1
|
Men C, Wu C, Zhang J, Wang Y, Chen M, Liu C, Zheng L. α-Lipoic acid treatment regulates enzymatic browning and nutritional quality of fresh-cut pear fruit by affecting phenolic and carbohydrate metabolism. Food Chem 2024; 458:140223. [PMID: 38954956 DOI: 10.1016/j.foodchem.2024.140223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Fresh-cut pear fruit is greatly impacted by enzymatic browning, and maintaining quality remains a challenge. This study examined the impact of exogenous α-lipoic acid (α-LA) treatment on enzymatic browning and nutritional quality of fresh-cut pears. Results revealed that 0.5 g/L α-LA treatment effectively maintained color and firmness, and inhibited the increase in microbial number. The α-LA treatment also reduced MDA and H2O2 contents, decreased PPO activity, and enhanced SOD, CAT, and PAL activities. The α-LA treatment notably upregulated phenolic metabolism-related gene expression, including PbPAL, Pb4CL, PbC4H, PbCHI and PbCHS, and then increasing total phenols and flavonoids contents. Furthermore, it also influenced carbohydrate metabolism-related gene expression, including PbSS, PbSPS, PbAI and PbNI, maintaining a high level of sucrose content. These findings indicated that α-LA treatment showed promise in reducing browning and enhancing fresh-cut pears quality, offering a potential postharvest method to prolong the lifespan and maintain nutritional quality.
Collapse
Affiliation(s)
- Chuanlong Men
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenchen Wu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaqian Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Miao Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Wang L, Liu Z, Liang J, Wang Y, Zhang C, Shi K, Chen D, Song Q, Wang X, Hu X, Xue X, Jin P, Zheng Y. Theanine enhances resistance to Botrytis cinerea in postharvest strawberry fruit via modulating cell-wall and phenylpropanoid metabolisms. Food Chem X 2024; 23:101772. [PMID: 39280218 PMCID: PMC11399655 DOI: 10.1016/j.fochx.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Theanine (N-ethyl-γ-glutamine), as a unique non-protein amino acid, plays vital roles in abiotic stress resistance, while its roles in biotic stress resistance are still unclear. Gray mold caused by Botrytis cinerea is a major disease in strawberries. Effects of theanine on the development of gray mold, cell-wall and phenylpropanoid metabolisms in strawberries were investigated in this study. Results showed that 5 mmol L-1 theanine treatment reduced disease incidence and severity of gray mold in strawberries with antifungal activity in vitro. Meanwhile, theanine treatment enhanced the accumulation of phenolic compounds and lignin, especially ellagic acid, cyanidin, and quercetin, which was associated with increased phenylpropanoid pathway related enzyme activities. Moreover, theanine induced callose deposition and suppressed cell- wall disassembling enzymes, accompanied by higher levels of water insoluble pectin, hemicellulose and cellulose. Therefore, theanine treatment could alleviate decay of B. cinerea-inoculated strawberries by regulating phenylpropanoid and cell-wall metabolisms, maintaining higher levels of phenolic compounds and cell-wall components, thereby contributing to disease resistance and cell-wall structure integrity.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Zhikang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Yanyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Chen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Kaili Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, 225127
| | - Qingyuan Song
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Xingyue Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Xinran Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Xiuheng Xue
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-valued Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 210036, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
3
|
Gan Z, Zhang Y, Jin Z, Wang Y, Li J, Yang C, Cao Q, Chen J, Rong Z, Lu X, Guo S. Gum arabic coating alleviates chilling injury of cold-stored peach by regulating reactive oxygen species, phenolic, and sugar metabolism. Food Chem 2024; 455:139899. [PMID: 38823138 DOI: 10.1016/j.foodchem.2024.139899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
In this study, gum arabic (GA) coating was employed to mitigate chilling injury in peach fruit, and it was observed that 10% GA coating exhibited the most favorable effect. GA coating significantly inhibited the decline of AsA content and enhanced antioxidant enzyme activity in peach fruit, thereby enhancing reactive oxygen species (ROS) scavenging rate while reducing its accumulation. Simultaneously, GA coating inhibited the activity of oxidative degradation enzymes for phenolics and enhanced synthase activity, thus maintaining higher levels of total phenolics and flavonoids in fruits. Additionally, compared to the control fruit, GA-coated fruits demonstrated higher concentrations of sucrose and sorbitol, accompanied more robust activity of sucrose synthase and sucrose phosphate synthase, as well as reduced activity of acid invertase and neutral invertase. Our study demonstrates that GA coating can effectively enhance the cold resistance of peach fruit by regulating ROS, phenolics, and sugar metabolism, maintaining high levels of phenolics and sucrose while enhancing antioxidant activity.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yupei Zhang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ziteng Jin
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjie Wang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiali Li
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caining Yang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Cao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhenbang Rong
- School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuming Lu
- School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, China.
