1
|
Li W, Yan S, Fu X, Tang J, Yang H. Adsorption and desorption behaviors on microporous resins of antioxidant and anti-proliferation polyphenols from European plum. Food Res Int 2025; 199:115348. [PMID: 39658152 DOI: 10.1016/j.foodres.2024.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Six macroporous resins (MRs) were employed for the adsorption and desorption of neochlorogenic acid-enriched polyphenols from the European plum (NAPEP). X-5 exhibited the most significant neochlorogenic acid adsorption (99.62 %), desorption (44.80 %), and recovery (44.29 %) rates. The adsorption kinetics were described using a pseudo-second-order model while the Freundlich model indicated that X-5-adsorbing NAPEP was a spontaneous, exothermic process. NAPEP was effectively eluted from X-5 using a 60 % ethanol solution. Ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) revealed the presence of 21 polyphenol compounds in NAPEP, with chlorogenic acids accounting for 93 % of the overall composition. NAPEP demonstrated antioxidant efficacy comparable to chlorogenic acid. Furthermore, NAPEP administration effectively triggered apoptosis in A549 cells by producing reactive oxygen species, which regulated the AKT pathway. These results indicated that NAPEP could be utilized as an antioxidant and anti-cancer agent in functional foods.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Shengkun Yan
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xueqin Fu
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Jingran Tang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
2
|
Gong T, Song Z, Zhang S, Meng Y, Guo Y. Young apple polyphenols confer excellent physical and oxidative stabilities to soy protein emulsions for effective β-carotene encapsulation and delivery. Int J Biol Macromol 2024; 275:133607. [PMID: 38960241 DOI: 10.1016/j.ijbiomac.2024.133607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Protein emulsions' poor physical and oxidative stabilities restrict their use in functional foods. Soy protein isolate (SPI) emulsions' physical stability was enhanced by adding young apple polyphenols (YAP) in this study, but decreased when YAP was 0.12%. YAP binding prefolded SPI's structure, which promotes efficient SPI stacking at the interface. YAP also improved SPI emulsions' oxidation resistance in a dose-dependent manner. SPI-YAP interaction promoted more YAP adsorption (>80%) at the interface, which increased emulsions' antioxidant capacities twofold. Furthermore, over 90% of unsaturated fatty acids were preserved, and the oxidation of lipid-SPI-β-carotene appeared to be reduced as YAP increased. In addition, SPI-YAP emulsions were effective in encapsulating and safeguarding β-carotene during emulsion storage and in vitro digestion, leading to a delayed and maximum release of β-carotene. This study improves the understanding of polyphenols inhibition on lipid-protein oxidation through interface strengthening and broadens the potential applications of YAP and SPI in functional foods.
Collapse
Affiliation(s)
- Tian Gong
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhichao Song
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Shuai Zhang
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yonghong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yurong Guo
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| |
Collapse
|
3
|
Wang L, Wang H, Liu D, Han Z, Fan J. A review of the polyphenols purification from apple products. Crit Rev Food Sci Nutr 2024; 64:7397-7407. [PMID: 36876502 DOI: 10.1080/10408398.2023.2185199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Apple polyphenols are one of the major bioactive compounds in apple products and have strong anti-inflammatory effects and the ability to prevent chronic diseases with health benefits. The development of apple polyphenol products is dependent on the extraction, purification and identification of apple polyphenols. The extracted polyphenols need to be further purified to improve the concentration of the extracted polyphenols. This review, therefore, presents the studies on the conventional and novel methods for polyphenols purification from apple products. The different chromatography methods, as one of the most widely used conventional purification methods, for polyphenol purification from various apple products are introduced. In addition, the perspective of the adsorption-desorption process and membrane filtration technique in enhancing the purification of polyphenols from apple products are presented in this review. The advantages and disadvantages of these purification techniques are also discussed and compared in depth. However, each of the reviewed technologies has some disadvantages that need to be overcome, and some mechanisms need to be further identified. Therefore, more competitive polyphenols purification techniques need to emerge in the future. It is hoped that this review can provide a research basis for the efficient purification of apple polyphenols, which can facilitate their application in various fields.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Research Institute, Jilin University, Yibin, People's Republic of China
| | - Hanyue Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
4
|
Fang J, Jiang P, Wang X, Qi Z, He X, Chen L, Guo Y, Xu X, Liu R, Li D. Thinned young apple powder prevents obesity-induced neuronal apoptosis via improving mitochondrial function of cerebral cortex in mice. J Nutr Biochem 2024; 126:109588. [PMID: 38266689 DOI: 10.1016/j.jnutbio.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Mitochondrial dysfunction is one of the triggers for obesity-induced neuron apoptosis. Thinned young apple is getting more attention on account of the extensive biological activities because of rich polyphenols and polysaccharides. However, the neuroprotective effect of thinned young apple powder (YAP) is still unclear. The aim of the present study was to investigate the preventive effect of YAP on obesity-induced neuronal apoptosis. C57BL/6J male mice were divided into 5 groups, control (CON), high fat diet (HFD), HFD + orlistat (ORL), HFD + low-dose young apple powder (LYAP) and HFD + high-dose young apple powder (HYAP) groups and intervened for 12 weeks. It was found that the YAP effectively reduced body weight gain. Importantly, the levels of pro-apoptosis protein were lower in LYAP and HYAP groups than the HFD group, such as Bak/Bcl2 and cleaved caspase3/caspase3. Pathway analysis based on untargeted metabolomics suggested that YAP alleviated obesity-induced neuronal apoptosis by three main metabolic pathway including arginine metabolism, citrate cycle (TCA cycle) and glutathione metabolism. Meanwhile, YAP improved the protein expression of mitochondrial respiratory chain complex, maintained the homeostasis of TCA cycle intermediates, protected the balance of mitochondrial dynamics and alleviated lipid accumulation. In addition, the levels of several antioxidants in cerebral cortex were higher in HYAP group than the HFD group like superoxide dismutase (SOD) and catalase (CAT). In summary, YAP supplementation suppressed neuronal apoptosis in the cerebral cortex of HFD-induced obesity mice by improving mitochondrial function and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jiacheng Fang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Peng Jiang
- Red Cross Maternity and Child Health Care Hospital of Jiaozhou, Qingdao, China
| | - Xincen Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Zhongshi Qi
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public health and Emergency management, Southern University of Science and Technology, ShenZhen, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaoyun Xu
- Red Cross Maternity and Child Health Care Hospital of Jiaozhou, Qingdao, China
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Xia S, Yu H, Qiu Y, Zhao Y, Li H, Zhang J, Zhu J. A novel curdlan/methyl cellulose/walnut green husk polyphenol edible composite film for walnut packaging. Int J Biol Macromol 2024; 261:129505. [PMID: 38232883 DOI: 10.1016/j.ijbiomac.2024.129505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
In this study, polyphenols were extracted from walnut green husk, an agricultural waste, and were incorporated into curdlan (CD) and methyl cellulose (MC) to create a novel edible composite film. For structural character, the film matrix was tightly bound primarily by non-covalent bonds and the addition of walnut green husk polyphenols (WGHP) significantly reduced the surface roughness of the composite film. For mechanical properties, the addition of WGHP improve the flexibility of films, and it significantly improved the barrier ability of ultraviolet rays and water-vapor. Furthermore, the incorporation of WGHP to the CD-MC film resulted in enhanced antioxidant and antibacterial effects, which effectively retards lipid oxidation in fried walnuts. Consequently, the fabricated CD-MC-WGHP composite film bears immense potential for use in food preservation applications, particularly in extending the shelf life of fried walnuts.
Collapse
Affiliation(s)
- Shengyao Xia
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huilin Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Qiu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Honghao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
6
|
Ni T, Zhang S, Rao J, Zhao J, Huang H, Liu Y, Ding Y, Liu Y, Ma Y, Zhang S, Gao Y, Shen L, Ding C, Sun Y. Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism. Molecules 2024; 29:741. [PMID: 38338482 PMCID: PMC10856272 DOI: 10.3390/molecules29030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Phlorizin, as a flavonoid from a wide range of sources, is gradually becoming known for its biological activity. Phlorizin can exert antioxidant effects by regulating the IL-1β/IKB-α/NF-KB signaling pathway. At the same time, it exerts its antibacterial activity by reducing intracellular DNA agglutination, reducing intracellular protein and energy synthesis, and destroying intracellular metabolism. In addition, phlorizin also has various pharmacological effects such as antiviral, antidiabetic, antitumor, and hepatoprotective effects. Based on domestic and foreign research reports, this article reviews the plant sources, extraction, and biological activities of phlorizin, providing a reference for improving the clinical application of phlorizin.
