1
|
Yu J, Xiao X, Chen B, Deng Z, Chen X, Fan Y, Li H. Synergistic and Antagonistic Activity of Selected Dietary Phytochemicals against Oxidative Stress-Induced Injury in Cardiac H9c2 Cells via the Nrf2 Signaling Pathway. Foods 2024; 13:2440. [PMID: 39123631 PMCID: PMC11312280 DOI: 10.3390/foods13152440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The antioxidant activities of lycopene (LY), lutein (LU), chlorogenic acid (CA), and delphinidin (DP) were tested in vitro on H9c2 cell-based models. Some indicators, such as the generation of reactive oxygen (ROS), the quantification of cell antioxidant activity (CAA), and the expressions of SOD, GSH-Px, and CAT, were calculated to examine their antioxidant interactions. From our results, the phytochemical mixtures (M1: CA-LU: F3/10, M2: DP-CA: F7/10, M3: DP-LY: F5/10) displayed strong synergistic effects based on the generation of ROS and the quantification of CAA. However, great antagonistic bioactivities were seen in the combinations of LY-LU: F5/10 (M4), CA-LU: F9/10 (M5), and DP-LY: F7/10 (M6). Western blotting analysis indicated that the possible mechanism underlying the synergistic antioxidant interactions among phytochemical combinations was to enhance the accumulation of Nrf2 in the nucleus and the expression of its downstream antioxidant enzymes, HO-1 and GCLC. The combinations (M1-M3 groups) showed significant protection against the loss of mitochondrial membrane potential than individual groups to avoid excessive ROS production. The M4-M6 groups exerted antagonistic protective effects compared with the individual groups. In addition, lutein and lycopene absorption was improved more because of the presence of chlorogenic acid and delphinidin in the M1 and M3 groups, respectively. However, delphinidin significantly reduced the cellular uptake of lycopene in the M6 group. It appeared that antioxidant interactions of phytochemical combinations may contribute to the restoration of cellular redox homeostasis and lead to an improvement in diet quality and collocation.
Collapse
Affiliation(s)
- Jingwen Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (J.Y.); (X.X.); (B.C.); (Z.D.); (X.C.); (Y.F.)
| | - Xiangwei Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (J.Y.); (X.X.); (B.C.); (Z.D.); (X.C.); (Y.F.)
| | - Baiying Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (J.Y.); (X.X.); (B.C.); (Z.D.); (X.C.); (Y.F.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (J.Y.); (X.X.); (B.C.); (Z.D.); (X.C.); (Y.F.)
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Xuan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (J.Y.); (X.X.); (B.C.); (Z.D.); (X.C.); (Y.F.)
| | - Yawei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (J.Y.); (X.X.); (B.C.); (Z.D.); (X.C.); (Y.F.)
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (J.Y.); (X.X.); (B.C.); (Z.D.); (X.C.); (Y.F.)
| |
Collapse
|
2
|
Somacal S, Schüler da Silva LC, de Oliveira J, Emanuelli T, Fabro de Bem A. Bixin, a New Atheroprotective Carotenoid Candidate, Prevents oxLDL-Induced Cytotoxicity and Mitochondrial Dysfunction in Macrophages: Involvement of the Nrf2 and NF-κB Pathways. Foods 2024; 13:2002. [PMID: 38998509 PMCID: PMC11241531 DOI: 10.3390/foods13132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The accumulation of oxidized low-density lipoprotein (oxLDL) and its toxicity in the arterial wall have been implicated in atherosclerosis. This study aimed to investigate the mechanisms underlying the atheroprotective effect of bixin, a carotenoid obtained from the seeds of the tropical plant Bixa orellana, on Cu2+-induced LDL oxidation and oxLDL-mediated effects in J774A.1 macrophage cells. Bixin's effects were compared to those of lycopene, a carotenoid widely studied for its cardiovascular protective effects. LDL was isolated from human plasma, incubated with bixin or lycopene (positive control), and subjected to oxidation with CuSO4. Afterward, bixin or lycopene was incubated with J774A.1 macrophage cells and exposed to oxLDL. The levels of ROS, RNS, GSH, nitrite, mitochondrial function, and foam cell formation, as well as the expression of proteins related to the antioxidant and inflammatory status, were evaluated. The effect of bixin in inhibiting in vitro human-isolated LDL oxidation was more potent (5-6-fold) than that of lycopene. Bixin pretreatment reduced the atherogenic signaling triggered by oxLDL in the macrophages, namely the generation of reactive species, disturbance of nitric oxide homeostasis, mitochondrial dysfunction, and foam cell formation. The cytoprotective effects of bixin were accompanied by the upregulation of Nrf2 and the downregulation of the NF-kB pathways. Lycopene showed the same protective effect as bixin, except that it did not prevent mitochondrial dysfunction. The efficient performance of bixin makes it an ideal candidate for further trials as a new nutraceutical compound for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Sabrina Somacal
- Graduate Program on Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | | | - Jade de Oliveira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-000, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetic and Metabolism, Institute of Biological Science, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
3
|
Wang J, Ma W, Ma W, Fang Z, Jiang Y, Jiang W, Kong X, Xin F, Zhang W, Jiang M. Strategies for the efficient biosynthesis of β-carotene through microbial fermentation. World J Microbiol Biotechnol 2024; 40:160. [PMID: 38607448 DOI: 10.1007/s11274-024-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
β-Carotene is an orange fat-soluble compound, which has been widely used in fields such as food, medicine and cosmetics owing to its anticancer, antioxidant and cardiovascular disease prevention properties. Currently, natural β-carotene is mainly extracted from plants and algae, which cannot meet the growing market demand, while chemical synthesis of β-carotene cannot satisfy the pursuit for natural products of consumers. The β-carotene production through microbial fermentation has become a promising alternative owing to its high efficiency and environmental friendliness. With the rapid development of synthetic biology and in-depth study on the synthesis pathway of β-carotene, microbial fermentation has shown promising applications in the β-carotene synthesis. Accordingly, this review aims to summarize the research progress and strategies of natural carotenoid producing strain and metabolic engineering strategies in the heterologous synthesis of β-carotene by engineered microorganisms. Moreover, it also summarizes the adoption of inexpensive carbon sources to synthesize β-carotene as well as proposes new strategies that can further improve the β-carotene production.
Collapse
Affiliation(s)
- Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenqi Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weixu Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Zhanyang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Xiangping Kong
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| |
Collapse
|
4
|
Ramos-Souza C, Nass P, Jacob-Lopes E, Zepka LQ, Braga ARC, De Rosso VV. Changing Despicable Me: Potential replacement of azo dye yellow tartrazine for pequi carotenoids employing ionic liquids as high-performance extractors. Food Res Int 2023; 174:113593. [PMID: 37986530 DOI: 10.1016/j.foodres.2023.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Color is a crucial sensory attribute that guides consumer expectations. A high-performance pequi carotenoid extraction process was developed using ionic liquid-based ethanolic solutions and a factorial design strategy to search for a potential substitute for the artificial azo dye yellow tartrazine. All-trans-antheraxanthin was identified with HPLC-PAD-MSn for the first time in pequi samples. [BMIM][BF4] was the most efficient ionic liquid, and the maximization process condition was the solid-liquid ratio R(S/L) of 1:3, the co-solvent ratio R(IL/E) of 1:1 ([BMIM][BF4]: ethanol), and three cycles of extraction with 300 s each and yielded 107.90 μg carotenoids/g of dry matter. The ionic liquid-ethanolic solution recyclability was accomplished by freezing and precipitating with an average recovery of 79 %. In CIELAB parameters, pequi carotenoid extracted with [BMIM][BF4] was brighter and yellower than the artificial azo dye yellow tartrazine. A color change of 11.08 and a hue* difference of 1.26° were obtained. Furthermore, carotenoids extracted with [BMIM][BF4] showed antioxidant activity of 35.84 μmol of α-tocopherol. These findings suggest the potential of employing the pequi carotenoids to replace the artificial azo dye yellow tartrazine in foods for improved functional properties.
