1
|
Tiwari H, Prajapati SK. Use of microalgal-fungal pellets for hydroponics effluent recycling and high-value biomass production. Heliyon 2024; 10:e37539. [PMID: 39309834 PMCID: PMC11415668 DOI: 10.1016/j.heliyon.2024.e37539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Hydroponic effluent (HE), enriched with inorganic nutrients, presents a viable, low-cost cultivation medium for microalgal biomass production and subsequent resource recovery. However, downstream processing, particularly biomass harvesting, remains a critical challenge for microalgal biorefineries. Therefore, the present study explored the potential of microalgal-fungal pellets (MAFP) in HE recycling for the production of biochemical-rich biomass. The optimized fungi-to-microalgae ratio (F:A) of 1:3 resulted in 100 % microalgal pelletization within 6 h. Surface characteristics suggested that metabolically active fungi with opposite charges facilitate microalgal pelletization. Further, MAFP exhibited a packed porous structure that was resilient to shear forces and had a high capacity for nutrient uptake. MAFP cultivation in HE demonstrated complete removal of ammonia-nitrogen (NH₃-N), phosphate (PO₄³⁻), and nitrate-nitrogen (NO₃⁻-N) within 7-9 days. The produced biomass was rich in biomolecules, including lipids (18.36 ± 0.12 % TS), protein (52.06 ± 2.1 % TS), and carbohydrates (28.95 ± 0.05 % TS). Besides, the high methane potential of MAFP (SMP ≈ 502.74 ± 19.1 mL CH4 g-1 VS, and TMP ≈ 817.68 ± 12.5 mL CH4 g-1 VS) indicated its suitability for biogas production. In essence, MAFP offers efficient HE recycling and biochemically rich biomass production, advancing towards a green and circular bioeconomy.
Collapse
Affiliation(s)
- Harshit Tiwari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Uttarakhand, 247667, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
2
|
Simultaneous production of γ-linolenic acid and carotenoids by a novel microalgal strain isolated from the underexplored habitat of intermittent streams. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
3
|
El-Deeb MM, Abdel-Gawad M, Abdel-Hafez MAM, Saba FE, Ibrahim EMM. Effect of adding Spirulina platensis algae to small ruminant rations on productive, reproductive traits and some blood components. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.57546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
This experiment conducted using 20 Rahmani ewes at the last third of pregnancy in two equal groups. One group served as control, while the other group received Spirulina platensis (SP) at the rate of 0.5 gm 10 kg-1 live body weight. The objective was to find out the effect of adding Spirulina platensis algae to small ruminant rations on reproductive and productive traits and blood components of sheep. The experiments lasted for 120 days for both dams and their lambs after weaning. The findings proved that adding SP in ewes' diets had no effect on the average of live body weight change. Average milk yield was significantly (p <0.01) higher in the treatment group than the control. Lamb's birth weight and daily body gain of the treated group were significantly (p <0.01) higher than the control. Blood and serum picture profile of ewes were significantly higher when fed SP additive than the control. It could be concluded that the addition of SP to the ration of sheep positively preserved their health, productive and reproductive status as well as their lambs' growth rate. Also the additive improved the economic efficiency of treated animals by about 53.13%.
Collapse
|
4
|
Ibrahim IA, Shalaby AA, Abd Elaziz RT, Bahr HI. Chlorella vulgaris or Spirulina platensis mitigate lead acetate-induced testicular oxidative stress and apoptosis with regard to androgen receptor expression in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39126-39138. [PMID: 33754266 DOI: 10.1007/s11356-021-13411-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The current research was constructed to throw the light on the protective possibility of Chlorella vulgaris (C. vulgaris) and Spirulina platensis (S. platensis) against lead acetate-promoted testicular dysfunction in male rats. Forty rats were classified into four groups: (i) control, (ii) rats received lead acetate (30 mg/kg bw), (iii) rats concomitantly received lead acetate and C. vulgaris (300 mg/kg bw), (vi) rats were simultaneously treated with lead acetate and S. platensis (300 mg/kg bw) via oral gavage for 8 weeks. Lead acetate promoted testicular injury as expressed with fall in reproductive organ weights and gonadosomatic index (GSI). Lead acetate disrupted spermatogenesis as indicated by sperm cell count reduction and increased sperm malformation percentage. Lead acetate-deteriorated steroidogenesis is evoked by minimized serum testosterone along with maximized follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels. Testicular oxidative, inflammatory, and apoptotic cascades are revealed by elevated acid phosphatase (ACP) and sorbitol dehydrogenase (SDH) serum leakage, declined testicular total antioxidative capacity (TAC) with elevated total oxidative capacity (TOC), tumor necrosis factor alpha (TNF-α), caspase-3 levels, lessened androgen receptor (AR) expression, and histopathological lesions against control. Our research highlights that C. vulgaris or S. platensis therapy can modulate lead acetate-promoted testicular dysfunction via their antioxidant activity as expressed by elevated TAC and reduced TOC, immunomodulatory effect as indicated by lessened TNF-α level, and anti-apoptotic potential that was revealed by minimized caspase-3 levels. As well as restoration of testicular histoarchitecture, androgen receptor, steroidogenesis, and spermatogenesis were detected with better impacts to S. platensis comparing with C. vulgaris. Therefore, further clinical trials are needed to test S. platensis and C. vulgaris as a promising candidate in treating male infertility.
