1
|
Zheng Y, Sun F, Ye S, Zhu J, Ma Y, Shan M, Li S, Chen Y, Li J. Correlation between fruit consumption and 10-year all-cause mortality in patients with dyslipidemia. Front Nutr 2024; 11:1471737. [PMID: 39421625 PMCID: PMC11484278 DOI: 10.3389/fnut.2024.1471737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Background Consuming fruit provides health benefits. Reportedly, increased fruit consumption reduces the risks of hypertension and cardiovascular disease. However, existing studies have not clarified the effect of fruit consumption on mortality risk in patients with dyslipidemia. This study aimed to assess the correlation between the consumption of different types of fruits and all-cause mortality in patients with dyslipidemia. Methods A total of 2,184 patients with dyslipidemia were included in this study, and trends in the correlation between the frequency of consumption of different types of fruits and the 10-year all-cause mortality risk in patients with dyslipidemia were analyzed by smoothed curve fitting, Cox regression, and Kaplan-Meier curve analysis. Subgroup analysis and interaction test were applied to analyze the stability of the effect of apple consumption on 10-year all-cause mortality in patients with dyslipidemia. Results Smoothed curve fitting and Cox regression analyses revealed a significant reduction in the 10-year all-cause mortality risk in patients with dyslipidemia who consumed apples 3-4 times/week (hazard ratio [HR] = 0.61, 95% confidence interval [CI]: 0.43-0.87, p = 0.007) and in those who consumed bananas 3-4 times/week (HR = 0.71, 95% CI: 0.52-0.98, p = 0.039), with a more pronounced effect in patients who consumed both apples and bananas (HR = 0.55, 95% CI: 0.30-0.99, p = 0.045). Other fruits did not exhibit similar effects. Conclusion Consuming apples or bananas 3-4 times/week significantly improved the 10-year survival rate in patients with dyslipidemia, and the effect was even more profound in patients who consumed both fruits.
Collapse
Affiliation(s)
- Yuanjuan Zheng
- Department of General Practice, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Feifei Sun
- Department of Critical Care Medicine, Heilongjiang Provincial Corps Hospital of Chinese People’s Armed Police Forces, Harbin, China
| | - Suling Ye
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Jinzhou Zhu
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Yu Ma
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Mengmeng Shan
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Shaomi Li
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Yingying Chen
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Jie Li
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| |
Collapse
|
2
|
Barkale HV, Dey N. Functionalized cyanostilbene-based nano-AIEgens: multipoint binding interactions for improved sensing of gallic acid in real-life food samples. J Mater Chem B 2024; 12:8746-8756. [PMID: 39140138 DOI: 10.1039/d4tb00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cyano-substituted stilbene (CSS) derivatives have been synthesized that can form luminescent nanoscopic assemblies in an aqueous medium. The optical properties of such materials, as governed by the relative ratios of their monomer and aggregated forms, are found to be susceptible to pH and temperature of the medium. The compound with boronic acid attached at the terminal positions shows a turn-on fluorescence response (LOD: 15.4 ppb) with gallic acid (GA). The mechanistic studies indicate that the 1,2-diol unit of GA is involved in ester formation with the boronic acid residue, while the carboxylic end engages in hydrogen bonding interaction with the nitrile unit. Such multi-point binding interaction provides better selectivity over other structurally similar analytes. Moreover, the distinct aggregation properties of such boronate ester derivatives are responsible for the GA-specific optical response. The sensory system has been utilized for the determination of the levels of GA derivatives in tea (green tea and black tea) and various fruit (mango, orange, guava, pomegranate) extracts. In all cases, the estimated values of GAE were found to be in the same range reported by others. Finally, low-cost, chemically-modified paper strips have been designed for rapid, on-location detection of GA.
Collapse
Affiliation(s)
- Harshal V Barkale
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
3
|
Ee LY, Ng BH, Ng BY, Laserna AKC, Chu HT, Chee HL, Li SFY. Phytochemical fingerprint revealing antibacterial and antioxidant activities of endemic banana cultivars in Southeast Asia. Heliyon 2024; 10:e35139. [PMID: 39170182 PMCID: PMC11336483 DOI: 10.1016/j.heliyon.2024.e35139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
This study explores the bioactive secondary metabolite profiles of the peels of three major cultivars of bananas (Musa acuminata and Musa balbisiana). These cultivars are primarily grown in Southeast Asia and are widely consumed due to their rich nutritional and fiber content. The research utilizes advanced analytical techniques, specifically HPLC-DAD-q-TOF-MS/MS, in conjunction with both univariate and multivariate statistical analyses, to analyze the ethanolic extracts of the banana peels. This study identifies phenolic acids, flavonoids, and proanthocyanidins as significant contributors to the differentiation of the cultivars. The secondary metabolites rutin, chlorogenic acid, and gentisic acid are pinpointed as the key discriminants. Moreover, the research demonstrates a synergistic contribution of certain phytochemicals to the antioxidant and antibacterial properties of the banana peel extracts. The fingerprint profiling tools introduced in this study offer a reliable method for identifying metabolite biomarkers for the discrimination of banana cultivars.
Collapse
Affiliation(s)
- Liang Ying Ee
- Department of Chemistry, College of Humanities and Sciences, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Bao Hui Ng
- Department of Chemistry, College of Humanities and Sciences, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Bao Yi Ng
- Department of Chemistry, College of Humanities and Sciences, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Anna Karen Carrasco Laserna
- Central Instrumentation Facility (Laguna Campus), Office of the Vice Chancellor for Research and Innovation, De La Salle University, 2041 Taft Avenue, Manila, 1004, Philippines
| | - Hui Ting Chu
- Department of Chemistry, College of Humanities and Sciences, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research, 31 Biopolis Drive, Singapore, 138669, Singapore
| | - Heng Li Chee
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, College of Humanities and Sciences, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| |
Collapse
|
4
|
Munir H, Alam H, Nadeem MT, Almalki RS, Arshad MS, Suleria HAR. Green banana resistant starch: A promising potential as functional ingredient against certain maladies. Food Sci Nutr 2024; 12:3787-3805. [PMID: 38873476 PMCID: PMC11167165 DOI: 10.1002/fsn3.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 06/15/2024] Open
Abstract
This review covers the significance of green banana resistant starch (RS), a substantial polysaccharide. The food industry has taken an interest in green banana flour due to its 30% availability of resistant starch and its approximately 70% starch content on a dry basis, making its use suitable for food formulations where starch serves as the base. A variety of processing techniques, such as heat-moisture, autoclaving, microwaving, high hydrostatic pressure, extrusion, ultrasound, acid hydrolysis, and enzymatic debranching treatments, have made significant advancements in the preparation of resistant starch. These advancements aim to change the structure, techno-functionality, and subsequently the physiological functions of the resistant starch. Green bananas make up the highest RS as compared to other foods and cereals. Many food processing industries and cuisines now have a positive awareness due to the functional characteristics of green bananas, such as their pasting, thermal, gelatinization, foaming, and textural characteristics. It is also found useful for controlling the rates of cancer, obesity, and diabetic disorders. Moreover, the use of GBRS as prebiotics and probiotics might be significantly proved good for gut health. This study aimed at the awareness of the composition, extraction and application of the green banana resistant starch in the future food products.
Collapse
Affiliation(s)
- Haroon Munir
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Hamza Alam
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Tahir Nadeem
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Riyadh S. Almalki
- Department of Pharmacology and Toxicology, Faculty of PharmacyUmm AL‐Qura UniversityMakkahSaudi Arabia
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Agriculture and Food SystemsThe University of MelbourneMelbourneVictoriaAustralia
| | | |
Collapse
|
5
|
Liu H, Agar OT, Imran A, Barrow CJ, Dunshea FR, Suleria HAR. LC-ESI-QTOF-MS/MS characterization of phenolic compounds in Australian native passion fruits and their potential antioxidant activities. Food Sci Nutr 2024; 12:2455-2472. [PMID: 38628172 PMCID: PMC11016391 DOI: 10.1002/fsn3.3928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Passion fruits, renowned globally for their polyphenolic content and associated health benefits, have enjoyed growing attention from consumers and producers alike. While global cultivar development progresses, Australia has pioneered several native cultivars tailored for its distinct planting conditions. Despite their cultivation, comprehensive studies on the phenolic profiles and antioxidant capacities of these Australian-native passion fruits are notably lacking. This study aims to investigate and compare the polyphenolic content present in the by-products, which are peel (L), and consumable portions, which are the pulp and seeds (P), of four indigenous cultivars: 'Misty Gem' (MG), 'Flamengo' (FG), 'Sweetheart' (SW), and 'Panama' (SH). Employing LC-ESI-QTOF-MS/MS for profiling, a comprehensive list of polyphenols was curated. Additionally, various antioxidant assays-DPPH, FRAP, ABTS, RPA, FICA, and •OH-RSA-were performed to evaluate their antioxidant potential. A total of 61 polyphenols were identified, categorized into phenolic acid (19), flavonoids (33), and other phenolic substances (9). In the antioxidant assays, the SHP sample exhibited the highest •OH--RSA activity at 98.64 ± 1.45 mg AAE/g, while the FGL sample demonstrated prominent DPPH, FRAP, and ABTS activities with values of 32.47 ± 1.92 mg TE/g, 62.50 ± 3.70 mg TE/g, and 57.84 ± 1.22 mg AAE/g, respectively. Additionally, TPC and several antioxidant assays had a significant positive correlation, including DPPH, FRAP, and ABTS. The Australian-native passion fruits revealed distinct polyphenolic profiles and diverse antioxidant capacities, establishing a foundation for deeper health benefit analyses. This study accentuates the significance of understanding region-specific cultivars and their potential nutraceutical applications.
Collapse
Affiliation(s)
- Haoyao Liu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Department of Pharmacognosy, Faculty of PharmacySuleyman Demirel UniversityIspartaTurkey
| | - Ali Imran
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Department of Food Science, Faculty of Life ScienceGovernment College UniversityFaisalabadPakistan
| | - Colin J. Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Faculty of Biological SciencesThe University of LeedsLeedsUK
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
6
|
Sethulakshmi AG, Saravanakumar MP. Sustainable papaya plant waste and green tea residue composite films integrated with starch and gelatin for active food packaging applications. Int J Biol Macromol 2024; 260:129153. [PMID: 38228198 DOI: 10.1016/j.ijbiomac.2023.129153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
This study explores the sustainable utilization of wastes from a papaya plant (papaya peels (PP), papaya seeds (PS), leaf-stem (PL)) and dried green tea residues (GTR) for the synthesis of bioplastics. The dried GTR were individually blended with each papaya waste extract and then boiled in water to get three composite papaya plant waste-green tea supernatants. Potato starch and gelatin-based functional films were prepared by integrating each with the composite papaya waste-green tea supernatant liquid. This work introduces a dissolved organic matter (DOM) study to the field of bioplastics, with the goal of identifying the organic components and macromolecules inherent in the PW supernatants. When compared with the films prepared solely from papaya waste (PW) supernatants, PW-GTR composite supernatant films prevent UV light transmission with superior antioxidant and mechanical properties. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and atomic force microscopy (AFM) were utilized to characterize the starch and gelatin PW-GTR films. Owing to the exceptional antioxidant, UV barrier, and remarkable biodegradable properties of the starch/PW/GTR and gelatin/PW/GTR composite films, make them ideal for use in food packaging applications.
