1
|
Onomu AJ, Okuthe GE. The Application of Fungi and Their Secondary Metabolites in Aquaculture. J Fungi (Basel) 2024; 10:711. [PMID: 39452663 PMCID: PMC11508898 DOI: 10.3390/jof10100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Ensuring sustainability has increasingly become a significant concern not only in aquaculture but in the general agrifood sector. Therefore, it is imperative to investigate pathways to feed substitutes/best practices to enhance aquaculture sustainability. The application of fungi in aquaculture provides innovative methods to enhance the sustainability and productivity of aquaculture. Fungi play numerous roles in aquaculture, including growth, immunity enhancement and disease resistance. They also play a role in bioremediation of waste and bioflocculation. The application of fungi improves the suitability and utilization of terrestrial plant ingredients in aquaculture by reducing the fibre fractions and anti-nutritional factors and increasing the nutrients and mineral contents of plant ingredients. Fungi are good flotation agents and can enhance the buoyancy of aquafeed. Pigments from fungi enhance the colouration of fish fillets, making them more attractive to consumers. This paper, via the relevant literature, explores the multifaceted roles of fungi in aquaculture, emphasizing their potential to transform aquaculture through environmentally friendly and sustainable techniques. The effectiveness of fungi in reducing fibre fractions and enhancing nutrient availability is influenced by the duration of fermentation and the dosage administered, which may differ for various feed ingredients, making it difficult for most aquaculture farmers to apply fungi approximately. Therefore, the most effective dosage and fermentation duration for each feed ingredient should be investigated.
Collapse
Affiliation(s)
- Abigail John Onomu
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
2
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Sajjad B, Siddique A, Rasool K, Jabbar KA, El-Malah SS, Almomani F, Alfarra MR. Seasonal and spatial variations in concentration, diversity, and antibiotic resistance of ambient bioaerosols in an arid region. ENVIRONMENTAL RESEARCH 2024; 262:119879. [PMID: 39243843 DOI: 10.1016/j.envres.2024.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The airborne microbiome significantly influences human health and atmospheric processes within Earth's troposphere and is a crucial focus for scientific research. This study aimed to analyze the composition, diversity, distribution, and spatiotemporal characteristics of airborne microbes in Qatar's ambient air. Air samples were collected using a sampler from ten geographically or functionally distinct locations during a period of one year. Spatial and seasonal variations significantly impacted microbial concentrations, with the highest average concentrations observed at 514 ± 77 CFU/m3 for bacteria over the dry-hot summer season and 134 ± 31 CFU/m3 for fungi over the mild winter season. Bacterial concentrations were notably high in 80% of the locations during the dry-hot summer sampling period, while fungal concentrations peaked in 70% of the locations during winter. The microbial diversity analysis revealed several health-significant bacteria including the genera Chryseobacterium, Pseudomonas, Pantoea, Proteus, Myroides, Yersinia, Pasteurella, Ochrobactrum, Vibrio, and fungal strains relating to the genera Aspergillus, Rhizopus Fusarium, and Penicillium. Detailed biochemical and microscopic analyses were employed to identify culturable species. The strongest antibiotic resistance (ABR) was observed during the humid-hot summer season, with widespread resistance to Metronidazole. Health risk assessments based on these findings indicated potential risks associated with exposure to high concentrations of specific bioaerosols. This study provides essential baseline data on the natural background concentrations of bioaerosols in Qatar, offering insights for air quality assessments and forming a basis for public health policy recommendations, particularly in arid regions.
Collapse
Affiliation(s)
- Bilal Sajjad
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Azhar Siddique
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Khadeeja Abdul Jabbar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Shimaa S El-Malah
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - M Rami Alfarra
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| |
Collapse
|
4
|
Zavišić G, Ristić S, Petričević S, Janković D, Petković B. Microbial Contamination of Food: Probiotics and Postbiotics as Potential Biopreservatives. Foods 2024; 13:2487. [PMID: 39200415 PMCID: PMC11353716 DOI: 10.3390/foods13162487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus and Bifidobacterium and the yeast Saccharomyces cerevisiae var. boulardii) to food contributes primarily to food enrichment and obtaining a functional product, but also to food preservation. Reducing the number of viable pathogenic microorganisms and eliminating or neutralizing their toxins in food is achieved by probiotic-produced antimicrobial substances such as organic acids (lactic acid, acetic acid, propionic acid, phenylacetic acid, and phenyllactic acid), fatty acids (linoleic acid, butyric acid, caproic acid, and caprylic acid), aromatic compounds (diacetyl, acetaldehyde, reuterin), hydrogen peroxide, cyclic dipeptides, bacteriocins, and salivabactin. This review summarizes the basic facts on microbial contamination and preservation of food and the potential of different probiotic strains and their metabolites (postbiotics), including the mechanisms of their antimicrobial action against various foodborne pathogens. Literature data on this topic over the last three decades was searched in the PubMed, Scopus, and Google Scholar databases, systematically presented, and critically discussed, with particular attention to the advantages and disadvantages of using probiotics and postbiotics as food biopreservatives.
Collapse
Affiliation(s)
- Gordana Zavišić
- Faculty of Pharmacy Novi Sad, University Business Academy in Novi Sad, Heroja Pinkija 4, 21101 Novi Sad, Serbia
| | - Slavica Ristić
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Saša Petričević
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Drina Janković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia;
| | - Branka Petković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| |
Collapse
|
5
|
Dorbani I, Berberian A, Riedel C, Duport C, Carlin F. Comparing resistance of bacterial spores and fungal conidia to pulsed light and UVC radiation at a wavelength of 254 nm. Food Microbiol 2024; 121:104518. [PMID: 38637080 DOI: 10.1016/j.fm.2024.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Pulsed light (PL) inactivates microorganisms by UV-rich, high-irradiance and short time pulses (250 μs) of white light with wavelengths from 200 nm to 1100 nm. PL is applied for disinfection of food packaging material and food-contact equipment. Spores of seven Bacillus ssp. strains and one Geobacillus stearothermophilus strain and conidia of filamentous fungi (One strain of Aspergillus brasiliensis, A. carbonarius and Penicillium rubens) were submitted to PL (fluence from 0.23 J/cm2 to 4.0 J/cm2) and UVC (at λ = 254 nm; fluence from 0.01 J/cm2 to 3.0 J/cm2). One PL flash at 3 J/cm2 allowed at least 3 log-reduction of all tested microorganisms. The emetic B. cereus strain F4810/72 was the most resistant of the tested spore-forming bacteria. The PL fluence to 3 log-reduction (F3 PL) of its spores suspended in water was 2.9 J/cm2 and F3 UVC was 0.21 J/cm2, higher than F3 PL and F3 UVC of spores of B. pumilus SAFR-032 2.0 J/cm2 and 0.15 J/cm2, respectively), yet reported as a highly UV-resistant spore-forming bacterium. PL and UVC sensitivity of bacterial spores was correlated. Aspergillus spp. conidia suspended in water were poorly sensitive to PL. In contrast, PL inactivated Aspergillus spp. conidia spread on a dry surface more efficiently than UVC. The F2 PL of A. brasiliensis DSM1988 was 0.39 J/cm2 and F2 UVC was 0.83 J/cm2. The resistance of spore-forming bacteria to PL could be reasonably predicted from the knowledge of their UVC resistance. In contrast, the sensitivity of fungal conidia to PL must be specifically explored.
