1
|
Farazi M, Houghton MJ, Nicolotti L, Murray M, Cardoso BR, Williamson G. Inhibition of human starch digesting enzymes and intestinal glucose transport by walnut polyphenols. Food Res Int 2024; 189:114572. [PMID: 38876610 DOI: 10.1016/j.foodres.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
One approach to controlling type 2 diabetes (T2D) is to lower postprandialglucose spikesby slowing down the digestion of carbohydrates and the absorption of glucose in the small intestine. The consumption of walnuts is associated with a reduced risk of chronic diseases such as T2D, suggested to be partly due to the high content of (poly)phenols. This study evaluated, for the first time, the inhibitory effect of a (poly)phenol-rich walnut extract on human carbohydrate digesting enzymes (salivary and pancreatic α-amylases, brush border sucrase-isomaltase) and on glucose transport across fully differentiated human intestinal Caco-2/TC7 monolayers. The walnut extract was rich in multiple (poly)phenols (70 % w/w) as analysed by Folin-Ciocalteau and by LCMS. It exhibited potent inhibition of both human salivary (IC50: 32.2 ± 2.5 µg walnut (poly)phenols (WP)/mL) and pancreatic (IC50: 56.7 ± 1.7 µg WP/mL) α-amylases, with weaker effects on human sucrase (IC50: 990 ± 20 µg WP/mL), maltase (IC50: 1300 ± 80 µg WP/mL), and isomaltase (IC25: 830 ± 60 µg WP/mL) activities. Selected individual walnut (poly)phenols inhibited human salivary α-amylase in the order: 1,3,4,6-tetragalloylglucose > ellagic acid pentoside > 1,2,6-tri-O-galloyl-β-D-glucopyranose, with no inhibition by ellagic acid, gallic acid and 4-O-methylgallic acid. The (poly)phenol-rich walnut extract also attenuated (up to 59 %) the transfer of 2-deoxy-D-glucose across differentiated Caco-2/TC7 cell monolayers. This is the first report on the effect of (poly)phenol-rich extracts from any commonly-consumed nut kernel on any human starch-digesting enzyme, and suggests a mechanism through which walnut consumption may lower postprandial glucose spikes and contribute to their proposed health benefits.
Collapse
Affiliation(s)
- Mena Farazi
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Luca Nicolotti
- The Australian Wine Research Institute, Adelaide, SA 5064, Australia; Metabolomics Australia, The Australian Wine Research Institute, Adelaide, SA 5064, Australia
| | - Margaret Murray
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Department of Health Sciences and Biostatistics, Swinburne University of Technology, John St, Hawthorn, VIC 3122, Australia
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia.
| |
Collapse
|
2
|
Li MJ, Deng YY, Pan LH, Luo SZ, Zheng Z. Comparisons in phytochemical components and in vitro digestion properties of corresponding peels, flesh and seeds separated from two blueberry cultivars. Food Sci Biotechnol 2024; 33:73-83. [PMID: 38186615 PMCID: PMC10766935 DOI: 10.1007/s10068-023-01326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 01/09/2024] Open
Abstract
Highbush blueberries (HB) and rabbiteye blueberries (RB) were separated into peels, flesh, and seeds to assess the compositions of nutriment, anthocyanins, soluble sugars and fatty acids, and the in vitro digesting abilities. Total phenolics contents (TPC) of 51-56 mg GAE/g DW were found in blueberry peels. Compared with HB peels, RB peels showed much higher TPC, but only contained 35 phenolics and lacked peonidin-3-O-rutinoside. Glucose, fructose, and sucrose were all present in HB and RB, but RB flesh had a higher acid-sugar ratio. Unsaturated fatty acid concentrations in HB and RB seeds were comparable (26.65 and 26.43 mg/g, respectively). However, HB seeds have 35 fatty acids, but RB seeds lacked cis-4,7,10,13,16,19-docosahexaenoic acid and cis-10-pentadecenoic acid. The in vitro digestion test showed that the whole fruit/peels/flesh of RB had a higher recovery and bioavailability index of phenolics and anthocyanins. Therefore, the reuse of blueberry pomace needs to be emphasized. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01326-w.