Collapse
Affiliation(s)
- A G Sethulakshmi
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nādu, India
| | - M P Saravanakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nādu, India.
| |
Collapse
|
7
|
Sie YY, Chen LC, Li CW, Wang CC, Li CJ, Liu DZ, Lee MH, Chen LG, Hou WC. Extracts and Scirpusin B from Recycled Seeds and Rinds of Passion Fruits ( Passiflora edulis var. Tainung No. 1) Exhibit Improved Functions in Scopolamine-Induced Impaired-Memory ICR Mice. Antioxidants (Basel) 2023; 12:2058. [PMID: 38136179 PMCID: PMC10741041 DOI: 10.3390/antiox12122058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In this paper, the seeds and rinds of passion fruit, which are the agricultural waste of juice processing, were recycled to investigate their biological activities for sustainable use. De-oiled seed powders (S) were successively extracted by refluxing 95% ethanol (95E), 50E, and hot water (HW), respectively, to obtain S-95EE, S-50EE, and S-HWE. Dried rind powders were successively extracted by refluxing HW and 95E to obtain rind-HWE and rind-95EE, respectively. S-50EE and S-95EE showed the most potent extracts, such as anti-amyloid-β1-42 aggregations and anti-acetylcholinesterase inhibitors, and they exhibited neuroprotective activities against amyloid-β25-35-treated or H2O2-treated SH-SY5Y cells. Scirpusin B and piceatannol were identified in S-95EE, S-50EE, and rind-HWE, and they showed anti-acetylcholinesterase activity at 50% inhibitory concentrations of 62.9 and 258.9 μM, respectively. Daily pretreatments of de-oiled seed powders and rind-HWE (600 mg/kg), S-95EE, and S-50EE (250 mg/kg) or scirpusin B (40 mg/kg) for 7 days resulted in improved learning behavior in passive avoidance tests and had significant differences (p < 0.05) compared with those of the control in scopolamine-induced ICR mice. The seeds and rinds of passion fruit will be recycled as materials for the development of functional foods, promoting neuroprotection and delaying the onset of cognitive dysfunctions.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
| | - Liang-Chieh Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Cai-Wei Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Ching-Chiung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Mei-Hsien Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Lih-Geeng Chen
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Wen-Chi Hou
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| |
Collapse
|
8
|
Logesh R, Das N, Sellappan G, Piesik D, Mondal A. Unripe fruits of Litchi chinensis (Gaertn.) Sonn.: An overview of its toxicity. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:925-934. [PMID: 37442293 DOI: 10.1016/j.pharma.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Litchi (Litchi chinensis) is a widely consumed fruit that has been used in many food and health-promoting products worldwide. Litchi is a good source of nutrients including vitamin and minerals, dietary fibers, proteins, and carbohydrates. Of note, several studies have reported that the constituents of litchi fruits elicit antioxidant properties and help to maintain blood pressure, and reduce the risk of stroke and heart attack. An unclearly explained outbreak occurred in June 2019 in Muzaffarpur (Bihar), India resulted in the death of more than 150 children in a week, followed by a total of 872 cases and 176 deaths. This outbreak was associated with the consumption of Litchi fruits and the occurrence of acute encephalitis syndrome. In this high Litchi production region, a huge number of acute encephalitis syndrome cases have been registered in children in the past two decades with high mortality due to these neurological disorders linked to the consumption of litchi. While finding out the causes for this recurrent outbreak, whether or not it is caused by a virus or the phytotoxins of litchi is to be considered critical. Amongst the probable causes were observed to be methylene cyclopropyl acetic acid and hypoglycin-A found in unripe Litchi fruits which can cause hypoglycemia and as a plausible cause of AES outbreaks. This review addresses this recurrent outbreak in-depth exploring the possible causes and discusses the possible mechanisms by which phytotoxins of litchi such as hypoglycin A and methylene cyclopropylglycine which may elicit such toxic effects.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka, India
| | - Niranjan Das
- Department of Chemistry, Ramthakur College, Badharghat, Agartala, 799003 Tripura, India.
| | - Gobi Sellappan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education& Research, Rockland's, Ooty, 643001 Tamil Nadu, India
| | - Dariusz Piesik
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. S. Kaliskiego Avenue, building I, 85-796 Bydgoszcz, Poland
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, 743234 West Bengal, India
| |
Collapse
|
9
|
Wang H, Chen H, Lin Y, Li M, Liu Q, Lin Y, Jiang X, Chen Y. Insights into the Isolation, Identification, and Biological Characterization Analysis of and Novel Control Strategies for Diaporthe passiflorae in Postharvest Passion Fruit. J Fungi (Basel) 2023; 9:1034. [PMID: 37888288 PMCID: PMC10608467 DOI: 10.3390/jof9101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Postharvest diseases seriously restrict developments in the passion fruit industry. In this study, we aimed to identify the postharvest pathogen affecting passion fruit, investigate its pathogenicity, and explore relevant control methods. The pathogen was isolated from rotting passion fruit and identified using morphological characteristics, ITS sequences, and phylogenetic tree analyses. Additionally, preliminary studies were conducted to assess the biological characteristics of the pathogen and evaluate the efficacy of various treatments for disease control. The fungus on the passion fruit called B4 was identified as Diaporthe passiflorae. Optimal conditions for mycelial growth were observed at 25-30 °C and pH 5-6, with starch as the carbon source and peptone as the nitrogen source. Infection by D. passiflorae accelerated fruit decay, reduced the h° value of the peel, and increased the peel cell membrane permeability when compared to the control. Notably, treatments with appropriate concentrations of ɛ-poly-l-lysine, salicylic acid, and melatonin showed inhibitory effects on the pathogen's growth in vitro and may thus be potential postharvest treatments for controlling brown rot caused by D. passiflorae in passion fruit. The results provide a scientific basis for the development of strategies to control postharvest decay and extend the storage period of passion fruit.
Collapse
Affiliation(s)
- Huiling Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Yu Lin
- Department of Intelligent Manufacturing, MinXi Vocational and Technical College, Longyan 364021, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuzhao Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Siniawska M, Wojdyło A. Polyphenol Profiling by LC QTOF/ESI-MS and Biological Activity of Purple Passion Fruit Epicarp Extract. Molecules 2023; 28:6711. [PMID: 37764487 PMCID: PMC10535944 DOI: 10.3390/molecules28186711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
A polyphenolic preparation in the form of the passion fruit epicarp extract was analyzed to identify and quantify the polyphenolic compounds using LC QTOF/ESI-MS and UPLC-PDA-FL. The analyzed parameters included antidiabetic activity (α-amylase, α-glucosidase, and pancreatic lipase), inhibitory activity toward cholinesterase (AChE, BuChE), anti-inflammatory activity (COX-1, COX-2, 15-LOX) and antioxidant activity based on ORAC and ABTS. The polyphenolic preparation of the passion fruit epicarp extract contained 51 polyphenolic compounds representing five groups-flavones (25 compounds; 52% of total polyphenolic), flavonols (8; 16%), flavan-3-ols (6; 7%), phenolic acids (4; 3%), and anthocyanins (7; 21%), with derivatives of luteolin (13 derivatives) and apigenin (8 derivatives) as dominant compounds. The preparation was characterized by an antioxidant activity of 160.7 (ORAC) and 1004.4 mmol Trolox/100 mL (ABTS+o). The inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase reached IC50 of 7.99, 12.80, and 0.42, respectively. The inhibition of cholinesterases (IC50) was 18.29 for AChE and 14.22 for BuChE. Anti-inflammatory activity as IC50 was 6.0 for COX-1, 0.9 for COX-2, and 4.9 for 15-LOX. Food enriched with passion fruit epicarp extract has a potentially therapeutic effect.
Collapse
Affiliation(s)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
11
|
Li H, Beg OU, Rafie AR, Kanwal S, Ovalle-Cisneros A, Faison MO, Siddiqui RA. Characterization of Green and Yellow Papaya ( Carica papaya) for Anti-Diabetic Activity in Liver and Myoblast Cells and Wound-Healing Activity in Fibroblast Cells. Nutrients 2023; 15:1929. [PMID: 37111148 PMCID: PMC10142885 DOI: 10.3390/nu15081929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity and diabetes, often characterized as "metabolic syndrome", have been recognized as two of the most important public health issues worldwide. The objective of the present research was to evaluate green and yellow papaya for anti-oxidation and anti-diabetic properties. Leaves, skin, pulp, and seed samples from papayas were freeze-dried and then extracted in water or 80% methanol. The extracts were used to determine total polyphenolic content and anti-oxidation activities, and to determine biological activities, including glucose uptake, Glut-2 expression, triglyceride reduction, and wound-healing activity. Our data demonstrated that methanol and water extracts of green and yellow papaya have similar concentrations of polyphenols in skin (10-20 mg/g dry powder), leaf (25-30 mg/g dry powder), and pulp (1-3 mg/g dry powder) fractions. However, both methanol and water extracts of seeds from yellow papaya have substantially higher concentrations of polyphenols compared to green papaya. Both water and methanol extracts of yellow papaya exhibited higher anti-oxidation activity compared to green papaya in skin (50-60%), pulp (200-300%), and seeds (10-800%). Old leaves also showed greater anti-oxidation activity (30-40%) compared to new leaves. Pulp extracts from both yellow and green papaya stimulated greater glucose uptake, but only pulp from green papaya stimulated glucose uptake in muscle cells. Similarly, pulp extract stimulated glucose transporter Glut-2 expression in liver cells. The skin, pulp, and seeds of green or yellow papaya showed triglyceride-lowering activity in liver cells by 60-80%, but samples taken from yellow papaya had a more potent effect. Seeds from both green and yellow papaya significantly stimulated the migration of fibroblasts in the wounded area by 2-2.5-fold compared to the untreated control. Consistent with these data, seeds from both green and yellow papaya also significantly stimulated collagen synthesis in fibroblast cells by almost 3-fold. In conclusion, our data indicate that different parts of papaya produce stimulatory effects on glucose uptake, Glut-2 expression, TG reduction, and wound-healing activities. This study concludes that different parts of the papaya can be beneficial for preventing diabetes and diabetes-related wound healing.
