1
|
Minich DM, Ross K, Frame J, Fahoum M, Warner W, Meissner HO. Not All Maca Is Created Equal: A Review of Colors, Nutrition, Phytochemicals, and Clinical Uses. Nutrients 2024; 16:530. [PMID: 38398854 PMCID: PMC10892513 DOI: 10.3390/nu16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Maca (Lepidium meyenii, Lepidium peruvianum) is part of the Brassicaceae family and grows at high altitudes in the Peruvian Andes mountain range (3500-5000 m). Historically, it has been used as a nutrient-dense food and for its medicinal properties, primarily in enhancing energy and fertility. Scientific research has validated these traditional uses and other clinical applications by elucidating maca's mechanisms of action, nutrition, and phytochemical content. However, research over the last twenty years has identified up to seventeen different colors (phenotypes) of maca. The color, hypocotyl size, growing location, cultivation, and post-harvest processing methods can have a significant effect on the nutrition content, phytochemical profile, and clinical application. Yet, research differentiating the colors of maca and clinical applications remains limited. In this review, research on the nutrition, phytochemicals, and various colors of maca, including black, red, yellow (predominant colors), purple, gray (lesser-known colors), and any combination of colors, including proprietary formulations, will be discussed based on available preclinical and clinical trials. The gaps, deficiencies, and conflicts in the studies will be detailed, along with quality, safety, and efficacy criteria, highlighting the need for future research to specify all these factors of the maca used in publications.
Collapse
Affiliation(s)
- Deanna M. Minich
- Human Nutrition and Functional Medicine, Adjunct Faculty, University of Western States, Portland, OR 97213, USA
- Food & Spirit, LLC, Port Orchard, WA 98366, USA
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
| | - Kim Ross
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
- Kim Ross Consulting, LLC, Lakewood Ranch, FL 34211, USA
- College of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
| | - James Frame
- Symphony Natural Health Holdings Inc., Craigmuir Chambers, Road Town, Tortola VG1110, (BVI), UK;
- Natural Health International Pty Ltd., Sydney, NSW 2000, Australia
| | - Mona Fahoum
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Meridian Medicine, Seattle, WA 98133, USA
- Bastyr Center for Natural Health, Bastyr University, Kenmore, WA 98028, USA
| | - Wendy Warner
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Wendy Warner, MD, PC, Yardley, PA 19067, USA
| | - Henry O. Meissner
- National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Building J, 158-160 Hawkesbury Road, Westmead, NSW 2145, Australia;
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora-Gold Coast, QLD 4221, Australia
| |
Collapse
|
2
|
Flockhart M, Nilsson LC, Tillqvist EN, Vinge F, Millbert F, Lännerström J, Nilsson PH, Samyn D, Apró W, Sundqvist ML, Larsen FJ. Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training. Redox Biol 2023; 67:102873. [PMID: 37688976 PMCID: PMC10493800 DOI: 10.1016/j.redox.2023.102873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition.
Collapse
Affiliation(s)
- M Flockhart
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| | - L C Nilsson
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - E N Tillqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Vinge
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Millbert
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - J Lännerström
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - P H Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden; Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - D Samyn
- Department of Laboratory Medicine, Clinical Chemistry, Örebro University Hospital, Örebro, Sweden; School of Medicine, Faculty of Medicine, Örebro University, Örebro, Sweden
| | - W Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - M L Sundqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| |
Collapse
|
3
|
Costa-Pérez A, Núñez-Gómez V, Baenas N, Di Pede G, Achour M, Manach C, Mena P, Del Rio D, García-Viguera C, Moreno DA, Domínguez-Perles R. Systematic Review on the Metabolic Interest of Glucosinolates and Their Bioactive Derivatives for Human Health. Nutrients 2023; 15:nu15061424. [PMID: 36986155 PMCID: PMC10058295 DOI: 10.3390/nu15061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
In the last decade, most of the evidence on the clinical benefits of including cruciferous foods in the diet has been focused on the content of glucosinolates (GSL) and their corresponding isothiocyanates (ITC), and mercapturic acid pathway metabolites, based on their capacity to modulate clinical, biochemical, and molecular parameters. The present systematic review summarizes findings of human studies regarding the metabolism and bioavailability of GSL and ITC, providing a comprehensive analysis that will help guide future research studies and facilitate the consultation of the latest advances in this booming and less profusely researched area of GSL for food and health. The literature search was carried out in Scopus, PubMed and the Web of Science, under the criteria of including publications centered on human subjects and the use of Brassicaceae foods in different formulations (including extracts, beverages, and tablets), as significant sources of bioactive compounds, in different types of subjects, and against certain diseases. Twenty-eight human intervention studies met inclusion criteria, which were classified into three groups depending on the dietary source. This review summarizes recent studies that provided interesting contributions, but also uncovered the many potential venues for future research on the benefits of consuming cruciferous foods in our health and well-being. The research will continue to support the inclusion of GSL-rich foods and products for multiple preventive and active programs in nutrition and well-being.