Collapse
Affiliation(s)
- Mei-Jia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People’s Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, People’s Republic of China
| | - Yuan-Yuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, People’s Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People’s Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, People’s Republic of China
| | - Shui-Zhong Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People’s Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, People’s Republic of China
| | - Zhi Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People’s Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, People’s Republic of China
| |
Collapse
|
3
|
Lee YE, Lee E, Rinik UR, Kim JY, Jung BH, Kwon O. Bioavailability of Korean mint ( Agastache rugosa) polyphenols in humans and a Caco-2 cell model: a preliminary study exploring the efficacy. Food Funct 2023; 14:8933-8941. [PMID: 37723877 DOI: 10.1039/d3fo02665e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Agastache rugosa, commonly known as Korean mint (KM), is a medicinal plant renowned for its potential health-promoting properties. However, the lack of bioavailability studies has hindered the acquisition of conclusive evidence. In this study, we investigated the bioavailability of six key polyphenols present in KM, including rosmarinic acid (RA), acacetin (AC), and four glycosides of AC. Utilizing UPLC-MS/MS, we analyzed their presence in human plasma and Caco-2 monolayers grown in permeable filter supports. Following single ingestion, we were able to detect RA, AC, and tilianin (TA) in the plasma. Consistent results were obtained for AC and TA but no transport was found for RA in a highly tight Caco-2 cell monolayer, indicating transport through the intercellular space for RA and transepithelial transport for AC and TA. Other AC glucosides with acetyl and/or malonyl groups were rarely found in the plasma. Interestingly, AC glucosides with only an acetyl group appeared at the basolateral side in Caco-2 monolayers, suggesting exclusive hydrolysis of malonyl glucosides in the colon. These findings highlight the high potential of RA, AC, and TA as bioactive compounds that may confer health benefits.
Collapse
Affiliation(s)
- Yea-Eun Lee
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Eunok Lee
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Urmi Rahman Rinik
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Coelho RC, Silva DSN, Silva HDC, Rocha MDM, Barsotti RCF, Maltez HF, Dantas C, Lopes Júnior CA, Barbosa HDS. Revealing the extended effect of biofortification on seed of cowpea cultivars. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Velasco-Ruiz I, De Santiago E, Ordóñez-Díaz JL, Pereira-Caro G, Moreno-Rojas JM. Effect of In Vitro Gastrointestinal Digestion and Colonic Fermentation on the Stability of Polyphenols in Pistachio ( Pistacia Vera L.). Int J Mol Sci 2023; 24:ijms24054975. [PMID: 36902411 PMCID: PMC10003603 DOI: 10.3390/ijms24054975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The aim of this study was to evaluate the impact of in vitro gastrointestinal digestion and colonic fermentation on the polyphenol compounds from different varieties of pistachio by UHPLC-HRMS analysis. The total polyphenol content decreased significantly, mostly during oral (recoveries of 27 to 50%) and gastric digestion (recoveries of 10 to 18%), with no significant changes after the intestinal phase. After in vitro digestion, the hydroxybenzoic acids and the flavan-3-ols were the main compounds found in pistachio, with respective total polyphenol contents of 73 to 78% and 6 to 11%. More specifically, the main compounds determined after in vitro digestion were 3,4,5-trihydroxybenzoic acid, vanillic hexoside and epigallocatechin gallate. The colonic fermentation affected the total phenolic content of the six varieties studied, with a recovery range of 11 to 25% after 24 h of fecal incubation. A total of twelve catabolites were identified after fecal fermentation, the main compounds being the 3-(3'-hydroxyphenyl)propanoic, 3-(4'-hydroxyphenyl)propanoic, 3-(3',4'-dihydroxyphenyl)propanoic, 3-hydroxyphenylacetic acids and 3,4-dihydroxyphenyl-ɣ-valerolactone. Based on these data, a catabolic pathway for colonic microbial degradation of phenolic compounds is proposed. The catabolites identified at the end of the process are potentially responsible for the health properties attributed to pistachio consumption.
Collapse
Affiliation(s)
- Isabel Velasco-Ruiz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-Anexo, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Elsy De Santiago
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
| | - José Luis Ordóñez-Díaz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Correspondence: (G.P.-C.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Correspondence: (G.P.-C.); (J.M.M.-R.)