Collapse
Affiliation(s)
- Imed Dorbani
- INRAE, Avignon Université, UMR SQPOV, Avignon, France; Claranor, 862 Rue André-Jean Boudoy, 84140, Avignon, France
| | | | | | | | | |
Collapse
|
6
|
Cappato LP, Dias-Martins AM, Meireles IMDF, Ferreira EHDR, Lemos Junior WJF, Rosenthal A. Modeling the Thermal Inactivation of Monascus ruber Ascospores Isolated from Green Olive ( Arauco Cultivar) Storage Brine: An Alternative Strategy to Reduce Antifungal Chemical Agents. Foods 2024; 13:1881. [PMID: 38928822 PMCID: PMC11202498 DOI: 10.3390/foods13121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Monascus ruber is an important fungus that causes spoilage in table olives, resulting in the darkening of the brine, the softening of the fruit, increased pH, and apparent mycelial growth. This study aimed to evaluate this resistance, providing a model to determine the optimal processing conditions for mitigating fungal contamination and prolonging shelf life without antifungal agents while optimizing pasteurization to reduce energy consumption. The resistance in brine (3.5% NaCl; pH 3.5) from Arauco cultivar green olives imported from Argentina was assessed. Four predictive models (log linear, log linear + shoulder, log linear + tail, log linear + shoulder + tail) estimated kinetic parameters for each survival curve. Log linear + shoulder + tail provided the best fit for 70 °C and 75 °C, with low RMSE (0.171 and 0.112) and high R2 values (0.98 and 0.99), respectively, while the log linear model was used for 80 °C. Decimal reduction times at 70, 75, and 80 °C were 24.8, 5.4, and 1.6 min, respectively, with a z-value of 8.2 °C. The current regulatory processes are insufficient to eliminate M. ruber at requisite levels, considering reduced antifungal agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Amauri Rosenthal
- Embrapa Food Technology, Av. das Américas, Rio de Janeiro 23020-470, Brazil
| |
Collapse
|
7
|
Chou K, Liu J, Lu X, Hsiao HI. Quantitative microbial spoilage risk assessment of Aspergillus niger in white bread reveal that retail storage temperature and mold contamination during factory cooling are the main factors to influence spoilage. Food Microbiol 2024; 119:104443. [PMID: 38225048 DOI: 10.1016/j.fm.2023.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
The present study developed a model for effectively assessing the risk of spoilage caused by Aspergillus niger to identify key control measures employed in bakery supply chains. A white bread supply chain comprising a processing plant and two retail stores in Taiwan was selected in this study. Time-temperature profiles were collected at each processing step in summer and winter. Visual mycelium diameter predictions were validated using a time-lapse camera. Six what-if scenarios were proposed. The mean risk of A. niger contamination per package sold by retailer A was 0.052 in summer and 0.036 in winter, and that for retailer B was 0.037 in summer and 0.022 in winter. Sensitivity analysis revealed that retail storage time, retail temperature, and mold prevalence during factory cooling were the main influencing factors. The what-if scenarios revealed that reducing the retail environmental temperature by 1 °C in summer (from 23.97 °C to 22.97 °C) and winter (from 23.28 °C to 22.28 °C) resulted in a reduction in spoilage risk of 47.0% and 34.7%, respectively. These results indicate that food companies should establish a quantitative microbial risk assessment model that uses real data to evaluate microbial spoilage in food products that can support decision-making processes.
Collapse
Affiliation(s)
- Kelvin Chou
- Department of Food Science, National Taiwan Ocean University, Taiwan
| | - Jinxin Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Taiwan.
| |
Collapse
|
8
|
Bertlich M, Freytag S, Huber P, Dombrowski T, Oppel E, Gröger M. Serological Cross-Reactivity of Various Aspergillus spp. with Aspergillus fumigatus: A Diagnostic Blind Spot. Int Arch Allergy Immunol 2024; 185:767-774. [PMID: 38537619 DOI: 10.1159/000538082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Aspergillus fumigatus is the most common airborne allergen of the Aspergillus family. However, allergies to Aspergillus spp. are increasing, and subsequently, allergies to Aspergillus species other than fumigatus are also on the rise. Commercial diagnostic tools are still limited to Aspergillus fumigatus. Hence, there is a need for improved tests. We decided to investigate the correlation between serological sensitization to A. fumigatus and other Aspergillus species. METHODS Hundred and seven patients with positive skin prick tests to A. fumigatus were included in this study. Immunoglobulin E (IgE) concentrations against A. fumigatus, A. terreus, A. niger, A. flavus, and A. versicolor were measured from specimens by fluorescent enzyme-linked immunoassays. RESULTS Patients showed considerably higher IgE concentrations against A. fumigatus (6.00 ± 15.05 kUA/L) than A. versicolor (0.30 ± 1.01 kUA/L), A. niger (0.62 ± 1.59 kUA/L), A. terreus (0.45 ± 1.12 kUA/L), or A. flavus (0.41 ± 0.97 kUA/L). Regression analysis yielded weak positive correlations for all Aspergillus spp., but low r2 values and heteroscedastic distribution indicate an overall poor fit of the calculated models. CONCLUSION Serological sensitization against A. fumigatus does not correlate with sensitization against other Aspergillus spp. To detect sensitization against these, other diagnostic tools like a skin prick test solution of different Aspergillus spp. are needed.
Collapse
Affiliation(s)
- Mattis Bertlich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Tobias Dombrowski
- Department of Otorhinolarnygology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Eva Oppel
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Moritz Gröger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
9
|
Son YE, Park HS. Coordination of two regulators SscA and VosA in Aspergillus nidulans conidia. Fungal Genet Biol 2024; 171:103877. [PMID: 38447800 DOI: 10.1016/j.fgb.2024.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Ramos Guerrero FG, Signorini M, Garre A, Sant'Ana AS, Ramos Gorbeña JC, Silva Jaimes MI. Quantitative microbial spoilage risk assessment caused by fungi in sports drinks through multilevel modelling. Food Microbiol 2023; 116:104368. [PMID: 37689415 DOI: 10.1016/j.fm.2023.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
The risk of fungal spoilage of sports drinks produced in the beverage industry was assessed using quantitative microbial spoilage risk assessment (QMSRA). The most relevant pathway was the contamination of the bottles during packaging by mould spores in the air. Mould spores' concentration was estimated by longitudinal sampling for 6 years (936 samples) in different production areas and seasons. This data was analysed using a multilevel model that separates the natural variability in spore concentration (as a function of sampling year, season, and area) and the uncertainty of the sampling method. Then, the expected fungal contamination per bottle was estimated by Monte Carlo simulation, considering their settling velocity and the time and exposure area. The product's shelf life was estimated through the inoculation of bottles with mould spores, following the determination of the probability of visual spoilage as a function of storage time at 20 and 30 °C using logistic regression. The Monte Carlo model estimated low expected spore contamination in the product (1.7 × 10-6 CFU/bottle). Nonetheless, the risk of spoilage is still relevant due to the large production volume and because, as observed experimentally, even a single spore has a high spoilage potential. The applicability of the QMSRA during daily production was made possible through the simplification of the model under the hypothesis that no bottle will be contaminated by more than one spore. This simplification allows the calculation of a two-dimensional performance objective that combines the spore concentration in the air and the exposure time, defining "acceptable combinations" according to an acceptable level of spoilage (ALOS; the proportion of spoiled bottles). The implementation of the model at the operational level was done through the representation of the simplified model as a two-dimensional diagram that defines acceptable and unacceptable areas. The innovative methodology employed here for defining and simplifying QMSRA models can be a blueprint for future studies aiming to quantify the risk of spoilage of other beverages with a similar scope.
Collapse
Affiliation(s)
- Félix G Ramos Guerrero
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru; Centro Latinoamericano de Enseñanza e Investigación de Bacteriología Alimentaria (CLEIBA), Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 1, Peru.
| | - Marcelo Signorini
- Departamento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, R.P. Kreder 2805 (3080), Esperanza, Santa Fe, Argentina
| | - Alberto Garre
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juan C Ramos Gorbeña
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru
| | - Marcial I Silva Jaimes
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru; Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Avenida La Molina s/n, Lima 12, Peru
| |
Collapse
|
11
|
Seekles SJ, van den Brule T, Punt M, Dijksterhuis J, Arentshorst M, Ijadpanahsaravi M, Roseboom W, Meuken G, Ongenae V, Zwerus J, Ohm RA, Kramer G, Wösten HAB, de Winde JH, Ram AFJ. Compatible solutes determine the heat resistance of conidia. Fungal Biol Biotechnol 2023; 10:21. [PMID: 37957766 PMCID: PMC10644514 DOI: 10.1186/s40694-023-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle. RESULTS In this study, complementary approaches are used to show that accumulation of mannitol and trehalose as the main compatible solutes during spore maturation is a key factor for heat resistance of conidia. Compatible solute concentrations increase during conidia maturation, correlating with increased heat resistance of mature conidia. This maturation only occurs when conidia are attached to the conidiophore. Moreover, conidia of a mutant Aspergillus niger strain, constructed by deleting genes involved in mannitol and trehalose synthesis and consequently containing low concentrations of these compatible solutes, exhibit a sixteen orders of magnitude more sensitive heat shock phenotype compared to wild-type conidia. Cultivation at elevated temperature results in adaptation of conidia with increased heat resistance. Transcriptomic and proteomic analyses revealed two putative heat shock proteins to be upregulated under these conditions. However, conidia of knock-out strains lacking these putative heat shock proteins did not show a reduced heat resistance. CONCLUSIONS Heat stress resistance of fungal conidia is mainly determined by the compatible solute composition established during conidia maturation. To prevent heat resistant fungal spore contaminants, food processing protocols should consider environmental conditions stimulating compatible solute accumulation and potentially use compatible solute biosynthesis as a novel food preservation target.