Collapse
Affiliation(s)
- Antonio Costa-Pérez
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Giuseppe Di Pede
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
| | - Mariem Achour
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Claudine Manach
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Cristina García-Viguera
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| |
Collapse
|
4
|
Bioactivity of brassica seed meals and its compounds as ecofriendly larvicides against mosquitoes. Sci Rep 2023; 13:3936. [PMID: 36894606 PMCID: PMC9998646 DOI: 10.1038/s41598-023-30563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Strategic, sustainable, and ecofriendly alternatives to chemical pesticides are needed to effectively control mosquitoes and reduce the incidence of their vectored diseases. We evaluated several Brassicaceae (mustard family) seed meals as sources of plant derived isothiocyanates produced from the enzymatic hydrolysis of biologically inactive glucosinolates for the control of Aedes aegypti (L., 1762). Five defatted seed meals (Brassica juncea (L) Czern., 1859, Lepidium sativum L., 1753, Sinapis alba L., 1753, Thlaspi arvense L., 1753, and Thlaspi arvense-heat inactivated and three major chemical products of enzymatic degradation (allyl isothiocyanate, benzyl isothiocyanate and 4-hydroxybenzyl isothiocyanate) were assayed to determine toxicity (LC50) to Ae. aegypti larvae. All seed meals except the heat inactivated T. arvense were toxic to mosquito larvae. L. sativum seed meal was the most toxic treatment to larvae (LC50 = 0.04 g/120 mL dH2O) at the 24-h exposure. At the 72-h evaluation, the LC50 values for B. juncea, S. alba and T. arvense seed meals were 0.05, 0.08 and 0.1 g/120 mL dH2O, respectively. Synthetic benzyl isothiocyanate was more toxic to larvae 24-h post treatment (LC50 = 5.29 ppm) compared with allyl isothiocyanate (LC50 = 19.35 ppm) and 4-hydroxybenzyl isothiocyanate (LC50 = 55.41 ppm). These results were consistent with the higher performance of the benzyl isothiocyanate producing L. sativum seed meal. Isothiocyanates produced from seed meals were more effective than the pure chemical compounds, based on calculated LC50 rates. Using seed meal may provide an effective method of delivery for mosquito control. This is the first report evaluating the efficacy of five Brassicaceae seed meals and their major chemical constituent against mosquito larvae and demonstrates how natural compounds from Brassicaceae seed meals can serve as a promising ecofriendly larvicides to control mosquitoes.
Collapse
|
5
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
6
|
Effect of high pressure pretreatment on myrosinase-glucosinolate system, physicochemical and bacterial properties during fermentation of brine-pickled radishes. Food Res Int 2022; 162:112018. [DOI: 10.1016/j.foodres.2022.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
|
7
|
Evaluation of the Biological Activity of Glucosinolates and Their Enzymolysis Products Obtained from Lepidium meyenii Walp. (Maca). Int J Mol Sci 2022; 23:ijms232314756. [PMID: 36499083 PMCID: PMC9740802 DOI: 10.3390/ijms232314756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Glucosinolates (GLS) were extracted and purified from Lepidium meyenii (Maca) root. Purified GLS were analyzed without desulfation by UPLC-ESI-MS. Glucosinolates were decomposed into benzyl isothiocyanate (BITC) by thioglucosidase. DPPH radical scavenging activity, ABTS radical scavenging activity, and reducing power were used to evaluate antioxidant activity of Maca crude extract (MCE), total GLS, and BITC. Maca crude extract showed the highest antioxidant activity among them, and BITC showed no antioxidant activity at concentrations less than 10 mg/mL. Cytotoxicity on five human cancer cell lines and the inhibition rate of NO production were used to evaluate the activity of anti-cancer and anti-inflammatory of total GLS and BITC. The inhibition rate of NO production of 50 μg/mL BITC can reach 99.26% and the cell viability of 100 μg/mL BITC on five tumor cell lines is less than 3%. The results show that BITC may be used as a promising anti-cancer and anti-inflammatory drug.
Collapse
|
8
|
Tian Y, Kriisa M, Föste M, Kütt ML, Zhou Y, Laaksonen O, Yang B. Impact of enzymatic pre-treatment on composition of nutrients and phytochemicals of canola (Brassica napus) oil press residues. Food Chem 2022; 387:132911. [DOI: 10.1016/j.foodchem.2022.132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
9
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
10
|
Galádová H, Polozsányi Z, Breier A, Šimkovič M. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules 2022; 12:biom12030406. [PMID: 35327598 PMCID: PMC8945721 DOI: 10.3390/biom12030406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane and other natural isothiocyanates released from the respective plant glucosinolates by the plant enzyme myrosinase (β-thioglucoside glucohydrolase) show extensive anticancer and antimicrobial effects. In this study, myrosinase from garden cress (Lepidium sativum) seeds was purified to electrophoretic homogeneity by a fast and easy strategy consisting of fractionation by isoelectric precipitation with ammonium sulphate (AS) and affinity chromatography using sulforaphane (SFN) attached to cellulose resin. The overall purification of enzyme with respect to crude extract was 169-fold and recovery of 37%. Under non-reducing conditions, two protein bands exhibiting myrosinase activity with masses of about 114 and 122 kDa, respectively, and a 58 kDa protein band with no activity were detected by SDS-PAGE and zymography on polyacrylamide gel. MALDI-Tof/Tof of tryptic fragments obtained from the respective protein bands detected sequence motifs homologous to the regions responsible for glycoside-substrate binding and similarities to members of the enzyme subfamilies β-glucosidases and myrosinases GH. The enzyme hydrolyzed both the natural (sinigrin, sinalbin, glucoraphanin) and the synthetic (p-nitrophenol-β-D-glucopyranoside (pNPG)) substrates. The highest catalytic activity of purified enzyme was achieved against sinigrin. The KM and Vmax values of the enzyme for sinigrin were found to be 0.57 mM, and 1.3 mM/s, respectively. The enzyme was strongly activated by 30 μM ascorbic acid. The optimum temperature and pH for enzyme was 50 °C and pH 6.0, respectively. The purified enzyme could be stored at 4 °C and slightly acidic pH for at least 45 days without a significant decrease in specific activity.
Collapse
Affiliation(s)
- Helena Galádová
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Zoltán Polozsányi
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Albert Breier
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Correspondence:
| |
Collapse
|
11
|
Wu YH, Lin YH, Wang CY. High hydrostatic pressure treatment induced microstructure changes and isothiocyanates biosynthesis in kale. Food Chem 2022; 383:132423. [PMID: 35180603 DOI: 10.1016/j.foodchem.2022.132423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022]
Abstract
Effects of high-pressure processing (HPP) on the myrosinase activity, glucosinolate (GLS) content, isothiocyanate (ITC) conversion rate, color, and bacterial count of kale leaves were investigated. Thermal process at 100 °C were used as negative control groups. The sample processed at 600 MPa exhibited the highest myrosinase activity and ITC conversion rate of 70.4%, while the GLS content was significantly lower than those in the raw and the thermally processed samples. However, processing of the samples at elevated temperatures results in gradual loss of myrosinase activity. SEM images showed that HPP induces irregular crushing damage to the veins, edges, and surfaces of the leaves, thereby promoting the conversion process in the myrosinase-GLS-ITC system. Additionally, HPP caused less significant color change of the kale leaves than thermal treatment. HPP achieved the same level of pasteurization as thermal treatment in terms of bacterial count.