Collapse
Affiliation(s)
- Ibrahim A Ibrahim
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abeir A Shalaby
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Raghda T Abd Elaziz
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hoda I Bahr
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
5
|
Mu H, Li X, Jin Q, Sun Q. Preparation of highly purified ω-3 docosapentaenoic acid from seal oil via urea complexation combined with preparative high performance liquid chromatography. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1794895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, P.R. China
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, P.R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, P.R. China
| |
Collapse
|
6
|
Kawish SM, Qadir A, Saad S, Beg S, Jain GK, Aqil M, Alanazi AM, Khan AA, Rashid MA, Rab RA, Almalki WH, Ahmad FJ. A Validated, Rapid and Cost-Efficient HPTLC Method for Quantification of Gamma-Linolenic Acid in Borage Oil and Evaluation of Antioxidant Activity. J Chromatogr Sci 2021; 60:364-371. [PMID: 34080615 DOI: 10.1093/chromsci/bmab059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/06/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022]
Abstract
Borage oil that is extracted from (Borago officinalis Linn.) is a well-known medicinal plant having various medicinal benefits. In this work, an affordable, simple, reliable, rapid and easily accessible high-performance thin-layer chromatography (HPTLC) method was developed for the estimation of gamma-linolenic acid (GLA) in borage oil. HPTLC method employs thin-layer chromatography (TLC) aluminum plates precoated with silica gel (G60F254) as the stationary phase, and the mixture of hexane:toulene:glacial acetic acid (3:7:1, v/v/v) was used as the mobile phase. Densitometric analysis of the TLC plates was carried out at 200 nm. The developed method showed well-resolved spots with retention factor (Rf) value of 0.53 ± 0.04 for GLA. Various experimental conditions like saturation time for chamber, solvent phase migration and width of the band were studied intensely for selecting the optimum conditions. The method validation was performed for parameters like linearity, accuracy, specificity and precision. The values of limit of detection and limit of quantification for GLA were found to be 0.221 and 0.737 μg/band, respectively. In nutshell, the developed HPTLC method was found to be highly sensitive for the estimation of GLA in the herbal oil samples and formulations.
Collapse
Affiliation(s)
- S M Kawish
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Suma Saad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Gaurav K Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Aseer 62529, Saudi Arabia
| | - Rehan A Rab
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
7
|
Manzocchi E, Guggenbühl B, Kreuzer M, Giller K. Effects of the substitution of soybean meal by spirulina in a hay-based diet for dairy cows on milk composition and sensory perception. J Dairy Sci 2020; 103:11349-11362. [PMID: 33041025 DOI: 10.3168/jds.2020-18602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
Abstract
The demand for protein sources alternative to soybean meal for supplementing forages low in metabolizable protein is large. The suitability of spirulina (Arthrospira platensis), a fast growing and resource-efficient blue-green microalga, as a source of metabolizable protein for dairy cows is known, but its effects on milk antioxidants and sensory properties were never investigated. Twelve cows were allocated to 2 groups and fed hay-based diets complemented with sugar beet pulp and wheat flakes in individual feeding troughs. The N content per kilogram of DM was equivalent between the 2 diets. Diet of 1 group was supplemented with 5% spirulina; the second group was supplemented with 6% soybean meal (control). After an adaptation period of 15 d, data were collected, and feed, milk, blood, and rumen fluid were sampled. Feeds were analyzed for proximate contents, and blood plasma was analyzed for total antioxidant capacity and antioxidant contents (tocopherol, phenols). Milk samples were analyzed for fatty acid profile, coagulation properties, color, and contents of fat, protein, lactose, total phenols, lipophilic vitamins, and provitamins (e.g., β-carotene). Triangle tests were performed by a trained sensory panel on 6 homogenized and pasteurized bulk milk samples per treatment. The substitution of soybean meal by spirulina in the diet did not affect feed intake, milk yield, milk fat, protein, or lactose contents compared with the control group. However, the milk from the spirulina-fed cows had a higher content of β-carotene (0.207 vs. 0.135 μg/mL) and was more yellow (b* index: 14.9 vs. 13.8). Similar to the spirulina lipids but far less pronounced, the milk fat from the spirulina-fed cows had a higher proportion of γ-linolenic acid (0.057 vs. 0.038% of fatty acid methyl esters) compared with milk fat from soybean meal-fed cows. Also trans-11 C18:1 (vaccenic acid) and other C18:1 trans isomers were elevated, but otherwise the fatty acid profile resembled that of cows fed the control diet. No sensory difference was found between milk from the 2 experimental groups. Furthermore, we observed no effects of substituting soybean meal by spirulina on total antioxidant capacity, α-tocopherol and total phenols in blood and milk. Effects on rumen fluid characteristics were minor. In conclusion, spirulina seems to be a promising protein source for dairy cows with certain improvements in nutritionally favorable constituents in milk and without side-effects on animal performance in the short term.