Collapse
Affiliation(s)
- Tongjia Ni
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Jia Rao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Jiaqi Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Haiqi Huang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Ying Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yue Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yaqian Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yuchi Ma
- Jilin Aodong Health Technology Co., Ltd., Yanbian 133700, China;
| | - Shoujun Zhang
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China;
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.G.); (L.S.)
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.G.); (L.S.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
- Jilin Aodong Health Technology Co., Ltd., Yanbian 133700, China;
| | - Yunpeng Sun
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| |
Collapse
|
7
|
Meng L, Chen Y, Zheng Z, Wang L, Xu Y, Li X, Xiao Z, Tang Z, Wang Z. Ultrasound-Assisted Extraction of Paeonol from Moutan Cortex: Purification and Component Identification of Extract. Molecules 2024; 29:622. [PMID: 38338367 PMCID: PMC10856641 DOI: 10.3390/molecules29030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Moutan Cortex (MC) is a traditional Chinese medicine that contains abundant medicinal components, such as paeonol, paeoniflorin, etc. Paeonol is the main active component of MC. In this study, paeonol was extracted from MC through an ultrasound-assisted extraction process, which is based on single-factor experiments and response surface methodology (RSM). Subsequently, eight macroporous resins of different properties were used to purify paeonol from MC. The main components of the purified extract were identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS/MS). The results indicate the optimal parameters are as follows: liquid-to-material ratio 21:1 mL/g, ethanol concentration 62%, ultrasonic time 31 min, ultrasonic temperature 36 °C, ultrasonic power 420 W. Under these extraction conditions, the actual yield of paeonol was 14.01 mg/g. Among the eight tested macroporous resins, HPD-300 macroporous resin was verified to possess the highest adsorption and desorption qualities. The content of paeonol increased from 6.93% (crude extract) to 41.40% (purified extract) after the HPD-300 macroporous resin treatment. A total of five major phenolic compounds and two principal monoterpene glycosides were characterized by comparison with reference compounds. These findings will make a contribution to the isolation and utilization of the active components from MC.
Collapse
Affiliation(s)
- Ling Meng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yan Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Lei Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yahui Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiujun Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zhijian Xiao
- Shandong Wake Fresh Food Technology Co., Ltd., Taian 271400, China
| | - Zheng Tang
- Shandong Wake Fresh Food Technology Co., Ltd., Taian 271400, China
| | - Zhaosheng Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
8
|
Luo QJ, Zhou WC, Liu XY, Li YJ, Xie QL, Wang B, Liu C, Wang WM, Wang W, Zhou XD. Chemical Constituents and α-Glucosidase Inhibitory, Antioxidant and Hepatoprotective Activities of Ampelopsis grossedentata. Molecules 2023; 28:7956. [PMID: 38138447 PMCID: PMC10745659 DOI: 10.3390/molecules28247956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ampelopsis grossedentata is a valuable medicinal and edible plant, which is often used as a traditional tea by the Tujia people in China. A. grossedentata has numerous biological activities and is now widely used in the pharmaceutical and food industries. In this study, two new flavonoids (1-2) and seventeen known compounds (3-19) were isolated and identified from the dried stems and leaves of A. grossedentata. These isolated compounds were characterized by various spectroscopic data including mass spectrometry and nuclear magnetic resonance spectroscopy. All isolates were assessed for their α-glucosidase inhibitory, antioxidant, and hepatoprotective activities, and their structure-activity relationships were further discussed. The results indicated that compound 1 exhibited effective inhibitory activity against α-glucosidase, with an IC50 value of 0.21 μM. In addition, compounds 1-2 demonstrated not only potent antioxidant activities but also superior hepatoprotective properties. The findings of this study could serve as a reference for the development of A. grossedentata-derived products or drugs aimed at realizing their antidiabetic, antioxidant, and hepatoprotective functions.
Collapse
Affiliation(s)
- Qu-Jing Luo
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Wen-Chao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Xin-Yi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Ya-Jie Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Qing-Ling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Bin Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Chao Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
- Zhangjiajie Meicha Technology Research Center, Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427099, China
| | - Wen-Mao Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
- Zhangjiajie Meicha Technology Research Center, Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427099, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.-J.L.); (W.-C.Z.); (X.-Y.L.); (Y.-J.L.); (Q.-L.X.); (B.W.); (C.L.); (W.-M.W.)
| |
Collapse
|
9
|
Zhang Y, Yu Q, Liu Y, Sun X, Li Q, Fan H, Benjakul S, Tan Y, Luo Y, Hong H. Dual cryoprotective and antioxidant effects of young apple polyphenols on myofibrillar protein degradation and gelation properties of bighead carp mince during frozen storage. J Food Sci 2023; 88:4560-4573. [PMID: 37815500 DOI: 10.1111/1750-3841.16781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Commercial cryoprotectants can delay quality loss in frozen fish mince, but they are associated with a sweet taste and high calorie content. Young apple polyphenols (YAP), extracted from unripe apples, show potential as an alternative cryoprotectant. This study evaluated the cryoprotective effect of YAP at varying levels (0.3%, 0.7%, and 1%) in unwashed bighead carp mince. The changes in sulfhydryl content, carbonyl content, thiobarbituric acid reactive substances, intrinsic fluorescence intensity, and Fourier transform infrared spectrum indicated that YAP retarded oxidation and structural changes in myofibrillar proteins during the first 8 weeks of frozen storage, as well as lipid oxidation, which protected the structure of myofibrillar protein. At higher concentrations (0.7% and 1%), YAP maintained gel properties, gel springiness, and water-holding capacity of the gel prepared from frozen fish mince, potentially through the promotion of cross-linking of myofibrillar proteins. Overall, YAP can be used as a cryoprotectant and antioxidant in fish mince. PRACTICAL APPLICATION: Our research found that young apple polyphenols have the potential to be an alternative to commercial cryoprotectants. Young apple polyphenols may be used as a sugar-free and healthy cryoprotectant for frozen fish mince production in the future.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoyue Sun
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongbing Fan
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Meng Y, Sui X, Pan X, Yang Y, Sui H, Xu T, Zhang H, Liu T, Liu J, Ge P. An integrated process by ultrasonic enhancement in the deep eutectic solvents system for extraction and separation of chlorogenic acid from Eucommia ulmoides leaves. ULTRASONICS SONOCHEMISTRY 2023; 99:106588. [PMID: 37690261 PMCID: PMC10498307 DOI: 10.1016/j.ultsonch.2023.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
This study established an integrated process for the extraction and enrichment of chlorogenic acid(CGA)from Eucommia ulmoides leaves in a deep eutectic solvent system via ultrasonic wave-enhanced adsorption and desorption practices utilizing macroporous resins. Although deep eutectic solvents (DESs) have the advantages of chemical stability, good dissolving capacity, and nonvolatilization, routine solvent recovery operations are not suitable for subsequent separation in this solvent system. Based on the above characteristics, this study integrated the extraction and enrichment processes, in which DESs extracts directly loaded onto the macroporous adsorption resin, avoiding the loss of target components in solvent recovery and redissolution processes. The screening results of solvents and resin types further showed that choline chloride-malic acid (1:1) was the optimal DES, and the NKA-II resin had high adsorption and elution performance for CGA. The viscosities of the DESs were much higher than those of water and conventional organic solvents; thus, the mass transfer resistance was large, which could also affect the adsorption behaviour of the macroporous resin. The thermal and mechanical effects of ultrasound could effectively enhance the efficiency of the mass transfer, adsorption, and desorption in the DES systems. When compared to no sonication treatment, the CGA adsorption at various ultrasonic powers (120-600 W) was examined. At optimal ethanol concentration (60%), the effect of the ultrasonic treatment on the recovery of the DESs (water eluting process) and the desorption capability of CGA were confirmed. The use of three volumes of water elution could recover the DESs without loss of CGA. The adsorption process significantly differed depending on the ultrasonic settings, and the absorption balance time and experimental adsorption capacity at equilibrium were enhanced. Additionally, the adsorption procedure of the NKA-II macroporous resin for CGA under ultrasonic treatment could be clarified by the pseudo second order kinetic equation and the Freundlich isotherm model. Thermodynamic and dynamic parameters indicated that physical adsorption was the main process of the entire procedure, and it was a spontaneous, exothermic, and entropy-reducing physical adsorption process. This study potentially indicates that the use of ultrasonication, as a high-efficiency, environmentally friendly method, can enhance the features of the macroporous resin to better purify target chemicals from a DES extract.