Collapse
Affiliation(s)
- Haiwen Li
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research Station, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (H.L.); (O.U.B.); (S.K.)
| | - Obaid Ullah Beg
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research Station, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (H.L.); (O.U.B.); (S.K.)
| | - Ahmed Reza Rafie
- Cooperate Extension, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA;
| | - Sadia Kanwal
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research Station, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (H.L.); (O.U.B.); (S.K.)
| | - Alexandra Ovalle-Cisneros
- Department of Biology, College of Natural Sciences, Virginia State University, Petersburg, VA 23806, USA; (A.O.-C.); (M.O.F.)
| | - Milton Omar Faison
- Department of Biology, College of Natural Sciences, Virginia State University, Petersburg, VA 23806, USA; (A.O.-C.); (M.O.F.)
| | - Rafat Ali Siddiqui
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research Station, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (H.L.); (O.U.B.); (S.K.)
| |
Collapse
|
12
|
Pinheiro LZ, da Silva FF, Queiroz MSR, Aguieiras ECG, Cipolatti EP, da Silva AS, Bassut J, Seldin L, Guimarães DO, Freire DMG, de Souza ROMA, Leal ICR. Activity of endophytic fungi in enantioselective biotransformation of chiral amines: New approach for solid-state fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
FONTES RF, ANDRADE JKS, RAJAN M, NARAIN N. Chemical characterization of different parts of noni (Morinda citrifolia) fruit and its freeze-dried pulp powder with emphasis on its bioactive compounds and antioxidant activities. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Rotimi DE, Ben-Goru GM, Evbuomwan IO, Elebiyo TC, Alorabi M, Farasani A, Batiha GES, Adeyemi OS. Zingiber officinale and Vernonia amygdalina Infusions Improve Redox Status in Rat Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9470178. [PMID: 36199544 PMCID: PMC9529415 DOI: 10.1155/2022/9470178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
The study investigated the effects of Zingiber officinale root and Vernonia amygdalina leaf on the brain redox status of Wistar rats. Twenty-four (24) rats weighing 160 ± 20 g were randomly assigned into four (4) groups, each with six (6) rats. Animals in Group 1 (control) were orally administered distilled water (1 mL), while the test groups were orally administered 5 mg/mL of either Z. officinale, V. amygdalina infusion, or a combination of both, respectively, for 7 days. The rats were sacrificed at the end of treatments and blood and tissue were harvested and prepared for biochemical assays. Results showed that administration of V. amygdalina and Z. officinale, as well as their coadministration, reduced the levels of malondialdehyde (MDA), nitric oxide (NO), acetylcholinesterase (AChE), and myeloperoxidase (MPO) in rat brain tissue compared with the control group. Conversely, coadministration of V. amygdalina and Z. officinale increased the levels of reduced glutathione (GSH) in rat brain tissue compared with the control group. However, the administration of the infusions singly, as well as the combination of both infusions, did not have any effect on the rat brain levels of glutathione peroxidase (GPx) and catalase (CAT) antioxidant enzymes compared to the control. Taken together, the findings indicate that the V. amygdalina and Z. officinale tea infusions have favorable antioxidant properties in the rat brain. The findings are confirmatory and contribute to deepening our understanding of the health-promoting effects of V. amygdalina and Z. officinale tea infusions.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Goodnews Mavoghenegbero Ben-Goru
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Ikponmwosa Owen Evbuomwan
- Department of Microbiology, Cellular Parasitology Unit, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, Biomedical Research Unit, Medical Research Center, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi 989-6711, Sendai, Japan
| |
Collapse
|
15
|
Lesser-Consumed Tropical Fruits and Their by-Products: Phytochemical Content and Their Antioxidant and Anti-Inflammatory Potential. Nutrients 2022; 14:nu14173663. [PMID: 36079920 PMCID: PMC9460136 DOI: 10.3390/nu14173663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were harvested, representing about 6.35% of the total world production of tropical fruits. The present work reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is rich in carotenoids (36.12 mg β-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these fruits make them a good source for use as food ingredients for nutritional purposes or alternative therapies. Research is needed to confirm their health benefits that can increase their marketability, which can benefit the primary producers, processing industries (particularly smaller ones) and the final consumer, while an integral use of their by-products will allow their incorporation into the circular bioeconomy.
Collapse
|
16
|
Antioxidant Polyphenols of Antirhea borbonica Medicinal Plant and Caffeic Acid Reduce Cerebrovascular, Inflammatory and Metabolic Disorders Aggravated by High-Fat Diet-Induced Obesity in a Mouse Model of Stroke. Antioxidants (Basel) 2022; 11:antiox11050858. [PMID: 35624723 PMCID: PMC9138119 DOI: 10.3390/antiox11050858] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic disorders related to obesity and type 2 diabetes are associated with aggravated cerebrovascular damages during stroke. In particular, hyperglycemia alters redox and inflammatory status, leading to cerebral endothelial cell dysfunction, blood–brain barrier (BBB) disruption and brain homeostasis loss. Polyphenols constitute the most abundant dietary antioxidants and exert anti-inflammatory effects that may improve cerebrovascular complications in stroke. This study evaluated the effects of the characterized polyphenol-rich extract of Antirhea borbonica medicinal plant and its major constituent caffeic acid on a high-fat diet (HFD)-induced obesity mouse model during ischemic stroke, and murine bEnd3 cerebral endothelial cells in high glucose condition. In vivo, polyphenols administered by oral gavage for 12 weeks attenuated insulin resistance, hyperglycemia, hyperinsulinemia and dyslipidemia caused by HFD-induced obesity. Polyphenols limited brain infarct, hemorrhagic transformation and BBB disruption aggravated by obesity during stroke. Polyphenols exhibited anti-inflammatory and antioxidant properties by reducing IL-1β, IL-6, MCP-1, TNF-α and Nrf2 overproduction as well as total SOD activity elevation at the cerebral or peripheral levels in obese mice. In vitro, polyphenols decreased MMP-2 activity that correlated with MCP-1 secretion and ROS intracellular levels in hyperglycemic condition. Protective effects of polyphenols were linked to their bioavailability with evidence for circulating metabolites including caffeic acid, quercetin and hippuric acid. Altogether, these findings show that antioxidant polyphenols reduced cerebrovascular, inflammatory and metabolic disorders aggravated by obesity in a mouse model of stroke. It will be relevant to assess polyphenol-based strategies to improve the clinical consequences of stroke in the context of obesity and diabetes.
Collapse
|
17
|
Suriyaprom S, Mosoni P, Leroy S, Kaewkod T, Desvaux M, Tragoolpua Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants (Basel) 2022; 11:602. [PMID: 35326252 PMCID: PMC8945554 DOI: 10.3390/antiox11030602] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Fruit is an essential part of the human diet and is of great interest because of its richness in phytochemicals. Various fruit extracts from citrus, berries and pomegranates have been shown to possess a broad spectrum of medicinal properties. Fruit phytochemicals are of considerable interest because of their antioxidant properties involving different mechanisms of action, which can act against different pathogenic bacteria. The antioxidant capacity of fruit phytochemicals involves different kinds of reactions, such as radical scavenging and chelation or complexation of metal ions. The interaction between fruit phytochemicals and bacteria has different repercussions: it disrupts the cell envelope, disturbs cell-cell communication and gene regulation, and suppresses metabolic and enzymatic activities. Consequently, fruit phytochemicals can directly inhibit bacterial growth or act indirectly by modulating the expression of virulence factors, both of which reduce microbial pathogenicity. The aim of this review was to report our current knowledge on various fruit extracts and their major bioactive compounds, and determine the effectiveness of organic acids, terpenes, polyphenols, and other types of phenolic compounds with antioxidant properties as a source of antimicrobial agents.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- Microbiologie Environnement Digestif et Santé (MEDiS) UMR454, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (P.M.); (S.L.)
| | - Pascale Mosoni
- Microbiologie Environnement Digestif et Santé (MEDiS) UMR454, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (P.M.); (S.L.)
| | - Sabine Leroy
- Microbiologie Environnement Digestif et Santé (MEDiS) UMR454, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (P.M.); (S.L.)
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.)
| | - Mickaël Desvaux
- Microbiologie Environnement Digestif et Santé (MEDiS) UMR454, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (P.M.); (S.L.)
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.)
- Research Center in Bioresources for Agriculture, Industry, and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Gence L, Fernezelian D, Bringart M, Veeren B, Christophe A, Brion F, Meilhac O, Bascands JL, Diotel N. Hypericum lanceolatum Lam. Medicinal Plant: Potential Toxicity and Therapeutic Effects Based on a Zebrafish Model. Front Pharmacol 2022; 13:832928. [PMID: 35359845 PMCID: PMC8963451 DOI: 10.3389/fphar.2022.832928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
Hypericum lanceolatum Lam. (H. lanceolatum) is a traditional medicinal plant from Reunion Island used for its pleiotropic effects mainly related to its antioxidant activity. The present work aimed to 1) determine the potential toxicity of the plant aqueous extract in vivo and 2) investigate its putative biological properties using several zebrafish models of oxidative stress, regeneration, estrogenicity, neurogenesis and metabolic disorders. First, we characterized the polyphenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and identified chlorogenic acid isomers, quercetin and kaempferol derivatives as the major compounds. We then evaluated for the first time the toxicity of an aqueous extract of H. lanceolatum and determined a maximum non-toxic concentration (MNTC) in zebrafish eleutheroembryos from 0 to 96 hpf following OECD (Organization for Economic Cooperation and Development) guidelines. This MNTC test was also determined on hatched eleutheroembryos after 2 days of treatment (from 3 to 5 dpf). In our study, the anti-estrogenic effects of H. lanceolatum are supported by the data from the EASZY assay. In a tail amputation model, we showed that H. lanceolatum at its MNTC displays antioxidant properties, favors immune cell recruitment and tissue regeneration. Our results also highlighted its beneficial effects in metabolic disorders. Indeed, H. lanceolatum efficiently reduces lipid accumulation and body mass index in overfed larva- and adult-models, respectively. In addition, we show that H. lanceolatum did not improve fasting blood glucose levels in a hyperglycemic zebrafish model but surprisingly inhibited neurogenesis impairment observed in diabetic conditions. In conclusion, our study highlights the antioxidant, pro-regenerative, anti-lipid accumulation and pro-neurogenic effects of H. lanceolatum in vivo and supports the use of this traditional medicinal plant as a potential alternative in the prevention and/or treatment of metabolic disorders.