Collapse
Affiliation(s)
- E Manzocchi
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - B Guggenbühl
- Agroscope, Federal Department of Economic Affairs, Education and Research, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - K Giller
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
8
|
Sinha S, Patro N, Tiwari PK, Patro IK. Maternal Spirulina supplementation during pregnancy and lactation partially prevents oxidative stress, glial activation and neuronal damage in protein malnourished F1 progeny. Neurochem Int 2020; 141:104877. [PMID: 33049335 DOI: 10.1016/j.neuint.2020.104877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Protein malnutrition (PMN) is a global health issue but most prevalent in Africa and Asia. It exerts detrimental effect on structural and physiological aspects of hippocampal circuitry. Despite accumulating evidence for PMN induced changes in nervous system, relatively very little is known about how maternal nutritional supplementation during malnutrition affects glial cells and neurons. Herein, we aimed to investigate the effects of maternal Spirulina supplementation against PMN induced oxidative stress, reactive gliosis and neuronal damage in hippocampus of F1 progeny. Three months old healthy Sprague Dawley females (n = 24) were shifted to normoprotein (NC; 20% protein) and low protein (LP; 8% protein) diets 15 days before conception. The NC and LP group females were subdivided into two groups according to Spirulina supplementation (400 mg/kg/b.wt. orally throughout gestation and lactation period): normal control with Spirulina (NC SPI) and low protein with Spirulina supplemented group (LP SPI). F1 progeny born were used in present study. Thus, building on earlier results of ameliorated neurobehavioral and cognitive abilities in Spirulina supplemented protein deprived rats, the present study incorporates neurochemical and morphometric analysis of glial cells and neurons and revealed that maternal Spirulina consumption partially prevented the PMN associated neuropathological alterations in terms of attenuated oxidative brain damage, reduced reactive gliosis and apoptotic cell population, improved dendritic branch complexity with few damaged neurons and enhanced mushroom shaped spine density. The results suggest that cellular changes in hippocampus after PMN are partially restored after maternal Spirulina supplementation and one could envision intervention approaches using Spirulina against malnutrition.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - P K Tiwari
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
9
|
Koukouraki P, Tsoupras A, Sotiroudis G, Demopoulos CA, Sotiroudis TG. Antithrombotic properties of Spirulina extracts against platelet-activating factor and thrombin. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Enzymatic preparation of structured triacylglycerides containing γ-linolenic acid. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
|
12
|
Schoeny H, Rampler E, Hermann G, Grienke U, Rollinger JM, Koellensperger G. Preparative supercritical fluid chromatography for lipid class fractionation-a novel strategy in high-resolution mass spectrometry based lipidomics. Anal Bioanal Chem 2020; 412:2365-2374. [PMID: 32130438 PMCID: PMC7118041 DOI: 10.1007/s00216-020-02463-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
Abstract
In this work, a lipidomics workflow based on offline semi-preparative lipid class-specific fractionation by supercritical fluid chromatography (SFC) followed by high-resolution mass spectrometry was introduced. The powerful SFC approach offered separation of a wide polarity range for lipids, enabled enrichment (up to 3 orders of magnitude) of lipids, selective fractionation of 14 lipid classes/subclasses, and increased dynamic range enabling in-depth characterization. A significantly increased coverage of low abundant lipids improving lipid identification by numbers and degree (species and molecular level) was obtained in Pichia pastoris when comparing high-resolution mass spectrometry based lipidomics with and without prior fractionation. Proof-of-principle experiments using a standard reference material (SRM 1950, NIST) for human plasma showed that the proposed strategy enabled quantitative lipidomics. Indeed, for 70 lipids, the consensus values available for this sample could be met. Thus, the novel workflow is ideally suited for lipid class-specific purification/isolation from milligram amounts of sample while not compromising on omics type of analysis (identification and quantification). Finally, compared with established fractionation/pre-concentration approaches, semi-preparative SFC is superior in terms of versatility, as it involved only volatile modifiers and salt additives facilitating any follow-up use such as qualitative or quantitate analysis or further purification down to the single lipid species level. Graphical Abstract.