| |
Collapse
|
6
|
Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MDC, Montserrat-de la Paz S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants (Basel) 2023; 12:264. [PMID: 36829823 PMCID: PMC9951922 DOI: 10.3390/antiox12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The Mediterranean diet (MD) has beneficial effects on human health, which is evidenced by the observation of lower incidence rates of chronic diseases in Mediterranean countries. The MD dietary pattern is rich in antioxidants, such as melatonin, which is a hormone produced mainly by the pineal gland and controls several circadian rhythms. Additionally, melatonin is found in foods, such as fruit and vegetables. The purpose of this systematic review was to assess the melatonin content in Mediterranean foods and to evaluate the influence of the MD on melatonin levels in both humans and model organisms. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane Library and Web of Science) and data were extracted. A total of 31 records were chosen. MD-related foods, such as tomatoes, olive oil, red wine, beer, nuts, and vegetables, showed high melatonin contents. The consumption of specific MD foods increases melatonin levels and improves the antioxidant status in plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenida Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
7
|
Lu P, Wu H, Gu J, Nawaz MA, Ma X, Suleria HA. Impact of processing on bioaccessibility of phytochemicals in nuts. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Peiyao Lu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Wuxi Food Safety Inspection and Test Center, Wuxi, Jiangsu, Province China
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jingyu Gu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Malik A. Nawaz
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Werribee, Victoria, Australia
| | - Xueying Ma
- Wuxi Food Safety Inspection and Test Center, Wuxi, Jiangsu, Province China
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Parkville, VIC, Australia
| |
Collapse
|
8
|
An electrochemical alternative for evaluating the antioxidant capacity in walnut kernel extracts. Food Chem 2022; 393:133417. [DOI: 10.1016/j.foodchem.2022.133417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/04/2022]
|
9
|
Seeds as Potential Sources of Phenolic Compounds and Minerals for the Indian Population. Molecules 2022; 27:molecules27103184. [PMID: 35630662 PMCID: PMC9144825 DOI: 10.3390/molecules27103184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Seeds are major sources of nutrients and bioactive compounds for human beings. In this work, the chemical composition and physicochemical properties of 155 Indian seeds (belonging to 49 families) are reported. Moisture and ash were measured with reference protocols from AOAC; total polyphenols and flavonoids were measured with spectrophotometric methods after extraction with organic solvents, and mineral elements were determined by X-ray fluorescence spectrophotometry. Total phenolic compounds, flavonoids and mineral contents (Al, Ba, Ca, Cl, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, P, Rb, S, Sr, Ti, V and Zn) were found to vary in the ranges 182−5000, 110−4465 and 687−7904 mg/100 g (DW), respectively. Noticeably, polyphenol contents higher than 2750 mg/100 g were observed in 18 seeds. In addition, mineral contents >5000 mg/100 g were detected in the seeds from Cuminum cyminum, Foeniculum vulgare, Commiphora wightii, Parkia javanica, Putranjiva roxburghii, Santalum album and Strychnos potatorum. Botanical and taxonomical variations in the proximate characteristics of the examined seeds are also discussed.
Collapse
|
10
|
Widaningrum, Flanagan BM, Williams BA, Sonni F, Chen P, Mikkelsen D, Gidley MJ. In vitro fermentation profiles of undigested fractions from legume and nut particles are affected by particle cohesion and entrapped macronutrients. Food Funct 2022; 13:5075-5088. [PMID: 35411900 DOI: 10.1039/d2fo00250g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insoluble undigested food residues are the predominant dietary form of 'fibre' from food plants, with the potential for fermentation by microbial species resident within the large intestine. Here we present results on in vitro fermentation of undigested fractions of legumes (chickpea flour, lentil flour, mung bean flour), and nuts (peanut, almond, macadamia) using a pooled faecal inoculum from pigs fed a nut- and legume-free diet. All substrates were pre-digested in vitro. Nuts were also separated into two particle sizes (PS), cell cluster (CC = 710-1000 μm) and fine (F = 250-500 μm), to test the effect of PS. All substrates tested were fermented for 48 hours, and measured according to gas production, with lentil (within legume flours) being the highest gas producer, and peanut being the highest gas producer within nuts. Undigested fractions from Nuts_F had significantly higher gas production than those from Nuts_CC, consistent with differences in surface area between the two PS. Relative short chain fatty acid concentrations between samples as metabolite end-products were consistent with relative gas production. Analysis of unfermented residues after different fermentation times, showed that cellular integrity was a major factor controlling fermentation rates and that entrapped protein/starch (legumes) and lipid (nuts) all contributed to the fermentation outcomes.
Collapse
Affiliation(s)
- Widaningrum
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD 4072, Australia. .,Indonesian Center for Agricultural Postharvest Research and Development (ICAPRD), Bogor, Indonesia
| | - Bernadine M Flanagan
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Barbara A Williams
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Francesca Sonni
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Pengfei Chen
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Deirdre Mikkelsen
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD 4072, Australia. .,School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Russo E, Spallarossa A, Comite A, Pagliero M, Guida P, Belotti V, Caviglia D, Schito AM. Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive Oil Production. Antioxidants (Basel) 2022; 11:antiox11050903. [PMID: 35624767 PMCID: PMC9137489 DOI: 10.3390/antiox11050903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022] Open
Abstract
The production of olive oil generates olive mill wastewater (OMW) which essentially derives from the processing, treatment and pressing of olives in mills. Traditional milling processes require a quantity of water varying between 40 and 120 L per quintal of pressed olives, generating a considerable amount of wastewater. It is thus necessary to reduce process water and enhance its use to implement the concept of a circular economy. To this end, our preliminary work was dedicated to water purification by means of suitable and efficient filtration systems. The microfiltered OMW was firstly concentrated through reverse osmosis. Then, an additional concentration step was carried out via vacuum membrane distillation using hydrophobic hollow fiber membranes. The application of the membrane-based processes allowed the recovery of a purified water and the concentration of valuable polyphenols in a smaller volume. The different fractions obtained from the purification have been tested for the determination of the antioxidant power (DPPH assay) and dosage of polyphenols (Folin–Ciocalteu assay) and were characterized using IR spectroscopy. All samples showed relevant antioxidant activity (percentage range: 10–80%) and total phenolic content in the 1.5–15 g GAE/L range. The obtained fractions were tested for their antimicrobial effect on numerous clinical isolates of Gram-positive and Gram-negative species, resistant and multi-resistant to current antibiotic drugs. OMW samples showed widespread activity against the considered (phyto)pathogens (MIC range 8–16 mg/mL) thus supporting the value of this waste material in the (phyto)pharmaceutical field.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Correspondence:
| | - Andrea Spallarossa
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
| | - Antonio Comite
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146 Genoa, Italy; (A.C.); (M.P.)