Collapse
Affiliation(s)
- Sjoerd J Seekles
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Tom van den Brule
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Maarten Punt
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Jan Dijksterhuis
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Maryam Ijadpanahsaravi
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Winfried Roseboom
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, the Netherlands
| | - Gwendolin Meuken
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Véronique Ongenae
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Jordy Zwerus
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Robin A Ohm
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Gertjan Kramer
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, the Netherlands
| | - Han A B Wösten
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Johannes H de Winde
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Arthur F J Ram
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands.
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands.
| |
Collapse
|
12
|
Li H, Hong Y, Gao M, An X, Yang X, Zhu Y, Chen J, Su J. Distinct responses of airborne abundant and rare microbial communities to atmospheric changes associated with Chinese New Year. IMETA 2023; 2:e140. [PMID: 38868217 PMCID: PMC10989829 DOI: 10.1002/imt2.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 06/14/2024]
Abstract
Airborne microorganisms, including pathogens, would change with surrounding environments and become issues of global concern due to their threats to human health. Microbial communities typically contain a few abundant but many rare species. However, how the airborne abundant and rare microbial communities respond to environmental changes is still unclear, especially at hour scale. Here, we used a sequencing approach based on bacterial 16S rRNA genes and fungal ITS2 regions to investigate the high time-resolved dynamics of airborne bacteria and fungi and to explore the responses of abundant and rare microbes to the atmospheric changes. Our results showed that air pollutants and microbial communities were significantly affected by human activities related to the Chinese New Year (CNY). Before CNY, significant hour-scale changes in both abundant and rare subcommunities were observed, while only abundant bacterial subcommunity changed with hour time series during CNY. Air pollutants and meteorological parameters explained 61.5%-74.2% variations of abundant community but only 13.3%-21.6% variations of rare communities. These results suggested that abundant species were more sensitive to environmental changes than rare taxa. Stochastic processes predominated in the assembly of abundant communities, but deterministic processes determined the assembly of rare communities. Potential bacterial pathogens during CNY were the highest, suggesting an increased health risk of airborne microbes during CNY. Overall, our findings highlighted the "holiday effect" of CNY on airborne microbes and expanded the current understanding of the ecological mechanisms and health risks of microbes in a changing atmosphere.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - You‐Wei Hong
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Meng‐Ke Gao
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- College of Resource and Environmental ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xin‐Li An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao‐Ru Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Lab of Urban and Regional Ecology, Research Center for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Jin‐Sheng Chen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Jian‐Qiang Su
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Segers FJ, Dijksterhuis J, Giesbers M, Debets AJ. Natural folding of airborne fungal spores: a mechanism for dispersal and long-term survival? FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Thery T, Beney L, Grangeteau C, Dupont S. Sporicidal efficiency of an ultra-high irradiance (UHI) near UV/visible light treatment: An example of application to infected mandarins. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
16
|
Seekles SJ. The breaking of fungal spore dormancy: A coordinated transition. PLoS Biol 2023; 21:e3002077. [PMID: 37083593 PMCID: PMC10121016 DOI: 10.1371/journal.pbio.3002077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The transition from dormant spore to germling has been topic of study and debate. A recent discovery in PLOS Biology shows that chaperone Hsp42 plays a crucial role in resolubilizing the proteome during dormancy breaking, although a role of trehalose cannot be excluded.
Collapse
Affiliation(s)
- Sjoerd Johan Seekles
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Corona Ramirez A, Bregnard D, Junier T, Cailleau G, Dorador C, Bindschedler S, Junier P. Assessment of fungal spores and spore-like diversity in environmental samples by targeted lysis. BMC Microbiol 2023; 23:68. [PMID: 36918804 PMCID: PMC10015814 DOI: 10.1186/s12866-023-02809-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.
Collapse
Affiliation(s)
- Andrea Corona Ramirez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Danaé Bregnard
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
18
|
Heterogeneity in Spore Aggregation and Germination Results in Different Sized, Cooperative Microcolonies in an Aspergillus niger Culture. mBio 2023; 14:e0087022. [PMID: 36629410 PMCID: PMC9973262 DOI: 10.1128/mbio.00870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The fungus Aspergillus niger is among the most abundant fungi in the world and is widely used as a cell factory for protein and metabolite production. This fungus forms asexual spores called conidia that are used for dispersal. Notably, part of the spores and germlings aggregate in an aqueous environment. The aggregated conidia/germlings give rise to large microcolonies, while the nonaggregated spores/germlings result in small microcolonies. Here, it is shown that small microcolonies release a larger variety and quantity of secreted proteins compared to large microcolonies. Yet, the secretome of large microcolonies has complementary cellulase activity with that of the small microcolonies. Also, large microcolonies are more resistant to heat and oxidative stress compared to small microcolonies, which is partly explained by the presence of nongerminated spores in the core of the large microcolonies. Together, it is proposed that heterogeneity in germination and aggregation has evolved to form a population of different sized A. niger microcolonies, thereby increasing stress survival and producing a meta-secretome more optimally suited to degrade complex substrates. IMPORTANCE Aspergillus niger can form microcolonies of different size due to partial aggregation of spores and germlings. So far, this heterogeneity was considered a negative trait by the industry. We here, however, show that heterogeneity in size within a population of microcolonies is beneficial for food degradation and stress survival. This functional heterogeneity is not only of interest for the industry to make blends of enzymes (e.g., for biofuel or bioplastic production) but could also play a role in nature for effective nutrient cycling and survival of the fungus.
Collapse
|
19
|
Pinto CA, Galante D, Espinoza-Suarez E, Gaspar VM, Mano JF, Barba FJ, Saraiva JA. Development Control and Inactivation of Byssochlamys nivea Ascospores by Hyperbaric Storage at Room Temperature. Foods 2023; 12:978. [PMID: 36900495 PMCID: PMC10001197 DOI: 10.3390/foods12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
This study tested hyperbaric storage (25-150 MPa, for 30 days) at room-temperature (HS/RT, 18-23 °C) in order to control the development of Byssochlamys nivea ascospores in apple juice. In order to mimic commercially pasteurized juice contaminated with ascospores, thermal pasteurization (70 and 80 °C for 30 s) and nonthermal high pressure pasteurization (600 MPa for 3 min at 17 °C, HPP) took place, and the juice was afterwards placed under HS/RT conditions. Control samples were also placed in atmospheric pressure (AP) conditions at RT and were refrigerated (4 °C). The results showed that HS/RT, in samples without a pasteurization step and those pasteurized at 70 °C/30 s, was able to inhibit ascospore development, contrarily to samples at AP/RT and refrigeration. HS/RT for samples pasteurized at 80 °C/30 s evidenced ascospore inactivation, especially at 150 MPa, wherein an overall reduction of at least 4.73 log units of ascospores was observed to below detection limits (1.00 Log CFU/mL); meanwhile, for HPP samples, especially at 75 and 150 MPa, an overall reduction of 3 log units (to below quantification limits, 2.00 Log CFU/mL) was observed. Phase-contrast microscopy revealed that the ascospores do not complete the germination process under HS/RT, hence avoiding hyphae formation, which is important for food safety since mycotoxin development occurs only after hyphae formation. These findings suggest that HS/RT is a safe food preservation methodology, as it prevents ascospore development and inactivates them following commercial-like thermal or nonthermal HPP pasteurization, preventing mycotoxin production and enhancing ascospore inactivation.
Collapse
Affiliation(s)
- Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo Galante
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Vítor M. Gaspar
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João F. Mano
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Toledo E, Félix C, Vicente TFL, Augusto A, Félix R, Toledo B, Silva J, Trindade C, Raimundo D, Lemos MFL. Seaweed Extracts to Control Postharvest Phytopathogenic Fungi in Rocha Pear. J Fungi (Basel) 2023; 9:jof9020269. [PMID: 36836383 PMCID: PMC9967800 DOI: 10.3390/jof9020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Fungal infections cause losses amounting to between 20 and 25% of the fruit industry's total outcome, with an escalating impact on agriculture in the last decades. As seaweeds have long demonstrated relevant antimicrobial properties against a wide variety of microorganisms, extracts from Asparagopsis armata, Codium sp., Fucus vesiculosus, and Sargassum muticum were used to find sustainable, ecofriendly, and safe solutions against Rocha pear postharvest fungal infections. Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, and Penicillium expansum mycelial growth and spore germination inhibition activities were tested in vitro with five different extracts of each seaweed (n-hexane, ethyl acetate, aqueous, ethanolic, and hydroethanolic). An in vivo assay was then performed using the aqueous extracts against B. cinerea and F. oxysporum in Rocha pear. The n-hexane, ethyl acetate, and ethanolic extracts from A. armata showed the best in vitro inhibitory activity against B. cinerea, F. oxysporum, and P. expansum, and promising in vivo results against B. cinerea using S. muticum aqueous extract were also found. The present work highlights the contribution of seaweeds to tackle agricultural problems, namely postharvest phytopathogenic fungal diseases, contributing to a greener and more sustainable bioeconomy from the sea to the farm.