Collapse
Affiliation(s)
- Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Chemistry Meets Microbiology, Althanstrasse 14, 1090, Vienna, Austria
| | - Gerrit Hermann
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
- ISOtopic Solutions, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Ulrike Grienke
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Department of Pharmacognosy, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Judith M Rollinger
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Department of Pharmacognosy, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Chemistry Meets Microbiology, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Sinha S, Patro N, Patro IK. Amelioration of neurobehavioral and cognitive abilities of F1 progeny following dietary supplementation with Spirulina to protein malnourished mothers. Brain Behav Immun 2020; 85:69-87. [PMID: 31425827 DOI: 10.1016/j.bbi.2019.08.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023] Open
Abstract
Early life adversities (stress, infection and mal/undernutrition) can affect neurocognitive, hippocampal and immunological functioning of the brain throughout life. Substantial evidence suggests that maternal protein malnutrition contributes to the progression of neurocognitive abnormalities and psychopathologies in adolescence and adulthood in offspring. Maternal malnutrition is prevalent in low and middle resource populations. The present study was therefore undertaken to evaluate the effects of dietary Spirulina supplementation of protein malnourished mothers during pregnancy and lactation on their offspring's reflex, neurobehavioral and cognitive development. Spirulina is a Cyanobacterium and a major source of protein and is being used extensively as a dynamic nutraceutical against aging and neurodegeneration. Sprague Dawley rats were switched to low protein (8% protein) or normal protein (20% protein) diet for 15 days before conception. Spirulina was orally administered (400 mg/kg/b.wt.) to subgroups of pregnant females from the day of conception throughout the lactational period. We examined several parameters including reproductive performance of dams, physical development, postnatal reflex ontogeny, locomotor behavior, neuromuscular strength, anxiety, anhedonic behavior, cognitive abilities and microglia populations in the F1 progeny. The study showed improved reproductive performance of Spirulina supplemented protein malnourished dams, accelerated acquisition of neurological reflexes, better physical appearance, enhanced neuromuscular strength, improved spatial learning and memory and partly normalized PMN induced hyperactivity, anxiolytic and anhedonic behavior in offspring. These beneficial effects of Spirulina consumption were also accompanied by reduced microglial activation which might assist in restoring the behavioral and cognitive skills in protein malnourished F1 rats. Maternal Spirulina supplementation is therefore proposed as an economical nutraceutical/supplement to combat malnutrition associated behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
14
|
Cheng S, Rathnakumar K, Martínez-Monteagudo SI. Extraction of Dairy Phospholipids Using Switchable Solvents: A Feasibility Study. Foods 2019; 8:foods8070265. [PMID: 31323821 PMCID: PMC6678266 DOI: 10.3390/foods8070265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 02/01/2023] Open
Abstract
A tertiary amine (N,N-dimethylcyclohexylamine, CyNMe2) was used as a switchable hydrophilicity solvent (SHS) for extracting phospholipids (PLs) from raw cream (RC), buttermilk (BM), concentrated buttermilk (CBM), and beta-serum (BS). The SHS extractions were performed with varying solvent-sample weight ratio at room temperature. The extracted PLs using CyNMe2 were recovered by bubbling CO2 at atmospheric pressure, switching the CyNMe2 into its respective salt. For comparison, the PLs were also extracted using Folch (FE) and Mojonnier (ME) extraction. The extraction efficiency of SHS varied from 0.33% to 99%, depending on the type of byproduct. The SHS extracted up to 99% of the PLs directly from BM, while only 11.37% ± 0.57% and 2.66% ± 0.56% of the PLs were extracted with FE and ME, respectively. These results demonstrate the applicability of SHS for the extraction of PLs from dairy byproducts.
Collapse
Affiliation(s)
- Shouyun Cheng
- Dairy and Food Science Department, South Dakota State University, Alfred Dairy Science Hall, Brookings, SD 57007, USA
| | - Kaavya Rathnakumar
- Dairy and Food Science Department, South Dakota State University, Alfred Dairy Science Hall, Brookings, SD 57007, USA
| | - Sergio I Martínez-Monteagudo
- Dairy and Food Science Department, South Dakota State University, Alfred Dairy Science Hall, Brookings, SD 57007, USA.
| |
Collapse
|
15
|
Liang D, Hu Y, Ma W, Zhao Z, Jiang S, Wang Y, Zhang X. Concentration of linoleic acid from cottonseed oil by starch complexation. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Yang X, Li Y, Li Y, Ye D, Yuan L, Sun Y, Han D, Hu Q. Solid Matrix-Supported Supercritical CO₂ Enhances Extraction of γ-Linolenic Acid from the Cyanobacterium Arthrospira ( Spirulina) platensis and Bioactivity Evaluation of the Molecule in Zebrafish. Mar Drugs 2019; 17:md17040203. [PMID: 30935028 PMCID: PMC6520994 DOI: 10.3390/md17040203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Marine cyanobacteria represent a large untapped source of functional glycolipids enriched with polyunsaturated fatty acids (PUFAs) for human health. However, advanced methods for scalable isolation of diverse species containing high-purity PUFA-rich glycolipids will have to be developed and their possible pharmaceutical and nutraceutical functions identified. This paper introduces a novel solid matrix-supported supercritical CO₂ extraction method for scalable isolation of the PUFA γ-linolenic acid (GLA)-enriched glycolipids from the cyanobacterium Arthrospira (Spirulina) platensis, which has been the most widely used among microalgae in the nutraceutical and pharmaceutical industries. Of various porous materials studied, diatomite was the best to facilitate extraction of GLA-rich glycolipids, resulting in an extraction efficiency of 98%. Gamma-linolenic acid made up 35% of total fatty acids (TFAs) in the extracts, which was considerably greater than that obtained with ethanol (26%), Bligh and Dyer (24%), and in situ transesterification (24%) methods, respectively. Lipidomics analysis revealed that GLA was exclusively associated with galactolipids. Pharmaceutical functions of GLA-rich galactolipids were investigated on a zebrafish caudal fin regeneration model. The results suggested that GLA extracted from A. platensis possessed anti-oxidative, anti-inflammatory, and anti-allergic activities, which acted in a concerted manner to promote post-injury regeneration of zebrafish.