Collapse
Affiliation(s)
- Yu-Hsiang Wu
- Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan
| | - Yan-Han Lin
- Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan.
| |
Collapse
|
12
|
Broccoli Myrosinase cDNA Expression in Escherichia coli and Saccharomyces cerevisiae. Biomolecules 2022; 12:biom12020233. [PMID: 35204734 PMCID: PMC8961631 DOI: 10.3390/biom12020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Myrosinases (EC 3.2.1.147) are enzymes known for the generation of hydrolysis products that have a potential beneficial effect on human health. Their reaction mechanisms are widely studied, in order to improve and optimize secondary metabolite production processes. In this work, kinetic and biochemical properties of the broccoli myrosinase enzyme produced from its cDNA cloned in Escherichia coli and Saccharomyces cerevisiae were investigated. The results revealed that the thermal stability of the enzyme produced in S. cerevisiae was slightly higher (30 to 60 °C) than that of myrosinase produced in E. coli (20 to 50 °C). The effect of pH on the enzymatic activity was similar in both enzymes, with pH 3 being the optimum value under the reaction conditions used. The kinetic behavior of both enzymes was adjusted to the Michaelis–Menten model. The catalytic efficiency was up to 4 times higher in myrosinase produced in S. cerevisiae, compared to myrosinase produced in E. coli. The glycosylations present in the enzyme would be related to the formation of a dimeric quaternary structure and would not play an essential role in enzymatic activity, since both enzymes were biologically active. These results will probably allow the development of strategies for the production of bioactive metabolites of medical interest.
Collapse
|
13
|
Evaluation of the Effects of Processing Technique on Chemical Components in Raphani Semen by HPLC and UPLC-Q-TOF-MS. Int J Anal Chem 2022; 2022:8279839. [PMID: 35027928 PMCID: PMC8752214 DOI: 10.1155/2022/8279839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, the effects of different processing techniques on the chemical components of Raphani Semen (RS) were evaluated. An established high-performance liquid chromatography (HPLC) method was adopted for the simultaneous determination of glucoraphanin, sinapine thiocyanate, raphanin, and erucic acid in the fried products of Raphani Semen to evaluate the chemical changes during frying processing as well as optimize the best frying technology of Raphani Semen. Then, the chemical components in the fried Raphani Semen were identified by ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A total of 54 compounds in processed Raphani Semen were identified by UPLC-Q-TOF-MS. The results showed that the content of glucoraphanin and sinapine thiocyanate was the highest in the fried products at 130°C for 10 min, and the effect of “Enzyme Killing and Glycosides Preserving” was the best. Therefore, this condition was chosen as the best frying technology of Raphani Semen. This study provided a more scientific basis for evaluation of the quality of Raphani Semen fried products and optimization of the frying technology of Raphani Semen.
Collapse
|
14
|
Affiliation(s)
- Anna Grygier
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
15
|
Influence of isolation techniques on the composition of glucosinolate breakdown products, their antiproliferative activity and gastrointestinal stability of allyl isothiocyanate. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Chandrashekar S, Vijayakumar R, Chelliah R, Daliri EBM, Madar IH, Sultan G, Rubab M, Elahi F, Yeon SJ, Oh DH. In Vitro and In Silico Screening and Characterization of Antimicrobial Napin Bioactive Protein in Brassica juncea and Moringa oleifera. Molecules 2021; 26:2080. [DOI: https:/doi.10.3390/molecules26072080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score −912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.
Collapse
Affiliation(s)
- Sangeeta Chandrashekar
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Raman Vijayakumar
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
17
|
Chandrashekar S, Vijayakumar R, Chelliah R, Daliri EBM, Madar IH, Sultan G, Rubab M, Elahi F, Yeon SJ, Oh DH. In Vitro and In Silico Screening and Characterization of Antimicrobial Napin Bioactive Protein in Brassica juncea and Moringa oleifera. Molecules 2021; 26:2080. [PMID: 33916405 PMCID: PMC8038560 DOI: 10.3390/molecules26072080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score -912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.
Collapse
Affiliation(s)
- Sangeeta Chandrashekar
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Raman Vijayakumar
- Department of Physiology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| | - Inamul Hasan Madar
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (S.C.); (E.B.-M.D.); (M.R.); (F.E.); (S.-J.Y.)
| |
Collapse
|
18
|
Bahmid NA, Heising J, Dekker M. Multiresponse kinetic modelling of the formation, release, and degradation of allyl isothiocyanate from ground mustard seeds to improve active packaging. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Torrijos R, Nazareth TDM, Quiles JM, Mañes J, Meca G. Application of White Mustard Bran and Flour on Bread as Natural Preservative Agents. Foods 2021; 10:431. [PMID: 33669358 PMCID: PMC7920268 DOI: 10.3390/foods10020431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, the antifungal activity of white mustard bran (MB), a by-product of mustard (Sinapis alba) milling, and white mustard seed flour (MF) was tested against mycotoxigenic fungi in the agar diffusion method. The results obtained were posteriorly confirmed in a quantitative test, determining the minimum concentration of extract that inhibits the fungal growth (MIC) and the minimum concentration with fungicidal activity (MFC). Since MF demonstrated no antifungal activity, the MB was stored under different temperature conditions and storage time to determine its antifungal stability. Finally, an in situ assay was carried out, applying the MB as a natural ingredient into the dough to avoid P. commune CECT 20767 growth and increase the bread shelf life. The results demonstrated that the antifungal activity of MB was dose-dependent. The higher assayed dose of MB (10 g/kg) reduced the fungal population in 4.20 Log CFU/g regarding the control group. Moreover, the shelf life was extended four days compared to the control, equaling its effectiveness with the synthetic preservative sodium propionate (E-281). Therefore, MB could be an alternative to chemical additives in bread formulations since it satisfies consumer requirements. Also, the formulation of bread with MB valorizes this by-product generated during mustard seed milling, thereby helping the industry move forward sustainably by reducing environmental impact.