Collapse
Affiliation(s)
- Eloísa Toledo
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Augusto
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Bernardo Toledo
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | | | | | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- Correspondence:
| |
Collapse
|
21
|
Zhang C, Zhang H, Zheng X, Wang Y, Ye W. Functional Characterization of Two Cell Wall Integrity Pathway Components of the MAPK Cascade in Phomopsis longicolla. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:47-58. [PMID: 36282555 DOI: 10.1094/mpmi-07-22-0156-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pathogenic fungus Phomopsis longicolla causes numerous plant diseases, such as Phomopsis seed decay, pod and stem blight, and stem canker, which seriously affect the yield and quality of soybean production worldwide. Because of a lack of technology for efficient manipulation of genes for functional genomics, understanding of P. longicolla pathogenesis is limited. Here, we developed an efficient polyethylene glycol-mediated protoplast transformation system in P. longicolla that we used to characterize the functions of two genes involved in the cell wall integrity (CWI) pathway of the mitogen-activated protein kinase (MAPK) cascade, including PlMkk1, which encodes MAPK kinase, and its downstream gene PlSlt2, which encodes MAPK. Both gene knockout mutants ΔPlMkk1 and ΔPlSlt2 displayed a reduced growth rate, fragile aerial hyphae, abnormal polarized growth and pigmentation, defects in sporulation, inadequate CWI, enhanced sensitivity to abiotic stress agents, and significant deficiencies in virulence, although there were some differences in degree. The results suggest that PlMkk1 and PlSlt2 are crucial for a series of growth and development processes as well as pathogenicity. The developed transformation system will be a useful tool for additional gene function research and will aid in the elucidation of the pathogenic mechanisms of P. longicolla. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
22
|
Argyropoulos CD, Skoulou V, Efthimiou G, Michopoulos AK. Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:477-533. [PMID: 36467894 PMCID: PMC9703444 DOI: 10.1007/s11869-022-01286-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The nature and airborne dispersion of the underestimated biological agents, monitoring, analysis and transmission among the human occupants into building environment is a major challenge of today. Those agents play a crucial role in ensuring comfortable, healthy and risk-free conditions into indoor working and leaving spaces. It is known that ventilation systems influence strongly the transmission of indoor air pollutants, with scarce information although to have been reported for biological agents until 2019. The biological agents' source release and the trajectory of airborne transmission are both important in terms of optimising the design of the heating, ventilation and air conditioning systems of the future. In addition, modelling via computational fluid dynamics (CFD) will become a more valuable tool in foreseeing risks and tackle hazards when pollutants and biological agents released into closed spaces. Promising results on the prediction of their dispersion routes and concentration levels, as well as the selection of the appropriate ventilation strategy, provide crucial information on risk minimisation of the airborne transmission among humans. Under this context, the present multidisciplinary review considers four interrelated aspects of the dispersion of biological agents in closed spaces, (a) the nature and airborne transmission route of the examined agents, (b) the biological origin and health effects of the major microbial pathogens on the human respiratory system, (c) the role of heating, ventilation and air-conditioning systems in the airborne transmission and (d) the associated computer modelling approaches. This adopted methodology allows the discussion of the existing findings, on-going research, identification of the main research gaps and future directions from a multidisciplinary point of view which will be helpful for substantial innovations in the field.
Collapse
Affiliation(s)
| | - Vasiliki Skoulou
- B3 Challenge Group, Chemical Engineering, School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Georgios Efthimiou
- Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Apostolos K. Michopoulos
- Energy & Environmental Design of Buildings Research Laboratory, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
23
|
Liu Y, Chen J, Cheng Y, Li Y, Li X, Zhang Z, Xu X, Lin Y, Xu J, Li Z. A simple and rapid technique of template preparation for PCR. Front Microbiol 2022; 13:1024827. [PMID: 36439815 PMCID: PMC9686307 DOI: 10.3389/fmicb.2022.1024827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Many techniques have been developed for extracting DNA, but most are often complex, time-consuming, and/or expensive. In this study, we describe a simple, rapid and cost-effective technique for preparing DNA template for PCR. This technique involves 0.1 M potassium hydroxide treatment at 100°C for 10 min followed by centrifugation. The suspended centrifuged sediments were shown as excellent templates for PCR. Templates prepared using this technique worked for diverse microorganisms belonging to bacteria, fungi and oomycetes and their amplification efficiencies were comparable to/better than those prepared using common but relatively more complex, time-consuming, and/or expensive methods, including commercial DNA extraction kits. Furthermore, this technology is suitable for high-throughput batch processing and for amplifications of long DNA fragments. Flow cytometry and scanning electronic microscopy analyzes showed that this technique generated primarily damaged cells and cell-bound DNA, not free naked DNA. This technique provides a great convenience for simple PCR template preparation.
Collapse
Affiliation(s)
- Yunyun Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yi Li
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Xinwen Li
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Zhengbing Zhang
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Xiumei Xu
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Yufeng Lin
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Jianping Xu,
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Zhimin Li,
| |
Collapse
|
24
|
Identification of postbaking mold contamination through onsite monitoring of baking factory environment: A case study of bakery company in Taiwan. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Wagner R, Montoya L, Gao C, Head JR, Remais J, Taylor JW. The air mycobiome is decoupled from the soil mycobiome in the California San Joaquin Valley. Mol Ecol 2022; 31:4962-4978. [PMID: 35933707 PMCID: PMC9624177 DOI: 10.1111/mec.16640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
Dispersal is a key force in the assembly of fungal communities and the air is the dominant route of dispersal for most fungi. Understanding the dynamics of airborne fungi is important for determining their source and for helping to prevent fungal disease. This understanding is important in the San Joaquin Valley of California, which is home to 4.2 million people and where the airborne fungus Coccidioides is responsible for the most important fungal disease of otherwise healthy humans, coccidioidomycosis. The San Joaquin Valley is the most productive agricultural region in the United States, with the principal crops grown therein susceptible to fungal pathogens. Here, we characterize the fungal community in soil and air on undeveloped and agricultural land in the San Joaquin Valley using metabarcoding of the internal transcribed spacer 2 variable region of fungal rDNA. Using 1,002 individual samples, we report one of the most extensive studies of fungi sampled simultaneously from air and soil using modern sequencing techniques. We find that the air mycobiome in the San Joaquin Valley is distinct from the soil mycobiome, and that the assemblages of airborne fungi from sites as far apart as 160 km are far more similar to one another than to the fungal communities in nearby soils. Additionally, we present evidence that airborne fungi in the San Joaquin Valley are subject to dispersal limitation and cyclical intra-annual patterns of community composition. Our findings are broadly applicable to understanding the dispersal of airborne fungi and the taxonomic structure of airborne fungal assemblages.
Collapse
Affiliation(s)
- Robert Wagner
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Liliam Montoya
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Cheng Gao
- Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jennifer R. Head
- Division of EpidemiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Justin Remais
- Division of Environmental Health SciencesUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John W. Taylor
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
26
|
Braga GÚL, Silva-Junior GJ, Brancini GTP, Hallsworth JE, Wainwright M. Photoantimicrobials in agriculture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112548. [PMID: 36067596 DOI: 10.1016/j.jphotobiol.2022.112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Classical approaches for controlling plant pathogens may be impaired by the development of pathogen resistance to chemical pesticides and by limited availability of effective antimicrobial agents. Recent increases in consumer awareness of and/or legislation regarding environmental and human health, and the urgent need to improve food security, are driving increased demand for safer antimicrobial strategies. Therefore, there is a need for a step change in the approaches used for controlling pre- and post-harvest diseases and foodborne human pathogens. The use of light-activated antimicrobial substances for the so-called antimicrobial photodynamic treatment is known to be effective not only in a clinical context, but also for use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate foodborne human pathogens from seeds, sprouted seeds, fruits, and vegetables. Here, we take a holistic approach to review and re-evaluate recent findings on: (i) the ecology of naturally-occurring photoantimicrobials, (ii) photodynamic processes including the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-induced photosensitization of plants. The inhibitory mechanisms of both natural and synthetic light-activated substances, known as photosensitizers, are discussed in the contexts of microbial stress biology and agricultural biotechnology. Their modes-of-antimicrobial action make them neither stressors nor toxins/toxicants (with specific modes of poisonous activity), but a hybrid/combination of both. We highlight the use of photoantimicrobials for the control of plant-pathogenic fungi and quantify their potential contribution to global food security.