Collapse
Affiliation(s)
- Xiaohong Yang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Yuan
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China.
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Beijing Key Laboratory of Algae Biomass, Microalgae Biotechnology Center, SDIC Biotech Investment Co., LTD., State Development & Investment Corp., Beijing 100142, China.
| |
Collapse
|
17
|
Deriving Economic Value from Metabolites in Cyanobacteria. GRAND CHALLENGES IN ALGAE BIOTECHNOLOGY 2019. [DOI: 10.1007/978-3-030-25233-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Applications of microalgal paste and powder as food and feed: An update using text mining tool. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
19
|
Kethineni C, Choragudi S, Kokkiligadda S, Jaswanthi N, Ronda SR. Development of Sequential Processes for Multiple Product Recovery from Microalgae. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2017.0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Chandrika Kethineni
- Department of Petroleum Engineering, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - S.F. Choragudi
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Sujana Kokkiligadda
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Nallamothu Jaswanthi
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Srinivasa Reddy Ronda
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| |
Collapse
|
20
|
Bleakley S, Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017; 6:E33. [PMID: 28445408 PMCID: PMC5447909 DOI: 10.3390/foods6050033] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited "crops". Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined.
Collapse
Affiliation(s)
- Stephen Bleakley
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
- School of Biological Sciences, College of Sciences and Health and Environment, Sustainability and Health Institute, Dublin Institute of Technology, Kevin Street, Dublin D08 NF82, Ireland.
| | - Maria Hayes
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
21
|
Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front Microbiol 2017; 8:515. [PMID: 28487674 PMCID: PMC5403934 DOI: 10.3389/fmicb.2017.00515] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/13/2017] [Indexed: 12/05/2022] Open
Abstract
Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of "white biotechnology" for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc.), phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides) etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Andrzej Bajguz
- Faculty of Biology and Chemistry, Institute of Biology, University of BialystokBialystok, Poland
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Govt. Ramanuj Pratap Singhdev Post-Graduate CollegeBaikunthpur, Koriya, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
22
|
Kula M, Rys M, Saja D, Tys J, Skoczowski A. Far-red dependent changes in the chemical composition ofSpirulina platensis. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Monika Kula
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Diana Saja
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Jerzy Tys
- The Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences; Lublin Poland
| | | |
Collapse
|
23
|
Combined Urea Complexation and Argentated Silica Gel Column Chromatography for Concentration and Separation of PUFAs from Tuna Oil: Based on Improved DPA Level. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2842-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Morocho‐Jácome AL, Sato S, Lara Capurro Guimarães L, Jesus C, Carvalho JC. Simultaneous use of sodium nitrate and urea as nitrogen sources improves biomass composition of
Arthrospira platensis
cultivated in a tubular photobioreactor. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ana Lucía Morocho‐Jácome
- Department of Biochemical and Pharmaceutical Technology Faculty of Pharmaceutical Sciences, University of São Paulo São Paulo Brazil
| | - Sunao Sato
- Department of Biochemical and Pharmaceutical Technology Faculty of Pharmaceutical Sciences, University of São Paulo São Paulo Brazil
| | - Laís Lara Capurro Guimarães
- Department of Biochemical and Pharmaceutical Technology Faculty of Pharmaceutical Sciences, University of São Paulo São Paulo Brazil
| | - Camila Jesus
- Department of Biochemical and Pharmaceutical Technology Faculty of Pharmaceutical Sciences, University of São Paulo São Paulo Brazil
| | - João Carlos Carvalho
- Department of Biochemical and Pharmaceutical Technology Faculty of Pharmaceutical Sciences, University of São Paulo São Paulo Brazil
| |
Collapse
|
25
|
Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7631864. [PMID: 26933442 PMCID: PMC4737012 DOI: 10.1155/2016/7631864] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 12/03/2022]
Abstract
The present study aimed to profile the polyunsaturated fatty acids, sugars, free amino acids, and polyphenols in 37 varieties of Spirulina commonly available in the market using gas chromatography and high performance liquid chromatography. In addition, the biological potentials of the Spirulina samples were evaluated by analysing the in vitro antioxidant activities using various analytical techniques. The analyses revealed the presence of 13 polyunsaturated fatty acids, 18 amino acids, 7 sugars, and polyphenols. The polyunsaturated fatty acids contents were varied between Spirulina samples. The total polyunsaturated fatty acids amount was 4.25 mg/100 g, and the average among of sapienic acid detected was 2.25 mg/100 g, which was followed by linoleic acid (16.7%) and γ-linolenic acid (14%). Among the 7 sugars, the hexose levels were the highest (73.85%). The total amino acids contents ranged from 11.49 to 56.14 mg/100 g, and the individual essential amino acids accounted for 17% to 39.18%. The “natural” tablets exhibited the highest polyphenols levels (24 mg/g). All of the Spirulina samples expressed dose-dependent antioxidant activities. The polyunsaturated fatty acids, sugars, free amino acids, and polyphenols contents varied widely, and the variations in these compounds between the Spirulina samples were significant.