Collapse
Affiliation(s)
- Caroline Ramos-Souza
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Campus Baixada Santista SP 11015-020, Brazil
| | - Pricila Nass
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Leila Queiroz Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | | | - Veridiana Vera De Rosso
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Campus Baixada Santista SP 11015-020, Brazil.
| |
Collapse
|
5
|
Telegina TA, Vechtomova YL, Aybush AV, Buglak AA, Kritsky MS. Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophys Rev 2023; 15:887-906. [PMID: 37974987 PMCID: PMC10643480 DOI: 10.1007/s12551-023-01156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
In nature, carotenoids are present as trans- and cis-isomers. Various physical and chemical factors like light, heat, acids, catalytic agents, and photosensitizers can contribute to the isomerization of carotenoids. Living organisms in the process of evolution have developed different mechanisms of adaptation to light stress, which can also involve isomeric forms of carotenoids. Particularly, light stress conditions can enhance isomerization processes. The purpose of this work is to review the recent studies on cis/trans isomerization of carotenoids as well as the role of carotenoid isomers for the light capture, energy transfer, photoprotection in light-harvesting complexes, and reaction centers of the photosynthetic apparatus of plants and other photosynthetic organisms. The review also presents recent studies of carotenoid isomers for the biomedical aspects, showing cis- and trans-isomers differ in bioavailability, antioxidant activity and biological activity, which can be used for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- T. A. Telegina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - Yuliya L. Vechtomova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - A. V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - A. A. Buglak
- Saint Petersburg State University, 7-9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - M. S. Kritsky
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| |
Collapse
|
6
|
González-Peña MA, Ortega-Regules AE, Anaya de Parrodi C, Lozada-Ramírez JD. Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020313. [PMID: 36679026 PMCID: PMC9865331 DOI: 10.3390/plants12020313] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 05/13/2023]
Abstract
Carotenoids are natural lipophilic pigments and antioxidants that are present in many fruits and vegetables. The consumption of carotenoids is correlated with positive health effects and a decreased risk of several chronic diseases. Provitamin A carotenoids (β-carotene, α-carotene, γ-carotene, and β-cryptoxanthin) are essential for the development and maintenance of sight. β-carotene, α-carotene, zeaxanthin, β-cryptoxanthin, lutein, and lycopene have high antioxidant activity and promote free radical scavenging, which helps protect against chronic diseases. However, carotenoids are chemically unstable and prone to oxidation in the presence of light, heat, oxygen, acids, and metal ions. The use of carotenoids in the food industry is limited due to their poor solubility in water, bioavailability and quick release. Encapsulation techniques, such as microencapsulation, nanoencapsulation and supercritical encapsulation, are used to overcome these problems. The objective of this paper is to describe the characteristics and potential health benefits of carotenoids and advances in encapsulation techniques for protecting and enhancing their solubility or bioavailability.
Collapse
Affiliation(s)
- Marco Antonio González-Peña
- Departmennt of Chemical, Food and Environmental Engineerig, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
| | - Ana Eugenia Ortega-Regules
- Department of Health Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| | - Cecilia Anaya de Parrodi
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| | - José Daniel Lozada-Ramírez
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| |
Collapse
|
7
|
Casazza AP, Lombardi A, Menin B, Santabarbara S. Temperature-induced zeaxanthin overproduction in Synechococcus elongatus PCC 7942. Photochem Photobiol Sci 2022; 22:783-794. [PMID: 36536270 DOI: 10.1007/s43630-022-00352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
The exogenous crtZ gene from Brevundimonas sp. SD212, coding for a 3,3' β-car hydroxylase, was expressed in Synechococcus elongatus PCC 7942 under the control of a temperature-inducible promoter in an attempt to engineer the carotenoid metabolic pathway, to increase the content of zeaxanthin and its further hydroxylated derivatives caloxanthin and nostoxanthin. These molecules are of particular interest due to their renowned antioxidant properties. Cultivation of the engineered strain S7942Z-Ti at 35 °C, a temperature which is well tolerated by the wild-type strain and at which the inducible expression system is activated, led to a significant redistribution of the relative carotenoid content. β-Carotene decreased to about 10% of the pool that is an excess of a threefold decrease with respect to the control, and concomitantly, zeaxanthin became the dominant carotenoid accounting for about half of the pool. As a consequence, zeaxanthin and its derivatives caloxanthin and nostoxanthin collectively accounted for about 90% of the accumulated carotenoids. Yet, upon induction of CrtZ expression at 35 °C the S7942Z-Ti strain displayed a substantial growth impairment accompanied, initially, by a relative loss of carotenoids and successively by the appearance of chlorophyll degradation products which can be interpreted as markers of cellular stress. These observations suggest a limit to the exploitation of Synechococcus elongatus PCC 7942 for biotechnological purposes aimed at increasing the production of hydroxylated carotenoids.
Collapse
Affiliation(s)
- Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Lombardi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Barbara Menin
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Stefano Santabarbara
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| |
Collapse
|
8
|
Vidotto DC, Tavares GM. Simultaneous binding of folic acid and lutein to β-lactoglobulin and α-lactalbumin: A spectroscopic and molecular docking study. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Ruiz-Cruz S, González-Vega RI, Robles-Zepeda RE, Reyes-Díaz A, López-Elías JA, Álvarez-Ainza ML, Cinco-Moroyoqui FJ, Moreno-Corral RA, Wong-Corral FJ, Borboa-Flores J, Cornejo-Ramírez YI, Del-Toro-Sánchez CL. Association of Different ABO and Rh Blood Groups with the Erythroprotective Effect of Extracts from Navicula incerta and Their Anti-Inflammatory and Antiproliferative Properties. Metabolites 2022; 12:metabo12121203. [PMID: 36557241 PMCID: PMC9783362 DOI: 10.3390/metabo12121203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Previous studies have reported that different blood groups are associated with the risk of chronic degenerative diseases that mainly involve inflammation and neoplastic processes. We investigate the relationship between blood groups and the erythroprotective effect of extracts from Navicula incerta against oxidative damage as a proposal to develop drugs designed for people with a specific blood type related to chronic pathology. The study was carried out through the elucidation of the erythroprotective potential, anti-inflammatory and antiproliferative activity of Navicula incerta. Research suggests that the presence or absence of certain blood groups increases or decreases the abilities of certain phytochemicals to inhibit oxidative stress, which is related to the systemic inflammatory response involved in the development of different types of cancer. The pigment-rich extracts from Navicula incerta inhibit ROO•- induced oxidative stress in human erythrocytes on the A RhD+ve antigen without compromising the structure of the cell membrane. This result is very important, since the A antigen is related to the susceptibility of contracting prostate cancer. Similarly, it was possible to inhibit the proliferation of cervical (HeLa) and prostate (PC-3) carcinoma. The combinatorial analysis of different biological activities can help design phytochemicals as new candidates for preventive drugs treating the chronic degenerative diseases associated with a specific blood group.