| | - Marcello Pagliero
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146 Genoa, Italy; (A.C.); (M.P.)
| | - Patrizia Guida
- Department of Phisics, University of Genova, Via Dodecaneso, 31, 16146 Genoa, Italy;
| | - Vittorio Belotti
- Department of Mechanical, Energy, Management and Transport Engineering, University of Genova, Via alla Opera Pia, 15, 16100 Genoa, Italy;
| | - Debora Caviglia
- Department of Integrated Surgical and Diagnostic Sciences, University of Genova, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (A.M.S.)
| | - Anna Maria Schito
- Department of Integrated Surgical and Diagnostic Sciences, University of Genova, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (A.M.S.)
| |
Collapse
|
12
|
Polmann G, Badia V, Danielski R, Ferreira SRS, Block JM. Nuts and Nut-Based Products: A Meta-Analysis from Intake Health Benefits and Functional Characteristics from Recovered Constituents. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2045495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gabriela Polmann
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Vinicius Badia
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University (UDESC), Pinhalzinho, Brazil
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
13
|
Hydrothermal Treatment Effect on Antioxidant Activity and Polyphenols Concentration and Profile of Brussels sprouts (Brassica oleracea var. gemmifera) in an In Vitro Simulated Gastrointestinal Digestion Model. Antioxidants (Basel) 2022; 11:antiox11030446. [PMID: 35326097 PMCID: PMC8944452 DOI: 10.3390/antiox11030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Brussels sprouts are a source of polyphenolic compounds. However, their concentration is affected by many factors depending on the plant material, hydrothermal treatment methods and digestion in the gastrointestinal tract. The aim of this study was to determine the effect of hydrothermal treatment on the antioxidant activity, concentration and profile of polyphenols of Brassica oleracea var. gemmifera in an in vitro simulated gastrointestinal digestion model. The study showed a significant effect of the type of hydrothermal treatment on total polyphenol concentration, polyphenolic acid profile, flavonoid content and antioxidant activity. Traditional boiling in water was the least effective type of hydrothermal treatment with respect to bioactive components of Brussels sprouts. Sous-vide was the most effective hydrothermal treatment in terms of retention of polyphenolic compounds and high antioxidant activity, thus providing a better alternative to steam cooking. Using an in vitro model, a significant difference was demonstrated between the concentration of bioavailable polyphenolic compounds and the polyphenol content of the plant material before digestion. The influence of the type of hydrothermal treatment used on the concentration of bioavailable polyphenolic compounds was maintained in relation to material not subjected to in vitro digestion (except for antioxidant activity).
Collapse
|
14
|
Effect of food combinations and their co-digestion on total antioxidant capacity under simulated gastrointestinal conditions. Curr Res Food Sci 2022; 5:414-422. [PMID: 35243354 PMCID: PMC8866489 DOI: 10.1016/j.crfs.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
|
15
|
Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021; 14:nu14010137. [PMID: 35011012 PMCID: PMC8747136 DOI: 10.3390/nu14010137] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present review summarizes the studies carried out on this topic in the last five years. According to the new definitions, among all the compounds included in the group of prebiotics, polyphenols are probably the most important secondary metabolites produced by the plant kingdom. Many of these types of polyphenols have low bioavailability, therefore reaching the colon in unaltered form. Once in the colon, these compounds interact with the intestinal microbes bidirectionally by modulating them and, consequently, releasing metabolites. Despite much research on various metabolites, little is known about the chemistry of the metabolic routes used by different bacteria species. In this context, this review aims to investigate the prebiotic effect of polyphenols in preclinical and clinical studies, highlighting that the consumption of polyphenols leads to an increase in beneficial bacteria, as well as an increase in the production of valuable metabolites. In conclusion, there is much evidence in preclinical studies supporting the prebiotic effect of polyphenols, but further clinical studies are needed to investigate this effect in humans.