Collapse
|
26
|
S. J, S. P. D, M. V. N. L. C. Isolation of methyl gamma linolenate from Spirulina platensis using flash chromatography and its apoptosis inducing effect. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:263. [PMID: 26238515 PMCID: PMC4545820 DOI: 10.1186/s12906-015-0771-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
Background Isolation of methyl gamma linolenate from Spirulina platensis using flash chromatography and its apoptosis inducing effect against human lung carcinoma A- 549 cell lines. Methods Gamma linolenic acid is an important omega-6 polyunsaturated fatty acid (PUFA) of medicinal interest was isolated from microalgae Spirulina platensis using flash chromatography system (Isolera system) as its methyl ester. The isolated methyl gamma linolenate was characterized by IR, 1H NMR, 13C NMR and mass spectral analysis and the data were consistent with the structure. Results The percentage yield of isolated methyl gamma linolenate is found to be 71 % w/w, which is a very good yield in comparison to other conventional methods. It was subjected to in-vitro cytotoxic screening on A-549 lung cancer cell lines using SRB assay and result was compared with standard rutin. Conclusion It may be concluded that the Flash chromatography system plays a major role in improving the yield for theisolation of methyl gamma linoleate from Spirulina platensis and the isolated molecule is a potent cytotoxicagent towards human lung carcinoma cell lines, however it may be further taken up for an extensive study.
Collapse
|
27
|
Nascimento Sassano CE, Gioielli LA, Converti A, de Oliveira Moraes I, Sato S, de Carvalho JCM. Urea increases fed-batch growth and γ-linolenic acid production of nutritionally valuableArthrospira (Spirulina) platensiscyanobacterium. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Carlos Eduardo Nascimento Sassano
- Post-Graduation Center, Research and Extension (CEPPE); University of Guarulhos; Guarulhos SP Brazil
- Department of Biochemical and Pharmaceutical Technology; University of São Paulo; São Paulo SP Brazil
| | - Luiz Antonio Gioielli
- Department of Biochemical and Pharmaceutical Technology; University of São Paulo; São Paulo SP Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Chemical Engineering Pole; University of Genoa; Genoa Italy
| | | | - Sunao Sato
- Department of Biochemical and Pharmaceutical Technology; University of São Paulo; São Paulo SP Brazil
| | | |
Collapse
|
28
|
Baeza-Jiménez R, No DS, Otero C, García HS, Lee JS, Kim IH. Lipase-Catalysed Enrichment of γ-Linolenic Acid from Evening Primrose Oil in a Solvent-Free System. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2463-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Su CH, Liu CS, Yang PC, Syu KS, Chiuh CC. Solid–liquid extraction of phycocyanin from Spirulina platensis: Kinetic modeling of influential factors. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2013.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Wang F, Miao M, Chen B, Wang R, Sun B, Ren D, Lu J. Antineoplastic activity of γ-linolenic acid extract fromSpirulina platensison HepG2 cells and its inhibition effect on platelet aggregation. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2013.872082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Jubie S, Dhanabal P, Afzal Azam M, Muruganantham N, Kalirajan R, Elango K. Synthesis and characterization of some novel fatty acid analogues: a preliminary investigation on their activity against human lung carcinoma cell line. Lipids Health Dis 2013; 12:45. [PMID: 23537396 PMCID: PMC3621780 DOI: 10.1186/1476-511x-12-45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preparation of some novel heterocyclic compounds with long alkyl and alkenyl chain of cytotoxic activity. METHODS Gamma linolenic acid, a poly unsaturated fatty acid and stearic acid, a saturated fatty acid were isolated from the microalga Spirulina platensis. Some novel gamma linolenic acid and stearic acid analogues having 1,3,4-oxadiazole and 1,2,4-triazole were synthesized and characterized by IR, 1H NMR, 13C NMR and mass spectral analysis. Cytotoxicity of these compounds was evaluated by the growth inhibition of A-549 cells in-vitro. RESULTS Compound 1 and 3 showed comparable cytotoxicity against the human lung carcinoma A-549 cell lines.
Collapse
Affiliation(s)
- Selvaraj Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Rock lands, Ooty 643 001, Tamilnadu, India
| | - Palanisamy Dhanabal
- Department of Phytopharmacy and Phytomedicine, JSS College of Pharmacy, Udhagamandalam, Tamilnadu, India
| | - Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Rock lands, Ooty 643 001, Tamilnadu, India
| | | | - Rajagopal Kalirajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Rock lands, Ooty 643 001, Tamilnadu, India
| | - Kannan Elango
- Department of Phytopharmacy and Phytomedicine, JSS College of Pharmacy, Udhagamandalam, Tamilnadu, India
| |
Collapse
|
32
|
Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues. Eur J Med Chem 2012; 54:931-5. [PMID: 22770606 DOI: 10.1016/j.ejmech.2012.06.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 11/21/2022]
Abstract
Stearic acid, a saturated fatty acid was isolated from the microalga Spirulina platensis. Some novel stearic acid analogues having 1,3,4-oxadiazole, 1,2,4-triazole and 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole are synthesized and characterized by IR, NMR and mass spectral analysis. All the synthesized compounds were screened for antimicrobial activity by using cup plate method. The synthesized compounds have been further screened for their antidepressant activity in swiss albino mice by forced swim test (FST), midbrain dopamine has been estimated and quantified. All the compounds showed good antimicrobial activity and compound 6 showed significant antidepressant activity.