Collapse
Affiliation(s)
- Yue Meng
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xu Pan
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Ying Yang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Huimin Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tao Xu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China; Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, 150040 Harbin, China.
| | - Jicheng Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Pengling Ge
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| |
Collapse
|
11
|
Li Y, Li X, Wang X, Xue J, Zhang R, Ding Y, Chu X, Su J. Study on Extraction and Purification of Acanthopanax senticosus Polyphenols by an Ionic Liquid-Assisted Aqueous Two-Phase System. Molecules 2023; 28:6383. [PMID: 37687211 PMCID: PMC10490139 DOI: 10.3390/molecules28176383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to extract and purify polyphenols from Acanthopanax senticosus. A new green method was developed, in which ionic liquids (ILs) were used as aqueous two-phase (ATP) adjuvants to extract the polyphenols from A. senticosus. An ionic liquid-assisted aqueous two-phase system (IL-ATPS) was established. The purification of the polyphenols from the extraction fluid by AB-8 macroporous resin was conducted, and the kinetic mechanisms were studied. The reuse of ionic liquids was executed. The results showed that an [OMIM]Br-assisted ethanol/NaH2PO4 system (IL-ATPS) was the best extraction solvent. In this study, the following optimal extraction conditions were determined: 32 wt.% ethanol, 25 wt.% NaH2PO4, 9 wt.% additional ionic liquid, a solid-liquid ratio of 1:40 g/mL, an extraction temperature of 50 °C, a pH of 4.0, an extraction time of 50 min, and an extraction rate of the polyphenols at 15.90 mg/g. The optimum adsorption parameters of the macroporous resin AB-8 were as follows: a flow rate of 3.5 BV·h-1, a sample volume of 40 mL, an elution flow rate of 3.5 BV·h-1, an eluent volume of 80 mL, and an eluant that was constituted by an 85% volume fraction of ethanol. The decolorization effect of 4% activated carbon was better than the other amounts; in addition, a decolorization rate of 76.81% and an ionic liquid recovery rate of 81.12% were found to be the most optimal. Compared with the traditional extraction methods, IL-ATPS has the advantages of requiring simple operation, saving time, and high efficiency. In addition, it can be used for the extraction of the polyphenolic compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuling Chu
- Shandong Provincial Institute of Chinese Veterinary Medicine, Liaocheng University, Liaocheng 252000, China; (Y.L.); (X.L.); (X.W.); (J.X.); (R.Z.); (Y.D.)
| | - Jianqing Su
- Shandong Provincial Institute of Chinese Veterinary Medicine, Liaocheng University, Liaocheng 252000, China; (Y.L.); (X.L.); (X.W.); (J.X.); (R.Z.); (Y.D.)
| |
Collapse
|
12
|
Yang J, Wu L, Wang T, Zhao Y, Zheng X, Liu Y. An Integrated Extraction-Purification Process for Raspberry Leaf Polyphenols and Their In Vitro Activities. Molecules 2023; 28:6321. [PMID: 37687149 PMCID: PMC10489654 DOI: 10.3390/molecules28176321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
To improve the utilization value of raspberry leaves, the extraction and purification conditions of phenolic compounds from raspberry leaves were optimized, and the contents of phenolic compounds and the biological activities of extracts were studied. After steam explosion pretreatment at 115 °C for 15 min, raspberry leaf extract with a total phenolic content (TPC) of 136.30~140.51 mg GAE/g was obtained via homogenization and ultrasound-assisted extraction. In addition, the adsorption relationship between raspberry leaf polyphenols and middle polar XDA-6 macroporous resin was best described by the Langmuir model, and tended to be monolayer adsorption. Its adsorption kinetics best resembled the pseudo second-order kinetic model, and it was speculated that this was influenced by multiple factors. According to the optimal integrated extraction-purification process, the TPC of the extracts increased to 738.98 mg GAE/g after one application of purification and 905.27 mg GAE/g after two applications of purification. Moreover, the latter case showed the highest antioxidant activity and α-glucosidase inhibition activity, and the content of the most typical compound, quercetin-3-glucuronide, reached 199.69 mg/g. SE has a double-edged effect, and is more conducive to the release of active substances as a pre-treatment method. This study provides a theoretical basis for the efficient use of raspberry leaves, further improving their medicinal and economic value.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (L.W.); (T.W.); (Y.Z.); (X.Z.); (Y.L.)
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou 533034, China
- Shanxi Jingxi Biotechnology Co., Ltd., Taiyuan 030051, China
| | - Liyang Wu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (L.W.); (T.W.); (Y.Z.); (X.Z.); (Y.L.)
| | - Tao Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (L.W.); (T.W.); (Y.Z.); (X.Z.); (Y.L.)
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou 533034, China
| | - Yiqing Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (L.W.); (T.W.); (Y.Z.); (X.Z.); (Y.L.)
| | - Xiaoqian Zheng
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (L.W.); (T.W.); (Y.Z.); (X.Z.); (Y.L.)
| | - Yongping Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (L.W.); (T.W.); (Y.Z.); (X.Z.); (Y.L.)
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou 533034, China
| |
Collapse
|
13
|
Chao Song Z, Zhang H, Fei Niu P, Shi LS, Yan Yang X, Hong Meng Y, Yu Wang X, Gong T, Rong Guo Y. Fabrication of a novel antioxidant emulsifier through tuning the molecular interaction between soy protein isolates and young apple polyphenols. Food Chem 2023; 420:136110. [PMID: 37105086 DOI: 10.1016/j.foodchem.2023.136110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Soy protein isolates (SPI) exhibit weaker emulsifying properties than those of animal proteins, thereby limiting their wide applicability. In this study, a novel plant-based antioxidant emulsifier was developed using SPI and young apple polyphenols (YAP), and its underlying interaction mechanisms were discovered using multispectral technology and molecular docking. YAP physically bound to SPI through hydrogen bonds and hydrophobic interactions, which significantly enhanced the free radicals scavenging, reducing, and metal ion chelating abilities of SPI by introducing free hydroxyl groups. Moreover, SPI modified by YAP exerted better emulsifying performance owing to a looser protein structure, reflected by a higher random coil and a lower α-helix content. In addition, YAP may bridge adjacent SPI molecules, promoting the adsorption and anchoring of SPI at the oil-water interface. SPI-YAP complexes are promising antioxidant emulsifiers that can be used to nano-deliver functional oils and nutrients, thereby broadening SPI and YAP applications in the food industry.
Collapse
Affiliation(s)
- Zhi Chao Song
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Huan Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Peng Fei Niu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Xiao Yu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| | - Yu Rong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| |
Collapse
|
14
|
Ma Q, Gao J, Fan Q, Yang T, Zhao Z, Zhang S, Hu R, Cui L, Liang B, Xie X, Liu J, Long J. Thinned young apple polyphenols may prevent neuronal apoptosis by up-regulating 5-hydroxymethylcytosine in the cerebral cortex of high-fat diet-induced diabetic mice. Food Funct 2023; 14:3279-3289. [PMID: 36929718 DOI: 10.1039/d2fo03281c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Apple polyphenols exert neuroprotective effects by improving the mitochondrial tricarboxylic acid (TCA) cycle function, but the details of their mechanisms are still not fully understood. TCA cycle metabolites regulate the level of 5-hydroxymethylcytosine (5hmC) by affecting the ten-eleven translocation (TET) enzyme activity. Therefore, we hypothesized that thinned young apple polyphenols (TYAPs) inhibit neuronal apoptosis by up-regulating the level of 5hmC in the cerebral cortex of high-fat diet-induced diabetic mice. C57BL/6J mice were randomly divided into 5 groups (n = 10 each group): the control (CON) group, the high-fat diet (HFD, negative control) group, the lovastatin (LOV, positive drug control) group, the resveratrol (RES, positive polyphenol control) group and the TYAP group during an eight-week intervention. The presented results verified that in the HFD group, the level of 5hmC and the expression of TET2 in the cerebral cortex were significantly lower, and the ratio of (succinic acid + fumaric acid)/α-ketoglutarate and the neuronal apoptosis rate were significantly higher than those in the CON group. However, TYAP intervention effectively restored the level of 5hmC through up-regulating the expression and activity of TET2, so as to improve diabetes symptoms and prevent diabetes-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Qingqing Ma
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Qiang Fan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Tao Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Zhuang Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Li Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Bing Liang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiuying Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| |
Collapse
|
15
|
Mikucka W, Witońska I, Zielińska M, Bułkowska K, Binczarski M. Concept for the valorization of cereal processing waste: Recovery of phenolic acids by using waste-derived tetrahydrofurfuryl alcohol and biochar. CHEMOSPHERE 2023; 313:137457. [PMID: 36470358 DOI: 10.1016/j.chemosphere.2022.137457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Valorization of agro-food waste by converting it into a renewable resource plays a crucial role in a bio-based circular economy. Therefore, this study was designed to evaluate the suitability of distillery stillage (DS), which comes from alcohol production from cereals, for producing value-added products that can be used synergistically. The main objective was to investigate the usefulness of two substances for the recovery of phenolic acids, which have antioxidant activity, from the liquid fraction of DS: namely, tetrahydrofurfuryl alcohol (THFA) as a solvent and biochar as an adsorbent, both produced from the solid fraction of cereal processing waste. The effect of THFA concentration (80 and 100%) on phenolic acid yield in ultrasound-assisted extraction was studied. The solubilization predictions of phenolic compounds by the Hansen solubility parameters were in accordance with the experimental results: the yield of phenolic acids in the extracts was highest (3.76 μg g-1 dry mass) with 80% THFA. Among the extracted phenolic acids, hydroxycinnamic acids predominated over hydroxybenzoic acids, which may affect the bioactive properties of the extracts and their future applications for industrial purposes. Phenolic acids from the extracts were adsorbed on 17-170 g biochar L-1 and desorbed into water at 40-60 °C. The phenolic acid recovery was highest (∼92%) when the biochar dose was 85 g L-1 and when desorption was performed at 50 °C. After adsorption/desorption, ∼95% of the antioxidant activity of the phenolic acids in the extracts was maintained. As biochar has a smaller specific surface area than commercial powdered activated carbon (PAC), the biochar dose should be about 5 times higher than an equivalent PAC dose for adsorption efficiency above 90%.