Collapse
Affiliation(s)
- Saúl Ruiz-Cruz
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Ricardo Iván González-Vega
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Mexico
- Correspondence: (R.I.G.-V.); (C.L.D.-T.-S.)
| | - Ramón Enrique Robles-Zepeda
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Aline Reyes-Díaz
- Nursing Department, State University of Sonora, Av. Niños Héroes, San Javier, Magdalena de Kino 84160, Mexico
| | - José Antonio López-Elías
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Maritza Lizeth Álvarez-Ainza
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Francisco Javier Cinco-Moroyoqui
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Ramón Alfonso Moreno-Corral
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Francisco Javier Wong-Corral
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Jesús Borboa-Flores
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Yaeel Isbeth Cornejo-Ramírez
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
- Correspondence: (R.I.G.-V.); (C.L.D.-T.-S.)
| |
Collapse
|
10
|
Joo H, Hwang J, Kim JY, Park S, Kim H, Kwon O. Association of Plasma Carotenoid and Malondialdehyde Levels with Physical Performance in Korean Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074296. [PMID: 35409979 PMCID: PMC8998767 DOI: 10.3390/ijerph19074296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Increased oxidative stress has been shown to lead to muscle damage and reduced physical performance. The antioxidant mechanism is most likely to reduce these relationships, but in the context of the action of carotenoids, more research is needed. This study aimed to investigate whether carotenoids modify the association between plasma malondialdehyde (MDA) and physical performance in Korean adolescents. The study sample consisted of 381 adolescents (164 boys, 217 girls) aged 13–18, who participated in the 2018 National Fitness Award Project. We quantified α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene, and MDA levels in plasma using HPLC with photodiode array detection. Among boys but not girls, plasma MDA level was negatively associated (β = −0.279, p = 0.0030) with total plasma carotenoid levels and marginally negatively associated (β = −0.907, p = 0.0876) with absolute hand grip strength. After adjustment for covariates in boys, the MDA level was negatively associated with absolute hand grip strength and relative hand grip strength; this association was observed only in groups with individual carotenoid and total carotenoid values below the median. These findings support a significant association between plasma MDA level and hand grip strength, and this association has been potentially modified by plasma levels of carotenoids in Korean male adolescents.
Collapse
Affiliation(s)
- Heeyeon Joo
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (H.J.); (J.H.)
| | - Jiyoung Hwang
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (H.J.); (J.H.)
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Saejong Park
- Department of Sport Science, Korea Institute of Sport Science, Seoul 01794, Korea;
| | - Hyesook Kim
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (H.J.); (J.H.)
- Correspondence: (H.K.); (O.K.); Tel./Fax: +82-2-3277-6860 (O.K.)
| | - Oran Kwon
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (H.J.); (J.H.)
- Correspondence: (H.K.); (O.K.); Tel./Fax: +82-2-3277-6860 (O.K.)
| |
Collapse
|
11
|
Vidotto DC, Mantovani RA, Tavares GM. High-pressure microfluidization of whey proteins: Impact on protein structure and ability to bind and protect lutein. Food Chem 2022; 382:132298. [PMID: 35144190 DOI: 10.1016/j.foodchem.2022.132298] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Dynamic high-pressure homogenization microfluidization (DHPM) is a versatile emerging technology that may be applied to food processing to achieve several goals. DHPM may, depending on nature of the molecules and the working parameters, induce changes in protein structure, which may improve or impair their techno-functional properties and ability to bind other molecules. In this context, DHPM (12 passes, 120 MPa), coupled or not to a cooling device, was applied to β-lactoglobulin (β-lg) and whey protein isolate (WPI) dispersions. Minor changes in the structure of whey proteins were induced by DHPM with sample cooling; although, when sample cooling was not applied, aggregation and increases of around 30% of protein surface hydrophobicity were noticeable for the WPI dispersion. The association constant between the proteins and lutein was in the magnitude of 104 M-1, and lutein photodegradation constant diminished about 3 times in the presence of proteins, compared to in their absence.
Collapse
Affiliation(s)
- Danilo C Vidotto
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raphaela A Mantovani
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
12
|
Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150585. [PMID: 34597562 DOI: 10.1016/j.scitotenv.2021.150585] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Kitsanayanyong L, Ohshima T. Ergothioneine: a potential antioxidative and anti-melanosis agent for food quality preservation. FEBS Lett 2021; 596:1330-1347. [PMID: 34951485 DOI: 10.1002/1873-3468.14267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022]
Abstract
The global population increase has increased the demand for food products. However, post-harvest deterioration due to oxidation and discoloration results in a drastic loss of food quality and supply. Thus, research has focused on developing strategies to minimize such losses. One of those strategies includes the application of ergothioneine (ET), a potent hydrophilic antioxidant, to several food products so as to overcome their short shelf-life. ET can be synthetic or derived from several species of edible mushrooms and their extracts, which are known sources of natural ET. Given the reported potential of ET in food quality preservation, this review compiles the recent applications of ET as a preservative for maintaining the quality of food commodities.
Collapse
Affiliation(s)
- Lalitphan Kitsanayanyong
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| | - Toshiaki Ohshima
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
14
|
Biotechnological Production of Carotenoids Using Low Cost-Substrates Is Influenced by Cultivation Parameters: A Review. Int J Mol Sci 2021; 22:ijms22168819. [PMID: 34445525 PMCID: PMC8396175 DOI: 10.3390/ijms22168819] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/24/2023] Open
Abstract
Carotenoids are natural lipophilic pigments mainly found in plants, but also found in some animals and can be synthesized by fungi, some bacteria, algae, and aphids. These pigments are used in food industries as natural replacements for artificial colors. Carotenoids are also known for their benefits to human health as antioxidants and some compounds have provitamin A activity. The production of carotenoids by biotechnological approaches might exceed yields obtained by extraction from plants or chemical synthesis. Many microorganisms are carotenoid producers; however, not all are industrially feasible. Therefore, in this review, we provide an overview regarding fungi that are potentially interesting to industry because of their capacity to produce carotenoids in response to stresses on the cultivation medium, focusing on low-cost substrates.
Collapse
|
15
|
Mantovani RA, Rasera ML, Vidotto DC, Mercadante AZ, Tavares GM. Binding of carotenoids to milk proteins: Why and how. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
do Nascimento TC, Pinheiro PN, Fernandes AS, Murador DC, Neves BV, de Menezes CR, de Rosso VV, Jacob-Lopes E, Zepka LQ. Bioaccessibility and intestinal uptake of carotenoids from microalgae Scenedesmus obliquus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Lin L, Xu J. Fungal Pigments and Their Roles Associated with Human Health. J Fungi (Basel) 2020; 6:E280. [PMID: 33198121 PMCID: PMC7711509 DOI: 10.3390/jof6040280] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Fungi can produce myriad secondary metabolites, including pigments. Some of these pigments play a positive role in human welfare while others are detrimental. This paper reviews the types and biosynthesis of fungal pigments, their relevance to human health, including their interactions with host immunity, and recent progresses in their structure-activity relationships. Fungal pigments are grouped into carotenoids, melanin, polyketides, and azaphilones, etc. These pigments are phylogenetically broadly distributed. While the biosynthetic pathways for some fungal pigments are known, the majority remain to be elucidated. Understanding the genes and metabolic pathways involved in fungal pigment synthesis is essential to genetically manipulate the production of both the types and quantities of specific pigments. A variety of fungal pigments have shown wide-spectrum biological activities, including promising pharmacophores/lead molecules to be developed into health-promoting drugs to treat cancers, cardiovascular disorders, infectious diseases, Alzheimer's diseases, and so on. In addition, the mechanistic elucidation of the interaction of fungal pigments with the host immune system provides valuable clues for fighting fungal infections. The great potential of fungal pigments have opened the avenues for academia and industries ranging from fundamental biology to pharmaceutical development, shedding light on our endeavors for disease prevention and treatment.