Collapse
|
33
|
Reprint of: Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples. Anal Chim Acta 2012; 716:54-60. [DOI: 10.1016/j.aca.2011.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/02/2011] [Indexed: 11/19/2022]
|
34
|
Crampon C, Boutin O, Badens E. Supercritical Carbon Dioxide Extraction of Molecules of Interest from Microalgae and Seaweeds. Ind Eng Chem Res 2011. [DOI: 10.1021/ie102297d] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christelle Crampon
- Université Paul Cézanne Aix-Marseille III, Mécanique, Modélisation et Procédés Propres, UMR CNRS 6181, Europole de l'Arbois, BP80, Pavillon Laennec, Hall C, Aix en Provence Cedex 04, France 13545
| | - Olivier Boutin
- Université Paul Cézanne Aix-Marseille III, Mécanique, Modélisation et Procédés Propres, UMR CNRS 6181, Europole de l'Arbois, BP80, Pavillon Laennec, Hall C, Aix en Provence Cedex 04, France 13545
| | - Elisabeth Badens
- Université Paul Cézanne Aix-Marseille III, Mécanique, Modélisation et Procédés Propres, UMR CNRS 6181, Europole de l'Arbois, BP80, Pavillon Laennec, Hall C, Aix en Provence Cedex 04, France 13545
| |
Collapse
|
35
|
Zarzycki PK, Zarzycka MB, Clifton VL, Adamski J, Głód BK. Low-parachor solvents extraction and thermostated micro-thin-layer chromatography separation for fast screening and classification of spirulina from pharmaceutical formulations and food samples. J Chromatogr A 2011; 1218:5694-704. [PMID: 21741048 DOI: 10.1016/j.chroma.2011.06.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/18/2022]
Abstract
The goal of this paper is to demonstrate the separation and detection capability of eco-friendly micro-TLC technique for the classification of spirulina and selected herbs from pharmaceutical and food products. Target compounds were extracted using relatively low-parachor liquids. A number of the spirulina samples which originated from pharmaceutical formulations and food products, were isolated using a simple one step extraction with small volume of methanol, acetone or tetrahydrofuran. Herb samples rich in chlorophyll dyes were analyzed as reference materials. Quantitative data derived from micro-plates under visible light conditions and after iodine staining were explored using chemometrics tools including cluster analysis and principal components analysis. Using this method we could easily distinguish genuine spirulina and non-spirulina samples as well as fresh from expired commercial products and furthermore, we could identify some biodegradation peaks appearing on micro-TLC profiles. This methodology can be applied as a fast screening or fingerprinting tool for the classification of genuine spirulina and herb samples and in particular may be used commercially for the rapid quality control screening of products. Furthermore, this approach allows low-cost fractionation of target substances including cyanobacteria pigments in raw biological or environmental samples for preliminary chemotaxonomic investigations. Due to the low consumption of the mobile phase (usually less than 1 mL per run), this method can be considered as environmentally friendly analytical tool, which may be an alternative for fingerprinting protocols based on HPLC machines and simple separation systems involving planar micro-fluidic or micro-chip devices.
Collapse
Affiliation(s)
- Paweł K Zarzycki
- Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland.
| | | | | | | | | |
Collapse
|
36
|
Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples. Anal Chim Acta 2011; 688:168-74. [DOI: 10.1016/j.aca.2011.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/02/2011] [Indexed: 11/21/2022]
|
37
|
Kleiner-Shuhler L, Vázquez L, Akoh CC. Purification of Stearidonic Acid from Modified Soybean Oil by Argentation Silica Gel Column Chromatography. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1780-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Ghoreishi SM, Mardani E, Ghaziaskar HS. Separation of γ-linolenic and other polyunsaturated fatty acids from Boraginaceae via
supercritical CO2. J Sep Sci 2010; 34:233-40. [DOI: 10.1002/jssc.201000716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 11/09/2022]
|
39
|
Chacón-Lee TL, González-Mariño GE. Microalgae for "Healthy" Foods-Possibilities and Challenges. Compr Rev Food Sci Food Saf 2010; 9:655-675. [PMID: 33467820 DOI: 10.1111/j.1541-4337.2010.00132.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microalgae have the potential to become a novel source of bioactive molecules, especially for those who might wish to enhance the nutritional and functional quality of foods. Spirulina, one of the most popular microalgae, has been described by the World Health Organization as one of the greatest superfoods on earth serving as an example of the potential of microalgae. This review provides background on current and future uses of microalgae in the human diet, lists the most common species of microalgae used to this end, and describes some production methods used in research and industrial production and recovery. The review also discusses some of the difficulties so far encountered such as low productivities and recovery rates, as well as challenges in the production of compounds of interest. Many scientists and engineers in research centers around the globe are currently dedicated to solve these problems as the various capabilities of microalgae have caught the attention of the energy, environmental, and agricultural industries, we propose that the food industry should as well evaluate the potential of microalgae as a novel source of "health promoting" compounds.