Collapse
|
16
|
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Escrivá L, Manyes L, Vila-Donat P, Font G, Meca G, Lozano M. Bioaccessibility and bioavailability of bioactive compounds from yellow mustard flour and milk whey fermented with lactic acid bacteria. Food Funct 2021; 12:11250-11261. [PMID: 34708849 DOI: 10.1039/d1fo02059e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbial fermentation with lactic acid bacteria (LAB) is a natural food biopreservation method. Yellow mustard and milk whey are optimum substrates for LAB fermentation. The aim of the present study was to evaluate the bioaccessibility and bioavailability of bioactive compounds from yellow mustard flour and milk whey both with and without LAB fermentation. All extracts were subjected to a simulated digestion process. Total polyphenols, DL-3-phenyllactic acid (PLA), lactic acid, and the antioxidant activity were determined in the studied matrices before and after simulated digestion. Yellow mustard flour was significantly richer in total polyphenols, whereas significantly higher concentrations of PLA and lactic acid were observed in milk whey. Similar antioxidant activity was determined in both ingredients being in all cases strongly reduced after in vitro digestion. Higher bioaccessibility was found for polyphenols and PLA in milk whey. Transepithelial transport of total polyphenols was higher in yellow mustard flour compared to milk whey, reaching bioavailability values between 3-7% and 1-2%, respectively. PLA transepithelial transport was only significant in both fermented matrices with bioavailability around 4-6%. Transepithelial transport of lactic acid reached values of 31-34% (bioavailability ∼ 22%) and 15-78% (bioavailability ∼ 3%) in milk whey and yellow mustard flour, respectively. LAB fermentation showed beneficial effects on enriching extracts with PLA, lactic acid, and antioxidant activity, as well as increasing bioaccessibility of these acids in yellow mustard flour and total polyphenol bioavailability in milk whey. Results pointed to yellow mustard flour and milk whey as natural preservative ingredients used in the food industry, especially when fermented with LAB.
Collapse
Affiliation(s)
- L Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av/Vicent A. Estellés, s/n 46100 Burjassot, València, Spain.
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av/Vicent A. Estellés, s/n 46100 Burjassot, València, Spain.
| | - P Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av/Vicent A. Estellés, s/n 46100 Burjassot, València, Spain.
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av/Vicent A. Estellés, s/n 46100 Burjassot, València, Spain.
| | - G Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av/Vicent A. Estellés, s/n 46100 Burjassot, València, Spain.
| | - M Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av/Vicent A. Estellés, s/n 46100 Burjassot, València, Spain.
| |
Collapse
|
18
|
Revi N, Rengan AK. Impact of dietary polyphenols on neuroinflammation-associated disorders. Neurol Sci 2021; 42:3101-3119. [PMID: 33988799 DOI: 10.1007/s10072-021-05303-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders like Alzheimer's, Parkinson's, and associated dementia typically originate with altered protein folding and aggregation of their β structures in the neurons. This self-aggregation leads to glial activation in the brain, causing neuroinflammation and leads to neuronal death. According to statistics provided by WHO, there are around 50 million people with dementia worldwide and every year, 10 million more cases are projected to increase. Also, around 5-8 percentage of people who are aged above 60 globally has dementia or associated disorders. Over 82 million in 2030 and 152 in 2050 are expected to have dementia. Most of these patients fall into low-middle-income countries which makes it even more essential to find an affordable and effective treatment method. Polyphenols of different origin are studied for their potential role as anti-neuro-inflammatory molecules. This review would summarize recent advances in three widely researched dietary polyphenols projected as potential therapeutic agents for disorders like Alzheimer's, Parkinson's, etc. They are Resveratrol, Catechins, and Tannins. The review would discuss the recent advances and challenges in using these polyphenols using specific examples as potential therapeutic agents against neuroinflammation associated disorders. An abstract of neuroinflammation-associated events and the effects by selected polyphenols.
Collapse
Affiliation(s)
- Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India.
| |
Collapse
|
19
|
Qie X, Wu Y, Chen Y, Liu C, Zeng M, Qin F, Wang Z, Chen J, He Z. Competitive interactions among tea catechins, proteins, and digestive enzymes modulate in vitro protein digestibility, catechin bioaccessibility, and antioxidant activity of milk tea beverage model systems. Food Res Int 2021; 140:110050. [DOI: 10.1016/j.foodres.2020.110050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
|
20
|
Campidelli ML, Souza Carneiro JD, Souza EC, Magalhães ML, Dos Reis GL, Vilas Boas EV. Fatty acid profile, mineral content and bioactive compounds of cocoa spreads supplemented with baru almonds ( Dipteryx alata Vog.). GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0809192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study aimed to perform a chromatographic and spectrophotometric characterization of the bioactive compounds, antioxidants, phenolics, profile of fatty acids and minerals in spreads supplemented with different contents of baru almonds. The addition of baru almonds (P1 treatment) enhanced the concentrations of vitamin C, antioxidants, gallic acid, calcium, magnesium, sulfur, manganese and oleic acid. In contrast, the absence of this oil in P3 treatment resulted in an increase in the concentrations of vanillin, p-coumaric acid, ferric acid, o-coumaric acid, linoleic acid and saturated and polyunsaturated fatty acids. When the tannin, beta-carotene/linoleic acid, trans-cinnamic acid, monounsaturated fatty acids, hypocholesterolemic and hypercholesterolemic fatty acid contents and atherogenic and thrombogenic indices were evaluated, no significant (p > 0.05) differences were detected between treatments.