Collapse
Affiliation(s)
- Laura Gence
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Matthieu Bringart
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Armelle Christophe
- Unité D’Écotoxicologie des Substances et des Milieux (ESMI), Institut National de L’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - François Brion
- Unité D’Écotoxicologie des Substances et des Milieux (ESMI), Institut National de L’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- *Correspondence: Jean-Loup Bascands, ; Nicolas Diotel,
| | - Nicolas Diotel
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- *Correspondence: Jean-Loup Bascands, ; Nicolas Diotel,
| |
Collapse
|
19
|
Rapid fingerprinting of extractable and non-extractable polyphenols from tropical fruit peels using direct analysis in real time coupled to orbitrap mass spectrometry. Food Chem 2022; 371:131191. [PMID: 34600365 DOI: 10.1016/j.foodchem.2021.131191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022]
Abstract
A simple and rapid direct analysis in real-time coupled to high-resolution mass spectrometry (DART-HRMS) methodology was developed to generate the extractable and non-extractable polyphenols (NEPs) fingerprint for four different passion fruits, G. mangostana, and A. squamosa peels as case-study to investigate the influence of alkaline hydrolysis and enzymatic-assisted extraction (EAE) on the recovery of NEPs. The extraction residue obtained after these treatments was also analyzed by DART-HRMS. Data compiled from DART-HRMS mass spectra were processed with principal component analysis to discriminate among the different treatments. EAE with Depol enzyme enabled to obtain NEPs with the highest signal intensity in DART-HRMS analysis from all peels except for P. edulis and A. squamosa peels. In these two cases, NEPs were better extracted by EAE with Promod enzyme and alkaline hydrolysis. Results showed that the applied treatments were efficient to extract NEPs since their signal intensities in the extraction residues were very low compared with their extracts.
Collapse
|
20
|
Thouvenot K, Turpin T, Taïlé J, Clément K, Meilhac O, Gonthier MP. Links between Insulin Resistance and Periodontal Bacteria: Insights on Molecular Players and Therapeutic Potential of Polyphenols. Biomolecules 2022; 12:biom12030378. [PMID: 35327570 PMCID: PMC8945445 DOI: 10.3390/biom12030378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is a metabolic disease mainly associated with insulin resistance during obesity and constitutes a major public health problem worldwide. A strong link has been established between type 2 diabetes and periodontitis, an infectious dental disease characterized by chronic inflammation and destruction of the tooth-supporting tissue or periodontium. However, the molecular mechanisms linking periodontal bacteria and insulin resistance remain poorly elucidated. This study aims to summarize the mechanisms possibly involved based on in vivo and in vitro studies and targets them for innovative therapies. Indeed, during periodontitis, inflammatory lesions of the periodontal tissue may allow periodontal bacteria to disseminate into the bloodstream and reach tissues, including adipose tissue and skeletal muscles that store glucose in response to insulin. Locally, periodontal bacteria and their components, such as lipopolysaccharides and gingipains, may deregulate inflammatory pathways, altering the production of pro-inflammatory cytokines/chemokines. Moreover, periodontal bacteria may promote ROS overproduction via downregulation of the enzymatic antioxidant defense system, leading to oxidative stress. Crosstalk between players of inflammation and oxidative stress contributes to disruption of the insulin signaling pathway and promotes insulin resistance. In parallel, periodontal bacteria alter glucose and lipid metabolism in the liver and deregulate insulin production by pancreatic β-cells, contributing to hyperglycemia. Interestingly, therapeutic management of periodontitis reduces systemic inflammation markers and ameliorates insulin sensitivity in type 2 diabetic patients. Of note, plant polyphenols exert anti-inflammatory and antioxidant activities as well as insulin-sensitizing and anti-bacterial actions. Thus, polyphenol-based therapies are of high interest for helping to counteract the deleterious effects of periodontal bacteria and improve insulin resistance.
Collapse
Affiliation(s)
- Katy Thouvenot
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Teva Turpin
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Janice Taïlé
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Karine Clément
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France
| | - Olivier Meilhac
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Marie-Paule Gonthier
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
- Correspondence: ; Tel.: +33-262-693-92-08-55
| |
Collapse
|
21
|
Fonseca HC, Melo DDS, Ramos CL, Menezes AGT, Dias DR, Schwan RF. Sensory and flavor-aroma profiles of passion fruit juice fermented by potentially probiotic Lactiplantibacillus plantarum CCMA 0743 strain. Food Res Int 2022; 152:110710. [PMID: 35181110 DOI: 10.1016/j.foodres.2021.110710] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022]
Abstract
Several non-dairy probiotic beverages are already available to consumers and have been considered suitable carriers for probiotic bacteria. This study aimed to investigate the effect of Lactiplantibacillus plantarum CCMA 0743 in single and co-culture on the volatile compounds and sensory profiles of fermented passion fruit juice. The viability of strains inoculated in juice and MRS matrices was evaluated in a simulated gastrointestinal condition. The bacterial viability after 28 days of refrigerated storage of the juices was also evaluated. L. plantarum CCMA 0743 showed high viability (6.18 Log CFU/mL) after passage throughout simulated digestion in the passion fruit juice matrix. Both juices maintained high probiotic counts (>8.0 Log CFU/mL) during storage. Also, the yellow color was stable after 28 days of storage. Volatile compounds of passion fruit juices were modified after the fermentation process, such as ketones and alcohol formation degradation. The sensory profile of passion fruit juice was modified by single and co-culture fermentations. The fermented samples were mainly correlated with the terminologies "salty, acidic and bitter tastes" and "sweetener aftertaste". Overall, passion fruit juice proved to be an adequate food matrix to deliver the evaluated strains. However, individual strains or strain-strain interactions with the food matrix affect the fermented product, demonstrating that strain and matrices evaluations are essential for developing novel products with acceptable characteristics.
Collapse
Affiliation(s)
- Hugo Calixto Fonseca
- Food Science Department, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Dirceu de Sousa Melo
- Biology Department, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Cíntia Lacerda Ramos
- Department of Basic Science, Federal University of Jequitinhonha and Mucuri Valeys, 39100-000 Diamantina, Minas Gerais, Brazil
| | | | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Pathak AK, Singh SP, Sharma R, Nath V, Tuli R. Transcriptome analysis at mid-stage seed development in litchi with contrasting seed size. 3 Biotech 2022; 12:47. [PMID: 35127302 PMCID: PMC8783947 DOI: 10.1007/s13205-021-03098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/18/2021] [Indexed: 02/03/2023] Open
Abstract
Litchi is a sub-tropical fruit crop with genotypes that bear fruits with variable seed size. Small seed size is a desirable trait in litchi, as it improves consumers' preference and facilitates fruit processing. Seed specific transcriptome analysis was performed in two litchi genotypes with contrasting seed size to identify the genes associated with seed development. The transcriptomic sequence data from seeds at mid-development stages (16-28 days after anthesis) were de-novo assembled into 1,39,608 Trinity transcripts. Out of these, 6325 transcripts expressed differentially between the two contrasting genotypes. Several putative genes for salicylic acid, jasmonic acid and brassinosteriod pathways were down-regulated in seeds of the small-seeded litchi. The putative regulators of seed maturation and seed storage were down-regulated in the small-seeded genotype. Embryogenesis, cell expansion, seed size and stress related Trinity transcripts exhibited differential expression. Further studies on gene characterization will reveal the early regulators of seed size in litchi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03098-8.
Collapse
Affiliation(s)
- Ashish K. Pathak
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.261674.00000 0001 2174 5640Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sudhir P. Singh
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.454774.1Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
| | - Ritika Sharma
- grid.473732.6Sardar Swaran Singh National Institute of Bioenergy, Jalandhar, India
| | - Vishal Nath
- grid.506047.0ICAR-National Research Centre of Litchi, Muzaffarpur, India
| | - Rakesh Tuli
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.261674.00000 0001 2174 5640Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
23
|
Aremu AO, Moyo M. Health benefits and biological activities of spiny monkey orange (Strychnos spinosa Lam.): An African indigenous fruit tree. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114704. [PMID: 34601082 DOI: 10.1016/j.jep.2021.114704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spiny monkey orange (Strychnos spinosa Lam.) is an African endemic fruit tree that is widely consumed by humans and animals for its nutritional value. In folk medicine, different parts of S. spinosa are widely used for the management of the health and well-being of humans and livestock. AIM We provide a critical appraisal on the ethnobotanical uses, nutritional and pytochemical as well as the biological activities of S. spinosa. METHODS Articles were mined from online databases such as Google Scholar, PubMed, Science Direct, SciELO and SpringerLink. We captured research outputs that aligned with the scope of the review. RESULTS Strychnos spinosa remains a commonly consumed fruit due to its high nutritional (e.g. carbohydrates, crude protein and fats) content and energy. In folk medicine, different parts of S. spinosa are prescribed as remedy for diverse medical conditions especially for treating malaria, diabetes, snakebites, skin-related conditions and sexually transmitted infections in humans as well as sleeping sickness in livestock. Together with essential oils, more than 25 compounds have been profiled using Gas chromatography-mass spectrometry (GC-MS), and approximately 45 compounds have been isolated and structurally elucidated using diverse spectroscopic techniques such as UV-visible, Infrared (IR), Nuclear Magnetic Resonance (NMR) and mass spectroscopy (MS). Strychnos spinosa exerts varying degrees of biological activities against different microorganisms (bacteria and fungi) and parasites (plasmodia, trypanosomes and ticks) responsible for many diseases in humans and livestock. Furthermore, low to moderate enzyme-inhibitory effects of S. spinosa extracts suggest its ability to mitigate pains, inflammations and diabetics as well as snakebite venom. Increasing evidence from the in vivo studies support the use of the plant as a popular remedy for managing diabetics in folk medicine. The low cytotoxic effect of the plant extracts against different cell lines could be an indication of its relative safety. CONCLUSION Strychnos spinosa exhibits various health-promoting benefits due to its diverse nutritional and phytochemical constituents. Given that the majority of the existing evidence on these aforementioned therapeutic properties and safety are in vitro-based, the clinical significance of these results remain limited.