Collapse
Affiliation(s)
| | - Tiago de Melo Nazareth
- Department of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (R.T.); (J.M.Q.); (J.M.); (G.M.)
| | | | | | | |
Collapse
|
20
|
Ke YY, Shyu YT, Wu SJ. Evaluating the Anti-Inflammatory and Antioxidant Effects of Broccoli Treated with High Hydrostatic Pressure in Cell Models. Foods 2021; 10:167. [PMID: 33467537 PMCID: PMC7830254 DOI: 10.3390/foods10010167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Isothiocyanates (ITCs) are important functional components of cruciferous vegetables. The principal isothiocyanate molecule in broccoli is sulforaphane (SFN), followed by erucin (ERN). They are sensitive to changes in temperature, especially high temperature environments where they are prone to degradation. The present study investigates the effects of high hydrostatic pressure on isothiocyanate content, myrosinase activity, and other functional components of broccoli, and evaluates its anti-inflammatory and antioxidant effects. Broccoli samples were treated with different pressures and for varying treatment times; 15 min at 400 MPa generated the highest amounts of isothiocyanates. The content of flavonoids and vitamin C were not affected by the high-pressure processing strategy, whereas total phenolic content (TPC) exhibited an increasing tendency with increasing pressure, indicating that high-pressure processing effectively prevents the loss of the heat-sensitive components and enhances the nutritional content. The activity of myrosinase (MYR) increased after high-pressure processing, indicating that the increase in isothiocyanate content is related to the stimulation of myrosinase activity by high-pressure processing. In other key enzymes, the ascorbate peroxidase (APX) activity was unaffected by high pressure, whereas peroxidase (POD) and polyphenol oxidase (PPO) activity exhibited a 1.54-fold increase after high-pressure processing, indicating that high pressures can effectively destroy oxidases and maintain food quality. With regards to efficacy evaluation, NO production was inhibited and the expression levels of inducible nitric oxide synthase (iNOS) and Cyclooxygenase-2 (COX-2) were decreased in broccoli treated with high pressures, whereas the cell viability remained unaffected. The efficacy was more significant when the concentration of SFN was 60 mg·mL-1. In addition, at 10 mg·mL-1 SFN, the reduced/oxidized glutathione (GSH/GSSG) ratio in inflammatory macrophages increased from 5.99 to 9.41. In conclusion, high-pressure processing can increase the isothiocyanate content in broccoli, and has anti-inflammatory and anti-oxidant effects in cell-based evaluation strategies, providing a potential treatment strategy for raw materials or additives used in healthy foods.
Collapse
Affiliation(s)
| | | | - Sz-Jie Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; (Y.-Y.K.); (Y.-T.S.)
| |
Collapse
|
21
|
Castillejo N, Martínez-Hernández GB, Artés-Hernández F. Revalorized broccoli by-products and mustard improved quality during shelf life of a kale pesto sauce. FOOD SCI TECHNOL INT 2021; 27:734-745. [PMID: 33423548 DOI: 10.1177/1082013220983100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of revalorized Bimi leaves (B) and/or mustard (M) addition, as supplementary ingredients, to develop an innovative kale (K) pesto sauce was studied. Microbial, physicochemical (color, total soluble solids content -SSC-, pH and titratable acidity -TA-) and sensory quality were studied during 20 days at 5 °C. Bioactive compounds changes (total phenolics, total antioxidant capacity and glucoraphanin contents) were also monitored throughout storage. The high TA and pH changes in the last 6 days of storage were avoided in the K+B pesto when adding mustard, due to the antimicrobial properties of this brassica seed. SSC was increased when B + M were added to the K pesto, which positively masked the kale-typical bitterness. Mustard addition hardly change yellowness of the K pesto, being not detected in the sensory analyses, showing K+B+M pesto the lowest color differences after 20 days of shelf life. The addition of Bimi leaves to the K pesto enhanced its phenolic content while mustard addition did not negatively affect such total antioxidant compounds content. Finally, mustard addition effectively aimed to glucoraphanin conversion to its bioactive products. Conclusively, an innovative kale pesto supplemented with Bimi by-products was hereby developed, being its overall quality well preserved up to 20 days at 5 °C due to the mustard addition.
Collapse
Affiliation(s)
- Noelia Castillejo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena, Cartagena, Spain
| | | | | |
Collapse
|
22
|
Faisal M, Abdel-Salam EM, Alatar AA, Qahtan AA. Induction of somatic embryogenesis in Brassica juncea L. and analysis of regenerants using ISSR-PCR and flow cytometer. Saudi J Biol Sci 2021; 28:1147-1153. [PMID: 33424410 PMCID: PMC7783785 DOI: 10.1016/j.sjbs.2020.11.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
A new and simple protocol has been developed and standardized for direct somatic embryogenesis and plant regeneration from aseptic seedlings derived from immature Brassica juncea seeds. Depending on the age of immature seeds and nutrient media, in vitro occurrence of embryogenesis and the number of embryos from each seedling have varied greatly. The largest number of somatic embryos, producing 12.7 embryos per seedlings, have been developed by seedlings obtained from immature seeds collected after 21 days of pollination (DAP). Effect of different nutrient media [Gamborg (B5), Murashige and Skoog (MS) and Linsmaier and Skoog (SH)] and carbon sources (fructose, glucose, maltose and sucrose) were assessed to induce somatic embryos and the maximum response were achieved on Nitsch culture medium fortified with sucrose (3% w/v) followed by fructose and maltose. The somatic embryo converted into complete plantlets within 04-weeks of culture on Nitsch medium containing half-strength of micro and macro salts. The regenerated plantlets were successfully established in soil with 90% survival rate. The acclimated plants were subsequently transferred to field condition where they grew normally without any phenotypic differences. Genetic stability of B. juncea plants regenerated from somatic embryos were confirmed by inter-simple sequence repeat (ISSR)-PCR analysis and flow cytometry. No significant difference in ploidy level and ISSR banding pattern were documented between somatic embryo’s plants and control plants grown ex vitro.