Collapse
|
21
|
Amarowicz R, Pegg RB. Tree Nuts and Peanuts as a Source of Natural Antioxidants in our Daily Diet. Curr Pharm Des 2020; 26:1898-1916. [PMID: 32186272 DOI: 10.2174/1381612826666200318125620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/27/2020] [Indexed: 01/17/2023]
Abstract
Tree nuts and peanuts are healthy foods with a proven track record of helping to reduce the incidence of chronic diseases, most notably cardiovascular disease. At the point of consumption, all nuts contain low moisture and ≥ 50% lipid contents, but this is where similarities end. The levels of key nutrients and bioactives including vitamin C, vitamin E, L-arginine, minerals (such as selenium and zinc), and phenolics can differ markedly. Distinctions in the types and quantities of phenolic constituents for tree nut species, as well as the impact of digestion, will affect the nuts' antioxidant potential in vivo. This work provides some insight into the different types of phenolics found in tree nuts and peanuts, the antioxidant potential of their phenolic extracts using in vitro chemical assays, the effect of thermal processing on the stability of the nuts' endogenous phenolics, and the impact on biomarkers of human health arising from randomized clinical trials. Key biomarkers include measures in the reduction of LDL oxidation as well as increases in the levels of vitamin E and selected phenolic compounds in blood plasma postprandially from those of baseline.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, 100 Cedar Street, Athens, GA, 30602-2610, United States
| |
Collapse
|
22
|
Development of the pH responsive chitosan-alginate based microgel for encapsulation of Jughans regia L. polyphenols under simulated gastrointestinal digestion in vitro. Carbohydr Polym 2020; 250:116917. [DOI: 10.1016/j.carbpol.2020.116917] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
|
23
|
Gašić U, Ćirić I, Pejčić T, Radenković D, Djordjević V, Radulović S, Tešić Ž. Polyphenols as Possible Agents for Pancreatic Diseases. Antioxidants (Basel) 2020; 9:antiox9060547. [PMID: 32585831 PMCID: PMC7346180 DOI: 10.3390/antiox9060547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is very aggressive and it is estimated that it kills nearly 50% of patients within the first six months. The lack of symptoms specific to this disease prevents early diagnosis and treatment. Today, gemcitabine alone or in combination with other cytostatic agents such as cisplatin (Cis), 5-fluorouracil (5-FU), irinotecan, capecitabine, or oxaliplatin (Oxa) is used in conventional therapy. Outgoing literature provides data on the use of polyphenols, biologically active compounds, in the treatment of pancreatic cancer and the prevention of acute pancreatitis. Therefore, the first part of this review gives a brief overview of the state of pancreatic disease as well as the procedures for its treatment. The second part provides a detailed overview of the research regarding the anticancer effects of both pure polyphenols and their plant extracts. The results regarding the antiproliferative, antimetastatic, as well as inhibitory effects of polyphenols against PC cell lines as well as the prevention of acute pancreatitis are presented in detail. Finally, particular emphasis is given to the polyphenolic profiles of apples, berries, cherries, sour cherries, and grapes, given the fact that these fruits are rich in polyphenols and anthocyanins. Polyphenolic profiles, the content of individual polyphenols, and their relationships are discussed. Based on this, significant data can be obtained regarding the amount of fruit that should be consumed daily to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Ivanka Ćirić
- Innovation Center, University of Belgrade—Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia;
| | - Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Dejan Radenković
- University of Belgrade—Faculty of Medicine, dr Subotića 8, 11000 Belgrade, Serbia;
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Vladimir Djordjević
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Živoslav Tešić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, P.O. Box 51, 11158 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113336733
| |
Collapse
|
24
|
Silva JGS, Rebellato AP, Caramês ETDS, Greiner R, Pallone JAL. In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Res Int 2020; 130:108993. [PMID: 32156408 DOI: 10.1016/j.foodres.2020.108993] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 01/25/2023]
Abstract
Consumption of plant-based beverages (PBB) is a growing trend; and have been used as viable substitutes for dairy based products. To date, no study has comparatively analyzed mineral composition and effect of in vitro digestion on the bioaccessibility of different PBB. The aim of this research was to investigate the content of essential minerals (calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn)) and to estimate the effect of in vitro digestion in plant-based beverages, and their antioxidant bioactive compounds (phenolic compounds and antioxidant capacity). Moreover, the presence of antinutritional factors, such as myo-inositol phosphates fractions, were evaluated. Samples of PBB (rice, cashew nut, almond, peanut, coconut, oat, soy, blended or not with another ingredients, fortified with minerals or naturally present) and milk for comparison were evaluated. TPC ranged from 0.2 mg GAEq/L for coconut to 12.4 mg GAEq/L for rice and, the antioxidant capacity (DPPH) ranged from 3.1 to 306.5 µmol TE/L for samples containing peanut and oat, respectively. Only a few samples presented myo-inositol phosphates fractions in their composition, mostly IP5 and IP6, especially cashew nut beverages. Mineral content showed a wide range for Ca, ranging from 10 to 1697.33 mg/L for rice and coconut, respectively. The Mg content ranged from 6.29 to 251.23-268.43 mg/L for rice and cashew nut beverages, respectively. Fe content ranged from 0.76 mg/L to 12.89 mg/L for the samples of rice. Zinc content ranged from 0.57 mg/L to 8.13 mg/L for samples of oat and soy, respectively. Significant variation was observed for Ca (8.2-306.6 mg/L) and Mg (1.9-107.4 mg/L) dialyzed between the beverages, with lower concentrations of Fe (1.0 mg/L) and Zn (0.5 mg/L) in dialyzed fractions. This study provides at least 975 analytically determined laboratory results, providing important information for characterization and comparison of different plant-based beverages.