Collapse
Affiliation(s)
- Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, North West Province, South Africa; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, South Africa.
| | - Mack Moyo
- Department of Horticulture, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
24
|
Viera W, Shinohara T, Samaniego I, Sanada A, Terada N, Ron L, Suárez-Tapia A, Koshio K. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030328. [PMID: 35161309 PMCID: PMC8838848 DOI: 10.3390/plants11030328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 05/13/2023]
Abstract
Tropical fruits are in high demand for their flavor and for their functional composition because these compounds are considered nutraceuticals. Passion fruit production is of economic importance to Ecuador; however, several Passiflora species are grown and each has to be analyzed to identify their phytochemical composition. In this study, the polyphenol, flavonoid, carotenoid, vitamin C, sugar and organic acid contents were determined. Six different Passiflora spp. germplasms were analyzed, coming from Passiflora edulis f. flavicarpa, Passiflora alata, Passiflora edulis f. edulis and unidentified Passiflora species (local germplasm). Measurement techniques included reflectometry for vitamin C, spectrophotometry for antioxidant compounds and HPLC for sugars and organic acids. Data were analyzed by principal component analysis, correlation and analysis of variance. Results showed that INIAP 2009 and P10 showed a high amount of polyphenols, antioxidant activity and citric content. Sweet passion fruit had the lowest vitamin C content while Gulupa showed the highest content. In terms of the local germplasm, POR1 showed the lowest content of flavonoids while PICH1 had high flavonoid and carotenoid content. Polyphenols were the main compounds that influenced antioxidant activity. This phytochemical information adds value to passion fruit as a nutraceutical source.
Collapse
Affiliation(s)
- William Viera
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
- Fruit Program, Tumbaco Experimental Farm, National Institute of Agricultural Research (INIAP), Av. Interoaceánica km 15 and Eloy Alfaro, Tumbaco 170902, Ecuador;
| | - Takashi Shinohara
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
| | - Iván Samaniego
- Fruit Program, Tumbaco Experimental Farm, National Institute of Agricultural Research (INIAP), Av. Interoaceánica km 15 and Eloy Alfaro, Tumbaco 170902, Ecuador;
| | - Atsushi Sanada
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
| | - Naoki Terada
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
| | - Lenin Ron
- Zoonosis International Center, Universidad Central del Ecuador (UCE), Quito 170521, Ecuador;
| | - Alfonso Suárez-Tapia
- Graduate School of Agroindustry and Food Science, Universidad de las Américas (UDLA), Quito 170503, Ecuador
- Correspondence: ; Tel.: +593-996-759-124
| | - Kaihei Koshio
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
| |
Collapse
|
25
|
García-Villegas A, Rojas-García A, Villegas-Aguilar MDC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants (Basel) 2022; 11:203. [PMID: 35204085 PMCID: PMC8868306 DOI: 10.3390/antiox11020203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing production of tropical fruits followed by their processing results in tons of waste, such as skins or seeds. However, these by-products have been reported to be rich in bioactive compounds (BACs) with excellent properties of interest in the cosmeceutical industry: antioxidant, anti-aging, anti-inflammatory, antimicrobial and photoprotective properties. This review summarizes the tropical fruits most produced worldwide, their bioactive composition and the most important and studied therapeutic properties that their by-products can contribute to skin health, as well as the different approaches for obtaining these compounds using techniques by conventional (Soxhlet, liquid-liquid extraction or maceration) and non-conventional extractions (supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE) and two-phase aqueous system), followed by their identification by HPLC-MS or GC-MS analysis. Moreover, this work encompasses several studies that may prove the effects of seeds and skins from tropical fruits against oxidative stress, hyperpigmentation, acne, aging or UV radiation. Therefore, the investigation of functional components present in tropical fruit by-products under a circular bioeconomy model could be of great interest for the cosmeceutical industry and a very promising option for obtaining new cosmeceutical formulations.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - María del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Patricia Fernández-Moreno
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
- Berlin Institute of Health Metabolomics Platform, 13125 Berlin, Germany
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (A.G.-V.); (A.R.-G.); (M.d.C.V.-A.); (P.F.-M.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
26
|
LI Y, S RAMASWAMY H, LI J, GAO Y, YANG C, ZHANG X, IRSHAD A, REN Y. Nutrient evaluation of the seed, pulp, flesh, and peel of spaghetti squash. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yang LI
- Northwest A&F University, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liang ZX, Zhang JZ, Xin C, Li D, Sun MY, Shi L. Analysis of edible characteristics, antioxidant capacities, and phenolic pigment monomers in Lilium bulbs native to China. Food Res Int 2022; 151:110854. [PMID: 34980390 DOI: 10.1016/j.foodres.2021.110854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/04/2022]
Abstract
Lilium is cherished for its health-promoting properties in China. The bulbs of Lilium are rich in phenolic compounds, which are associated with antioxidant capacity. However, no systematic evaluation on phenolic compositions and antioxidant capacities for the edible Lilium native to China has been conducted. Herein, bulbs of 56 wild populations and three cultivars were collected. Their edible characteristics, antioxidant capacities, and pigments have been investigated and analyzed. The results showed that phenolic compounds contributed to the major colors (red, yellow and white) in Lilium bulbs. The seven phenolic pigment monomers responsible for the color of bulbs-cyanidin-3-O-rutinoside, isoquercitrin, regaloside B, regaloside C, regaloside H, regaloside A and regaloside D-were identified by the combination of HPLC-MS and NMR analysis. The population Lilium regale E. H. Wilson (Maoxian County, Sichuan Province) had the highest antioxidant capacity. According to the quantification results, Lilium bulbs with darker and redder colors possessed larger biomass, better nutrient compositions, significantly higher bioactive constituents, and higher antioxidant capacities than the three currently consumed cultivars of edible lily bulbs. Overall, these findings suggest that the mountainous area of southwest China could be the fourth source of edible lilies with the bulb-colored Lilium species.
Collapse
Affiliation(s)
- Zhen-Xu Liang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.
| | - Jin-Zheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Dong Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Mei-Yu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
28
|
Mukherjee R, Pandya P, Baxi D, Ramachandran AV. Endocrine Disruptors-'Food' for Thought. PROCEEDINGS OF THE ZOOLOGICAL SOCIETY 2021; 74:432-442. [PMID: 34866764 PMCID: PMC8632730 DOI: 10.1007/s12595-021-00414-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022]
Abstract
Green vegetables, fruits, cereals, and pulses are all rich sources of antioxidants. Retinoic acid, ascorbate, proanthocyanidins, tannins, saponins, melatonin, curcumin, allicin, and alpha-lipoic acid stand documented in plants as bioactive compounds. The international dietary committee advocates a specific quantum of these natural antioxidants through diet. Interestingly, environmental pollution has indeed affected most of these farm products. The use of chemical fertilizers, pesticides and heavy metals in soil has a cumulative effect on human health. Enough evidence is available for the presence of phytoestrogen, xenoestrogen, and a host of other endocrine disruptors in the food. These plant-based nutrients can mimic or enhance the natural hormone's health effects. While endocrine disruptors are found in many everyday products, this review aims to address endocrine disruptors from food in the Asian subcontinent. 'Food for thought' justifies the paradigm shift towards good endocrine health by swaying away from the conventional daily dietary recommendations.
Collapse
Affiliation(s)
- Raktim Mukherjee
- Shree P.M. Patel Institute of PG Studies and Research in Science, Affiliated to Sardar Patel University, Anand, Gujarat India
| | - Parth Pandya
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| | - Darshee Baxi
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| | - A. V. Ramachandran
- School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| |
Collapse
|
29
|
Tan S, Zhang H, Chen Q, Tang Y, Yang J, Zhang X, Li W, Shi S. Physical Characterization, Nutrient, Phenolic Profiles and Antioxidant Activities of 16 litchi Cultivars Grown in the Upper Yangtze River Region. Chem Biodivers 2021; 19:e202100713. [PMID: 34797035 DOI: 10.1002/cbdv.202100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
Litchi grown in the upper Yangtze River region have the advantage of being late-maturing owing to the geographical location. This study aimed to evaluate the physical characteristics, nutritional values, phenolic composition and antioxidant activities of 16 litchi cultivars grown in the upper Yangtze River region. Litchi grown in this region had total soluble solid and ascorbic acid contents comparable with those of cultivars grown in other locations. The total polyphenol contents were determined using the Folin-Ciocalteu assay, and the phenolic profiles were determined using UPLC-QqQ-MS/MS. Nine phenolic compounds were identified and quantified in this study. Naringin, rutin and p-coumaric acid were the major phenolic compounds in all the litchi cultivars. Statistical analysis of all the physiochemical results was performed using principal component analysis. Our results indicated that litchi grown in the upper Yangtze River region not only showed the late-maturity characteristic but were also good dietary sources of phenolic compounds and antioxidants. In particular, 'Fei Zi Xiao' and 'Jing Gang Hong Nuo', characterized by high polyphenol contents and high antioxidant capacities, were of superior comprehensive quality. This study provides important information for the development of late-maturing litchi industry.
Collapse
Affiliation(s)
- Si Tan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China.,College of Food Science, Southwest University, Chongqing, 400715, P. R. China.,Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, 408000, P. R. China
| | - Hongna Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Qin Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Yuxin Tang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Jiaqi Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Xin Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Shengyou Shi
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China.,South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Guangdong, 524091, P. R. China
| |
Collapse
|
30
|
Tsong JL, Goh LPW, Gansau JA, How SE. Review of Nephelium lappaceum and Nephelium ramboutan-ake: A High Potential Supplement. Molecules 2021; 26:molecules26227005. [PMID: 34834094 PMCID: PMC8620321 DOI: 10.3390/molecules26227005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nephelium lappaceum (N. lappaceum) and Nephelium ramboutan-ake (N. ramboutan-ake) are tropical fruits that gain popularity worldwide due to their tastiness. Currently, their potential to be used as pharmaceutical agents is underestimated. Chronic diseases such as cancer, diabetes and aging have high incidence rates in the modern world. Furthermore, pharmaceutical agents targeting pathogenic microorganisms have been hampered by the growing of antimicrobial resistance threats. The idea of food therapy leads to extensive nutraceuticals research on the potential of exotic fruits such as N. lappaceum and N. ramboutan-ake to act as supplements. Phytochemicals such as phenolic compounds that present in the fruit act as potent antioxidants that contribute to the protective effects against diseases induced by oxidative stress. Fruit residuals such as the peel and seeds hold greater nutraceutical potential than the edible part. This review highlights the antioxidant and biological activities (anti-neoplastic, anti-microbial, hypoglycemic actions and anti-aging), and chemical contents of different parts of N. lappaceum and N. ramboutan-ake. These fruits contain a diverse and important chemical profile that can alleviate or cure diseases.
Collapse
|
31
|
Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. COSMETICS 2021. [DOI: 10.3390/cosmetics8040106] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, interest in the health effects of natural antioxidants has increased due to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antioxidants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various biomolecules while also providing antioxidant properties. Because the biological activities of natural antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying their desired effect, along with recent applications in skincare formulation and their limitations.