| | - Suqin Guo
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
4
|
Lv N, Zhang H, Zhou H, Wang C, Guo C, Wang L. Hot water mobilizes the metabolism of energy, soluble sugar, cell wall, and phenolics to cope with chilling injury in postharvest snap beans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8263-8274. [PMID: 39031598 DOI: 10.1002/jsfa.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Snap beans (Phaseoulus vulgaris L.) are very sensitive to low temperature during postharvest storage. Pitting, rusting, and water-soaked patches are typical chilling injury (CI) symptoms of snap beans. The appearance of these symptoms reduces the storage quality of snap beans. The energy, soluble carbohydrates, cell wall, and phenolic metabolisms of refrigerated snap beans and their relationship to CI treated with 35 °C hot water (HW) were investigated. RESULTS HW treatment reduced CI index and electrolyte leakage and increased the contents of soluble solids, titratable acidity, and chlorophyll. HW treatment maintained higher activities of proton ATPase, calcium ATPase, and cytochrome c oxidase, which resulted in the accumulation of more adenosine triphosphate, adenosine diphosphate, and energy charge. The accumulation of soluble sugar induced by HW treatment was correlated with the stimulation of sucrose phosphate synthase and sucrose synthase. The prevention effect of HW treatment on the degradation of cell wall components was related to the inhibition of pectin methylesterase and cellulase. HW-induced phenol accumulation is associated with an increase in shikimate dehydrogenase, phenylalanine ammonia lyase, cinnamate-4-hydroxylase, and 4-coumarine-coenzyme A ligase, as well as a decrease in polyphenol oxidase. CONCLUSION The alleviating effect of HW on CI is due to its regulation of energy, soluble sugar, cell wall, and phenolic metabolism. Therefore, HW treatment may be an effective means to reduce CI of snap beans. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Na Lv
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Haoyan Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Hongtao Zhou
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Caiping Wang
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Changjie Guo
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| | - Liyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Jilin, People's Republic of China
| |
Collapse
|
5
|
Ilea MIM, Zapata PJ, Fernández-Picazo C, Díaz-Mula HM, Castillo S, Guillén F. Chlorogenic Acid as a Promising Tool for Mitigating Chilling Injury: Cold Tolerance and the Ripening Effect on Tomato Fruit ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2055. [PMID: 39124173 PMCID: PMC11314013 DOI: 10.3390/plants13152055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Tomato fruit (Solanum lycopersicum L.) has a very brief storability, displaying chilling injury (CI) when stored in cold conditions used to delay ripening. For this reason, in this study, different concentrations (10, 50, and 100 mg L-1) of chlorogenic acid (ChA) were assayed to evaluate its effectiveness in maintaining fruit quality traits and mitigating CI symptoms in tomatoes. Our results showed that ChA treatments effectively delayed weight loss and maintained fruit firmness, with optimal results observed at 50 mg L-1. In general, higher concentrations did not result in significant quality improvements. Additionally, ChA-treated tomatoes exhibited reduced values in malondialdehyde (MDA) content and electrolyte leakage (EL), indicating improved membrane integrity and reduced oxidative damage. ChA treatments also maintained a higher total phenolic content (TPC) during storage, with significant levels of individual polyphenols such as rutin, neochlorogenic acid, and p-coumaric acid, suggesting enhanced antioxidant capacity and better preservation of fruit quality. This is the first time the potential of ChA to reduce CI has been evaluated in any fruit species, and its impact in tomato ripening is shown to uphold fruit quality during cold storage, prolonging the storability of tomatoes. In particular, we highlight its natural origin and effectiveness as a postharvest treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabián Guillén