Collapse
Affiliation(s)
- Lan Lin
- School of Life Science and Technology, Department of Bioengineering, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210096, Jiangsu, China;
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
18
|
Liu P, Xue Y, Zheng B, Liang Y, Zhang J, Shi J, Chu X, Han X, Chu L. Crocetin attenuates the oxidative stress, inflammation and apoptosisin arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. Int Immunopharmacol 2020; 88:106959. [PMID: 32919218 DOI: 10.1016/j.intimp.2020.106959] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Arsenic trioxide (ATO)-induced renal toxicity through oxidative stress and apoptosis restricts the therapeutic action of acute myelogenous leukemia. Crocetin (Crt) possesses antioxidant and antiapoptosis properties, and has certain renal protective effects, but it has not been reported that it has protective effect on renal injury caused by ATO. The current study explored the effects and mechanisms of Crt on kidney damage induced by ATO. Fifty Sprague-Dawley rats were randomly divided into five groups. Adult rats were given Crt concurrently with ATO for 1 week. On the 8th day, rats were killed and blood and kidney tissues were collected. Histopathological changes were measured, and kidneytissues and serum were used to determine renal function and antioxidant enzyme activity. In addition, the protein expression levels of P-PI3K, PI3K, P-AKT, AKT, CytC, Bax, Bcl-2 and Caspase-3 were determined via western blot analysis. Results revealed ATO induced renal morphological alterations and activated serum BUN and CRE. Compared with the control group, ROS, MDA, IL-1β, TNF-α, protein carbonyls (PC), lipid hydroperoxides (LOOH) and arsenic concentration levels were found to be significantly increased and SOD, CAT, GSH-Px, GSH and total sulphydryl groups (TSH) levels were attenuated in the ATO group. Crt markedly reduced oxidative stress in ATO-induced nephrotoxicity. Further, ATO induced apoptosis by significantly enhancing CytC, Bax and Caspase-3 and inhibiting Bcl-2. Administration with Crt markedly improved the expression of apoptosis factor. Moreover, Crt treatment stimulated the expressions of P-PI3K, PI3K, P-AKT, AKT induced by ATO. This study indicates Crt could prevent renal injury caused by ATO through inhibiting oxidative stress, inflammation and apoptosis, and its mechanism may be related to activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yurun Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yingran Liang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jing Shi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China.
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
19
|
Ramadan G, Fouda WA, Ellamie AM, Ibrahim WM. Dietary supplementation of Sargassum latifolium modulates thermo-respiratory response, inflammation, and oxidative stress in bacterial endotoxin-challenged male Barki sheep. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33863-33871. [PMID: 32533495 DOI: 10.1007/s11356-020-09568-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Endotoxemia is mainly caused by translocation of bacterial lipopolysaccharides (LPS) into the bloodstream. This in turn enhances systemic inflammation and inappropriate production of reactive oxygen species, leading to oxidative injury of vital internal organs and other dangerous effects that can be life-threatening. Here, we evaluated/compared the modulatory effects of consuming two different doses (2% and 4% of the diet) of brown seaweeds (Sargassum latifolium) for 40 consecutive days on thermo-respiratory response, inflammation, and oxidative stress in Barki male sheep (Ovis aries) challenged twice with bacterial LPS (1.25 μg/kg body weight, injected intravenously on days 28 and 35 of the experimental period). The results showed that the diet containing Sargassum latifolium (especially at 4%) modulated significantly (P < 0.05-0.001) the increase in the thermo-respiratory response (skin and rectal temperatures, and respiration rate) and the obtained systemic inflammation (blood leukocytosis, the elevation in the erythrocyte sedimentation rate, and the increase in serum proinflammatory cytokines and heat shock protein-70 concentrations) in the LPS-challenged sheep. In addition, it improved significantly (P < 0.001, especially at 4%) the total antioxidant capacity of the blood of LPS-challenged sheep by increasing the catalase and superoxide dismutase activities. Moreover, it decreased the blood markers of tissue damage (malondialdehyde concentration and the activities of alanine aminotransferase and lactate dehydrogenase) in the LPS-challenged sheep. In conclusion, the diet containing 4% Sargassum latifolium may have potential impact in protecting the ruminant livestock from the serious effects of endotoxemia through improving the animals' antioxidant defense system and regulating their inflammatory and thermo-respiratory responses.
Collapse
Affiliation(s)
- Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Khalifa El-Maamon st., Abbasiya sq, Cairo, 11566, Egypt.
| | - Wafaa A Fouda
- Physiology of Animal and Poultry Department, Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Ashgan M Ellamie
- Physiology of Animal and Poultry Department, Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Wael M Ibrahim
- Botany Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
20
|
Coulombier N, Nicolau E, Le Déan L, Barthelemy V, Schreiber N, Brun P, Lebouvier N, Jauffrais T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp. Mar Drugs 2020; 18:E453. [PMID: 32872415 PMCID: PMC7551860 DOI: 10.3390/md18090453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites' production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated in batch and continuous culture conditions in stirred closed photobioreactors under different nitrogen conditions (N-repletion, N-limitation, and N-starvation). The aim was to determine the influence of nitrogen availability on the peroxyl radical scavenging activity (oxygen radical absorbance capacity (ORAC) assay) and carotenoid content of Nephroselmis sp. Pigment analysis revealed a specific and unusual photosynthetic system with siphonaxanthin-type light harvesting complexes found in primitive green algae, but also high lutein content and xanthophyll cycle pigments (i.e., violaxanthin, antheraxanthin, and zeaxanthin), as observed in most advanced chlorophytes. The results indicated that N-replete conditions enhance carotenoid biosynthesis, which would correspond to a higher antioxidant capacity measured in Nephroselmis sp. Indeed, peroxyl radical scavenging activity and total carotenoids were higher under N-replete conditions and decreased sharply under N-limitation or starvation conditions. Considering individual carotenoids, siphonaxanthin, neoxanthin, xanthophyll cycle pigments, and lycopene followed the same trend as total carotenoids, while β-carotene and lutein stayed stable regardless of the nitrogen availability. Carotenoid productivities were also higher under N-replete treatment. The peroxyl radical scavenging activity measured with ORAC assay (63.6 to 154.9 µmol TE g-1 DW) and the lutein content (5.22 to 7.97 mg g-1 DW) were within the upper ranges of values reported previously for other microalgae. Furthermore, contents of siphonaxanthin ere 6 to 20% higher than in previous identified sources (siphonous green algae). These results highlight the potential of Nephroselmis sp. as a source of natural antioxidant and as a pigment of interest.
Collapse
Affiliation(s)
| | - Elodie Nicolau
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Loïc Le Déan
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Vanille Barthelemy
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nathalie Schreiber
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Pierre Brun
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de la Nouvelle Calédonie, Campus de Nouville, 98851 Nouméa, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| |
Collapse
|
21
|
Genç Y, Bardakci H, Yücel Ç, Karatoprak GŞ, Küpeli Akkol E, Hakan Barak T, Sobarzo-Sánchez E. Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations. Mar Drugs 2020; 18:md18080423. [PMID: 32823595 PMCID: PMC7459739 DOI: 10.3390/md18080423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry. In addition to their utilization as pigmentation, they have significant therapeutically applications, such as improving immune system and preventing neurodegenerative diseases. Primarily, they have attracted attention due to their antioxidant activity. Several statistical investigations indicated an association between the use of carotenoids in diets and a decreased incidence of cancer types, suggesting the antioxidant properties of these compounds as an important factor in the scope of the studies against oxidative stress. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. Numerous of bioactive compounds such as marine carotenoids have low stability, are poorly absorbed, and own very limited bioavailability. The new technique is nanoencapsulation, which can be used to preserve marine carotenoids and their original properties during processing, storage, improve their physiochemical properties and increase their health-promoting effects. This review aims to describe the role of marine carotenoids, their potential applications and different types of advanced nanoformulations preventing and treating oxidative stress related disorders.
