , Duksung Women's University , Seoul , Korea
| | - Mi Oh
- b Department of Food and Nutrition , Duksung Women's University , Seoul , Korea
| | - Jong Hyeon Seok
- a Department of Biotechnology & Bioinformatics , Korea University , Sejong , Korea
| | - Sella Kim
- a Department of Biotechnology & Bioinformatics , Korea University , Sejong , Korea
| | - Yeon Bin Chung
- a Department of Biotechnology & Bioinformatics , Korea University , Sejong , Korea
| | - Giri Gowda K
- a Department of Biotechnology & Bioinformatics , Korea University , Sejong , Korea
| | - Ji Young Mun
- c Department of Biomedical Laboratory Science, College of Health Science , Eulji University , Gyeonggi-do , Korea
| | - Mi Sook Chung
- b Department of Food and Nutrition , Duksung Women's University , Seoul , Korea
| | - Kyung Hyun Kim
- a Department of Biotechnology & Bioinformatics , Korea University , Sejong , Korea
| |
Collapse
|
33
|
Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonis. Int J Biol Macromol 2016; 84:319-28. [DOI: 10.1016/j.ijbiomac.2015.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/20/2015] [Accepted: 12/11/2015] [Indexed: 01/19/2023]
|
34
|
Davis R, Zivanovic S, Davidson PM, D'Souza DH. Enteric Viral Surrogate Reduction by Chitosan. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:359-365. [PMID: 26162243 DOI: 10.1007/s12560-015-9208-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Enteric viruses are a major problem in the food industry, especially as human noroviruses are the leading cause of nonbacterial gastroenteritis. Chitosan is known to be effective against some enteric viral surrogates, but more detailed studies are needed to determine the precise application variables. The main objective of this work was to determine the effect of increasing chitosan concentration (0.7-1.5% w/v) on the cultivable enteric viral surrogates, feline calicivirus (FCV-F9), murine norovirus (MNV-1), and bacteriophages (MS2 and phiX174) at 37 °C. Two chitosans (53 and 222 kDa) were dissolved in water (53 kDa) or 1% acetic acid (222 KDa) at 0.7-1.5%, and were then mixed with each virus to obtain a titer of ~5 log plaque-forming units (PFU)/mL. These mixtures were incubated for 3 h at 37 °C. Controls included untreated viruses in phosphate-buffered saline and viruses were enumerated by plaque assays. The 53 kDa chitosan at the concentrations tested reduced FCV-F9, MNV-1, MS2, and phi X174 by 2.6-2.9, 0.1-0.4, 2.6-2.8, and 0.7-0.9 log PFU/mL, respectively, while reduction by 222 kDa chitosan was 2.2-2.4, 0.8-1.0, 2.6-5.2, and 0.5-0.8 log PFU/mL, respectively. The 222 kDa chitosan at 1 and 0.7% w/v in acetic acid (pH 4.5) caused the greatest reductions of MS2 by 5.2 logs and 2.6 logs, respectively. Overall, chitosan treatments showed the greatest reduction of MS2, followed by FCV-F9, phi X174, and MNV-1. These two chitosans may contribute to the reduction of enteric viruses at the concentrations tested but would require use of other hurdles to eliminate food borne viruses.
Collapse
Affiliation(s)
- Robert Davis
- Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, TN, 37996, USA
| | - Svetlana Zivanovic
- Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, TN, 37996, USA
| | - P Michael Davidson
- Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, TN, 37996, USA
| | - Doris H D'Souza
- Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
35
|
Wu J, Hou W, Cao B, Zuo T, Xue C, Leung AW, Xu C, Tang QJ. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis Photodyn Ther 2015; 12:385-92. [DOI: 10.1016/j.pdpdt.2015.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/21/2015] [Accepted: 06/11/2015] [Indexed: 01/04/2023]
|
36
|
|
37
|
Silva-Beltrán NP, Ruiz-Cruz S, Chaidez C, Ornelas-Paz JDJ, López-Mata MA, Márquez-Ríos E, Estrada MI. Chemical constitution and effect of extracts of tomato plants byproducts on the enteric viral surrogates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2015; 25:299-311. [PMID: 25059828 DOI: 10.1080/09603123.2014.938030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Byproducts of tomato are known to include phenolic compounds but have not been studied in depth. In this study, the phenolic compositions of (stem, leaf, root, and whole plant) of two tomato cultivars, Pitenza and Floradade, were analyzed by HPLC-DAD. In parallel, the antiviral effects of crude extracts on viral surrogates, the bacteriophages MS2 and Av-05 were evaluated. The leaf extracts from the two varieties showed the highest concentration of phenolic compounds. The compounds identified were gallic acid, chlorogenic acid, ferulic acid, cafeic acid, rutin, and quercetin, and they represented 3174.3 and 1057.9 mg/100 g dried weight of the Pitenza and Floradade cultivars, respectively. MS2 and Av-05 titers at 5 mg/mL were reduced by 3.47 and 5.78 log10 PFU/mL and 3.78 and 4.93 log10 PFU/mL by Pitenza and Floradade cultivar leaf extract, respectively. These results show that tomato extracts are natural sources of bioactive substances with antiviral activity.