Collapse
Affiliation(s)
| | - Ana Paula Rebellato
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | | |
Collapse
|
25
|
Abstract
Interest in the content of natural antioxidants in plant-based foods can be from the human health perspective, in terms of how these compounds might help promote one's health and wellness, or from the storage point-of-view, as the endogenous antioxidant constituents aid to extend a foodstuff's shelf-life. This chapter reports essential information about the mechanism of antioxidant action and methods employed for determination of their activity, classes of phenolic compounds (phenolic acids, flavonoids, lignans, stilbenes, tannins), sources of plant antioxidants (oil seeds, cereals, legumes, plants of the Lamiaceae family, tea and coffee, tree nuts, fruits, and berries), extraction strategies of phenolic compounds from plant material, and the influence of processing and storage on the content of natural antioxidants in foods and their antioxidant activity. Thermal processing, if not releasing bound phenolics from the structural matrices of the food, tends to decrease the antioxidant potential or, in the best case scenario, has no significant negative impact. Gentler sterilization processes such as high-pressure processing tend to better retain the antioxidant potential of a foodstuff than thermal treatments such as steaming, boiling, or frying. The impact of processing can be assessed by determining the antioxidant potential of foodstuffs either at the point of formulation or after different periods of storage under specified conditions.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, United States
| |
Collapse
|
26
|
Campmajó G, Navarro GJ, Núñez N, Puignou L, Saurina J, Núñez O. Non-Targeted HPLC-UV Fingerprinting as Chemical Descriptors for the Classification and Authentication of Nuts by Multivariate Chemometric Methods. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1388. [PMID: 30901822 PMCID: PMC6471388 DOI: 10.3390/s19061388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/07/2023]
Abstract
Recently, the authenticity of food products has become a great social concern. Considering the complexity of the food chain and that many players are involved between production and consumption; food adulteration practices are rising as it is easy to conduct fraud without being detected. This is the case for nut fruit processed products, such as almond flours, that can be adulterated with cheaper nuts (hazelnuts or peanuts), giving rise to not only economic fraud but also important effects on human health. Non-targeted HPLC-UV chromatographic fingerprints were evaluated as chemical descriptors to achieve nut sample characterization and classification using multivariate chemometric methods. Nut samples were extracted by sonication and centrifugation, and defatted with hexane; extracting procedure and conditions were optimized to maximize the generation of enough discriminant features. The obtained HPLC-UV chromatographic fingerprints were then analyzed by means of principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to carry out the classification of nut samples. The proposed methodology allowed the classification of samples not only according to the type of nut but also based on the nut thermal treatment employed (natural, fried or toasted products).
Collapse
Affiliation(s)
- Guillem Campmajó
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, E08028 Barcelona, Spain.
| | - Gemma J Navarro
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, E08028 Barcelona, Spain.
| | - Nerea Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, E08028 Barcelona, Spain.
| | - Lluís Puignou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, E08028 Barcelona, Spain.
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain.
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, E08028 Barcelona, Spain.
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain.
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, E08028 Barcelona, Spain.
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain.