Collapse
Affiliation(s)
- Wioleta Mikucka
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Izabela Witońska
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bułkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Michał Binczarski
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| |
Collapse
|
16
|
Cheng C, Liu P, Zhao P, Du G, Wang S, Liu H, Cao X, Zhao Q, Wang X. Developing novel oenological tannins from 44 plants sources by assessing astringency and color in model wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1499-1513. [PMID: 36189836 DOI: 10.1002/jsfa.12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Oenological tannins are commercial natural products extracted from different botanical sources, which were widely reported as prominent contributors to wine quality. Research on wine quality affected by tannins extracts promoted the development of new oenological products with low cost and high accessibility. In the present study, the structure and concentration of tannin in polyphenol extracts, as well as their correlation with astringency and the color of model wine, was investigated by UV spectrophotometer, HPLC, fluorescence quenching, sodium dodecylsulfate-polyacrylamide gel electrophoresis, colorimeter and sensory evaluation. RESULTS Resource extracts from 16 of 44 plants were screened as wine oenological tannins, according to the total polyphenol and total flavanol, as well as the intensity of astringency and bitterness. Polyphenols extracted from grape seeds and green tea were more effective in increasing the wine astringency compared to other plant tannins. CONCLUSION Total flavanol content and tannin activity showed a strong correlation with wine astringency. Condensed tannins with mean degree of polymerization also exhibited strong color stability, and the concentrations of (-)-epigallocatechin were associated with the a* value, a negative qualitative factor for wine color. The present study provides new clues regarding the development of low-cost and highly accessible sources of polyphenol extracts and lays a theoretical foundation for the development of the oenological product. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyaqiong Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Pei Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Guorong Du
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Hui Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaomeng Cao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Qinghao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
17
|
Yu C, Li S, Zhang X, Ma A, Cao Z, Qi G, Guo S, tian Y. Purification and ultra-high-performance liquid chromatography tandem mass spectrometry analysis of phenolics extracted from male walnut flowers. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Chenchen Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shengyun Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhixiang Cao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Yiling tian
- Institute of Walnut Industry Technology, Xingtai, China
- Research Center for Walnut Engineering and Technology of Hebei
| |
Collapse
|
18
|
Gao L, Gou N, Amakye WK, Wu J, Ren J. Bioactivity guided isolation and identification of phenolic compounds from Citrus aurantium L. with anti-colorectal cancer cells activity by UHPLC-Q-TOF/MS. Curr Res Food Sci 2022; 5:2251-2260. [DOI: 10.1016/j.crfs.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/19/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
|
19
|
Preparation of edible starch nanomaterials for the separation of polyphenols from fruit pomace extract and determination of their adsorption properties. Int J Biol Macromol 2022; 222:2054-2064. [DOI: 10.1016/j.ijbiomac.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
20
|
Zhang L, Ren Y, Meng F, Bao H, Xing F, Tian C. Verification of the Protective Effects of Poplar Phenolic Compounds Against Poplar Anthracnose. PHYTOPATHOLOGY 2022; 112:2198-2206. [PMID: 35578737 DOI: 10.1094/phyto-12-21-0509-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poplar anthracnose caused by Colletotrichum gloeosporioides is one of the most important diseases widely distributed in poplar-growing areas in China, causing serious economic and ecological losses. In this study, three poplar species showed different resistance to poplar anthracnose: Populus × canadensis was resistant, Populus tomentosa was susceptible, and P. × beijingensis showed intermediate resistance. However, it remains uncertain whether phenolic compounds in poplar are involved in this resistance. Therefore, we determined the concentrations of phenolic compounds and their antifungal activity. Before and after the C. gloeosporioides inoculation, 20 phenolic compounds were detected in P. × canadensis and the number increased from 12 to 14 in P. × beijingensis but decreased from seven to four in P. tomentosa. Thus, phenolic compounds may be positively correlated with the degree of disease resistance. We selected seven phenolic compounds for further analysis, which varied considerably in content after inoculation with C. gloeosporioides. These seven compounds were salicin, arbutin, benzoic acid, salicylic acid, chlorogenic acid, ferulic acid, and naringenin, which helped poplar trees to limit the growth of C. gloeosporioides and differed in their antifungal effects, with phenolic acids having the strongest inhibitory effect. In addition, the optimal concentrations of different substances varied. We demonstrate that these phenolic compounds produced by poplar do play a certain role in the process of poplar resistance to anthracnose. These findings lay a foundation for future research into the antifungal mechanism of poplar trees and may be useful for enhancing the prevention and control of poplar anthracnose.
Collapse
Affiliation(s)
- Linxuan Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yue Ren
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Fanli Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Hangbin Bao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Fei Xing
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
21
|
Polyphenols from Thinned Young Apples: HPLC-HRMS Profile and Evaluation of Their Anti-Oxidant and Anti-Inflammatory Activities by Proteomic Studies. Antioxidants (Basel) 2022; 11:antiox11081577. [PMID: 36009298 PMCID: PMC9405250 DOI: 10.3390/antiox11081577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The qualitative profile of thinned apple polyphenols (TAP) fraction (≈24% of polyphenols) obtained by purification through absorbent resin was fully investigated by LC-HRMS in positive and negative ion mode and using ESI source. A total of 68 polyphenols were identified belonging to six different classes: flavanols, flavonols, dihydrochalchones, flavanones, flavones and organic and phenolic acids. The antioxidant and anti-inflammatory activities were then investigated in cell models with gene reporter for NRF2 and NF-κB and by quantitative proteomic (label-free and SILAC) approaches. TAP dose-dependently activated NRF2 and in the same concentration range (10–250 µg/mL) inhibited NF-κB nuclear translocation induced by TNF-α and IL-1α as pro-inflammatory promoters. Proteomic studies elucidated the molecular pathways evoked by TAP treatment: activation of the NRF2 signaling pathway, which in turn up-regulates protective oxidoreductases and their nucleophilic substrates such as GSH and NADPH, the latter resulting from the up-regulation of the pentose phosphate pathway. The increase in the enzymatic antioxidant cellular activity together with the up-regulation of the heme-oxygenase would explain the anti-inflammatory effect of TAP. The results suggest that thinned apples can be considered as a valuable source of apple polyphenols to be used in health care products to prevent/treat oxidative and inflammatory chronic conditions.