Collapse
|
32
|
Zou X, Bk A, Abu-Izneid T, Aziz A, Devnath P, Rauf A, Mitra S, Emran TB, Mujawah AAH, Lorenzo JM, Mubarak MS, Wilairatana P, Suleria HAR. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomed Pharmacother 2021; 143:112191. [PMID: 34562769 DOI: 10.1016/j.biopha.2021.112191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
Tobacco is grown in large quantities worldwide as a widely distributed commercial crop. From the harvest of the field to the process into the final product, a series of procedures generate enormous amount of waste materials that are rarely recycled. In recent years, numerous potential bioactive compounds have been isolated from tobacco, and the molecular regulatory mechanisms related to the performance of some functionalities have been identified. This review describes the source of tobacco waste and expounds a large amount of biomass during the tobacco processing, and the necessity of exploring the reuse of tobacco waste. In addition, the review summarizes the bioactive compounds from tobacco that have been discovered so far, and links them to various functions from tobacco extracts, including anti-inflammatory, antitumor, antibacterial, and antioxidant, thus proving the potential value from tobacco waste reuse. In this regard, nornicotine in tobacco is the culprit of many health issues, while the polyphenols and polysaccharides often contribute to the health benefits of tobacco extract. In addition, it is hard to ignore that realization of these functions of tobacco extracts require the involvement of intestinal flora metabolism, which should be considered in the development of new product dosage forms.
Collapse
Affiliation(s)
- Xinda Zou
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amrit Bk
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University Al Ain Campus, Unites Arab Emirates
| | - Ahsan Aziz
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Popy Devnath
- Department of Microbiology, Faculty of Sciences, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Adil A H Mujawah
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| | | | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
33
|
Crespo L, Gaglio R, Martínez FG, Martin GM, Franciosi E, Madrid-Albarrán Y, Settanni L, Mozzi F, Pescuma M. Bioaccumulation of selenium-by fruit origin lactic acid bacteria in tropical fermented fruit juices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Yao P, Gao Y, Simal-Gandara J, Farag MA, Chen W, Yao D, Delmas D, Chen Z, Liu K, Hu H, Xiao J, Rong X, Wang S, Hu Y, Wang Y. Litchi ( Litchi chinensis Sonn.): a comprehensive review of phytochemistry, medicinal properties, and product development. Food Funct 2021; 12:9527-9548. [PMID: 34664581 DOI: 10.1039/d1fo01148k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since ancient times, litchi has been well recognized as a functional food for the management of various ailments. Many bioactives, including flavanoids, anthocyanins, phenolics, sesquiterpenes, triterpenes, and lignans, have been identified from litchi with a myriad of biological properties both in vitro and in vivo. In spite of the extensive research progress, systemic reviews regarding the bioactives of litchi are rather scarce. Therefore, it is crucial to comprehensively analyze the pharmacological activities and the structure-activity relationships of the abundant bioactives of litchi. Besides, more and more studies have focused on litchi preservation and development of its by-products, which is significant for enhancing the economic value of litchi. Based on the analysis of published articles and patents, this review aims to reveal the development trends of litchi in the healthcare field by providing a systematic summary of the pharmacological activities of its extracts, its phytochemical composition, and the nutritional and potential health benefits of litchi seed, pulp and pericarp with structure-activity relationship analysis. In addition, its by-products also exhibited promising development potential in the field of material science and environmental protection. Furthermore, this study also provides an overview of the strategies of the postharvest storage and processing of litchi.
Collapse
Affiliation(s)
- Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo 11562, Egypt.,Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Weijie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dongning Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France.,NSERM Research Center U1231 - Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health Research Group, F-21000, France.,Centre anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
| | - Zhejie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Kunmeng Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Hao Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Xianglu Rong
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| |
Collapse
|
35
|
Zou X, BK A, Rauf A, Saeed M, Al-Awthan YS, A. Al-Duais M, Bahattab O, Hamayoon Khan M, Suleria HAR. Screening of Polyphenols in Tobacco ( Nicotiana tabacum) and Determination of Their Antioxidant Activity in Different Tobacco Varieties. ACS OMEGA 2021; 6:25361-25371. [PMID: 34632194 PMCID: PMC8495694 DOI: 10.1021/acsomega.1c03275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 05/06/2023]
Abstract
Tobacco (Nicotiana tabacum) is an herbaceous plant originating from South America and processed into cigarettes for consumption. Polyphenols are considered vital components of tobacco in view of their contribution to antioxidant properties. This study aimed to determine the phenolic compounds in different tobacco varieties by applying cold extraction with methanol and distilled water. The extracts were screened for phenolic compound diversity and distribution as well as their antioxidant potential in different tobacco varieties. The results showed that the methanolic extract of tobacco SP-28 exhibited the highest value in the total phenolic content (24.82 ± 0.07 mg GAE/gd.w.) and total flavonoid content (4.42 ± 0.01 mg QE/gd.w.), while the water extract of tobacco SN-2 exhibited the highest value in the total condensed tannin (1.12 ± 0.03 mg CE/gd.w.). The radical scavenging capacities of tobacco SP-28 were relatively high in DPPH (18.20 ± 0.01 mg AAE/gd.w.) and FRAP (3.02 ± 0.10 mg AAE/gd.w.), whereas the ABTS value was the highest in tobacco SN-2 (37.25 ± 0.03 mg AAE/gd.w.), and the total antioxidant capacity was the highest in tobacco SN-1 (7.43 ± 0.18 mg AAE/gd.w.). LC-ESI-QTOF-MS/MS identified a total of 49 phenolic compounds, including phenolic acids (14), flavonoids (30), and other polyphenols (5) in four different tobacco varieties. Tobacco SP-28 showed the highest number of phenolic compounds, especially enriched in flavones. Our study highlights the antioxidant potential of tobacco extracts and reveals the phenolic distribution among different tobacco varieties that could support tobacco utilization in different pharmaceutical industries.
Collapse
Affiliation(s)
- Xinda Zou
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amrit BK
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Swabi 23430, Anbar-23561 KPK, Pakistan
| | - Muhammad Saeed
- Department
of Agriculture, University of Swabi, Swabi 23430, Anbar-23561 KPK, Pakistan
| | - Yahya S. Al-Awthan
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
- Department
of Biology, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Mohammed A. Al-Duais
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
- Biochemistry
Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Omar Bahattab
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Hafiz A. R. Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
36
|
Wu G, Fan G, Zhou J, Liu X, Wu C, Wang Y. Structure and main polyphenols in the haze of blackberry wine. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Soumya RS, Raj KB, Abraham A. Passiflora edulis (var. Flavicarpa) Juice Supplementation Mitigates Isoproterenol-induced Myocardial Infarction in Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:189-195. [PMID: 33825089 DOI: 10.1007/s11130-021-00891-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The common reason for mortality globally is myocardial infarction. The study aimed to evaluate Passiflora edulis (PE) fruit juice potential in the experimental isoproterenol (ISO) treated rat model to manage myocardial injury. ISO (20 mg/100 g body weight) treated rats showed a significant increment in serum marker enzymes lactate dehydrogenase (LDH) and creatinine kinase (CK), serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), serum alkaline phosphatase (ALP) and serum acid phosphatase (ACP) activity. Besides, phosphorus and calcium, serum cholesterol, and triglyceride levels (TG) were high in ISO groups. A significant decline in antioxidant activity and histopathological alteration was observed in ISO treated groups. PE juice pre-treatment (2 ml/kg) for 28 days and ISO treatment on the 29th and 30th days showed a protective effect on distorted biochemical and histopathologic parameters compared with reference drug metoprolol. These findings indicate the cardioprotective effect of PE juice on ISO-induced myocardial infracted rats.
Collapse
Affiliation(s)
- R S Soumya
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - K Binu Raj
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
38
|
Fan M, Lee JI, Ryu YB, Choi YJ, Tang Y, Oh M, Moon SH, Lee B, Kim EK. Comparative Analysis of Metabolite Profiling of Momordica charantia Leaf and the Anti-Obesity Effect through Regulating Lipid Metabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115584. [PMID: 34073706 PMCID: PMC8197276 DOI: 10.3390/ijerph18115584] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
This study investigated the effects of Momordica charantia (M. charantia) extract in obesity and abnormal lipid metabolism in mice fed high fat diet (HFD). Fruit, root, stem, and leaf extracts of M. charantia were obtained using distilled water, 70% ethanol and 95% hexane. M. charantia leaf distilled water extract (MCLW) showed the highest antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity tests and reducing power. Metabolite profiles of M. charantia leaf extracts were analyzed for identification of bioactive compounds. HFD-fed mice were treated with MCLW (oral dose of 200 mg/kg/d) for 4 weeks. MCLW reduced lipid accumulation, body weight, organ weight, and adipose tissue volume and significantly improved glucose tolerance and insulin resistance in HFD mice. Furthermore, MCLW administration reduced serum total cholesterol and low-density lipoprotein cholesterol, and increased serum high-density lipoprotein cholesterol compared with HFD mice. Moreover, MCLW significantly reduced the levels of serum urea nitrogen, alanine aminotransferase, alkaline phosphatase, and aspartate aminotransferase; alleviated liver and kidney injury. MCLW decreases expression of genes that fatty acid synthesis; increase the expression of catabolic-related genes. These results indicate that MCLW has an inhibitory effect on obese induced by high fat diet intake, and the mechanism may be related to the regulation of abnormal lipid metabolism in liver and adipose tissue, suggesting that MCLW may be a suitable candidate for the treatment of obesity.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (S.-H.M.)
| | - Jae-In Lee
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (J.-I.L.); (Y.-B.R.)
| | - Young-Bae Ryu
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (J.-I.L.); (Y.-B.R.)