- Agro-Food and Agro-Environmental Research and Innovation Center (CIAGRO-UMH), Postharvest Research Group of Fruit and Vegetables, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Spain
| |
Collapse
|
6
|
Bahmani R, Razavi F, Mortazavi SN, Gohari G, Juárez-Maldonado A. Enhancing Postharvest Quality and Shelf Life of Strawberries through Advanced Coating Technologies: A Comprehensive Investigation of Chitosan and Glycine Betaine Nanoparticle Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1136. [PMID: 38674545 PMCID: PMC11054076 DOI: 10.3390/plants13081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The application of natural polymer-based coatings presents a viable approach to prolong the longevity of fruits and tissue damage. This study investigates the impact of treatments involving glycine betaine (GB), chitosan (CTS), and chitosan-coated glycine betaine nanoparticles (CTS-GB NPs) on preserving the quality and reducing decay in strawberry fruits. The fruits were subjected to treatments with GB (1 mM), CTS (0.1%), CTS-GB NPs (0.1%), or distilled water at 20 °C for 5 min, followed by storage at 4 °C for 12 days. The results indicate that CTS and CTS-GB NPs treatments resulted in the highest tissue firmness, total anthocyanin content, and ascorbate peroxidase activity, while exhibiting the lowest decay percentage and weight loss, as well as reduced malondialdehyde levels at the end of storage. GB, CTS, and CTS-GB NPs treatments demonstrated elevated catalase activity and antioxidant capacity, coupled with lower electrolyte leakage and hydrogen peroxide levels. These treatments did not significantly differ from each other but were markedly different from the control. The results substantiate that CTS and CTS-GB NPs treatments effectively preserve strawberry quality and extend storage life by bolstering antioxidant capacity and mitigating free radical damage.
Collapse
Affiliation(s)
- Reza Bahmani
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran; (R.B.); (F.R.); (S.N.M.)
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran; (R.B.); (F.R.); (S.N.M.)
| | - Seyed Najmmaddin Mortazavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran; (R.B.); (F.R.); (S.N.M.)
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran;
| | | |
Collapse
|
7
|
Rafiri M, Sedibe MM, Dikane GMH. Comparative Bioactive Compounds and Mineral Properties of South African and Lesotho Artemisia afra (Jacq.) Genotypes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1126. [PMID: 38674538 PMCID: PMC11054442 DOI: 10.3390/plants13081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Artemisia afra is a plant that grows in the northern, central, and coastal regions of South Africa, as well as in neighboring countries such as Eswatini and Lesotho. These phytochemicals can be used as active compounds in plant-based medicine. Therefore, it is important to determine how plant minerals and phytochemicals, particularly bioactive compounds, are affected by the geolocation in which they grow. This study aimed to evaluate the mineral and phytochemical properties of A. afra genotypes in the southern regions of Africa. Leaf samples of A. afra genotypes were collected from Lesotho, in Mohale's Hoek and Roma. In South Africa, leaf samples were collected in Wepener and Hobhouse, and 80 plants were randomly selected for phytochemical and mineral analyses. This study reveals that phosphorus, calcium, potassium, iron, and zinc loaded positively to the first principal component, while copper loaded positively to the second principal component with variabilities of 29.95% and 21.12%, respectively. Furthermore, both the Mohale's Hoek and Hobhouse genotypes exhibited relatively high levels of ascorbic acid, phenolic compounds, flavonoids, and tannins. It is worth noting that genotypes from Roma and Wepener showed higher levels of foliar magnesium. Thus, the Mohale's Hoek and Hobhouse genotypes could be recommended for their better phytochemical contents.