Collapse
Affiliation(s)
- Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey;
| | - Hilal Bardakci
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| |
Collapse
|
22
|
Structures of Astaxanthin and Their Consequences for Therapeutic Application. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:2156582. [PMID: 32775406 PMCID: PMC7391096 DOI: 10.1155/2020/2156582] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated as a by-product of normal aerobic metabolism. Elevated ROS formation leads to potential damage of biological structures and is implicated in various diseases. Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite responsible for the red-orange color of a number of marine animals and microorganisms. There is mounting evidence that astaxanthin has powerful antioxidant, anti-inflammatory, and antiapoptotic activities. Hence, its consumption can result in various health benefits, with potential for therapeutic application. Astaxanthin contains both a hydroxyl and a keto group, and this unique structure plays important roles in neutralizing ROS. The molecule quenches harmful singlet oxygen, scavenges peroxyl and hydroxyl radicals and converts them into more stable compounds, prevents the formation of free radicals, and inhibits the autoxidation chain reaction. It also acts as a metal chelator and converts metal prooxidants into harmless molecules. However, like many other carotenoids, astaxanthin is affected by the environmental conditions, e.g., pH, heat, or exposure to light. It is hence susceptible to structural modification, i.e., via isomerization, aggregation, or esterification, which alters its physiochemical properties. Here, we provide a concise overview of the distribution of astaxanthin in tissues, and astaxanthin structures, and their role in tackling singlet oxygen and free radicals. We highlight the effect of structural modification of astaxanthin molecules on the bioavailability and biological activity. These studies suggested that astaxanthin would be a promising dietary supplement for health applications.
Collapse
|
23
|
Abstract
Interest in pigment composition of microalgae species is growing as new natural pigments sources are being sought. However, we still have a limited number of species of microalgae exploited to obtain these compounds. Considering these facts, the detailed composition of carotenoids and chlorophylls of two species of green microalgae (Chlorella sorokiniana and Scenedesmus bijuga) were determined for the first time by high-performance liquid chromatography coupled to diode array and mass spectrometry detectors (HPLC-PDA-MS/MS). A total of 17 different carotenoids were separated in all the extracts. Most of the carotenoids present in the two microalgae species are xanthophylls. C. sorokiniana presented 11 carotenoids (1408.46 μg g−1), and S. bijuga showed 16 carotenoids (1195.75 μg g−1). The main carotenoids detected in the two microalgae were all-trans-lutein and all-trans-β-carotene. All-trans-lutein was substantially higher in C. sorokiniana (59.01%), whereas all-trans-β-carotene was detected in higher quantitative values in S. bijuga (13.88%). Seven chlorophyll compounds were identified in both strains with different proportions in each species. Concentrations of chlorophyll representing 7.6% and 10.2% of the composition of the compounds present in the biomass of C. sorokiniana and S. bijuga, respectively. Relevant chlorophyll compounds are reported for the first time in these strains. The data obtained provide significant insights for microalgae pigment composition databases. The carotenoids and chlorophylls profile by HPLC-PDA-MS of microalgae is reported. Microalgae showed species-specific pigments profiles. 17 carotenoids and 7 chlorophylls were identified and quantified in details. The quantitative profile presented a prevalence of chlorophylls over carotenoids. Green microalgae are proposed as an interesting natural source of food pigments.
Collapse
|
24
|
Heymann T, Schmitz LM, Lange J, Glomb MA. Influence of β-Carotene and Lycopene on Oxidation of Ethyl Linoleate in One- and Disperse-Phased Model Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2747-2756. [PMID: 32028770 DOI: 10.1021/acs.jafc.9b07862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The induction period (IP) of ethyl linoleate stressed at 60 °C was monitored via the formation of hydroperoxides. The addition of lycopene (1% w/w) increased the IP from 7.0 to 10.0 h to prove the strong antioxidative potential in contrast to β-carotene with pro-oxidative effects (IP: 6.0 h), both showing strong scavenging activity under fast degradation. When peroxidation was induced by singlet oxygen, both carotenoids effectively inhibited the formation of hydroperoxides, with quenching activity only observed at low singlet oxygen concentrations, while scavenging still dominated. Thus, carotenoids did not interact with the introduced singlet oxygen but rather with the radical intermediates of fat oxidation. These experiments were then transferred to lecithin-based micelles more related to biological systems, where singlet oxygen was generated in the outer aqueous phase. Lycopene and β-carotene delayed or inhibited lipid peroxidation depending on concentration. In this setup, β-carotene showed exclusively quenching activity, while lycopene was additionally degraded to about 70%.
Collapse
Affiliation(s)
- Thomas Heymann
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle/Saale, Germany
| | - Lea M Schmitz
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle/Saale, Germany
| | - Josefine Lange
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle/Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle/Saale, Germany
| |
Collapse
|
25
|
de Souza Mesquita LM, Neves BV, Pisani LP, de Rosso VV. Mayonnaise as a model food for improving the bioaccessibility of carotenoids from Bactris gasipaes fruits. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
do Nascimento TC, Cazarin CBB, Maróstica MR, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Microalgae carotenoids intake: Influence on cholesterol levels, lipid peroxidation and antioxidant enzymes. Food Res Int 2020; 128:108770. [DOI: 10.1016/j.foodres.2019.108770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
|
27
|
Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Res Int 2019; 126:108653. [PMID: 31732025 DOI: 10.1016/j.foodres.2019.108653] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 11/23/2022]
Abstract
The aim of this study was to develop a new method for carotenoid extraction from orange peel, using ionic liquid (IL) to replace conventional organic solvents, assisted by ultrasound. Four different IL were tested: 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), and 1-hexyl-3-methylimidazolium chloride ([HMIM][Cl]). Response surface methodology was applied in order to optimize the carotenoid extraction conditions, and Amberlite XAD-7HP resin was used to separate the carotenoids from the IL, allowing their recovery. Determination of carotenoids was carried out by high-performance liquid chromatography coupled to photodiode array and mass spectrometry detectors (HPLC-DAD-MSn). Thermal stability at different temperatures (60 °C and 90 °C) and peroxyl radical scavenging activity of the carotenoid extracts obtained with acetone and IL were evaluated. [BMIM][Cl] was the most effective IL, leading to a total carotenoid content of 32.08 ± 2.05 μg/g, while 7.88 ± 0.59 μg/g of dry matter was obtained by acetone extraction. IL and carotenoid recoveries using XAD-7HP resin were in the range of 59.5-63.8% and 52.2-58.7%, respectively. A carotenoid extract was successfully obtained with IL, finally isolated just by using ethanol, besides being more stable and presenting higher antioxidant activity than that obtained with acetone.
Collapse
|
28
|
Braga MB, Veggi PC, Codolo MC, Giaconia MA, Rodrigues CL, Braga ARC. Evaluation of freeze-dried milk-blackberry pulp mixture: Influence of adjuvants over the physical properties of the powder, anthocyanin content and antioxidant activity. Food Res Int 2019; 125:108557. [PMID: 31554091 DOI: 10.1016/j.foodres.2019.108557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
The blackberry fruit (Rubus spp.) presents an attractive color ranging from purple red to blue, due to the high content of bioactive compounds, such as anthocyanins. Bioactive compounds have antioxidant properties, acting as free radical scavengers and are also frequently linked to the prevention of cardiovascular and other chronic diseases. Due to native-form anthocyanins instability against environmental stress, bioactive compounds are not always as effective in improving human health as they could be. Therefore, the production of powders using adjuvants is a promising approach for encapsulating anthocyanins-rich pastes, in order to improve their stability and application. Thus, the aim of the present study was to evaluate the influence of adjuvants on the physical properties of the powder, and on anthocyanin content and antioxidant activity of the pastes and freeze-dried milk-blackberry pulp mixtures. The pastes formulated were of milk-blackberry pulp (25%:75%, (weight/weight (w/w)) and of milk-blackberry pulp-adjuvant (25%:70%:5%, (w/w/w)), and the adjuvants employed were maltodextrins 10DE and 20DE and Capsul®. The addition of maltodextrin 20DE and Capsul® resulted in pastes with high anthocyanins content (451.6 ± 80.0 μg/g and 453.1 ± 26.0 μg/g, respectively), similar to the paste without adjuvants (568.6 ± 3.4 μg/g). Also, maltodextrin 20DE and Capsul® showed a high protection capacity of the anthocyanins present on the powders (around 96% of anthocyanins retention). When no adjuvants were used, the anthocyanins retention was very low (40.1%). The freeze-drying process maintained the antioxidant capacity of the bioactive compounds and the powders obtained showed good quality with low moisture content and hygroscopicity.