Collapse
|
22
|
Purification and Identification of Flavonoid Molecules from Rosa setate x Rosa rugosa Waste Extracts and Evaluation of Antioxidant, Antiproliferative and Antimicrobial Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144379. [PMID: 35889252 PMCID: PMC9323010 DOI: 10.3390/molecules27144379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Rosa setate x Rosa rugosa is widely used in the essential oil industry and generates large amounts of waste annually. The purpose of this research is the recycling of bioactive flavonoids from rose waste biomass to develop high-value products. Resin screening and adsorption/desorption dynamic analysis showed that HP20 resin was suitable to purify the flavonoids from R. setate x R. rugosa waste extracts. Under the optimal enrichment process, the product had a 10.7-fold higher purity of flavonoids with a satisfactory recovery of 82.02%. In total, 14 flavonoids were identified in the sample after purification by UHPLC-QTOF-MS. Moreover, the DPPH and ABTS assays revealed that the flavonoids-purified extracts exhibited higher antioxidant activities than the crude extracts. Meanwhile, the purified extracts presented stronger antiproliferative activity against HepG2, Caco-2, MCF-7 and A549 cell lines. The bacteriostatic effects of the purified extracts against four bacteria (Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Staphylococcus epidermidis (S. epidermidis), Pseudomonas aeruginosa (P. aeruginosa)) and yeast (Candida albicans (C. albicans)) were stronger compared with the crude extracts. It was concluded that flavonoids-enriched extracts from R. setate x R. rugosa waste had the potential to be applied in functional food and pharmaceutical industries.
Collapse
|
23
|
Adsorption of Polyphenols from Almond Blanching Water by Macroporous Resin. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:7847276. [PMID: 35847429 PMCID: PMC9277471 DOI: 10.1155/2022/7847276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022]
Abstract
The almond processing industry generates large volumes of effluent after the blanching process. Blanching water is one of the main by-products with a potential source of polyphenols. However, before being used or discharged, this by-product requires pretreatment. This work was aimed at paving the way toward using adsorption on XAD-7 HP macroporous resin for wastewater treatment. This promising technique could be easily scaled up and integrated into existing production lines. Adsorption was carried out with a fixed bed in counterflow, while desorption was performed by acetone in downflow. With this approach, it was possible to concentrate up to five times the phenolic content of the initial blanching water. The resulting extract was analyzed by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), identifying more than 89% procyanidins, in addition to catechin, epicatechin, and isorhamnetin-3-O-rutinoside. Applications such as spray-drying and prilling techniques were suggested to improve the efficiency of polyphenols by preserving their stability, bioactivity, and bioavailability.
Collapse
|
24
|
Yan B, Chen L, Wang Y, Zhang J, Zhao H, Hua Q, Pei S, Yue Z, Liang H, Zhang H. Preventive Effect of Apple Polyphenol Extract on High-Fat Diet-Induced Hepatic Steatosis in Mice through Alleviating Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3172-3180. [PMID: 35227062 DOI: 10.1021/acs.jafc.1c07733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, the protective effect of apple polyphenol extract (APE) on hepatic steatosis was investigated. Thirty-two C57BL/6J mice were assigned randomly to control group, hepatic steatosis group, lovastatin group, and APE group. After 8 weeks of intervention, APE supplementation markedly decreased the body weight gain, liver weight, liver index, epididymal adipose weight, epididymal adipose index, serum, and hepatic lipid levels. Hematoxylin and eosin staining revealed that APE supplementation alleviated histopathological changes of hepatic steatosis. Western blot revealed that APE downregulated the protein levels of GRP78, IRE1α, p-IRE1α, XBP1, PERK, p-PERK, p-eIF2α, ATF6, PPAR-γ, SREBP-1c, FAS, and ACC1. In conclusion, this study found that APE inhibited IRE1α-XBP1, PERK-eIF2α, and ATF6 signaling pathways to alleviate endoplasmic reticulum stress, thereby improving HFD-induced hepatic steatosis.
Collapse
Affiliation(s)
- Bei Yan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lei Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qinglian Hua
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shengjie Pei
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zihang Yue
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
25
|
Li D, Yang Y, Yang X, Wang Z, Yao X, Guo Y. Enhanced bioavailability and anti-hyperglycemic activity of young apple polyphenols by complexation with whey protein isolates. J Food Sci 2022; 87:1257-1267. [PMID: 35166381 DOI: 10.1111/1750-3841.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/01/2022]
Abstract
This study aims to evaluate the effects of complexation of whey protein isolate (WPI) and young apple polyphenols (YAP) on the bioavailability and anti-hyperglycemic activity of YAP. Two types of WPI-YAP complexes were fabricated by mixing WPI with YAP at 25℃ (WPI-YAP) and 90℃ (WPI-YAP-H), respectively. The intermolecular interactions between WPI and YAP were investigated by fluorescence spectroscopy and circular dichroism analyses. The in vitro bioaccessibility and bioavailability of YAP were determined using a simulated gastrointestinal digestion and human Caco-2 cells model. It was found that the total polyphenols transport efficiency was improved from 39.8% (YAP) to 48.2% (WPI-YAP) and 56.1% (WPI-YAP-H), indicating that the bioavailability of YAP was improved by complexation with WPI. Besides, after complexation with WPI, YAP displayed an improved in vivo effect on alleviating the increase in postprandial blood glucose level than the pure YAP, with WPI-YAP-H showing a better effect. This finding indicates that co-complexation of YAP with WPI is an effective way to improve the functionality of YAP, and the WPI-YAP complexes are also expected to have potential application in designing YAP-containing functional foods. PRACTICAL APPLICATION: The research provided a method to improve the bioavavibility of polyphenols, and the WPI-YAP complex can be developed in designing polyphenols related functional foods.
Collapse
Affiliation(s)
- Dan Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China.,School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, People's Republic of China
| | - Yongli Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Xi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Zichao Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, People's Republic of China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China.,Engineering Research Center of High Value Utilization of Western China Fruit resources, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
26
|
Meng X, Wang X, Han YL, He X, Zhao P, Zhang J, Sun Y, Chen L, Gao T, Duo L. Protective effects of apple polyphenols on bone loss in mice with high fat diet-induced obesity. Food Funct 2022; 13:8047-8055. [DOI: 10.1039/d2fo01332k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity-induced inflammation can lead to an imbalance in bone formation and resorption. Our previous studies have demonstrated that apple polyphenols (AP) can reduce body weight and inflammation. But its effect...
Collapse
|
27
|
Lab Scale Extracted Conditions of Polyphenols from Thinned Peach Fruit Have Antioxidant, Hypoglycemic, and Hypolipidemic Properties. Foods 2021; 11:foods11010099. [PMID: 35010225 PMCID: PMC8750482 DOI: 10.3390/foods11010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Thinned peach polyphenols (TPPs) were extracted by ultrasonic disruption and purified using macroporous resin. Optimized extraction conditions resulted in a TPPs yield of 1.59 ± 0.02 mg GAE/g FW, and optimized purification conditions resulted in a purity of 43.86% with NKA-9 resin. TPPs composition was analyzed by UPLC-ESI-QTOF-MS/MS; chlorogenic acid, catechin, and neochlorogenic acid were the most abundant compounds in thinned peaches. Purified TPPs exhibited scavenging activity on DPPH, ABTS, hydroxyl radical, and FRAP. TPPs inhibited α-amylase and α-glucosidase by competitive and noncompetitive reversible inhibition, respectively. TPPs also exhibited a higher binding capacity for bile acids than cholestyramine. In summary, TPPs from thinned peaches are potentially valuable because of their high antioxidant, hypoglycemic, and hypolipidemic capacities, and present a new incentive for the comprehensive utilization of thinned peach fruit.
Collapse
|
28
|
Niu P, Wang F, Yuan K, Li X, Yang X, Guo Y. Alkaline-extracted thinned young apple polyphenols as an effective scavenger against nitrite in pickles: A comparative study with ethanol-extracted polyphenols. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Cui J, Zeng S, Zhang C. Anti‐hyperglycaemic effects of Burdock (
Arctium lappa L
.) leaf flavonoids through inhibiting α‐amylase and α‐glucosidase. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jue Cui
- School of Food and Biological Engineering Xuzhou University of Technology Xuzhou 221000 China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe Xuzhou Institute of Technology Xuzhou 221000 China
| | - Siman Zeng
- School of Food and Biological Engineering Xuzhou University of Technology Xuzhou 221000 China
| | - Chuyun Zhang
- School of Food and Biological Engineering Xuzhou University of Technology Xuzhou 221000 China
| |
Collapse
|
30
|
Fu Y, Zhang Y, Zhang R. Purification and antioxidant properties of triterpenic acids from blackened jujube (Ziziphus jujuba Mill.) by macroporous resins. Food Sci Nutr 2021; 9:5070-5082. [PMID: 34532016 PMCID: PMC8441361 DOI: 10.1002/fsn3.2464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
In order to investigate the purification process and antioxidant activity of triterpenic acids from blackened jujube, the macroporous resin was applied to purify the crude extract from blackened jujube. The adsorption and desorption characterizations of five different macroporous adsorption resins (AB-8, D-101, X-5, HPD-100, S-8) for triterpenic acids of blackened jujube were compared, the optimum purification resins were screened, and the purification parameters were optimized. The antioxidant activity of crude extracts and purified products from blackened jujube was analyzed. The results showed that D-101 resin possessed the best effect on the purification of blackened jujube triterpenic acids. The optimum purification parameters were as follows: sample concentration 25.5 μg/ml, 130 ml of the sample volume was with a flow rate of 2.0 ml/min, eluted with 95% ethanol, and speed flow was 1.0 ml/min. The purity of triterpenic acids was increased by 2.49 times after purification with a recovery rate of (78.58 ± 0.67)%. Furthermore, the IC50 values of hydroxyl radical scavenging capacity from triterpenic acids crude extract and purified substances were 0.900 and 0.850 mg/ml, respectively, and the IC50 values of superoxide anion radical were 0.745 and 0.594 mg/ml, respectively, indicating that the antioxidative capacity of the purified product was stronger than the crude extract. The purified triterpenic acids (PTA) groups at different doses had excellent protective effects on H2O2-induced damage HUVEC cells. Results have revealed that triterpenic acids of blackened jujube have good antioxidant function and utilization and development prospects.