Collapse
Affiliation(s)
- Mohammad Faisal
- Department of Botany and MicroBiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eslam M Abdel-Salam
- Department of Botany and MicroBiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany and MicroBiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany and MicroBiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Lv X, Wang Q, Wang X, Zheng X, Fan D, Espinoza‐Pinochet CA, Cespedes‐Acuña CL. Selection and microencapsulation of myrosinase enzyme from broccoli sprouts of different varieties and characteristics evaluation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingang Lv
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Qilei Wang
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Xiao Wang
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Xiaohua Zheng
- College of Food Science and Technology, Northwest University Xi'an PR China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Xi'an PR China
| | | | - Carlos L. Cespedes‐Acuña
- Chemistry and Biotechnology of Bioactive Natural Products, Department of Basic Sciences Faculty of Sciences, Universidad del Bio Bio Chillan Chile
| |
Collapse
|
24
|
Marcinkowska M, Jeleń HH. Inactivation of Thioglucosidase from Sinapis alba (White Mustard) Seed by Metal Salts. Molecules 2020; 25:molecules25194363. [PMID: 32977439 PMCID: PMC7582697 DOI: 10.3390/molecules25194363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022] Open
Abstract
The glucosinolates which are specialized plant metabolites of Brassica vegetables are prone to hydrolysis catalyzed by an endogenous enzyme myrosinase (thioglycoside hydrolase, thioglucosidase) that exists in Brassica plant tissue causing volatile isothiocyanates release. Currently existing literature data on the inactivation of myrosinase is insufficient in particular for use in the analysis of volatile and odor compounds in vegetables rich in glucosinolates. In this study, the impact of different metal salts in effective inactivation of enzyme activity was investigated by solid-phase microextraction (SPME) and GC/MS system in aqueous samples and kohlrabi matrix. A saturated solution of calcium chloride which is commonly used to stop enzyme activity in plant tissue inactivates the myrosinase–glucosinolate system. However, even without the participation of myrosinase, it changes the reaction pathway towards nitrile formation. The model experiment shows that optimum efficiency in inhibition of the enzyme system shows iron(III) ions, silver ions, and anhydride sodium sulfate resulting in no volatile products derived from glucosinolates. However, in the kohlrabi matrix, the strongest enzyme inhibition effect was observed for silver salt resulting in no volatile products, also both anhydrous Na2SO4 and saturated CaCl2 solution seem to be useful inhibitors in flavor studies.
Collapse
|
25
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
26
|
Bae WY, Kim HY, Yu HS, Chang KH, Hong YH, Lee NK, Paik HD. Antimicrobial effects of three herbs (Brassica juncea, Forsythia suspensa, and Inula britannica) on membrane permeability and apoptosis in Salmonella. J Appl Microbiol 2020; 130:394-404. [PMID: 32734653 DOI: 10.1111/jam.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study aimed synergistic effects of three herbs in Salmonella via increased membrane permeability and apoptosis. METHODS AND RESULTS Using high-performance liquid chromatography, four types of phenylethyl glycosides and a lignan were detected in the herb mixture (Brassica juncea, Forsythia suspensa, and Inula britannica). During treatment with the herb mixture (1×, 2×, or 4× the MIC), viable cells decreased to 1·87 log CFU per ml (Salmonella Gallinarum) and 2·33 log CFU per ml (Salmonella Enteritidis) after 12 h of incubation according to inhibition of tricarboxylic acid cycle (P < 0·01). In addition, N-phenyl-1-naphthylamine uptake increased from 229·00 to 249·67 AU in S. Gallinarum and from 232·00 to 250·67 AU in S. Enteritidis (P < 0·05), whereas membrane potential decreased from 8855·00 to 3763·25 AU and from 8703·67 to 4300·38 AU, respectively. Apoptotic Salmonella cells were observed by confocal laser scanning microscopy and flow cytometry. Transmission electron microscopy observations with negative staining showed protein leakage from damaged Salmonella. CONCLUSIONS These results showed the synergistic effect of the three herbs against avian pathogenic Salmonella induced by membrane damage and apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY Salmonella causes enormous economic losses in the poultry industry. These results indicated that potency of natural antimicrobial agents due to apoptosis in Salmonella.
Collapse
Affiliation(s)
- W-Y Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - H-Y Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - H-S Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - K-H Chang
- CJ CheilJedang Blossom Park, Gyeonggi-do, Korea
| | - Y-H Hong
- CJ CheilJedang Blossom Park, Gyeonggi-do, Korea
| | - N-K Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - H-D Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| |
Collapse
|
27
|
Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2020; 61:2544-2571. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Storage and Postharvest Physiology of Fruit and Vegetables Laboratory, Research Institute of Horticulture, Skierniewice, Poland.,Stefan Batory State University, Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|
28
|
Mocniak LE, Elkin K, Bollinger JM. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants. Biochemistry 2020; 59:2432-2441. [PMID: 32516526 DOI: 10.1021/acs.biochem.0c00358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specifier proteins (SPs) are components of the glucosinolate-myrosinase defense system found in plants of the order Brassicales (brassicas). Glucosinolates (GLSs) comprise at least 150 known S-(β-d-glucopyranosyl)thiohydroximate-O-sulfonate compounds, each with a distinguishing side chain linked to the central carbon. Following tissue injury, the enzyme myrosinase (MYR) promiscuously hydrolyzes the common thioglycosidic linkage of GLSs to produce unstable aglycone intermediates, which can readily undergo a Lossen-like rearrangement to the corresponding organoisothiocyanates. The known SPs share a common protein architecture but redirect the breakdown of aglycones to different stable products: epithionitrile (ESP), nitrile (NSP), or thiocyanate (TFP). The different effects of these products on brassica consumers motivate efforts to understand the defense response in chemical detail. Experimental analysis of SP mechanisms is challenged by the instability of the aglycones and would be facilitated by knowledge of their lifetimes. We developed a spectrophotometric method that we used to monitor the rearrangement reactions of the MYR-generated aglycones from nine GLSs, discovering that their half-lives (t1/2) vary by a factor of more than 50, from <3 to 150 s (22 °C). The t1/2 of the sinigrin-derived allyl aglycone (34 s), which can form the epithionitrile product (1-cyano-2,3-epithiopropane) in the presence of ESP, proved to be sufficient to enable spatial and temporal separation of the MYR and ESP reactions. The results confirm recent proposals that ESP is an autonomous iron-dependent enzyme that intercepts the unstable aglycone rather than a direct effector of MYR. Knowledge of aglycone lifetimes will enable elucidation of how the various SPs reroute aglycones to different products.