Collapse
Affiliation(s)
| | | | - Milene Costa Codolo
- Universidade Federal de São Paulo, Departamento de Engenharia Química, Brazil
| | | | | | - Anna Rafaela Cavalcante Braga
- Universidade Federal de São Paulo, Departamento de Engenharia Química, Brazil; Universidade Federal de São Paulo, Departamento de Biociências, Brazil.
| |
Collapse
|
29
|
do Nascimento TC, Cazarin CB, Roberto Maróstica M, Risso ÉM, Amaya-Farfan J, Grimaldi R, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Microalgae biomass intake positively modulates serum lipid profile and antioxidant status. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Syamila M, Gedi MA, Briars R, Ayed C, Gray DA. Effect of temperature, oxygen and light on the degradation of β-carotene, lutein and α-tocopherol in spray-dried spinach juice powder during storage. Food Chem 2019; 284:188-197. [PMID: 30744845 DOI: 10.1016/j.foodchem.2019.01.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/20/2018] [Accepted: 01/12/2019] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the interaction between packaging parameters (transmission of light and oxygen) and storage temperatures (4, 20, 40 °C) on nutrient retention of Spinach (Spinacia oleracea) juice, spray-dried in the absence of an added encapsulant. β-Carotene was more susceptible to degradation compared with lutein and α-tocopherol. Under our experimental conditions, it was observed that excluding low fluorescent light intensity and air by vacuum packaging at 20 °C did not seem to improve nutrient retention loss over time (p > 0.05). The rate of β-carotene, lutein and α-tocopherol loss displayed first order reaction kinetic with low activation energy of 0.665, 2.650 and 13.893 kJ/mol for vacuum, and 1.089, 4.923 and 14.142 kJ/mol for non-vacuum, respectively. The reaction kinetics and half-life for β-carotene, lutein and α-tocopherol at 4 °C and non-vacuumed were 2.2 × 10-2, 1.2 × 10-2, and 0.8 × 10-2 day-1, and 32.08, 58.25 and 85.37 day, respectively.
Collapse
Affiliation(s)
- M Syamila
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; Department of Food Biotechnology, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Malaysia
| | - M A Gedi
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - R Briars
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - C Ayed
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - D A Gray
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
31
|
Pan Y, Deng ZY, Zheng SL, Chen X, Zhang B, Li H. Daily Dietary Antioxidant Interactions Are Due to Not Only the Quantity but Also the Ratios of Hydrophilic and Lipophilic Phytochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9107-9120. [PMID: 30085667 DOI: 10.1021/acs.jafc.8b03412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hydrophilic extracts of mulberry (HEM) and blueberry (HEB) and lipophilic extracts of mango (LEM) and watermelon (LEW) were mixed in different ratios to assess the antioxidant interactions by chemical-based (DPPH and ABTS assays) and H9c2 cell-based models. There were both synergistic and antagonistic antioxidant interactions among these fruits. Some groups with combinational extracts showed stronger synergistic antioxidant effects than the individual groups, and others (HEM-LEW F1/10, LEW-LEM F5/10, and HEB-LEM F3/10) showed stronger antagonistic effects than the individual groups based on the indicators [the values of DPPH, ABTS, and MTT; the expression of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA); the release of lactate dehydrogenase (LDH); and the quantification of cellular antioxidant activity]. The principal component analysis (PCA) showed that samples could be defined by two principal components: PC1, the main phenolic acids and anthocyanins, and PC2, carotenoids. From our results, primarily, carotenoids were in the majority in antagonistic groups, and phenolics and anthocyanins were in the majority in synergistic groups. However, the combinational groups containing only hydrophilic compounds did not always show synergistic effects. Therefore, the compatibility of diets indicates balancing the ratios of hydrophilic and lipophlic compounds in our daily food. In addition, the expression of enzymes (SOD, GSH-Px, and CAT) may not be sensitive to the changes of antioxidant activity caused by the combinations with different ratios of hydrophilic and lipophilc compounds. The different structures of lipophilic compounds (β-carotene and lycopene) could influence the antagonistic effects.
Collapse
Affiliation(s)
- Yao Pan
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
- Institute for Advanced Study , University of Nanchang , Nanchang 330031 , Jiangxi , China
| | - Shi-Lian Zheng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Xuan Chen
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| |
Collapse
|
32
|
Goupy P, Carail M, Giuliani A, Duflot D, Dangles O, Caris-Veyrat C. Carotenoids: Experimental Ionization Energies and Capacity at Inhibiting Lipid Peroxidation in a Chemical Model of Dietary Oxidative Stress. J Phys Chem B 2018; 122:5860-5869. [PMID: 29771123 DOI: 10.1021/acs.jpcb.8b03447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carotenoids are important natural pigments and micronutrients contributing to health prevention by several mechanisms, including their electron-donating (antioxidant) activity. In this work, a large series of carotenoids, including 11 carotenes and 14 xanthophylls, have been investigated by wavelength-resolved atmospheric pressure photoionization mass spectrometry (DISCO line of SOLEIL synchrotron), thus allowing the experimental determination of their ionization energy (IE) for the first time. On the other hand, the carotenoids have been also investigated for their ability to inhibit the heme iron-induced peroxidation of linoleic acid in mildly acidic micelles, a simple but relevant chemical model of oxidative stress in the gastric compartment. Thus, the carotenoids can be easily classified from IC50 concentrations deduced from the time dependence of the lipid hydroperoxide concentration. With a selection of two carotenes and three xanthophylls a quantitative analysis is also provided to extract stoichio-kinetic parameters. The influence of the carotenoid structure (number of conjugated carbon-carbon double bonds, presence of terminal six-membered rings, hydroxyl, keto, and/or epoxy groups) on the IE, IC50, and stoichio-kinetic parameters is discussed in details. The data show that the antioxidant activity of carotenes is well correlated to their electron-donating capacity, which itself largely depends on the length of the conjugated polyene chain. By contrast, the IE of xanthophylls is poorly correlated to the polyene chain length because of the strong, and sometimes unexpected, electronic effects of the O-atoms. Although IE remains an approximate predictor of the antioxidant activity of xanthophylls, other factors (interaction with the aqueous phase, competing radical-scavenging mechanisms, the residual activity of the antioxidant's oxidation products) probably play a significant role.