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (B.L.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
| | - Yujiao Tang
- School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun 130600, China;
| | - Mirae Oh
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea;
| | - Sang-Ho Moon
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (S.-H.M.)
| | - Bokyung Lee
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (B.L.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (B.L.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Correspondence: ; Tel.: +82-51-200-7321
| |
Collapse
|
39
|
Wang W, Gao YT, Wei JW, Chen YF, Liu QL, Liu HM. Optimization of Ultrasonic Cellulase-Assisted Extraction and Antioxidant Activity of Natural Polyphenols from Passion Fruit. Molecules 2021; 26:molecules26092494. [PMID: 33923350 PMCID: PMC8123174 DOI: 10.3390/molecules26092494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/02/2022] Open
Abstract
In this paper, ultrasonic cellulase extraction (UCE) was applied to extract polyphenols from passion fruit. The extraction conditions for total phenol content (TPC) and antioxidant activity were optimized using response surface methodology (RSM) coupled with a Box-Behnken design (BBD). The results showed that the liquid-to-solid ratio (X2) was the most significant single factor and had a positive effect on all responses. The ANOVA analysis indicated quadratic models fitted well as TPC with R2 = 0.903, DPPH scavenging activity with R2 = 0.979, and ABTS scavenging activity with R2 = 0.981. The optimal extraction parameters of passion fruit were as follows: pH value of 5 at 30 °C for extraction temperature, 50:1 (w/v) liquid-to-solid ratio with extraction time for 47 min, the experimental values were found matched with those predicted. Infrared spectroscopy suggested that the extract contained the structure of polyphenols. Furthermore, three main polyphenols were identified and quantified by HPLC. The results showed the content of phenolic compounds and antioxidant activity of the optimized UCE were 1.5~2 times higher than that determined by the single extraction method and the Soxhlet extraction method, which indicates UCE is a competitive and effective extraction technique for natural passion fruit polyphenols.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Yu-Ting Gao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Ji-Wen Wei
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Yin-Feng Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Qing-Lei Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Hui-Min Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
- Correspondence: ; Tel.: +86-186-1677-8997
| |
Collapse
|
40
|
Managa MG, Akinola SA, Remize F, Garcia C, Sivakumar D. Physicochemical Parameters and Bioaccessibility of Lactic Acid Bacteria Fermented Chayote Leaf ( Sechium edule) and Pineapple ( Ananas comosus) Smoothies. Front Nutr 2021; 8:649189. [PMID: 33898502 PMCID: PMC8058202 DOI: 10.3389/fnut.2021.649189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, popularly consumed traditional chayote leaves and locally produced pineapple fruit were used to develop a fermented smoothie using lactic acid bacteria (LAB) strains: Lactobacillus plantarum (L75), Weissella cibaria (W64), and their combination (LW64 + 75). The physicochemical parameters [pH, total soluble solids (TSS), and color], total phenols, and carotenoid contents of the smoothies fermented for 48 h and stored for 7 days at 4°C were compared with the unfermented (control) smoothies. Results indicated that LAB fermentation reduced the pH from 3.56 to 2.50 after 48 h (day 2) compared with the non-fermented smoothie at day 2 (pH 3.37). LAB strain L75 significantly reduced the TSS content of the smoothies to 13.06°Bx after 2 days of fermentation. Smoothies fermented by L75 showed overall acceptability after 7 days of storage compared with the non-fermented puree on day 0. The LW64 + 75 significantly reduced the color change (ΔE), which was similar to the control. L75 increased the phenolic content, and W64 enhanced the total carotenoid content of the smoothies after 2 days of fermentation compared with other treatments. The use of an in vitro model simulating gastrointestinal (GI) digestion showed that fermentation with L75 improved the total phenol recovery by 65.96% during the intestinal phase compared with the control. The dialysis phase mimicked an epithelial barrier, and 53.58% of the recovered free soluble are bioavailable from the L75 fermented smoothies compared with the control. The antioxidant capacity of dialyzable fraction of the L75 fermented smoothie was significantly higher than that of the control and smoothies fermented with W64 or LW64 + 75.
Collapse
Affiliation(s)
- Millicent G Managa
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Stephen A Akinola
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Cyrielle Garcia
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
41
|
Li C, Xin M, Li L, He X, Yi P, Tang Y, Li J, Zheng F, Liu G, Sheng J, Li Z, Sun J. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing. Food Chem 2021; 355:129685. [PMID: 33799248 DOI: 10.1016/j.foodchem.2021.129685] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022]
Abstract
Passion fruit is a tropical liana of the Passiflora family that is commonly consumed throughout the world due to its attractive aroma and flavor. However, very limited information is available on the mechanism of aroma formation and composition of the passion fruit during ripening. Therefore, HS-SPME-GC/MS combined with transcriptome analysis was used to study the mechanism of aroma formation during passion fruit ripening. The profile analyzed included 148 volatile organic compounds (VOCs) and related differentially expressed genes (DEGs). Compared with SA, 85 VOCs and related DEGs were identified as significantly upregulated at the SB and SC stages, including esters, alcohols, ketones, hydrocarbons, alkanes, and aldehydes. Two main pathways, ester and amino acid metabolism, and related genes were analyzed with VOC biosynthesis in passion fruit. This study is the first analysis of passion fruit VOC formation and provides new insights into the flavor mechanism and quality breeding of passion fruit.
Collapse
Affiliation(s)
- Changbao Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Ming Xin
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Xuemei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Ping Yi
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Yayuan Tang
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jiemin Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Fengjin Zheng
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Guoming Liu
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jinfeng Sheng
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Zhichun Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jian Sun
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| |
Collapse
|
42
|
Sandhu KS, Kaur M, Punia S, Ahmed J. Rheological, thermal, and structural properties of high-pressure treated Litchi (Litchi chinensis) kernel starch. Int J Biol Macromol 2021; 175:229-234. [PMID: 33571583 DOI: 10.1016/j.ijbiomac.2021.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
Starch isolated from litchi kernel was subjected to high-pressure (HP) treatment at selected pressures (300, 450 and 600 MPa) for 10 min, and evaluated for its rheological, morphological, thermal and structural properties. The amylose content of native litchi kernel starch (LKS) was 17.4%, which increased significantly upon pressurization. The temperature sweep test of the untreated starch sample resulted in the peak G' and G″ values of 3417 and 283 Pa, respectively, and those values decreased after pressurization. Oscillatory rheological measurements showed the frequency dependency of tested starch pastes. Furthermore, the mechanical rigidity of the starch pastes improved with pressure treatment. Morphological studies revealed that starch granule structure remained intact after pressurization; however, pressure >450 MPa resulted in surface roughness and small cavities. HP treatment significantly influenced thermal properties of LKS, in particular at 450 and 600 MPa, where a significant drop in the transition temperatures and enthalpy values were recorded. The HP-treated starch samples exhibited distinct X-ray diffraction pattern of native LKS i.e. the blend of A- and B-type allomorphs with a predominating A-type crystalline structure. Upon pressure treatment, the disappearance of 2θ peak at 5.6° and significant changes in peak intensities confirmed the structural change in the starch matrix.
Collapse
Affiliation(s)
- Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India.
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India
| | - Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
43
|
Sarma PP, Gurumayum N, Verma AK, Devi R. A pharmacological perspective of banana: implications relating to therapeutic benefits and molecular docking. Food Funct 2021; 12:4749-4767. [PMID: 33960338 DOI: 10.1039/d1fo00477h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Banana is one of the most nutritious fruits, as it is rich in carbohydrates, proteins, fatty acids, and minerals. Banana has been used in traditional medicines for managing coughs and colds, ulcers, burns, and diarrhea. Banana contains various bioactive compounds, such as alkaloids, phenols, flavonoids, tannins, and saponins, with reported therapeutic benefits, including antioxidant, anti-diabetic, anti-cancer, anti-inflammatory, and anti-microbial activities. The present review focuses on a comprehensive overview of the nutritional and biological properties and phytochemicals of different species of banana and its different parts. Although detailed characterization of the compounds that are present in many parts of the plant has been carried out, chemical profiling of the seed, pseudostem, and leaves of banana is lacking and requires further exploration. Moreover, the functions of the reported compounds were elucidated using computational tools, supporting their potential role in managing life-threatening diseases and physiological complications.
Collapse
Affiliation(s)
- Partha Pratim Sarma
- Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati-781035, Assam, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Nonibala Gurumayum
- Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati-781035, Assam, India.
| | - Akalesh Kumar Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati-781001, Assam, India.
| | - Rajlakshmi Devi
- Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati-781035, Assam, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
44
|
Xie X, Chen C, Fu X. Study on the bioaccessibility of phenolic compounds and bioactivities of passion fruit juices from different regions in vitro digestion. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Xie
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
| | - Chun Chen
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety Guangzhou China
| | - Xiong Fu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
45
|
Deepthi K, Borthakur BJ, Swathika B, Ganesan S. Assessment of the viability of human periodontal ligament cells in black tea, lime juice, and passion fruit concentrate - A comparative in vitro study. J Conserv Dent 2020; 23:42-45. [PMID: 33223640 PMCID: PMC7657423 DOI: 10.4103/jcd.jcd_253_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/07/2020] [Accepted: 07/27/2020] [Indexed: 11/04/2022] Open
Abstract
Background Tooth avulsion is considered as a severe form of dental trauma, causing damage to the periodontium. Hence, the preservation of healthy periodontal ligament (PDL) cells in the storage medium are pivotal for the success of replantation. Aim and Objective The aim of this study is to assess the viability of human PDL cells in black tea, lime juice, and passion fruit concentrate. Methods Human periodontal cells were cultured and stored in three experimental media - black tea, lime juice, and passion fruit concentrate and subjected to 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay for 1 h and the cell viability was determined. Mean and standard deviation were statistically analyzed using one-way analysis of variance to identify the significant groups. Results The human PDL cells showed 100% viability in lime juice and passion fruit concentrate, followed by 98% viability in black tea. Conclusion Black tea, lime juice, and passion fruit concentrate can be used effectively as storage media for maintaining PDL cells viability in avulsed teeth, with 100% viability exhibited by lime juice and passion fruit concentrate.
Collapse
Affiliation(s)
- K Deepthi
- Junior Resident, Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Post Graduate Institute of Dental Sciences, Puducherry, India
| | - Bikash Jyoti Borthakur
- Professor and Head of Department, Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Post Graduate Institute of Dental Sciences, Puducherry, India
| | - B Swathika
- Professor, Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Post Graduate Institute of Dental Sciences, Puducherry, India
| | - S Ganesan
- Professor, Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Post Graduate Institute of Dental Sciences, Puducherry, India
| |
Collapse
|
46
|
Sarpong F, Rashid MT, Wahia H, Aly TAGA, Zhou C. Mitigation of relative humidity (RH) on phytochemicals and functional groups of dried pineapple (Ananas comosus) slices. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
As part of finding a mechanism to ameliorate the decomposition of phytochemicals and antioxidant in drying processing, this research was conducted. To achieve this, pineapple slices was dried using relative humidity (RH) dryer at varied temperature (60–80 °C) combined with RH (10–30%) conditions. The results revealed that higher RH retained with significantly difference (p <0.05) the phytochemical and antioxidant concentrations and preserved the color and functional groups of dried pineapple under varying drying temperatures. The result also shows that concentrations of these compounds may differ as a result of disparities in the chemical composition which may be worsening by drying conditions such as higher temperature and lower RH. In effect, RH could savage the intensity of losses of these compounds and could therefore play a critical role in drying technology. Practical application: The loss of phytochemicals including polyphenols and antioxidant remains one of the challenging phenomena in drying technology. This research finds ameliorative option for mitigating against the loss of polyphenols and antioxidant by exploring the use of relative humidity (RH). The result shows that RH could savage the intensity of loss of these compounds and could therefore play a critical role in drying technology.