Collapse
Affiliation(s)
- Norma Patricia Silva-Beltrán
- a Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias , Ciudad Obregón , Mexico
| | | | | | | | | | | | | |
Collapse
|
38
|
Ryu S, You HJ, Kim YW, Lee A, Ko GP, Lee SJ, Song MJ. Inactivation of norovirus and surrogates by natural phytochemicals and bioactive substances. Mol Nutr Food Res 2014; 59:65-74. [PMID: 25410634 DOI: 10.1002/mnfr.201400549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 01/11/2023]
Abstract
Human norovirus is the leading cause of sporadic gastroenteritis, which is responsible for more than 90% of all nonbacterial gastroenteritis outbreaks. While norovirus infections typically cause mild and self-limiting symptoms lasting 24-48 h, chronic persistent infections can cause severe symptoms. Although recent advances have been made in understanding the molecular characteristics of norovirus infection, no norovirus-specific antiviral drugs, or vaccines are available. Conventional intervention methods used to inactivate norovirus, such as treatment with disinfecting agents (e.g. ethanol, hypochlorite, and quaternary ammonium formulations), have shown a lack of efficacy against human norovirus when they are applied to foods and in food preparation processes. Therefore, alternative antiviral or inactivating agents such as phytochemicals have received attention as potential norovirus inhibitors due to their relatively low toxicity and lack of side effects, which allows them to be prepared as food-safe formulations. Evidence from studies using viral surrogates suggests that numerous phytochemicals and foods containing flavonoids and polyphenols have anti-norovirus activity, and future studies will be necessary to confirm the effectiveness of such compounds against human norovirus and the molecular mechanisms through which they produce antiviral effects.
Collapse
Affiliation(s)
- Seungbo Ryu
- Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Sweeney IR, Miraftab M, Collyer G. Absorbent alginate fibres modified with hydrolysed chitosan for wound care dressings--II. Pilot scale development. Carbohydr Polym 2013; 102:920-7. [PMID: 24507364 DOI: 10.1016/j.carbpol.2013.10.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
Abstract
Fibres have been used extensively in wound dressing applications as they provide a high surface area for absorption, ease of fabrication and softness. It is common practice for commercial wound dressings to be produced from natural materials, such a marine polysaccharides, as they are predominantly biocompatible, non-toxic, and often display bioactive properties, such as inherent antimicrobial activity. In this study hydrolysed chitosans were utilised as a sole coagulant for the production of alginate-chitosan fibres via a one-step, direct wet-spinning extrusion process. The levels of chitosan incorporated into the fibres were analysed quantitatively via elemental analysis and qualitatively by staining using Amido Black 10B. It was estimated that the fibres contained between 4.50 and 5.10% (wt.%) chitosan. The presence of chitosan improved tensile properties such as elongation and tenacity of the base alginate fibres. The increased incorporation of chitosan into the fibres also improved the absorption of the fibres in both saline and distilled water; reaching maximum of >30 g/g and >50 g/g, respectively. This work suggests that the observed hydrolysed chitosan content within the fibre may be optimal for the preparation of a novel fibre for wound care application.
Collapse
Affiliation(s)
- I R Sweeney
- Institute for Materials Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB, UK.
| | - M Miraftab
- Institute for Materials Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB, UK
| | - G Collyer
- Sumed International (UK) Limited, Integrity House, Units 1-2 Graphite Way, Hadfield, Glossop, Derbyshire SK13 1QH, UK
| |
Collapse
|
40
|
Li D, Baert L, Uyttendaele M. Inactivation of food-borne viruses using natural biochemical substances. Food Microbiol 2013; 35:1-9. [DOI: 10.1016/j.fm.2013.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 01/29/2023]
|
41
|
Hoelzer K, Fanaselle W, Pouillot R, Van Doren JM, Dennis S. Virus inactivation on hard surfaces or in suspension by chemical disinfectants: systematic review and meta-analysis of norovirus surrogates. J Food Prot 2013; 76:1006-16. [PMID: 23726196 DOI: 10.4315/0362-028x.jfp-12-438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Norovirus (NoV) infections are the leading cause of foodborne illness in the United States. Effective disinfection is important for controlling outbreaks caused by this highly infectious virus but can be difficult to achieve because NoV is very resistant to many common disinfection protocols. The inability of human NoV to replicate in tissue culture complicates NoV research, generally necessitating genome copy quantification, the use of surrogate viruses, or the use of other substitutes such as virus-like particles. To date, comprehensive comparisons among NoV surrogates and between surrogates and human NoV are missing, and it is not clear how best to extrapolate information from surrogate data. We conducted a systematic review and meta-analysis of comparisons of NoV surrogates with regard to their susceptibility to disinfection on hard surfaces or in suspension. Restricting our analysis to those studies in which two or more virus surrogates were compared allowed us to improve the signal-to-noise ratio in our analysis, similar to the epidemiological concept of matching. Using meta-analysis methods, our results indicate that hepatitis A virus, murine norovirus 1, and phage MS2 are significantly more resistant to disinfection than is feline calicivirus, but average differences in viral titer reduction appeared to be modest, 1.5 log PFU or less in all cases. None of the studies that compared surrogates and human NoV met our inclusion criteria, precluding a direct comparison between human NoV and NoV surrogates in this study. For all surrogates with sufficient data available to permit subgroup analyses, we detected strong evidence that the type of disinfectant impacted the relative susceptibility of the surrogates. Therefore, extrapolation of results between surrogates or from surrogates to human NoV must consider the type of disinfectant studied.
Collapse
Affiliation(s)
- K Hoelzer
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740, USA.
| | | | | | | | | |
Collapse
|
42
|
Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs 2012; 10:2795-816. [PMID: 23235364 PMCID: PMC3528127 DOI: 10.3390/md10122795] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 12/14/2022] Open
Abstract
Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure-activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; E-Mails: (S.-X.W.); (H.-S.G.)
- Shandong Provincial Key Laboratory of Glycoscience & Glycoengineering, Ocean University of China, Qingdao 266003, China
| | - Shi-Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; E-Mails: (S.-X.W.); (H.-S.G.)
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; E-Mails: (S.-X.W.); (H.-S.G.)
- Shandong Provincial Key Laboratory of Glycoscience & Glycoengineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|