Collapse
Affiliation(s)
- Pascale Goupy
- INRA, UMR408 SQPOV , 84000 Avignon , France.,Avignon University, UMR408 SQPOV , 84000 Avignon , France
| | - Michel Carail
- INRA, UMR408 SQPOV , 84000 Avignon , France.,Avignon University, UMR408 SQPOV , 84000 Avignon , France
| | - Alexandre Giuliani
- Synchrotron SOLEIL , St-Aubin, BP48 , 91192 Gif sur Yvette Cedex, France.,INRA, U1008 , BP 71627 , 44316 Nantes , France
| | - Denis Duflot
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523 , Université Lille1 , 59655 Villeneuve d'Ascq Cedex, France
| | - Olivier Dangles
- INRA, UMR408 SQPOV , 84000 Avignon , France.,Avignon University, UMR408 SQPOV , 84000 Avignon , France
| | - Catherine Caris-Veyrat
- INRA, UMR408 SQPOV , 84000 Avignon , France.,Avignon University, UMR408 SQPOV , 84000 Avignon , France
| |
Collapse
|
33
|
Rodrigues DB, Mariutti LRB, Mercadante AZ. An in vitro digestion method adapted for carotenoids and carotenoid esters: moving forward towards standardization. Food Funct 2018; 7:4992-5001. [PMID: 27891544 DOI: 10.1039/c6fo01293k] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In vitro digestion methods are a useful approach to predict the bioaccessibility of food components and overcome some limitations or disadvantages associated with in vivo methodologies. Recently, the INFOGEST network published a static method of in vitro digestion with a proposal for assay standardization. The INFOGEST method is not specific for any food component; therefore, we aimed to adapt this method to assess the in vitro bioaccessibility of carotenoids and carotenoid esters in a model fruit (Byrsonima crassifolia). Two additional steps were coupled to the in vitro digestion procedure, centrifugation at 20 000g for the separation of the aqueous phase containing mixed micelles and exhaustive carotenoid extraction with an organic solvent. The effect of electrolytes, enzymes and bile acids on carotenoid micellarization and stability was also tested. The results were compared with those found with a simpler method that has already been used for carotenoid bioaccessibility analysis. These values were in the expected range for free carotenoids (5-29%), monoesters (9-26%) and diesters (4-28%). In general, the in vitro bioaccessibility of carotenoids assessed by the adapted INFOGEST method was significantly higher (p < 0.05) than those assessed by the simplest protocol, with or without the addition of simulated fluids. Although no trend was observed, differences in bioaccessibility values depended on the carotenoid form (free, monoester or diester), isomerization (Z/E) and the in vitro digestion protocol. To the best of our knowledge, it was the first time that a systematic identification of carotenoid esters by HPLC-DAD-MS/MS after in vitro digestion using the INFOGEST protocol was carried out.
Collapse
|
34
|
Quesada-Gómez JM, Santiago-Mora R, Durán-Prado M, Dorado G, Pereira-Caro G, Moreno-Rojas JM, Casado-Díaz A. β-Cryptoxanthin Inhibits Angiogenesis in Human Umbilical Vein Endothelial Cells Through Retinoic Acid Receptor. Mol Nutr Food Res 2017; 62. [PMID: 29131551 DOI: 10.1002/mnfr.201700489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/02/2017] [Indexed: 01/03/2023]
Abstract
SCOPE β-Cryptoxanthin is an abundant carotenoid in fruits and vegetables that can be quantified in human blood serum. Yet, contrary to other carotenoids, its effects on endothelial cells and angiogenesis remain unknown. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVEC) are treated with 0.01, 0.1, or 1 μm of β-cryptoxanthin. Antioxidant activity is determined by its free radical scavenging and oxygen-radical absorbance capacity. The effect on migration and formation of tubular structures is studied. Additionally, effect on angiogenesis is also analyzed using an in vivo model. β-Cryptoxanthin exhibits scavenging ability, having an antioxidant effect on HUVEC. Interestingly, β-cryptoxanthin reduces their migration and angiogenesis, even in the presence of vascular endothelial growth factor (VEGF). Additionally, such carotenoid inhibits in vivo angiogenesis induced by VEGF. In addition, treatment of HUVEC with LE540 (retinoic acid receptor [RAR] panantagonist) inhibits β-cryptoxanthin antiangiogenic effect on HUVEC. CONCLUSION β-Cryptoxanthin inhibits angiogenesis through RAR. Thus, this carotenoid and food containing it may be useful for the prevention and treatment of angiogenic pathologies. That includes tumoral growth and wet macular degeneration associated with aging. To the best of our knowledge, this is the first report of the antioxidant effect and antiangiogenic activity of this carotenoid on HUVEC, both in vitro and in vivo.
Collapse
Affiliation(s)
- José Manuel Quesada-Gómez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raquel Santiago-Mora
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,Ciencias Médicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mario Durán-Prado
- Ciencias Médicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Gabriel Dorado
- RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Food Science and Health, IFAPA-Alameda del Obispo, Córdoba, Spain
| | | | - Antonio Casado-Díaz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
35
|
Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Res Int 2017; 99:1036-1041. [DOI: 10.1016/j.foodres.2016.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 01/19/2023]
|
36
|
Diprat AB, Menegol T, Boelter JF, Zmozinski A, Rodrigues Vale MG, Rodrigues E, Rech R. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3463-3468. [PMID: 27885677 DOI: 10.1002/jsfa.8159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/28/2016] [Accepted: 11/18/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Microalgae have been used as food supplements owing to their high protein, polyunsaturated fatty acid and carotenoid contents. As different carotenoids have distinct properties and the carotenoid composition of microalgae has been poorly explored in the literature, this study determined the complete carotenoid composition of two microalgae species, Heterochlorella luteoviridis and Dunaliella tertiolecta, using high-performance liquid chromatography coupled with diode array detection and tandem mass spectrometry (HPLC-DAD/MS2 ). Additionally, the proximate composition and major minerals were evaluated. RESULTS The carotenoid composition of the two microalgae was similar, with 13 carotenoids being found in H. luteoviridis and 12 in D. tertiolecta. The major carotenoids were all-trans-lutein (1.18 mg g-1 in H. luteoviridis and 1.59 mg g-1 in D. tertiolecta), all-trans-violaxanthin (0.52 mg g-1 in H. luteoviridis and 0.45 mg g-1 in D. tertiolecta) and all-trans-β-carotene (0.50 mg g-1 in H. luteoviridis and 0.62 mg g-1 in D. tertiolecta). All-trans-lutein was the predominant carotenoid in both microalgae, representing around 40% (mass fraction) of the total carotenoids. The lutein content found in these microalgae was significantly higher (2-40 times) than that in other important food sources of lutein (e.g. parsley, carrot, red pepper and broccoli). CONCLUSION The microalgae H. luteoviridis and D. tertiolecta are excellent sources of lutein that could be commercially exploited by the food and pharmaceutical industries. Moreover, it was confirmed that both microalgae are good sources of protein, lipids and calcium. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andressa Bacalau Diprat
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RGS, Brazil
| | - Tania Menegol
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RGS, Brazil
| | - Juliana Ferreira Boelter
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RGS, Brazil
| | - Ariane Zmozinski
- Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RGS, Brazil
| | | | - Eliseu Rodrigues
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RGS, Brazil
| | - Rosane Rech
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RGS, Brazil
| |
Collapse
|
37
|
|
38
|
Murador D, Braga AR, Da Cunha D, De Rosso V. Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Crit Rev Food Sci Nutr 2017; 58:169-177. [PMID: 26858038 DOI: 10.1080/10408398.2016.1140121] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The aim of this study was to review prior studies that have evaluated the effects of cooking techniques on polyphenol levels and antioxidant activity in vegetables and to release a meta-analysis of the findings. Meta-analysis with a random effect model was conducted using the weighted response ratios (R*) that were calculated for each experiment. Baking (R* = 0.51), blanching (R* = 0.94), boiling (R* = 0.62), microwaving (R* = 0.54) and pressure cooking (R* = 0.47) techniques precipitated significant reductions in the polyphenol levels. Significant decreases in the antioxidant activity levels were noted after baking (R* = 0.45) and boiling (R* = 0.76), while significant increases were observed after frying (R* = 2.26) and steaming (R* = 1.52).