Collapse
Affiliation(s)
- Yaling Fu
- College of Food Science and EngineeringShandong Agricultural UniversityTai’anChina
| | - Yanlei Zhang
- College of Food Science and EngineeringShandong Agricultural UniversityTai’anChina
| | - Rentang Zhang
- College of Food Science and EngineeringShandong Agricultural UniversityTai’anChina
| |
Collapse
|
31
|
Comprehensive Utilization of Thinned Unripe Fruits from Horticultural Crops. Foods 2021; 10:foods10092043. [PMID: 34574153 PMCID: PMC8467360 DOI: 10.3390/foods10092043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fruit thinning is a cultivation technique that is widely applied in horticulture in order to obtain high-quality horticultural crops. This practice results in the discarding of a large number of thinned unripe fruits in orchards each year, which produces a great waste of agricultural resources and causes soil pollution that may be an important reservoir for pest and plant diseases. Current studies showed that bioactive compounds such as polyphenols, organic acids, monosaccharides and starches are present in unripe fruits. Therefore, we reviewed the bioactive components obtained from thinned unripe fruits, their revalorization for the food industry, their beneficial effects for human health and the methods for obtaining these components. We also performed a calculation of the costs and benefits of obtaining these bioactive compounds, and we proposed future research directions. This review provides a reference for the effective utilization and industrial development of thinned unripe fruits obtained from horticultural crops. Furthermore, revalorizing the waste from this cultural practice may increase the economic benefits and relieve the environmental stress.
Collapse
|
32
|
Liu H, Chen Y, Wen Y, Zhu S, Huang S, He L, Hou S, Lai X, Chen S, Dai Z, Liang J. Phloridzin Ameliorates Lipid Deposition in High-Fat-Diet-Fed Mice with Nonalcoholic Fatty Liver Disease via Inhibiting the mTORC1/SREBP-1c Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8671-8683. [PMID: 34342231 DOI: 10.1021/acs.jafc.1c01645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We aimed to investigate whether phloridzin could alleviate nonalcoholic fatty liver disease (NAFLD) in mice, which was induced by feeding a high-fat diet (HFD). We initially analyzed the effect of phloridzin on alleviating HFD-induced NAFLD in C57BL/6J mice and oleic acid (OA)-stimulated human normal liver L-02 cells (L02). Then, we investigated the mechanism of phloridzin on the mTORC1/sterol-regulatory element-binding protein-1c (SREBP-1c) signaling pathway by siRNA analysis, qRT-PCR, flow cytometry, and western blot analysis in vivo and in vitro. The results revealed that phloridzin significantly inhibited the increase in body weight, alleviated abnormal lipid metabolism, and decreased lipid biosynthesis and insulin resistance. Moreover, phloridzin augmented the number of CD8+CD122+PD-1+ Tregs and CD4+FoxP3+ Tregs in HFD-fed C57BL/6J mice and HFD-fed aP2-SREBF1c mice and downregulated the mTORC1/SREBP-1c signaling pathway-related protein expressions in vivo and in vitro. Furthermore, phloridzin reduced the expression of SREBP-1c in SREBP-1c-RNAi-lentivirus-transfected L02 cells and reversed the SREBP-1c expression in HFD-fed aP2-SREBF1c transgenic mice. Phloridzin ameliorates lipid accumulation and insulin resistance via inhibiting the mTORC1/SREBP-1c pathways. These results indicated that phloridzin may actively ameliorate NAFLD.
Collapse
Affiliation(s)
- Huazhen Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese Medicine, Guangdong, Guangzhou 510405 China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Yifan Wen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Shumin Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Lian He
- Guangdong Food and Drug Vocational College, Guangdong, Guangzhou 510520, P. R. China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Xiaoping Lai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China
| | - Shuxian Chen
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong, Guangzhou 510080, China
| | - Zhenhua Dai
- The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese Medicine, Guangdong, Guangzhou 510405 China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510006, P. R. China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Guangdong, Dongguan 523808, P. R. China
| |
Collapse
|
33
|
Wang L, Boussetta N, Lebovka N, Vorobiev E. Purification of polyphenols from apple skins by membrane electro-filtration. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Sipos S, Moacă EA, Pavel IZ, Avram Ş, Crețu OM, Coricovac D, Racoviceanu RM, Ghiulai R, Pană RD, Şoica CM, Borcan F, Dehelean CA, Crăiniceanu Z. Melissa officinalis L. Aqueous Extract Exerts Antioxidant and Antiangiogenic Effects and Improves Physiological Skin Parameters. Molecules 2021; 26:molecules26082369. [PMID: 33921730 PMCID: PMC8073307 DOI: 10.3390/molecules26082369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Melissa officinalis (MO) is a medicinal plant well-known for its multiple pharmacological effects, including anti-inflammatory, anticancer and beneficial effects on skin recovery. In this context, the present study was aimed to investigate the in vitro and in vivo safety profile of an MO aqueous extract by assessing cell viability on normal (HaCaT-human keratinocytes) and tumor (A375-human melanoma) cells and its impact on physiological skin parameters by a non-invasive method. In addition, the antioxidant activity and the antiangiogenic potential of the extract were verified. A selective cytotoxic effect was noted in A375 cells, while no toxicity was noticed in healthy cells. The MO aqueous extract safety profile after topical application was investigated on SKH-1 mice, and an enhanced skin hydration and decreased erythema and transepidermal water loss levels were observed. The in ovo CAM assay, performed to investigate the potential modulating effect on the angiogenesis process and the blood vessels impact, indicated that at concentrations of 100 and 500 µg/mL, MO aqueous extract induced a reduction of thin capillaries. No signs of vascular toxicity were recorded at concentrations as high as 1000 μg/mL. The aqueous extract of MO leaves can be considered a promising candidate for skin disorders with impaired physiological skin parameters.
Collapse
Affiliation(s)
- Simona Sipos
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (E.-A.M.); (D.C.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (R.-M.R.); (R.G.); (C.M.Ş.)
| | - Ioana Zinuca Pavel
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (R.-M.R.); (R.G.); (C.M.Ş.)
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania
- Correspondence: (I.Z.P.); (Ş.A.)
| | - Ştefana Avram
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (R.-M.R.); (R.G.); (C.M.Ş.)