- Serra Húnter Fellow, Generalitat de Catalunya, Rambla de Catalunya 19-21, E08007 Barcelona, Spain.
| |
Collapse
|
27
|
Li L, Song L, Sun X, Yan S, Huang W, Liu P. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food Chem 2019; 286:669-677. [PMID: 30827662 DOI: 10.1016/j.foodchem.2019.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/22/2022]
Abstract
Walnut (Juglans regia L.) is an abundant source of polyphenols. Although phenolic species in the walnut kernel have been studied comprehensively, their compositional profile in the internal fruit septum, a traditional nutraceutical material in China, has been rarely explored. In the current study, the methanolic extract of the walnut septum was analysed by Ultra-performance liquid chromatography coupled with Orbitrap mass spectrometry. Totally seventy-five phenolics belonging to flavonoids, tannins and phenolic acids were identified based on mass spectra, references and literatures. Among them, quercetin-3-O-galactoside, quercetin-rhamnose-pentoside, quercetin-3-O-glucoside, quercetin-rhamnose-hexoside, kaempferol-rhamnoside, and two isomers of quercetin-rhamnoside were reported for the first time in walnut. The total polyphenol content was found to be 122.78 ± 2.55 mg GAE/g dry weight in septum. This study is the first to comprehensively investigate and identify phenolic compounds in the fruit septum of walnut and indicates that the septum to be a rich resource of polyphenols.
Collapse
Affiliation(s)
- Linlin Li
- School of Food Science and Engineering & Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Lijun Song
- School of Food Science and Engineering & Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong 510641, China; College of Life Science, Tarim University, Alar, Xinjiang 843300, China.
| | - Xiaotao Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Shijuan Yan
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Wenjie Huang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Pengzhan Liu
- School of Food Science and Engineering & Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong 510641, China.
| |
Collapse
|
28
|
Campidelli M, Carneiro JDD, Souza EC, Magalhães M, Konig I, Braga M, Orlando T, Simão SD, Lima LI, Vilas Boas E. Impact of the Drying Process on the Quality and Physicochemical and Mineral Composition of Baru Almonds (Dipteryx Alata Vog.) Impact of the Drying Process on Baru Almonds. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2019. [DOI: 10.1080/15428052.2019.1573710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Marina Campidelli
- Department of Food Science, Federal University of Lavras - UFLA, Lavras, Brazil
| | | | - E. C. Souza
- Department of Food Science, Federal University of Lavras - UFLA, Lavras, Brazil
| | - Maisa Magalhães
- Department of Food Science, Federal University of Lavras - UFLA, Lavras, Brazil
| | - Isaac Konig
- Department of Veterinary Medicine, Federal University of Lavras - UFLA, Lavras, Brazil
| | - Mariana Braga
- Department of Chemistry, Federal University of Lavras - UFLA, Lavras, Brazil
| | - Tamira Orlando
- Department of Veterinary Medicine, Federal University of Lavras - UFLA, Lavras, Brazil
| | | | - LIdiany Lima
- Department of Chemistry, Federal University of Lavras - UFLA, Lavras, Brazil
| | - E.V.B. Vilas Boas
- Department of Food Science, Federal University of Lavras - UFLA, Lavras, Brazil
| |
Collapse
|
29
|
Terzo S, Caldara GF, Ferrantelli V, Puleio R, Cassata G, Mulè F, Amato A. Pistachio Consumption Prevents and Improves Lipid Dysmetabolism by Reducing the Lipid Metabolizing Gene Expression in Diet-Induced Obese Mice. Nutrients 2018; 10:nu10121857. [PMID: 30513740 PMCID: PMC6316241 DOI: 10.3390/nu10121857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
Pistachios contain beneficial substances such as unsaturated fatty acids, phytosterols, and polyphenols. In the present study, we investigated if pistachio consumption is able to prevent or to revert hyperglycemia, dyslipidemia, hepatic steatosis, and adipose tissue morphological alterations caused by high fat diet (HFD) in the mouse. Moreover, the impact of pistachio intake on the mRNA expression of peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid transport proteins (FAT-P), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and sterol regulatory element-binding transcription factor-1c (SREBP-1c) in liver and adipose tissue was also analyzed. No change in body weight, food intake, and hyperglycemia was observed between mice consuming pistachios (HFD-P) and HFD mice. Pistachio intake was able to prevent but not to reverse HFD-induced hypertriglyceridemia. Cholesterol plasma levels, steatosis grading, body fat mass, and adipocyte size were significantly lower in HFD-P group compared to HFD in both prevention and reversal protocol. Pistachio-diet was able to prevent HFD-induced overexpression of PPAR-γ, FAS, and SCD1 in the liver and SREBP-1c, PPAR-γ, and FAT-P in adipose tissue. Similarly, HFD-P significantly ameliorated the expression levels of FAT-P and SCD1 in the liver and SREBP-1c, FAS, and SCD1 in adipose tissue of obese mice. The present study shows that pistachio consumption is able to prevent and to ameliorate obesity-related dysfunctions by positively modulating the expression of genes linked to lipid metabolism.
Collapse
Affiliation(s)
- Simona Terzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Gaetano Felice Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| |
Collapse
|
30
|
Corazza GO, Bilibio D, Zanella O, Nunes AL, Bender JP, Carniel N, dos Santos PP, Priamo WL. Pressurized liquid extraction of polyphenols from Goldenberry: Influence on antioxidant activity and chemical composition. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|