Collapse
Affiliation(s)
- Frederick Sarpong
- Council for Scientific and Industrial Research (CSIR) , Oil Palm Research Institute , Kade , Ghana
| | | | - Hafida Wahia
- Council for Scientific and Industrial Research (CSIR) , Oil Palm Research Institute , Kade , Ghana
| | - Tahany Abdel-Ghafr Ahmed Aly
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , China
- Regional Center for Food and Feed, Agricultural Research Center , 12619, Giza , Egypt
| | - Cunshan Zhou
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , China
| |
Collapse
|
47
|
Gu G, Bolten S, Mendes-Oliveira G, Zhou B, Teng Z, Pearlstein D, Luo Y, Millner P, Nou X. Salmonella inactivation and sponge/microfiber mediated cross-contamination during papaya wash with chlorine or peracetic acid as sanitizer. Food Microbiol 2020; 95:103677. [PMID: 33397611 DOI: 10.1016/j.fm.2020.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
Imported papayas from Mexico have been implicated in multiple salmonellosis outbreaks in the United States in recent years. While postharvest washing is a critical process to remove latex, dirt, and microbes, it also has the potential of causing cross-contamination by foodborne pathogens, with sponge or other fibrous rubbing tools often questioned as potential harboring or transmitting risk. In this study, Salmonella inactivation and cross-contamination via sponges and microfiber wash mitts during simulated papaya washing and cleaning were investigated. Seven washing treatments (wash without sanitizer; wash at free chlorine 25, 50, and 100 mg/L, and at peracetic acid 20, 40, and 80 mg/L), along with unwashed control, were evaluated, using Salmonella strains with unique antibiotic markers differentially inoculated on papaya rind (serovars Typhimurium, Heidelberg, and Derby) and on wash sponge or microfiber (serovars Typhimurium, Newport, and Braenderup). Salmonella survival and transfer on papaya and on sponge/microfiber, and in wash water were detected using selective plating or enrichment. The washing and cleaning process reduced Salmonella on inoculated papayas by 1.69-2.66 and 0.69-1.74 log for sponge and microfiber cleaning, respectively, with the reduction poorly correlated to sanitizer concentration. Salmonella on inoculated sponge or microfiber was under detection limit (1.00 log CFU/cm2) by plate count, but remained recoverable by selective enrichment. Transference of Salmonella from inoculated papaya to sponge/microfiber, and vice versa, could be detected sporadically by selective enrichment. Sponge/microfiber mediated Salmonella cross-contamination from inoculated to uninoculated papayas was frequently detectable by selective enrichment, but rendered undetectable by wetting sponge/microfiber in sanitizing wash water (FC 25-100 mg/L or PAA 20-80 mg/L) between washing different papaya fruits. Therefore, maintaining adequate sanitizer levels and frequently wetting sponge/microfiber in sanitizing wash water can effectively mitigate risks of Salmonella cross-contamination associated with postharvest washing, especially with regard to the use of sponge or microfiber wash mitts.
Collapse
Affiliation(s)
- Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Samantha Bolten
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Gabriella Mendes-Oliveira
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Bin Zhou
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Zi Teng
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Daniel Pearlstein
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Patricia Millner
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.
| |
Collapse
|
48
|
Balada C, Castro M, Fassio C, Zamora A, Marchant MJ, Acevedo W, Guzmán L. Genetic diversity and biological activity of Curcuma longa ecotypes from Rapa Nui using molecular markers. Saudi J Biol Sci 2020; 28:707-716. [PMID: 33424358 PMCID: PMC7785433 DOI: 10.1016/j.sjbs.2020.10.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Curcuma Longa (CL) has been used for hundreds of years by native people from Rapa Nui for the treatment of different illness. Despite this plant was introduced from Polynesia or India, there is still scarce information about its origin. The objective of this study was to analyze the genetic variation of three CL ecotypes based on molecular phylogenetic and genotypification using internal transcribed spacer 2 (ITS2) and simple sequence repeats (SSR). Antioxidant and anti-inflammatory properties of rhizomes and leaves extracts of three CL plants were analyzed by spectrophotometric methods and cyclooxygenase 2 (COX-2) inhibition assay. Complementarily, we predicted the potential binding mode and binding energy of curcuminoids and nonsteroidals anti-inflammatory drugs (NSAIDs) into COX-2 via molecular docking. The ITS2 sequence shows two major clusters (I and II), group I consisted of Curcuma haritha and group II consisted of different species of Curcuma and Rapa Nui samples (MR-1, MR-2 and RK-2). Results of SSR markers show that genotype MR-2 was similar to MR-1 and RK-2 with 70.8 and 42.9% similarity, whereas genotype was similar to RK-2, MR-1 and MR-2 with 63.9, 43.2 and 42.9% similarity, respectively. MR-1 have better antioxidant and autoinflammatory activity than rest of CL samples due to its high concentration of polyphenols (33.68 mg/g) and curcumin (29.69 mg/g). Furthermore, docking results show that three curcuminoids of CL and selective NAIDs, as celecoxib, etodolac and meloxicam, share the same binding pocket into COX-2. However, three curcuminoids have a lower ΔGbinding than other COX-2 selective NAIDs as etodolac and meloxicam, except for Coxib family as valdecoxib, celecoxib and rofecoxib. Our findings suggest MR-1, MR-2 and MK-2 from Germplasm Bank (Mataveri Otai of CONAF) are closely related to Curcuma amada and Curcuma montana even though they have genetic variability.
Collapse
Affiliation(s)
- Cristóbal Balada
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Mónica Castro
- Laboratorio de Propagación, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Claudia Fassio
- Laboratorio de Propagación, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Agustín Zamora
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Marchant
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Laboratorio de Propagación, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Waldo Acevedo
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leda Guzmán
- Laboratorio de Química Biológica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
49
|
Hua M, Sun Y, Shao Z, Lu J, Lu Y, Liu Z. Functional soluble dietary fiber from ginseng residue: Polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. J Food Biochem 2020; 44:e13524. [PMID: 33073381 DOI: 10.1111/jfbc.13524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023]
Abstract
Ginseng (Panax ginseng C.A. Meyer) is the most famous edible Chinese herbal medicine. In the present study, soluble dietary fiber of ginseng (ginseng-SDF, 8.98% content) was extracted from ginseng residue, and its physicochemical characterization, structure, and biological activities were studied. Ginseng-SDF was an acidic heteropolysaccharide (uronic acid, 4.42% content) rich in protein, amino acids, and mineral elements. Glucose was its main monosaccharide composition (58.03%). Ginseng-SDF had a porous microstructure, a typical cellulose I structure and a large number of hydroxyl functional groups. These chemical composition and structural characteristics gave ginseng-SDF a good water solubility (98.56%), oil-holding capacity (OHC) (3.01 g/g), and biological activities, as the antioxidant activity (13.35 μM TE/g, 105.17 μM TE/g, 54.20 μM TE/g for DPPH, ABTs, and FRAP assays, respectively), glucose diffusion retardation index (GDRI, 33.33%-7.43%), and α-amylase/α-glucosidase inhibitory activities (IC50 , 6.70 mg/ml, and 4.89 mg/ml, respectively). The results suggested that ginseng residue is a valuable source of functional dietary fiber, and the ginseng-SDF has a potential use in antioxidant and hypoglycemic foods. PRACTICAL APPLICATIONS: Ginseng has long been popular as a health food in Asia, North America, and Europe. Ginseng residue is rich in polysaccharides, dietary fiber, proteins, and other components, which is also of great research value. However, there are few studies focus on the soluble dietary fiber of ginseng at present. The research shows that ginseng residue is a valuable source of functional dietary fiber. The chemical components and structural characteristics give ginseng-SDF a noteworthy antioxidant activity and enzyme inhibitory activity in vitro. These properties and biological activities indicate that ginseng-SDF has application value in antioxidant and hypoglycemic foods.
Collapse
Affiliation(s)
- Mei Hua
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zijun Shao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaxi Lu
- The Hague University of Applied Science, The Hague, the Netherlands
| | - Yushun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhengbo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
50
|
Checkouri E, Reignier F, Robert-Da Silva C, Meilhac O. Evaluation of Polyphenol Content and Antioxidant Capacity of Aqueous Extracts from Eight Medicinal Plants from Reunion Island: Protection against Oxidative Stress in Red Blood Cells and Preadipocytes. Antioxidants (Basel) 2020; 9:antiox9100959. [PMID: 33036442 PMCID: PMC7650546 DOI: 10.3390/antiox9100959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background—Medicinal plants are traditionally used as infusions or decoctions for their antioxidant, anti-inflammatory, hypolipidemic and anti-diabetic properties. Purpose—The aim of the study was to define the polyphenol composition and to assess the antioxidant capacity of eight medicinal plants from Reunion Island referred to in the French Pharmacopeia, namely Aphloia theiformis, Ayapana triplinervis, Dodonaea viscosa, Hubertia ambavilla, Hypericum lanceolatum, Pelargonium x graveolens, Psiloxylon mauritianum and Syzygium cumini. Methods—Polyphenol content was assessed by biochemical assay and liquid chromatography coupled to mass spectrometry. Antioxidant capacity was assessed by measuring DPPH reduction and studying the protective effects of herbal preparation on red blood cells or preadipocytes exposed to oxidative stress. Results—Polyphenol content ranged from 25 to 143 mg gallic acid equivalent (GAE)/L for infusions and 35 to 205 mg GAE/L for decoctions. Liquid chromatography coupled to mass spectrometry analysis showed the presence of major bioactive polyphenols, such as quercetin, chlorogenic acid, procyanidin and mangiferin. Antioxidant capacity assessed by different tests, including DPPH and Human red blood cell (RBC) hemolysis of herbal preparations, demonstrated a dose-dependent effect whatever the extraction procedure. Our data suggest that decoction slightly improved polyphenol extraction as well as antioxidant capacity relative to the infusion mode of extraction (DPPH test). However, infusions displayed a better protective effect against oxidative stress-induced RBC hemolysis. Conclusion—Traditional preparations of medicinal plant aqueous extracts (infusions and decoctions) display antioxidant properties that limit oxidative stress in preadipocytes and red blood cells, supporting their use in the context of metabolic disease prevention and treatment.
Collapse
Affiliation(s)
- Eloïse Checkouri
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 97490 Sainte-Clotilde, La Réunion, France; (E.C.); (C.R.-D.S.)
- Habemus Papam, Food Industry, 97470 Saint-Benoit, La Réunion, France;
| | - Franck Reignier
- Habemus Papam, Food Industry, 97470 Saint-Benoit, La Réunion, France;
| | - Christine Robert-Da Silva
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 97490 Sainte-Clotilde, La Réunion, France; (E.C.); (C.R.-D.S.)
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 97490 Sainte-Clotilde, La Réunion, France; (E.C.); (C.R.-D.S.)
- CHU de La Réunion, CIC 1410, 97410 Saint-Pierre, La Réunion, France
- Correspondence: ; Tel.: +262-0262-938-811
| |
Collapse
|