Collapse
Affiliation(s)
| | - Kyle Elkin
- Pasture Systems and Watershed Management Research Unit, United States Department of Agriculture Agricultural Research Service, Building 3702 Curtin Road, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
29
|
Bahmid NA, Heising J, Fogliano V, Dekker M. Packaging Design Using Mustard Seeds as a Natural Antimicrobial: A Study on Inhibition of Pseudomonas fragi in Liquid Medium. Foods 2020; 9:E789. [PMID: 32560102 PMCID: PMC7353601 DOI: 10.3390/foods9060789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas fragi is the dominant spoilage organism in various foods, especially in spoiled milk, fish, and meats. Its growth can be inhibited by releasing allyl isothiocyanate (AITC) from ground mustard seeds in food packages. This paper aims to investigate the antimicrobial potential of ground mustard seeds against P. fragi growth and the effectiveness of released AITC concentration from mustard seeds on microbial inhibition of the spoilage bacteria growing in the liquid medium. The AITC concentration in the headspace and the liquid medium was measured and the growth of P. fragi in the liquid medium was monitored. Depending on the concentration of AITC, not only growth was inhibited but a reduction of the total count of P. fragi was even observed. The inactivation rate (k) of P. fragi was estimated using first-order inactivation kinetics and the minimum gaseous-released AITC to inactivate P. fragi was determined. Higher AITC concentration in the headspace and liquid medium was observed when using a higher amount of ground mustard seeds and a lower food to headspace ratio. Increasing the amount of ground mustard seeds (>100 mg per 10 mL liquid medium) led to full inactivation of P. fragi in 48 hours. By using an inhibition sigmoid Emax model, the minimum gaseous-released AITC for inactivation of P. fragi in 48 hours was observed around 15 µg/L headspace. These results indicate that inhibition of the spoilage bacteria and extending the shelf life using ground mustard seeds is only possible by applying a careful design of the packaging system.
Collapse
Affiliation(s)
- Nur Alim Bahmid
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (N.A.B.); (J.H.); (V.F.)
- Agriculture and Forestry Faculty, Universitas Sulawesi Barat, Majene 91412, Indonesia
| | - Jenneke Heising
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (N.A.B.); (J.H.); (V.F.)
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (N.A.B.); (J.H.); (V.F.)
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (N.A.B.); (J.H.); (V.F.)
| |
Collapse
|
30
|
Using particle size and fat content to control the release of Allyl isothiocyanate from ground mustard seeds for its application in antimicrobial packaging. Food Chem 2020; 308:125573. [DOI: 10.1016/j.foodchem.2019.125573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022]
|
31
|
Bae WY, Kim HY, Choi KS, Chang KH, Hong YH, Eun J, Lee NK, Paik HD. Investigation of Brassica juncea, Forsythia suspensa, and Inula britannica: phytochemical properties, antiviral effects, and safety. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:253. [PMID: 31510997 PMCID: PMC6737602 DOI: 10.1186/s12906-019-2670-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND General antiviral agents such as oseltamivir are associated with certain adverse effects and the emergence of resistance. This study investigated the phytochemical properties, antiviral activities, and safety of three herbs used in traditional Korean medicine. METHODS Extracts of three medicinal herbs (Brassica juncea, Forsythia suspensa, and Inula britannica) were prepared using ethanol or water. The total phenolic, flavonoid, and saponin content, condensed tannin content, and reducing sugar content of the herb extracts were determined via phytochemical screening. Tandem mass analysis was performed using an ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-Q/Orbitrap instrument. Virus titrations were determined via tissue culture infective dose (TCID50) and cytotoxicity assays. Hemolysis and hepatotoxicity were measured to determine safety. RESULTS Among the three medicinal herbs, F. suspensa showed the highest concentration of phenolic compounds, flavonoids, and saponins. The number of phytochemical compounds detected via tandem mass analysis of B. juncea, F. suspensa, and I. britannica was 5 (including sinigrin, m/z [M-H] = 358.02), 14 (including forsythoside A, m/z [M-H] = 623.19), and 18 (including chlorogenic acid, m/z [M-H] = 353.20), respectively. The antiviral effects of the B. juncea extracts (ethanol and water) and I. britannica extract (ethanol) were further investigated. The ethanol extract of B. juncea showed a 3 Log TCID50/25 μL virus titration reduction and the water extract showed a selectivity index of 13.668 against infected influenza H1N1 virus A/NWS/33. The B. juncea extracts did not show hemolysis activities and hepatotoxicity (< 20%). The ethanol extract of I. britannica showed the most effective virus titration decrease, whereas its hemolytic and hepatotoxicity values were the most significantly different compared to the control. Despite the high concentration of phytochemicals detected in F. suspensa, the extract showed approximately 1 Log TCID50/25 μL at the highest concentration. CONCLUSION B. juncea may show antiviral effects against H1N1 in a host. In addition, B. juncea may also show decreased disadvantages compared to other antiviral agents.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Hyeong-Yeop Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Kyoung-Sook Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | | | - Young-Ho Hong
- CJ CheilJedang Blossom Park, Gyeonggi-do, South Korea
| | - Jongsu Eun
- CJ CheilJedang Blossom Park, Gyeonggi-do, South Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea.