Collapse
Affiliation(s)
- T L Chacón-Lee
- Authors are with the Grupo de Procesos Agroindustriales at the Faculty of Engineering at the Univ. de La Sabana, Campus Univ. Puente del Común, Km 7 Autopista Norte de Bogotá, Chía-Cundinamarca, Colombia. Direct inquiries to author González-Mariño (E-mail: )
| | - G E González-Mariño
- Authors are with the Grupo de Procesos Agroindustriales at the Faculty of Engineering at the Univ. de La Sabana, Campus Univ. Puente del Común, Km 7 Autopista Norte de Bogotá, Chía-Cundinamarca, Colombia. Direct inquiries to author González-Mariño (E-mail: )
| |
Collapse
|
40
|
Herrero M, Mendiola JA, Cifuentes A, Ibáñez E. Supercritical fluid extraction: Recent advances and applications. J Chromatogr A 2009; 1217:2495-511. [PMID: 20022016 DOI: 10.1016/j.chroma.2009.12.019] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
Among the different extraction techniques used at analytical and preparative scale, supercritical fluid extraction (SFE) is one of the most used. This review covers the most recent developments of SFE in different fields, such as food science, natural products, by-product recovery, pharmaceutical and environmental sciences, during the period 2007-2009. The revision is focused on the most recent advances and applications in the different areas; among them, it is remarkable the strong impact of SFE to extract high value compounds from food and natural products but also its increasing importance in areas such as heavy metals recovery, enantiomeric resolution or drug delivery systems.
Collapse
Affiliation(s)
- Miguel Herrero
- Instituto de Fermentaciones Industriales (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
41
|
|
42
|
Ruiz-Rodriguez A, Reglero G, Ibañez E. Recent trends in the advanced analysis of bioactive fatty acids. J Pharm Biomed Anal 2009; 51:305-26. [PMID: 19525080 DOI: 10.1016/j.jpba.2009.05.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 12/15/2022]
Abstract
The consumption of dietary fats have been long associated to chronic diseases such as obesity, diabetes, cancer, arthritis, asthma, and cardiovascular disease; although some controversy still exists in the role of dietary fats in human health, certain fats have demonstrated their positive effect in the modulation of abnormal fatty acid and eicosanoid metabolism, both of them associated to chronic diseases. Among the different fats, some fatty acids can be used as functional ingredients such as alpha-linolenic acid (ALA), arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), stearidonic acid (STA) and conjugated linoleic acid (CLA), among others. The present review is focused on recent developments in FAs analysis, covering sample preparation methods such as extraction, fractionation and derivatization as well as new advances in chromatographic methods such as GC and HPLC. Special attention is paid to trans fatty acids due its increasing interest for the food industry.
Collapse
Affiliation(s)
- Alejandro Ruiz-Rodriguez
- Departamento de Caracterización de Alimentos, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | | | | |
Collapse
|
43
|
Ubaid Ahmed S, Konda Reddy K, Swathy SL, Singh SK, Kanjilal S, Prasad RB, Pandey A. Enrichment of γ-linolenic acid in the lipid extracted from Mucor zychae MTCC 5420. Food Res Int 2009. [DOI: 10.1016/j.foodres.2009.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Celekli A, Yavuzatmaca M. Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. BIORESOURCE TECHNOLOGY 2009; 100:1847-51. [PMID: 18993057 DOI: 10.1016/j.biortech.2008.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/16/2008] [Accepted: 09/22/2008] [Indexed: 05/24/2023]
Abstract
Effects of nitrate (2.0, 2.5, and 3.0 g L(-1)) and salt (0.5, 1.0, 1.5, 2.0 g L(-1)) concentrations on biomass production by Spirulinaplatensis was examined in the Schlösser medium. The highest (p<0.001) biomass yields and chlorophyll a content was observed at 2.5 g L(-1) nitrate and 1.5 g L(-1) NaCl as 3.495 g L(-1) and 29.92 mg L(-1), respectively. Increment rate of biomass production was especially found between 72 and 216 h. Modified Richards, Schnute, Logistic and Gompertz models was successfully predicted (r(2)>0.96 and RSS0.003) biomass production by S.platensis as function of nitrate and salt concentrations. Low residual sum of squares (RSS) and high regression coefficients (r(2)) indicated that used models were well fitted to the experiment data and it could be regarded as sufficient to describe biomass production of Spirulina sp. Biological variables i.e. production rate (micro) and lag time (lambda) for S.platensis ranged 0.012-0.034 h(-1) and 2.43-5.85 h, respectively from biomass production were successfully predicted by modified Logistic model according to low RSS and F-testing value.
Collapse
Affiliation(s)
- Abuzer Celekli
- Department of Biology, Faculty of Art and Science, University of Gaziantep, Gaziantep, Turkey.
| | | |
Collapse
|