Collapse
Affiliation(s)
- Gilberto Ú L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | | | - Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, United Kingdom.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
27
|
Cho JH, Jun NS, Park JM, Bang KI, Hong JW. Fungal Load of Groundwater Systems in Geographically Segregated Islands: A Step Forward in Fungal Control. MYCOBIOLOGY 2022; 50:345-356. [PMID: 36404906 PMCID: PMC9645270 DOI: 10.1080/12298093.2022.2123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The fungal distribution, diversity, and load were analyzed in the geographically segregated island groundwater systems in Korea. A total of 79 fungal isolates were secured from seven islands and identified based on the internal transcribed spacer (ITS) sequences. They belonged to three phyla (Ascomycota, Basidiomycota, and Chlorophyta), five classes, sixteen orders, twenty-two families, and thirty-one genera. The dominant phylum was Ascomycota (91.1%), with most fungi belonging to the Cladosporium (21.5%), Aspergillus (15.2%), and Stachybotrys (8.9%) genera. Cladosporium showed higher dominance and diversity, being widely distributed throughout the geographically segregated groundwater systems. Based on the diversity indices, the genera richness (4.821) and diversity (2.550) were the highest in the groundwater system of the largest scale. As turbidity (0.064-0.462) increased, the overall fungal count increased and the residual chlorine (0.089-0.308) had low relevance compared with the total count and fungal diversity. Cladosporium showed normal mycelial growth in de-chlorinated sterilized samples. Overall, if turbidity increases under higher fungal diversity, bio-deterioration in groundwater-supplying facilities and public health problems could be intensified, regardless of chlorine treatment. In addition to fungal indicators and analyzing methods, physical hydrostatic treatment is necessary for monitoring and controlling fungal contamination.
Collapse
Affiliation(s)
- Joong Hee Cho
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Nam Soo Jun
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Jong Myong Park
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Ki In Bang
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
28
|
Exogenous Regulators Enhance the Yield and Stress Resistance of Chlamydospores of the Biocontrol Agent Trichoderma harzianum T4. J Fungi (Basel) 2022; 8:jof8101017. [PMID: 36294583 PMCID: PMC9604748 DOI: 10.3390/jof8101017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Trichoderma strains have been successfully used in plant disease control. However, the poor stress resistance of mycelia and conidia makes processing and storage difficult. Furthermore, they cannot produce chlamydospores in large quantities during fermentation, which limits the industrialization process of chlamydospore preparation. It is important to explore an efficient liquid fermentation strategy for ensuring chlamydospore production in Trichoderma harzianum. We found that the addition of mannitol, glycine betaine, and N-acetylglucosamine (N-A-G) during liquid fermentation effectively increases the yield of chlamydospores. Furthermore, we provided evidence that chlamydospores have stronger tolerance to high temperature, ultraviolet, and hypertonic stress after the addition of mannitol and trehalose. Lipids are an important component of microbial cells and impact the stress resistance of microorganisms. We studied the internal relationship between lipid metabolism and the stress resistance of chlamydospores by detecting changes in the lipid content and gene expression. Our results showed that mannitol and trehalose cause lipid accumulation in chlamydospores and increase the unsaturated fatty acid content. In conclusion, we verified that these exogenous regulators increase the production of chlamydospores and enhance their stress resistance by regulating lipid metabolism. In addition, we believe that lipid metabolism is an important part of the chlamydospore production process and impacts the stress resistance of chlamydospores. Our findings provide clues for studying the differentiation pathway of chlamydospores in filamentous fungi and a basis for the industrial production of chlamydospores.
Collapse
|
29
|
Transcriptional Stages of Conidia Germination and Associated Genes in Aspergillus flavus: An Essential Role for Redox Genes. Toxins (Basel) 2022; 14:toxins14080560. [PMID: 36006223 PMCID: PMC9412981 DOI: 10.3390/toxins14080560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Aflatoxin is a threatening mycotoxin primarily present in the agricultural environment, especially in food and feedstuff, and poses significant global health risks. Aflatoxins are produced mainly by Aspergillus flavus. Conidia germination is the first step for A. flavus development. In this study, the transcriptome of A. flavus conidia was analyzed at three different stages of conidia germination, which were characterized by two different microscopes. Dormant conidia grew isotropically with the cell size increasing up to 5 h of after being inoculated in a liquid medium. Conidia changed towards polarized growth from 5 to 10 h of germination, during which germ tubes formed. Moreover, transcriptome analyses revealed that a larger number of genes changed in the isotropic growth stages compared to polarized growth, with 1910 differentially expressed genes (DEGs) up-regulated and 969 DEGs down-regulated in isotropic growth. GO and KEGG pathway analyses and pathway enrichment demonstrated that, in the isotropic growth stage, the top three pathways were translation, amino acid and carbohydrate metabolism. The ribosome was a key pathway in translation, as RPS28e, RPL53 and RPL36e were the top three DEGs. For polarized growth stage, lipid metabolism, amino acid metabolism and carbohydrate metabolism were the top three most active pathways. POX1 from alpha-linolenic acid metabolism was a DEG in lipid metabolism as well. Genes related to the antioxidant system were crucial for conidia germination. Furthermore, RT-PCR results showed the same trends as the transcriptome for redox genes, and essential oils have a significant inhibitory effect on germination rate and redox gene expression. Therefore, redox genes play an important role during germination, and the disruption of redox genes is involved in the mechanism of action of coumalic acid and geraniol against A. flavus spore germination.
Collapse
|
30
|
Ijadpanahsaravi M, Teertstra WR, Wösten HAB. Inter- and intra-species heterogeneity in germination of Aspergillus conidia. Antonie Van Leeuwenhoek 2022; 115:1151-1164. [PMID: 35857156 PMCID: PMC9363317 DOI: 10.1007/s10482-022-01762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Aspergilli are among the most abundant fungi worldwide. They degrade organic material and can be pathogens of plants and animals. Aspergilli spread by forming high numbers of conidia. Germination of these stress resistant asexual spores is characterized by a swelling and a germ tube stage. Here, we show that conidia of Aspergillusniger,Aspergillusoryzae,Aspergillusclavatus, Aspergillusnidulans and Aspergillusterreus show different swelling and germ tube formation dynamics in pure water or in water supplemented with (in)organic nutrients. Apart from inter-species heterogeneity, intra-species heterogeneity was observed within spore populations of the aspergilli except for A.terreus. Sub-populations of conidia differing in size and/or contrast showed different swelling and germ tube formation dynamics. Together, data imply that aspergilli differ in their competitive potential depending on the substrate. Moreover, results suggest that intra-species heterogeneity provides a bet hedging mechanism to optimize survival of aspergilli.
Collapse
Affiliation(s)
- Maryam Ijadpanahsaravi
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wieke R. Teertstra
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Han A. B. Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
31
|
Horikiri S, Harada M, Asada R, J Sakamoto J, Furuta M, Tsuchido T. Low Temperature Heating-Induced Death and Vacuole Injury in Cladosporium sphaerospermum Conidia. Biocontrol Sci 2022; 27:107-115. [PMID: 35753793 DOI: 10.4265/bio.27.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanism of thermal death of mold conidia has not been understood in detail. The purpose of this study is to analyze the death kinetics of heated conidia of Cladosporium sphaerospermum and to ascertain the expectant cell injury responsible for the death. The death of the dormant (resting) conidia of Cladosporium sphaerospermum was examined at temperatures of between 43 and 54℃ with the conventional colony count method. The death reaction apparently followed the first order kinetics, but the Arrhenius plot of the death rate constant demonstrated seemingly a break. The linearity at temperatures higher than that at the break was lost at lower temperatures, suggesting the involvement of an unusual mechanism in the latter temperatures. In the cell morphology, we observed with quinacrine staining the vacuole rupture at a lower temperature but not at a high temperature. Interestingly, the vacuole rupture by low-temperature heating was found to correlate with the viability loss. Furthermore, active protease originally locating in vacuoles was detected in the cytoplasm of the conidia after heated at a low temperature. The results obtained suggest the involvement of potent autophagic cell death induced by low temperature heating of C. sphaerospermum conidia.