Collapse
Affiliation(s)
| | | | - Diogo Da Cunha
- b UNICAMP , School of Applied Sciences , Santos , Brazil
| | | |
Collapse
|
39
|
Patias LD, Fernandes AS, Petry FC, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Res Int 2017; 100:260-266. [PMID: 28873686 DOI: 10.1016/j.foodres.2017.06.069] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
Carotenoids from cyanobacteria Aphanothece microscopica Nageli and green microalgae Chlorella vulgaris and Scenedesmus obliquus were identified. The total carotenoid content, based on dry weight of biomass, of A. microscopica Nägeli, C. vulgaris and S. obliquus were 1398.88μg/g, 1977.02μg/g and 2650.70μg/g, respectively. A total of 23 different carotenoids were separated in all the extracts, the major ones being all-trans-β-carotene (29.3%) and all-trans-lutein (28.1%) in Scenedesmus; all-trans-echinenone (22.8%) and all-trans-β-carotene (17.7%) in Chlorella; all-trans-echinenone (28.3%) and all-trans-β-carotene (26.2%) in Aphanothece. The carotenoid extracts were shown to be a potent scavenger of peroxyl radical, with values of 31.1 (Chlorella), 14.0 (Scenedesmus) and 7.3 (Aphanothece) times more potent than α-tocopherol.
Collapse
Affiliation(s)
- Luciana D Patias
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Andrêssa S Fernandes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Fabiane C Petry
- Department of Food Science, University of Campinas (UNICAMP), Monteiro Lobato, 70, Campinas 13083-862, Brazil
| | - Adriana Z Mercadante
- Department of Food Science, University of Campinas (UNICAMP), Monteiro Lobato, 70, Campinas 13083-862, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| | - Leila Q Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| |
Collapse
|
40
|
Mandelli F, Couger MB, Paixão DAA, Machado CB, Carnielli CM, Aricetti JA, Polikarpov I, Prade R, Caldana C, Paes Leme AF, Mercadante AZ, Riaño-Pachón DM, Squina FM. Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis. Extremophiles 2017; 21:775-788. [DOI: 10.1007/s00792-017-0942-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/29/2017] [Indexed: 12/25/2022]
|
41
|
Brasili E, Chaves DFS, Xavier AAO, Mercadante AZ, Hassimotto NMA, Lajolo FM. Effect of Pasteurization on Flavonoids and Carotenoids in Citrus sinensis (L.) Osbeck cv. 'Cara Cara' and 'Bahia' Juices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1371-1377. [PMID: 28146357 DOI: 10.1021/acs.jafc.6b05401] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orange juice is considered an excellent dietary source of several bioactive compounds with beneficial properties for human health. Citrus sinensis Osbeck cv. 'Cara Cara' is a bud mutation originated from 'Washington' navel orange, also known as 'Bahia' navel orange. The ascorbic acid, flavonoid, and carotenoid contents in pasteurized and nonpasteurized Bahia and Cara Cara juices using two LC-MS/MS platforms were investigated. Higher ascorbic acid content was observed in Bahia compared to Cara Cara in both pasteurized and nonpasteurized juices. Total flavanones content as well as hesperidin levels were higher in Cara Cara with respect to Bahia pasteurized juice. Cara Cara was also characterized by a significantly higher and diversified carotenoid content compared to Bahia juice with a mixture of (Z)-isomers of lycopene, all-E-β-carotene, phytoene, and phytofluene isomers accounting for the highest carotenoid proportion. The exceptionally high carotenoid content of Cara Cara may be particularly interesting for nutritional or functional studies of uncommon carotenes in a citrus food matrix.
Collapse
Affiliation(s)
- Elisa Brasili
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo , São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation) , São Paulo, Brazil
| | - Daniela F Seixas Chaves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo , São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation) , São Paulo, Brazil
| | - Ana Augusta O Xavier
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, SP, Brazil
| | - Adriana Z Mercadante
- Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation) , São Paulo, Brazil
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, SP, Brazil
| | - Neuza M A Hassimotto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo , São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation) , São Paulo, Brazil
| | - Franco M Lajolo
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo , São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation) , São Paulo, Brazil
| |
Collapse
|
42
|
Barizão ÉO, Visentainer JV, de Cinque Almeida V, Ribeiro D, Chisté RC, Fernandes E. Citharexylum solanaceum fruit extracts: Profiles of phenolic compounds and carotenoids and their relation with ROS and RNS scavenging capacities. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Sousa JL, Proença C, Freitas M, Fernandes E, Silva AM. New polyhydroxylated flavon-3-ols and 3-hydroxy-2-styrylchromones: synthesis and ROS/RNS scavenging activities. Eur J Med Chem 2016; 119:250-9. [DOI: 10.1016/j.ejmech.2016.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/16/2022]
|
44
|
Novel chromone and xanthone derivatives: Synthesis and ROS/RNS scavenging activities. Eur J Med Chem 2016; 115:381-92. [DOI: 10.1016/j.ejmech.2016.03.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023]
|
45
|
Martins PLG, de Rosso VV. Thermal and light stabilities and antioxidant activity of carotenoids from tomatoes extracted using an ultrasound-assisted completely solvent-free method. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Martins GF, Fabi JP, Mercadante AZ, de Rosso VV. The ripening influence of two papaya cultivars on carotenoid biosynthesis and radical scavenging capacity. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Zhang Y, Liu Y, Lv Q. DFT study on the quenching mechanism of singlet oxygen by lycopene. RSC Adv 2016. [DOI: 10.1039/c6ra19639j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The quenching mechanism of singlet oxygen by lycopene is analyzed based on DFT calculations at the B3LYP/6-311+(d,p) level.
Collapse
Affiliation(s)
- Yingyuan Zhang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- PR China
| | - Yi Liu
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- PR China
| | - Qingzhang Lv
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- PR China
| |
Collapse
|
48
|
Rodrigues DB, Menezes CR, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Bioactive pigments from microalgae Phormidium autumnale. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Stutz H, Bresgen N, Eckl PM. Analytical tools for the analysis of β-carotene and its degradation products. Free Radic Res 2015; 49:650-80. [PMID: 25867077 PMCID: PMC4487603 DOI: 10.3109/10715762.2015.1022539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
β-Carotene, the precursor of vitamin A, possesses pronounced radical scavenging properties. This has centered the attention on β-carotene dietary supplementation in healthcare as well as in the therapy of degenerative disorders and several cancer types. However, two intervention trials with β-carotene have revealed adverse effects on two proband groups, that is, cigarette smokers and asbestos-exposed workers. Beside other causative reasons, the detrimental effects observed have been related to the oxidation products of β-carotene. Their generation originates in the polyene structure of β-carotene that is beneficial for radical scavenging, but is also prone to oxidation. Depending on the dominant degradation mechanism, bond cleavage might occur either randomly or at defined positions of the conjugated electron system, resulting in a diversity of cleavage products (CPs). Due to their instability and hydrophobicity, the handling of standards and real samples containing β-carotene and related CPs requires preventive measures during specimen preparation, analyte extraction, and final analysis, to avoid artificial degradation and to preserve the initial analyte portfolio. This review critically discusses different preparation strategies of standards and treatment solutions, and also addresses their protection from oxidation. Additionally, in vitro oxidation strategies for the generation of oxidative model compounds are surveyed. Extraction methods are discussed for volatile and non-volatile CPs individually. Gas chromatography (GC), (ultra)high performance liquid chromatography (U)HPLC, and capillary electrochromatography (CEC) are reviewed as analytical tools for final analyte analysis. For identity confirmation of analytes, mass spectrometry (MS) is indispensable, and the appropriate ionization principles are comprehensively discussed. The final sections cover analysis of real samples and aspects of quality assurance, namely matrix effects and method validation.
Collapse
Affiliation(s)
- H. Stutz
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - N. Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - P. M. Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
50
|
Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment – Comparison with dietary reference carotenoids. Arch Biochem Biophys 2015; 572:89-100. [PMID: 25595845 DOI: 10.1016/j.abb.2014.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 01/04/2023]
|