| |
Collapse
|
32
|
Boscaro V, Boffa L, Binello A, Amisano G, Fornasero S, Cravotto G, Gallicchio M. Antiproliferative, Proapoptotic, Antioxidant and Antimicrobial Effects of Sinapis nigra L. and Sinapis alba L. Extracts. Molecules 2018; 23:molecules23113004. [PMID: 30453590 PMCID: PMC6278512 DOI: 10.3390/molecules23113004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023] Open
Abstract
High Brassicaceae consumption reduces the risk of developing several cancer types, probably due to high levels of glucosinolates. Extracts from Sinapis nigra L. (S. nigra) and Sinapis alba L. (S. alba) have been obtained from leaves and seeds under different conditions using ethanol/water mixtures because their glucosinolates are well accepted by the food industry. The EtOH/H2O 8:2 mixture gives better yields in glucosinolate amounts from ground seeds, mainly, sinalbin in S. alba and sinigrin in S. nigra. The highest antiproliferative activity in both non-tumor and tumor cell lines was induced by S. alba seeds extract. To evaluate whether the effect of Sinapis species (spp) was only due to glucosinolate content or whether it was influenced by the extracts’ complexity, cells were treated with extracts or glucosinolates, in the presence of myrosinase. Pure sinigrin did not modify cell proliferation, while pure sinalbin was less effective than the extract. The addition of myrosinase increased the antiproliferative effects of the S. nigra extract and sinigrin. Antiproliferative activity was correlated to Mitogen-Activated Protein Kinases modulation, which was cell and extract-dependent. Cell-cycle analysis evidenced a proapoptotic effect of S. alba on both tumor cell lines and of S. nigra only on HCT 116. Both extracts showed good antimicrobial activity in disc diffusion tests and on ready-to-eat fresh salad. These results underline the potential effects of Sinapis spp in chemoprevention and food preservation.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| | - Luisa Boffa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| | - Arianna Binello
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| | - Gabriella Amisano
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, University of Turin, P.za Polonia 94, 10126 Turin, Italy.
| | - Stefania Fornasero
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, University of Turin, P.za Polonia 94, 10126 Turin, Italy.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9, 10125 Turin, Italy.
| |
Collapse
|
33
|
Okunade O, Niranjan K, Ghawi SK, Kuhnle G, Methven L. Supplementation of the Diet by Exogenous Myrosinase via Mustard Seeds to Increase the Bioavailability of Sulforaphane in Healthy Human Subjects after the Consumption of Cooked Broccoli. Mol Nutr Food Res 2018; 62:e1700980. [PMID: 29806738 DOI: 10.1002/mnfr.201700980] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/08/2018] [Indexed: 11/11/2022]
Abstract
SCOPE Broccoli contains glucosinolate glucoraphanin, which, in the presence of myrosinase, can hydrolyze to isothiocyanate sulforaphane, reported to have anticarcinogenic activity. However, the myrosinase enzyme is denatured on cooking. Addition of an active source of myrosinase, such as from powdered mustard seed, to cooked Brassica vegetables can increase the release of health beneficial isothiocyanates; however, this has not previously been proven in vivo. METHODS AND RESULTS The concentration of sulforaphane metabolite (sulforaphane N-acetyl-l-cysteine [SF-NAC]) in 12 healthy adults after the consumption of 200 g cooked broccoli, with and without 1 g powdered brown mustard, was studied in a randomized crossover design. During the 24-h period following the consumption of the study sample, all urine was collected. SF-NAC content was assayed by HPLC. When study subjects ingested cooked broccoli alone, mean urinary SF-NAC excreted was 9.8 ± 5.1 μmol per g creatinine, and when cooked broccoli was consumed with mustard powder, this increased significantly to 44.7 ± 33.9 μmol SF-NAC per gram creatinine. CONCLUSION These results conclude that when powdered brown mustard is added to cooked broccoli, the bioavailability of sulforaphane is over four times greater than that from cooked broccoli ingested alone.
Collapse
Affiliation(s)
- Olukayode Okunade
- Department of Food Technology, Federal Polytechnic, Ado Ekiti, Nigeria
| | - Keshavan Niranjan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Sameer K Ghawi
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Gunter Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| |
Collapse
|
34
|
Bell L, Oloyede OO, Lignou S, Wagstaff C, Methven L. Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Mol Nutr Food Res 2018; 62:e1700990. [PMID: 29578640 DOI: 10.1002/mnfr.201700990] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/05/2018] [Indexed: 11/07/2022]
Abstract
Brassicaceae plants are renowned for their taste, aroma and trigeminal characteristics; predominantly bitter taste, sulfurous aroma, and pungency. Compounds responsible for these sensations include the glucosinolates (GSLs) and their hydrolysis products, particularly isothiocyanates (ITCs), but also sulfur-containing volatile compounds. This article reviews the relative importance of taste and flavor perceptions resulting from such compounds; collating evidence from papers where findings are based on sensory analytical correlations, and those that have extracted specific compounds prior to sensory evaluation. Where specific GSLs impart bitterness and many ITCs impart pungency, this is clearly not true for all GSLs and ITCs. Designing crop improvement strategies for sensory traits based on total GSL content would be flawed, as it does not consider the relative differences in sensory characteristics of different GSLs and ITCs, nor the contribution from other GSL hydrolysis products. In addition, some Brassicaceae plants are consumed raw, whilst others are cooked; this affects not only the hydrolysis of GSLs, but also the generation and release of sulfides. Therefore, in breeding new plant varieties, it is prudent to consider the individual GSLs, the typical cooking conditions the plant is subjected to, enzyme stability, and resultant composition of both GSL hydrolysis products (including ITCs) and sulfides.