Collapse
Affiliation(s)
- Shigetoshi Horikiri
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Panasonic Ecology Systems Co., Ltd
| | - Mami Harada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
| | - Ryoko Asada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Research Center of Microorganism Control, Organization for Research Promotion
| | - Jin J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion.,Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Research Center of Microorganism Control, Organization for Research Promotion
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion
| |
Collapse
|
32
|
Punt M, Seekles SJ, van Dam JL, de Adelhart Toorop C, Martina RR, Houbraken J, Ram AFJ, Wösten HAB, Ohm RA. High sorbic acid resistance of Penicillium roqueforti is mediated by the SORBUS gene cluster. PLoS Genet 2022; 18:e1010086. [PMID: 35704633 PMCID: PMC9200314 DOI: 10.1371/journal.pgen.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Penicillium roqueforti is a major food-spoilage fungus known for its high resistance to the food preservative sorbic acid. Here, we demonstrate that the minimum inhibitory concentration of undissociated sorbic acid (MICu) ranges between 4.2 and 21.2 mM when 34 P. roqueforti strains were grown on malt extract broth. A genome-wide association study revealed that the six most resistant strains contained the 180 kbp gene cluster SORBUS, which was absent in the other 28 strains. In addition, a SNP analysis revealed five genes outside the SORBUS cluster that may be linked to sorbic acid resistance. A partial SORBUS knock-out (>100 of 180 kbp) in a resistant strain reduced sorbic acid resistance to similar levels as observed in the sensitive strains. Whole genome transcriptome analysis revealed a small set of genes present in both resistant and sensitive P. roqueforti strains that were differentially expressed in the presence of the weak acid. These genes could explain why P. roqueforti is more resistant to sorbic acid when compared to other fungi, even in the absence of the SORBUS cluster. Together, the MICu of 21.2 mM makes P. roqueforti among the most sorbic acid-resistant fungi, if not the most resistant fungus, which is mediated by the SORBUS gene cluster. Chemical preservatives, such as sorbic acid, are often used in food to prevent spoilage by fungi, yet some fungi are particularly well-suited to deal with these preservatives. First, we investigated the resistance of 34 Penicillium roqueforti strains to various food preservatives. This revealed that some strains were highly resistant to sorbic acid, while others are more sensitive. Next, we used DNA sequencing to compare the genetic variation between these strains and discovered a specific genetic region (SORBUS) that is unique to the resistant strains. Through comparative analysis with other fungal species the SORBUS region was studied in more detail and with the use of genetic engineering tools we removed this unique region. Finally, the mutant lacking the SORBUS region was confirmed to have lost its sorbic acid resistance. This finding is of particular interest as it suggests that only some, not all, P. roqueforti strains are potent spoilers and that specific genetic markers could help in the identification of resistant strains.
Collapse
Affiliation(s)
- Maarten Punt
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Sjoerd J. Seekles
- TiFN, Wageningen, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jisca L. van Dam
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Raithel R. Martina
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jos Houbraken
- TiFN, Wageningen, The Netherlands
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Arthur F. J. Ram
- TiFN, Wageningen, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Han A. B. Wösten
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Robin A. Ohm
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
33
|
Zhou R, Rezaeimotlagh A, Zhou R, Zhang T, Wang P, Hong J, Soltani B, Mai-Prochnow A, Liao X, Ding T, Shao T, Thompson EW, Ostrikov K(K, Cullen PJ. In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Zhou J, Cheng Y, Yu L, Zhang J, Zou X. Characteristics of fungal communities and the sources of mold contamination in mildewed tobacco leaves stored under different climatic conditions. Appl Microbiol Biotechnol 2022; 106:131-144. [PMID: 34850278 DOI: 10.1007/s00253-021-11703-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023]
Abstract
Tobacco mildew is a common postharvest problem caused by fungal growth. It can directly decrease product quality and cause serious economic loss in the tobacco industry. However, the fungal community characteristics of mildewed tobacco leaves and the related influencing factors remain unknown. Here, next-generation sequencing was used to characterize the fungal communities present in mildewed and healthy tobacco leaves stored under three different climatic conditions. Mildewed leaves showed a higher pH and total nitrogen content as well as a lower carbon nitrogen ratio than healthy leaves. Fungal diversity and richness were significantly lower in the mildewed tobacco leaves than in healthy tobacco leaves, with saprophytic fungi such as Xeromyces, Aspergillus, and Wallemia being the dominant molds. Network analysis showed that the complexity, connectivity, and stability of the fungal network were significantly poorer in heavy mildew tobacco leaves than in healthy leaves. NMDS and PERMANOVA analysis showed that the distribution of fungal communities in warehoused tobacco leaves differed significantly across different regions, and temperature and humidity were the key factors affecting these differences. Mildew-causing fungi were significantly enriched in tobacco leaf samples collected in the period between the completion of flue-curing and the start of pre-re-curing. This study demonstrated that mildew is an irreversible process that destroys the balance of the tobacco ecosystem, and that environmental factors play important roles in shaping fungal communities in tobacco leaves.Key points• The diversity and composition of the fungal communities in mildewed tobacco leaves were significantly different from those in healthy tobacco leaves.• Climatic factors may play an important role in shaping fungal communities in tobacco leaves.• Tobacco leaves were most vulnerable to mold contamination between the post-flue-curing and pre-re-curing period.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yu Cheng
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Lifei Yu
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Guizhou University, Guiyang, China
| | - Jian Zhang
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Department of Ecology/Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| |
Collapse
|
35
|
Ramos Guerrero FG, López Flores BC, Ramos Gorbeña JC, Silva Jaimes MI. Factors That Affect the Microbiological Stability of Chicha Morada during Its Production on an Industrial Scale: A Review. J Food Prot 2021; 84:2151-2158. [PMID: 34347861 DOI: 10.4315/jfp-21-190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Chicha morada, also known as purple corn drink (PCD), is a traditional noncarbonated beverage commonly prepared at homes and restaurants in Peru. However, in recent years, it is being produced at an industrial scale aiming to extend its shelf life, expand its marketing, and make it known worldwide. Traditionally, this beverage, whose main component is purple corn (Zea mays L.), was made and consumed quickly and in some cases, stored under refrigeration until consumption, but never beyond 24 to 48 h. With its industrialization, factories are presented with challenges to design and provide adequate protection of the beverage, assuring its quality and safety. Although its production at an industrial level is similar to that of other noncarbonated drinks containing fruit juice, several processing factors could affect the microbiological stability desired for this beverage, such as the storage of the purple corn drink extract. In this document, a critical review of the production process (raw materials, production stages, and forms of commercialization) that can directly affect the contamination of the beverage is made. Recommendations are made for improving the control points in the industrial process and to avoid potential microbiological problems. HIGHLIGHTS
Collapse
Affiliation(s)
- Félix G Ramos Guerrero
- Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Perú.,Centro Latinoamericano de Enseñanza e Investigación de Bacteriología Alimentaria (CLEIBA), Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 1, Perú
| | - Benedicta C López Flores
- Centro Latinoamericano de Enseñanza e Investigación de Bacteriología Alimentaria (CLEIBA), Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 1, Perú
| | - Juan C Ramos Gorbeña
- Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Perú
| | - Marcial I Silva Jaimes
- Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Perú.,Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Avenida La Molina s/n, Lima 12, Perú
| |
Collapse
|
36
|
Jia K, Yan L, Jia Y, Xu S, Yan Z, Wang S. aflN Is Involved in the Biosynthesis of Aflatoxin and Conidiation in Aspergillus flavus. Toxins (Basel) 2021; 13:toxins13110831. [PMID: 34822615 PMCID: PMC8617700 DOI: 10.3390/toxins13110831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aspergillus flavus poses a threat to society economy and public health due to aflatoxin production. aflN is a gene located in the aflatoxin gene cluster, but the function of AflN is undefined in Aspergillus flavus. In this study, aflN is knocked out and overexpressed to study the function of AflN. The results indicated that the loss of AflN leads to the defect of aflatoxin biosynthesis. AflN is also found to play a role in conidiation but not hyphal growth and sclerotia development. Moreover, AlfN is related to the response to environmental oxidative stress and intracellular levels of reactive oxygen species. At last, AflN is involved in the pathogenicity of Aspergillus flavus to host. These results suggested that AflN played important roles in aflatoxin biosynthesis, conidiation and reactive oxygen species generation in Aspergillus flavus, which will be helpful for the understanding of aflN function, and will be beneficial to the prevention and control of Aspergillus flavus and aflatoxins contamination.