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania
- Correspondence: (I.Z.P.); (Ş.A.)
| | - Octavian Marius Crețu
- Department of Surgery, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania;
| | - Dorina Coricovac
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (E.-A.M.); (D.C.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (R.-M.R.); (R.G.); (C.M.Ş.)
| | - Roxana-Marcela Racoviceanu
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (R.-M.R.); (R.G.); (C.M.Ş.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania
| | - Roxana Ghiulai
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (R.-M.R.); (R.G.); (C.M.Ş.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania
| | - Ramona Daniela Pană
- Department VIII—Neuroscience, Discipline of Medical Deontology. Bioethics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timisoara, Romania;
| | - Codruţa Marinela Şoica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (R.-M.R.); (R.G.); (C.M.Ş.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania
| | - Florin Borcan
- Department of Analytical Chemistry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (E.-A.M.); (D.C.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania; (R.-M.R.); (R.G.); (C.M.Ş.)
| | - Zorin Crăiniceanu
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timișoara, Romania;
| |
Collapse
|
35
|
Multicriteria Optimization of Phenolic Compounds Capture from a Sunflower Protein Isolate Production Process by-Product by Adsorption Column and Assessment of Their Antioxidant and Anti-Inflammatory Effects. Foods 2021; 10:foods10040760. [PMID: 33918258 PMCID: PMC8066219 DOI: 10.3390/foods10040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to valorize liquid effluent from the sunflower protein isolate process by extracting phenolic compounds it contains. To do so, XAD7 resin was used. A multicriteria optimization methodology based on design of experiments showed the optimal conditions were adsorption flow rate of 15 BV/h at pH 2.7, a desorption flow rate at 120 BV/h with ethanol/water 50% (v/v). The best trade-off between purity and recovery yields resulted in the production of a fraction containing 76.05% of chlorogenic acid (CGA) whose biological properties were evaluated. DPPH and ABTS tests showed that this fraction had a higher radical scavenging capacity than vitamin C. In vitro assays have shown that this fraction, when used at a concentration corresponding to 50 or 100 µM of CGA, does not present any cytotoxicity on human THP-1 cells differentiated into macrophages. In addition, this fraction when added prior to the inflammatory stimulus (LPS) can reduce tumor necrosis factor-alpha (TNF-α) production by 22%, thereby highlighting its protective properties against future inflammation.
Collapse
|
36
|
Yang Y, Zhao P, Wang X, Cui G, Guo Y. Using a red‐fleshed and six varieties of thinned young apple to make juice and their phytochemicals characterization. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Yang
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources Ministry of Education National Research & Development Center of Apple Processing Technology Xi’an China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources Ministry of Education National Research & Development Center of Apple Processing Technology Xi’an China
| | - Guangxin Cui
- College of Horticulture Northwest A&F University Yangling China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources Ministry of Education National Research & Development Center of Apple Processing Technology Xi’an China
| |
Collapse
|
37
|
Park JJ, Lee WY. Adsorption and desorption characteristics of a phenolic compound from Ecklonia cava on macroporous resin. Food Chem 2021; 338:128150. [PMID: 33092007 DOI: 10.1016/j.foodchem.2020.128150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
This study aimed to develop efficient adsorption and desorption processes to purify phenolic compounds from Ecklonia cava. We compared the adsorption and desorption properties of five resins. HP2MG showed the highest adsorption and desorption capacities and adsorption rate; hence, it was selected for phenolic compound purification. Adsorption isotherm parameters indicated favorable adsorption between HP2MG and phenolic compounds. Thermodynamic parameters showed that the absorption process physically proceeded. In the dynamic adsorption process, adsorption property was assessed based on bed length (4-10 cm) and flow rate (1.64-3.27 mL/min). The breakthrough point increased with increased bed length and decreased adsorption flow rate. However, the high desorption flow rate shortened the processing time. The phenolic contents, anti-glycation activity and antioxidant activity of the extract were measured before and after purification. The dieckol and phlorofucofuroeckol-A increased three times after purification. The purified extract showed higher anti-glycation and antioxidant activities than the extract.
Collapse
Affiliation(s)
- Jong Jin Park
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, South Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
38
|
Optimization of purification conditions for areca seeds using microporous resins. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00831-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Li D, Yang Y, Yang X, Wang X, Guo C, Sun L, Guo Y. Modulation of gelatinized wheat starch digestion and fermentation profiles by young apple polyphenols in vitro. Food Funct 2021; 12:1983-1995. [PMID: 33537688 DOI: 10.1039/d0fo02752a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To evaluate the effect of young apple polyphenols (YAP) on starch digestion and gut microbiota, complexes of native wheat starch (NWS) with YAP, and their main components chlorogenic acid (CA) and phlorizin (P) were fabricated and gelatinized. Through XRD and FTIR analysis, it was found that the partial crystalline structure of NWS was destroyed during gelatinization, and the addition of P decreased the extent of destruction. Then, the gelatinized starchy samples were subjected to in vitro digestion. The wheat starch (WS)-phenolic compound complexes significantly suppressed the digestion rate and increased the proportion of resistant starch (RS) in WS. Furthermore, the residual starchy components after digestion were fermented by human fecal samples for 24 h. The WS-YAP complex greatly increased the concentration of short-chain fatty acids (SCFAs), especially acetic and propionic acids, and enhanced the growth of health-promoting gut microbiota such as Prevotella. Conclusively, YAP was shown to play a positive role in maintaining blood glucose balance and intestinal health.
Collapse
Affiliation(s)
- Dan Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yang Y, Shen H, Liu T, Wen Y, Wang F, Guo Y. Mitigation effects of phlorizin immersion on acrylamide formation in fried potato strips. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:937-946. [PMID: 32748961 DOI: 10.1002/jsfa.10701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Several researches reported that natural polyphenols affected acrylamide formation of fried products. However, the effects of different variety of polyphenols on acrylamide formation were distinct. In this study, we isolated and purified phlorizin from apples and identified the influence of phlorizin immersion on acrylamide formation and sensory properties of fried potato strips with regard to the immersion concentration, time and temperature. RESULTS The acrylamide formation of fried samples decreased as the phlorizin concentration increased from 0 to 0.3 g kg-1 , and 0.14 g kg-1 could be selected as the suitable immersion concentration to dramatically inhibit acrylamide formation with considering the cost of industrial production. Additionally, the acrylamide formation significantly reduced from 8.71 × 10-3 to 2.13 × 10-3 g kg-1 lyophilized weight (LW) with immersion time from 0 to 120 min, and 60 min could be selected to significantly reduce acrylamide formation in consideration of efficiency of the large-scale industrial processing. However, the effect of phlorizin immersion temperature on acrylamide formation of fried samples was not significant. Compared to the fried samples without immersion, the phlorizin immersion improved the color properties and the change of texture parameters was slight. CONCLUSION The fresh potato strips immersed in the phlorizin solution of 0.14 g kg-1 at 40 °C for 60 min before frying could significantly decrease acrylamide formation of fried samples and retain the majority of fresh sensorial properties. The significant correlations obtained between sensory properties and acrylamide content indicated the sensory properties could be used as the indicator of acrylamide levels during industrial processing. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yali Yang
- Department of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, P. R. China
- National Research and Development Center of Apple Processing Technology, Xi'an, P. R. China
| | - Hailiang Shen
- Citrus Research Institute, Southwest University, Chongqing, P. R. China
- Citrus Research Institute, Chinese Academy of Agricultural Science, Chongqing, P. R. China
| | - Ting Liu
- Department of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, P. R. China
- National Research and Development Center of Apple Processing Technology, Xi'an, P. R. China
| | - Yaoyao Wen
- Department of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, P. R. China
- National Research and Development Center of Apple Processing Technology, Xi'an, P. R. China
| | - Furong Wang
- Department of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, P. R. China
- National Research and Development Center of Apple Processing Technology, Xi'an, P. R. China
| | - Yurong Guo
- Department of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, P. R. China
- National Research and Development Center of Apple Processing Technology, Xi'an, P. R. China
| |
Collapse
|
41
|
The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. Int J Mol Sci 2021; 22:ijms22020962. [PMID: 33478062 PMCID: PMC7835879 DOI: 10.3390/ijms22020962] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022] Open
Abstract
Phloridzin is an important phytochemical which was first isolated from the bark of apple trees. It is a member of the dihydrochalcones and mainly distributed in the plants of the Malus genus, therefore, the extraction method of phloridzin was similar to those of other phenolic substances. High-speed countercurrent chromatography (HSCCC), resin adsorption technology and preparative high-performance liquid chromatography (HPLC) were used to separate and purify phloridzin. Many studies showed that phloridzin had multiple pharmacological effects, such as antidiabetic, anti-inflammatory, antihyperglycaemic, anticancer and antibacterial activities. Besides, the physiological activities of phloridzin are cardioprotective, neuroprotective, hepatoprotective, immunomodulatory, antiobesity, antioxidant and so on. The present review summarizes the biosynthesis, distribution, extraction and bioavailability of the natural compound phloridzin and discusses its applications in food and medicine.