Collapse
Affiliation(s)
- Luke Bell
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, Berkshire, UK
| | - Omobolanle O Oloyede
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, Berkshire, UK
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, Berkshire, UK
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, Berkshire, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, Berkshire, UK
| |
Collapse
|
35
|
Wu Y, Shen Y, Wu X, Zhu Y, Mupunga J, Bao W, Huang J, Mao J, Liu S, You Y. Hydrolysis before Stir-Frying Increases the Isothiocyanate Content of Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1509-1515. [PMID: 29357241 DOI: 10.1021/acs.jafc.7b05913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Broccoli is found to be a good source of glucosinolates, which can be hydrolyzed by endogenous myrosinase to obtain chemopreventive isothiocyanates (ITCs); among them, sulforaphane (SF) is the most important agent. Studies have shown that cooking greatly affects the levels of SF and total ITCs in broccoli. However, the stability of these compounds during cooking has been infrequently examined. In this study, we proved that the half-lives of SF and total ITCs during stir-frying were 7.7 and 5.9 min, respectively, while the myrosinase activity decreased by 80% after stir-frying for 3 min; SF and total ITCs were more stable than myrosinase. Thus, the contents of SF and total ITCs decreased during stir-frying largely because myrosinase was destroyed. Subsequently, it was confirmed that compared to direct stir-frying, hydrolysis of glucosinolates in broccoli for 90 min followed by stir-frying increased the SF and total ITC concentration by 2.8 and 2.6 times, respectively. This method provides large quantities of beneficial ITCs even after cooking.
Collapse
Affiliation(s)
- Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, Guangdong, China
| | - Yuke Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Xuping Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Ye Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jothame Mupunga
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Wenna Bao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Shiwang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Yuru You
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| |
Collapse
|
36
|
Han Z, Park A, Su WW. Valorization of papaya fruit waste through low-cost fractionation and microbial conversion of both juice and seed lipids. RSC Adv 2018; 8:27963-27972. [PMID: 35542705 PMCID: PMC9084329 DOI: 10.1039/c8ra05539d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Seed oil from papaya waste was validated as a novel carbon substrate for Yarrowia lipolytica to produce high-value products.
Collapse
Affiliation(s)
- Zhenlin Han
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Alex Park
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| |
Collapse
|
37
|
Westphal A, Riedl KM, Cooperstone JL, Kamat S, Balasubramaniam VM, Schwartz SJ, Böhm V. High-Pressure Processing of Broccoli Sprouts: Influence on Bioactivation of Glucosinolates to Isothiocyanates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8578-8585. [PMID: 28929757 PMCID: PMC7104659 DOI: 10.1021/acs.jafc.7b01380] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Effects of high-pressure processing (HPP, 100-600 MPa for 3 min at 30 °C) on the glucosinolate content, conversion to isothiocyanates, and color changes during storage in fresh broccoli sprouts were investigated. A mild heat treatment (60 °C) and boiling (100 °C) were used as positive and negative controls, respectively. Glucosinolates were quantified using liquid chromatography-mass spectrometry, and isothiocyanates were quantified using high-performance liquid chromatography-photodiode array detection. A formation of isothiocyanates was observed in all high-pressure-treated sprouts. The highest degree of conversion (85%) was observed after the 600 MPa treatment. Increased isothiocyanate formation at 400-600 MPa suggests an inactivation of the epithiospecifier protein. During storage, color changed from green to brownish, reflected by increasing a* values and decreasing L* values. This effect was less pronounced for sprouts treated at 100 and 600 MPa, indicating an influence on the responsible enzymes. In summary, HPP had no negative effects on the glucosinolate-myrosinase system in broccoli sprouts.
Collapse
Affiliation(s)
- Anna Westphal
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Straße 25-29, 07743 Jena, Germany
| | - Kenneth M. Riedl
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - Jessica L. Cooperstone
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - Shreya Kamat
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - V. M. Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - Steven J. Schwartz
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, 110 Parker Food Science and Technology Building, Columbus, Ohio 43210, United States
| | - Volker Böhm
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Straße 25-29, 07743 Jena, Germany
- Corresponding Author: Telephone: +49-3641-949633. Fax: +49-3641-949702.
| |
Collapse
|
38
|
Klingaman CA, Wagner MJ, Brown JR, Klecker JB, Pauley EH, Noldner CJ, Mays JR. HPLC-based kinetics assay facilitates analysis of systems with multiple reaction products and thermal enzyme denaturation. Anal Biochem 2016; 516:37-47. [PMID: 27742213 DOI: 10.1016/j.ab.2016.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
Abstract
Glucosinolates are plant secondary metabolites abundant in Brassica vegetables that are substrates for the enzyme myrosinase, a thioglucoside hydrolase. Enzyme-mediated hydrolysis of glucosinolates forms several organic products, including isothiocyanates (ITCs) that have been explored for their beneficial effects in humans. Myrosinase has been shown to be tolerant of non-natural glucosinolates, such as 2,2-diphenylethyl glucosinolate, and can facilitate their conversion to non-natural ITCs, some of which are leads for drug development. An HPLC-based method capable of analyzing this transformation for non-natural systems has been described. This current study describes (1) the Michaelis-Menten characterization of 2,2-diphenyethyl glucosinolate and (2) a parallel evaluation of this analogue and the natural analogue glucotropaeolin to evaluate effects of pH and temperature on rates of hydrolysis and product(s) formed. Methods described in this study provide the ability to simultaneously and independently analyze the kinetics of multiple reaction components. An unintended outcome of this work was the development of a modified Lambert W(x) which includes a parameter to account for the thermal denaturation of enzyme. The results of this study demonstrate that the action of Sinapis alba myrosinase on natural and non-natural glucosinolates is consistent under the explored range of experimental conditions and in relation to previous accounts.
Collapse
Affiliation(s)
- Chase A Klingaman
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Matthew J Wagner
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Justin R Brown
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - John B Klecker
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Ethan H Pauley
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Colin J Noldner
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA
| | - Jared R Mays
- Augustana University, Department of Chemistry, 2001 S. Summit Ave., Sioux Falls, SD 57197, USA.
| |
Collapse
|