Collapse
|
37
|
Li E, Krsmanovic A, Ballhausen MB, Rillig MC. Fungal response to abruptly or gradually delivered antifungal agent amphotericin B is growth stage dependent. Environ Microbiol 2021; 23:7701-7709. [PMID: 34633124 DOI: 10.1111/1462-2920.15797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022]
Abstract
Anthropogenic disturbances pose a multitude of novel challenges to ecosystems. While many experiments have tested effects using abrupt treatment applications, most environmental changes in fact are gradual. Since ecosystem responses might be highly dependent on the temporal nature of stressors, it is crucial to differentiate the effects of abrupt vs gradual treatment application. Antifungal agents, which are widely used in disease control both for humans and in agriculture, are becoming a new class of environmental contaminants. In this study, we examined the effect of a sub-lethal application of one antifungal agent, amphotericin B. We applied different rates of delivery, e.g. gradual and abrupt, and monitored biomass and sporulation of the model fungus Neurospora crassa in a batch culture. Our results demonstrate that: (i) the effect size difference between abrupt and gradual treatments is fungal growth stage dependent and (ii) the gradual treatment clearly had a higher sporulation level compared with all types of abrupt treatments. Our findings highlight the importance of considering the rate of change in environmental change research and point to a new research direction for future global change studies. Furthermore, our results also have important implications for avoiding treatment-induced spore production in agriculture and medical practise.
Collapse
Affiliation(s)
- Erqin Li
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Aleksandra Krsmanovic
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Max-Bernhard Ballhausen
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
38
|
Paecilomyces formosus MD12, a Biocontrol Agent to Treat Meloidogyne incognita on Brinjal in Green House. J Fungi (Basel) 2021; 7:jof7080632. [PMID: 34436171 PMCID: PMC8398934 DOI: 10.3390/jof7080632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
The present study was carried out to analyze the potential of fungi isolated from the rhizosphere of soybean, brinjal, tomato, and potato plants. The density of fungi varied in the pot soil and rhizosphere after Paecilomyces formosus MD12 treatment. The P. formosus MD12 population was 6.3 ± 0.13 × 104 CFU g−1 in the pot planted with brinjal, and the population increased in the rhizosphere (6.72 ± 0.41 × 104 CFU g−1). P. formosus MD12 was cultured in the production medium, and the supernatant was used for egg inhibition studies on a root-knot nematode parasite, Meloidogyne incognita. It was revealed that maximum egg inhibition (94.7 ± 6.2%) was obtained at 100% concentration of extract. The culture supernatant from P. formosus MD12 affected the development of M. incognita juvenile, and the mortality rate was maximum after 96 h (95 ± 6%). Mortality was reduced when treated with 25%, 50%, and 75% supernatant. At 1 × 107 mL−1 of spore suspension, we found reductions of 71.6 ± 3.3% nematode populations in the soil, 60.7 ± 2.2% from the root, and 63.6 ± 2.4% egg mass compared with the control in the pot experiment. The culture supernatant applied at the 10% level showed a maximum mean reduction of the nematode population in roots (72.4 ± 2.2%), soil (77.9 ± 2.5%), and egg masses (73.2 ± 1.5%), respectively. The presence of P. formosus MD12 in a soil environment could antagonize nematode parasites and improve soil amendment. The P. formosus MD12 strain showed good biocontrol ability against the root-knot nematode, M. incognita, under in vitro and green house experimental condition.
Collapse
|
39
|
Zhang J, Chen J, Huang Q, MacKinnon B, Nekouei O, Liu H, Jia P, Wang J, Li N, Huang L, Yang Y, Ng P, St-Hilaire S. Copper/Carbon Core/Shell Nanoparticles: A Potential Material to Control the Fish Pathogen Saprolegnia parasitica. Front Vet Sci 2021; 8:689085. [PMID: 34368276 PMCID: PMC8342997 DOI: 10.3389/fvets.2021.689085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Copper-based fungicides have a long history of usage in agriculture and aquaculture. With the rapid development of metal-based nanoparticles, copper-based nanoparticles have attracted attention as a potential material for prevention and control of Saprolegnia parasitica. The present study investigated the effectiveness of copper/carbon core/shell nanoparticles (CCCSNs) and a commercial CCCSNs filter product (COPPERWARE®) against S. parasitica in a recirculating system. Results showed that the growth of agar plugs with mycelium was significantly suppressed after exposure to both CCCSNs powder and COPPERWARE® filters. Even the lowest concentration of CCCSNs used in our study (i.e., 100 mg/mL) exhibited significant inhibitory effects on S. parasitica. The smallest quantity of the filter product COPPERWARE® (3.75 × 3.7 × 1.2 cm, 2.58 g) used in our aquarium study also demonstrated significant inhibition compared with the control group. However, we observed leaching of copper into the water especially when larger quantities of COPPERWARE® were used. Water turbidity issues were also observed in tanks with the filter material. Besides these issues, which should be further investigated if the product is to be used on aquatic species sensitive to copper, CCCSNs has promising potential for water disinfection.
Collapse
Affiliation(s)
- Jv Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Juncai Chen
- State Key Laboratory of Aquatic Animal Health at the Animal and Plant Inspection and Quarantine Technical Centre, General Administration of Customs, Shenzhen, China
| | - Qianjun Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Brett MacKinnon
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Hong Liu
- Animal and Plant Inspection and Quarantine Technical Center, Shenzhen Customs District, Shenzhen, China
| | - Peng Jia
- Animal and Plant Inspection and Quarantine Technical Center, Shenzhen Customs District, Shenzhen, China
- Shenzhen Technology University, Shenzhen, China
| | - Jinjin Wang
- Animal and Plant Inspection and Quarantine Technical Center, Shenzhen Customs District, Shenzhen, China
| | - Na Li
- Animal and Plant Inspection and Quarantine Technical Center, Shenzhen Customs District, Shenzhen, China
| | - Liqing Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Pok Ng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Martínez J, Nevado A, Suñén E, Gabriel M, Vélez-Del-Burgo A, Sánchez P, Postigo I. The Aspergillus niger Major Allergen (Asp n 3) DNA-Specific Sequence Is a Reliable Marker to Identify Early Fungal Contamination and Postharvest Damage in Mangifera indica Fruit. Front Microbiol 2021; 12:663323. [PMID: 34262539 PMCID: PMC8273346 DOI: 10.3389/fmicb.2021.663323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this work was to study the value of the main allergen Asp n 3 of Aspergillus niger as a molecular marker of allergenicity and pathogenicity with the potential to be used in the identification of A. niger as a contaminant and cause of spoilage of Mangifera indica. Real-time polymerase chain reaction (RT-PCR) was used for the amplification of Asp n 3 gene. Two pairs of primers were designed: one for the amplification of the entire sequence and another one for the amplification of the most conserved region of this peroxisomal protein. The presence of A. niger was demonstrated by the early detection of the allergenic protein Asp n 3 coding gene, which could be considered a species-specific marker. The use of primers designed based on the conserved region of the Asp n 3 encoding gene allowed us to identify the presence of the closely related fungal species Aspergillus fumigatus by detecting Asp n 3 homologous protein, which can be cross-reactive. The use of conserved segments of the Asp n 3 gene or its entire sequence allows us to detect phylogenetically closely related species within the Aspergilaceae family or to identify species-specific contaminating fungi.
Collapse
Affiliation(s)
- Jorge Martínez
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Ander Nevado
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Ester Suñén
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Marta Gabriel
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Ainara Vélez-Del-Burgo
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Patricia Sánchez
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Idoia Postigo
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria-Gasteiz, Spain
| |
Collapse
|
41
|
Abundant Small Protein ICARUS Inside the Cell Wall of Stress-Resistant Ascospores of Talaromyces macrosporus Suggests a Novel Mechanism of Constitutive Dormancy. J Fungi (Basel) 2021; 7:jof7030216. [PMID: 33802751 PMCID: PMC8002430 DOI: 10.3390/jof7030216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Ascospores of Talaromyces.macrosporus belong to the most stress resistant eukaryotic cells and show a constitutive dormancy, i.e., no germination occurs in the presence of rich growth medium. Only an extreme trigger as very high temperature or pressure is able to evoke synchronized germination. In this study, several changes within the thick cell wall of these cells are observed after a heat treatment: (i.) a change in its structure as shown with EPR and X-ray diffraction; (ii.) a release of an abundant protein into the supernatant, which is proportional to the extent of heat activation; (iii.) a change in the permeability of the cell wall as judged by fluorescence studies in which staining of the interior of the cell wall correlates with germination of individual ascospores. The gene encoding the protein, dubbed ICARUS, was studied in detail and was expressed under growth conditions that showed intense ascomata (fruit body) and ascospore formation. It encodes a small 7–14 kD protein. Blast search exhibits that different Talaromyces species show a similar sequence, indicating that the protein also occurs in other species of the genus. Deletion strains show delayed ascomata formation, release of pigments into the growth medium, higher permeability of the cell wall and a markedly shorter heat activation needed for activation. Further, wild type ascospores are more heat-resistant. All these observations suggest that the protein plays a role in dormancy and is related to the structure and permeability of the ascospore cell wall. However, more research on this topic is needed to study constitutive dormancy in other fungal species that form stress-resistant ascospores.