Collapse
|
42
|
Ciğeroğlu Z, Küçükyıldız G, Haşimoğlu A, Taktak F, Açıksöz N. Fast and effective methylene blue adsorption onto graphene oxide/amberlite nanocomposite: Evaluation and comparison of optimization techniques. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0600-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Li Z, Chen X, Qiu L, Wang Y, Zhou Z. Nano Porous Carbon Derived from Citrus Pomace for the Separation and Purification of PMFs in Citrus Processing Wastes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10101914. [PMID: 32992899 PMCID: PMC7600721 DOI: 10.3390/nano10101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The by-product of citrus juice processing is a huge source of bioactive compounds, especially polymethoxyflavones (PMFs) and fibers. In this study, a method for the separation and purification of PMFs from citrus pomace was established based on citrus nanoporous carbon (CNPC) enrichment. Different biomass porous carbons were synthesized, their adsorption/desorption characteristics were evaluated, and the CNPCs from the peel of Citrus tangerina Tanaka were found to be best for the enrichment of PMFs from the crude extracts of citrus pomace. Using this method, six PMF compounds including low-abundant PMFs in citrus fruits such as 5,6,7,4'-tetramethoxyflavone and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone can be simultaneously obtained, and the purities of these compounds were all higher than 95%, with the highest purity of nobiletin reaching 99.96%. Therefore, CNPCs have a great potential for the separation and purification of PMFs in citrus processing wastes, potentially improving the added value of citrus wastes. We also provide a method reference for disposing of citrus pomace in the future.
Collapse
Affiliation(s)
- Zhenqing Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
| | - Xin Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
| | - Lulu Qiu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
| | - Yu Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.L.); (X.C.); (L.Q.); (Y.W.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
44
|
Lu H, Tian Z, Cui Y, Liu Z, Ma X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr Rev Food Sci Food Saf 2020; 19:3130-3158. [PMID: 33337063 DOI: 10.1111/1541-4337.12620] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Chlorogenic acids (CGAs), a group of hydroxycinnamates, are generally abundant in everyday foods and beverages, most prominently in certain coffee drinks. Among them, the chlorogenic acid (CGA), also termed as 5-O-caffeoylquinic acid (5-CQA), is one of the most abundant, highly functional polyphenolic compounds in the human diet. The evidence of its health benefits obtained from clinical studies, as well as basic research, indicates an inverse correlation between 5-CQA consumption and a lower risk of metabolic syndromes and chronic diseases. This review focuses on the beneficial properties for health and mechanisms of action of 5-CQA, starting with its history, isomers, dietary sources, processing effects, preparation methods, pharmacological safety evaluation, and bioavailability. It also provides the possible molecular mechanistic bases to explain the health beneficial effects of 5-CQA including neuroprotective, cardiovascular protective, gastrointestinal protective, renoprotective, hepatoprotective, glucose and lipid metabolism regulatory, and anticarcinogenic effects. The information summarized here could aid in the basic and clinical research on 5-CQA as a natural dietary additive, potential drug candidate, as well as a natural health promoter.
Collapse
Affiliation(s)
- Huijie Lu
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhimei Tian
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
| | - Yiyan Cui
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zhichang Liu
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China.,Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
45
|
Li D, Yang Y, Sun L, Fang Z, Chen L, Zhao P, Wang Z, Guo Y. Effect of young apple (Malus domestica Borkh. cv. Red Fuji) polyphenols on alleviating insulin resistance. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Liu G, Duan Z, Wang P, Fan D, Zhu C. Purification, characterization, and hypoglycemic properties of eurocristatine from Eurotium cristatum spores in Fuzhuan brick tea. RSC Adv 2020; 10:22234-22241. [PMID: 35516628 PMCID: PMC9054505 DOI: 10.1039/d0ra03423a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 01/24/2023] Open
Abstract
Fuzhuan brick tea (FBT) is a Chinese dark tea that is famous for its significant health benefits, in which Eurotium cristatum (E. cristatum) strains play a vital role in its postfermentation process. In this study, eurocristatine with hypoglycemic activity was discovered for the first time and purified from the spores of E. cristatum growing in FBT. Eurocristatine (98%) was obtained by D-101 macroporous resin-based column chromatography and preparative high performance liquid chromatography (HPLC) with a C18 column as the stationary phase and 35% acetonitrile in ultrapure water as the mobile phase. Hypoglycemic activity in a Hep-G2 cell hypoglycemic model was used as a screening indicator during purification. The chemical structure of eurocristatine was characterized by ESI/MS, 1H NMR and 13C NMR analyses. The antidiabetic effects of eurocristatine were verified in high-fat diet/streptozocin-induced type 2 diabetes mellitus (T2DM) rats. The results showed that eurocristatine significantly reduced fasting blood glucose. Our study demonstrated that eurocristatine, as a newly discovered hypoglycemic active substance, could be considered a potential candidate for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Gang Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| |
Collapse
|
47
|
Comprehensive characterization of phytochemicals and biological activities of the Italian ancient apple 'Mela Rosa dei Monti Sibillini'. Food Res Int 2020; 137:109422. [PMID: 33233104 DOI: 10.1016/j.foodres.2020.109422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
This study was carried out to characterize extracts from nine samples of the apple 'Mela Rosa dei Monti Sibillini' (MR) and to assess the antioxidant and anti-inflammatory activities. The extracts were analysed by High Performance Liquid Chromatography coupled with photodiode array detector and mass spectrometry (HPLC-DAD-MS) for 20 phytochemicals. The extracts from the lyophilized material (ELM) were richer in polyphenolic compounds than the dried ones (EDM). The MR extracts contained noteworthy amounts of the investigated analytes compared to one sample of the commercial varieties Annurca, Golden Delicious and Granny Smith used as reference. Principal component analysis (PCA) revealed that the part of the fruit seems to have a significant influence on the chemical composition of the final extract; thus, the peel extracts exhibited higher levels of phenolic compounds, especially epicatechin, procyanidin B2 and phloridzin, and triterpenes than the pulp ones. In general, the lyophilized material showed higher antioxidant activity than the dried material. The strong antioxidant capacity of the MR has also been revealed by the DPPH, ABTS, FRAP and Folin-Ciocalteau assays. The ELM of MR significantly reduced reactive oxygen species in lipopolysaccharide (LPS)-activated mouse brain microglia cells (BV-2 cells). Real-time polymerase chain reaction (RT-PCR) analysis demonstrated that the EDM and ELM of MR were effective in reducing pro-inflammatory cytokines and enzymes in BV-2 and peripheral blood mononuclear cells (PBMC). These results contribute to the exploitation of this ancient variety as a source of nutraceuticals.
Collapse
|
48
|
Gong T, Yang X, Bai F, Li D, Zhao T, Zhang J, Sun L, Guo Y. Young apple polyphenols as natural α-glucosidase inhibitors: In vitro and in silico studies. Bioorg Chem 2020; 96:103625. [DOI: 10.1016/j.bioorg.2020.103625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/15/2019] [Accepted: 01/23/2020] [Indexed: 11/30/2022]
|
49
|
Wei L, Zhao J, Meng Y, Guo Y, Luo C. Antibacterial activity, safety and preservative effect of aminoethyl-phloretin on the quality parameters of salmon fillets. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Hou M, Hu W, Xiu Z, Shi Y, Hao K, Cao D, Guan Y, Yin H. Efficient enrichment of total flavonoids from Pteris ensiformis Burm. extracts by macroporous adsorption resins and in vitro evaluation of antioxidant and antiproliferative activities. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1138:121960. [PMID: 31918307 DOI: 10.1016/j.jchromb.2019.121960] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/19/2019] [Accepted: 12/26/2019] [Indexed: 01/13/2023]
Abstract
The aim of this work is to develop an efficient and economical method for the enrichment of total flavonoids from Pteris ensiformis Burm. extracts. Resin screening, adsorption kinetics, adsorption isotherms and thermodynamics were successively researched prior to the dynamic adsorption and desorption tests. NKA-II resin was chosen as the best adsorbent, and the adsorption data were best described by the pseudo-second-order kinetics model and Langmuir isotherm model. The optimum enrichment conditions were as follows: for adsorption the total flavonoids concentration, flow rate and volume of sample were 1.84 mg/mL, 2 BV/h and 5 BV, respectively, and for desorption the flavonoids-loaded NKA-II resin column was desorbed by 7 BV of 50% ethanol at a rate of 2 BV/h. The product had a 6.63-fold higher total flavonoids content than crude extracts, and the recovery yield of total flavonoids was 80.65%. Furthermore, flavonoids-enriched extracts exhibited higher in vitro scavenging activity against superoxide anion radical and hydroxyl radical than crude extracts. In addition, higher antiproliferative activity of flavonoids-enriched extracts against MCF-7 and HepG-2 cell lines was also found as compared to the crude extracts. The developed method is appropriate for large-scale enrichment of total flavonoids from Pteris ensiformis Burm. extracts in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Mengyang Hou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Wenzhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Zhilong Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Yusheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Kexin Hao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Duo Cao
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yuge Guan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Hanlin Yin
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China; College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|