Collapse
|
42
|
Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans. mBio 2021; 13:e0373421. [PMID: 35164551 PMCID: PMC8844935 DOI: 10.1128/mbio.03734-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.
Collapse
|
43
|
Capra ML, Frisón LN, Chiericatti C, Binetti AG, Reinheimer JA. [Atypical spoilage microorganisms in Argentinean yogurts: Gas-producing molds and bacteria of the genus Gluconobacter]. Rev Argent Microbiol 2021; 53:343-348. [PMID: 33618898 DOI: 10.1016/j.ram.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/12/2020] [Accepted: 01/03/2021] [Indexed: 11/28/2022] Open
Abstract
Microbial food alterations lead to unfit products for consumption, and their discarding, to significant economic losses for the food industry. During storage, fresh foods offer available niches for the survival and growth of undesirable microorganisms. In dairy products, data regarding spoilage and/or pathogenic bacteria is better documented than those for molds and yeasts. Dairy products are less susceptible to mold's contamination than products such as fruits and vegetables, due to their refrigerated storage; their elaboration from heat-treated milk and, for fermented ones, the dominant microbiota that acidifies the medium. However, even cheeses and yogurts may be susceptible to mold contamination. Atypical cases of yogurt samples containing spoilage microorganisms not previously reported (molds producing gas and bacteria of the genus Gluconobacter) in Argentinean fermented milks are presented here. For yogurt, in particular, the "classic" altering organisms were always being yeasts, and in other countries, molds belonging to the genus Aspergillus.
Collapse
Affiliation(s)
- María Luján Capra
- Instituto de Lactología Industrial (UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero, Santa Fe, Argentina
| | - Laura N Frisón
- Cátedra de Microbiología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero, Santa Fe, Argentina
| | - Carolina Chiericatti
- Cátedra de Microbiología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero, Santa Fe, Argentina
| | - Ana G Binetti
- Instituto de Lactología Industrial (UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero, Santa Fe, Argentina
| | - Jorge A Reinheimer
- Instituto de Lactología Industrial (UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero, Santa Fe, Argentina.
| |
Collapse
|
44
|
Binish Z, Bibi Y, Zahara K, Nisa S, Manaf A, Qayyum A, Sher A. Protective Effect of Kickxia ramosissima (Wall.) Janchn Extracts Against Pathogenic Bacterial Strains and Free Radicals. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04756-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Kure CF, Langsrud S, Møretrø T. Efficient Reduction of Food Related Mould Spores on Surfaces by Hydrogen Peroxide Mist. Foods 2020; 10:foods10010055. [PMID: 33379242 PMCID: PMC7823841 DOI: 10.3390/foods10010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of the study was to evaluate the fungicidal effect of a H2O2 mist generating system for disinfection of spores of six food-related moulds (Alternaria alternata, Aspergillus flavus, Geotrichum candidum, Mucor plumbeus, Paecilomyces variotii, and Penicillium solitum) dried on stainless steel. Exposure to H2O2 mist for 2 or 4 h lead to >3 log reduction in mould spores in the majority of the tests. The presence of the soils 2% skim milk or 3% BSA did not significantly alter the fungicidal effect, while the presence of raw meat juice had an adverse fungicidal effect against Penicillium and Mucor in two out of three tests. Fungicidal suspension tests with liquid H2O2 confirmed the effectiveness of H2O2 on reducing the mould spores. Both the surface test and the suspension test indicated that P. variotii is more resistant to H2O2 compared to the other moulds tested. The study shows the efficiency of H2O2 mist on reducing food-related mould spores on surfaces.
Collapse
|
46
|
Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases. PLANTS 2020; 9:plants9121746. [PMID: 33321854 PMCID: PMC7763231 DOI: 10.3390/plants9121746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Incorporating beneficial microorganisms in crop production is the most promising strategy for maintaining agricultural productivity and reducing the use of inorganic fertilizers, herbicides, and pesticides. Numerous microorganisms have been described in the literature as biological control agents for pests and diseases, although some have not yet been commercialised due to their lack of viability or efficacy in different crops. Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action. In addition, species of this genus have recently been described as biostimulants of plant growth and crop yield. This review includes all the information on the genus Paecilomyces as a biological control agent for pests and diseases. Its growth rate and high spore production rate in numerous substrates ensures the production of viable, affordable, and efficient commercial formulations for agricultural use.
Collapse
|
47
|
Feng Z, Liu X, Zhu H, Yao Q. Responses of Arbuscular Mycorrhizal Symbiosis to Abiotic Stress: A Lipid-Centric Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:578919. [PMID: 33281845 PMCID: PMC7688922 DOI: 10.3389/fpls.2020.578919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 06/02/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are one of the most important soil microbial resources that help host plants cope with various abiotic stresses. Although a tremendous number of studies have revealed the responses of AM fungi to abiotic stress and their beneficial effects transferred to host plants, little work has focused on the role of lipid metabolism in AM fungi under abiotic stress conditions. AM fungi contain a large amount of lipids in their biomass, including phospholipids (PLs) in their hyphal membranes and neutral lipids (NLs) in their storage structures (e.g., vesicles and spores). Recently, lipid transfer from plants to AM fungi has been suggested to be indispensable for the establishment of AM symbiosis, and extraradical hyphae are capable of directly taking up lipids from the environment. This experimental evidence highlights the importance of lipids in AM symbiosis. Moreover, abiotic stress reduces lipid transfer to AM fungi and promotes arbuscule collapse as well as the hydrolysis and conversion of PLs to NLs in collapsed arbuscules. Overall, this knowledge encourages us to rethink the responses of AM symbiosis to abiotic stress from a lipid-centric perspective. The present review provides current and comprehensive knowledge on lipid metabolism in AM fungi, especially in response to various abiotic stresses. A regulatory role of abscisic acid (ABA), which is considered a "stress hormone," in lipid metabolism and in the resulting consequences is also proposed.
Collapse
Affiliation(s)
- Zengwei Feng
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaodi Liu
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
48
|
Deckers M, Vanneste K, Winand R, Hendrickx M, Becker P, De Keersmaecker SC, Deforce D, Marie-Alice F, Roosens NH. Screening strategy targeting the presence of food enzyme-producing fungi in food enzyme preparations. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Santos JL, Chaves RD, Sant’Ana AS. Modeling the impact of water activity, pH, and calcium propionate on the germination of single spores of Penicillium paneum. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Son YE, Park HS. Genome Wide Analysis Reveals the Role of VadA in Stress Response, Germination, and Sterigmatocystin Production in Aspergillus nidulans Conidia. Microorganisms 2020; 8:microorganisms8091319. [PMID: 32872591 PMCID: PMC7565415 DOI: 10.3390/microorganisms8091319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/18/2023] Open
Abstract
In the Aspergillus species, conidia are asexual spores that are infectious particles responsible for propagation. Conidia contain various mycotoxins that can have detrimental effects in humans. Previous study demonstrated that VadA is required for fungal development and spore viability in the model fungus Aspergillus nidulans. In the present study, vadA transcriptomic analysis revealed that VadA affects the mRNA expression of a variety of genes in A. nidulans conidia. The genes that were primarily affected in conidia were associated with trehalose biosynthesis, cell-wall integrity, stress response, and secondary metabolism. Genetic changes caused by deletion of vadA were related to phenotypes of the vadA deletion mutant conidia. The deletion of vadA resulted in increased conidial sensitivity against ultraviolet stress and induced germ tube formation in the presence and absence of glucose. In addition, most genes in the secondary metabolism gene clusters of sterigmatocystin, asperfuranone, monodictyphenone, and asperthecin were upregulated in the mutant conidia with vadA deletion. The deletion of vadA led to an increase in the amount of sterigmatocystin in the conidia, suggesting that VadA is essential for the repression of sterigmatocystin production in conidia. These results suggest that VadA coordinates conidia maturation, stress response, and secondary metabolism in A. nidulans conidia.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5751
| |
Collapse
|