Collapse
Affiliation(s)
| | - Moosa Mahmood Sedibe
- Department of Agriculture, Central University of Technology, Free State, Private Bag x20539, Bloemfontein 9301, South Africa; (M.R.); (G.M.H.D.)
| | | |
Collapse
|
8
|
Zhang K, Ma Q, Wang Y, Yuan Z, Yang Z, Luo X, Zhang H, Xia H, Lv X, Wang Y, Deng Q. Transcriptome and biochemical analyses reveal phenolic compounds-mediated flavor differences in loquat ( Eriobotrya japonica Lindl.) cultivars Chunhua No.1 and Dawuxing. Food Chem X 2024; 21:101145. [PMID: 38312488 PMCID: PMC10837488 DOI: 10.1016/j.fochx.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024] Open
Abstract
The novel loquat cultivar 'Chunhua No.1' (CH1) is a promising commercial cultivar. However, CH1 has texture characteristics different from those of common loquat, and its formation mechanism remains unclear. Here, we first identified the phenolic compounds of CH1 and its parent ('Dawuxing', DWX) and the effect on texture formation. The special presence of stone cells explained the flavor differences in CH1. Chlorogenic acid, neochlorogenic acid, and coniferyl alcohol were the main phenolic compounds in loquat, and the high content of coniferyl alcohol was a potential factor for the rough texture of CH1. Transcriptome reveals that phenylpropanoid metabolism was activated during CH1 fruit texture formation. Kyoto Encyclopedia of Genes and Genomes (KEGG) identified 51 structural genes involved in phenylpropanoid biosynthesis, and Weighted Gene Co-expression Network Analysis (WGCNA) identified four structural genes and 88 transcription factors. These findings provide new insights into the phenolic metabolism and flavor formation of loquat fruit.
Collapse
Affiliation(s)
- Kun Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiaoli Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenchao Yuan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwu Yang
- Sichuan Academy of Forestry Sciences, Chengdu 610081, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huifen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongqing Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Zhang K, Zhou J, Song P, Li X, Peng X, Huang Y, Ma Q, Liang D, Deng Q. Dynamic Changes of Phenolic Composition, Antioxidant Capacity, and Gene Expression in 'Snow White' Loquat ( Eriobotrya japonica Lindl.) Fruit throughout Development and Ripening. Int J Mol Sci 2023; 25:80. [PMID: 38203258 PMCID: PMC10779426 DOI: 10.3390/ijms25010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
The newly released 'Snow White' (SW), a white-fleshed loquat (Eriobotrya japonica Lindl.) cultivar, holds promise for commercial production. However, the specifics of the phenolic composition in white-fleshed loquats, along with the antioxidant substances and their regulatory mechanisms, are not yet fully understood. In this study, we examined the dynamic changes in the phenolic compounds, enzyme activities, antioxidant capacity, and gene expression patterns of SW during the key stages of fruit development and ripening. A total of 18 phenolic compounds were identified in SW, with chlorogenic acid, neochlorogenic acid, and coniferyl alcohol being the most predominant. SW demonstrated a stronger antioxidant capacity in the early stages of development, largely due to total phenolics and flavonoids. Neochlorogenic acid may be the most significant antioxidant contributor in loquat. A decline in enzyme activities corresponded with fruit softening. Different genes within a multigene family played distinct roles in the synthesis of phenolics. C4H1, 4CL2, 4CL9, HCT, CCoAOMT5, F5H, COMT1, CAD6, and POD42 were implicated in the regulation of neochlorogenic acid synthesis and accumulation. Consequently, these findings enhance our understanding of phenolic metabolism and offer fresh perspectives on the development of germplasm resources for white-fleshed loquats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (J.Z.); (P.S.); (X.L.); (X.P.); (Y.H.); (Q.M.); (D.L.)
| |
Collapse
|
10
|
Franzoni G, Spadafora ND, Sirangelo TM, Ferrante A, Rogers HJ. Biochemical and molecular changes in peach fruit exposed to cold stress conditions. MOLECULAR HORTICULTURE 2023; 3:24. [PMID: 37953307 PMCID: PMC10641970 DOI: 10.1186/s43897-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Storage or transportation temperature is very important for preserving the quality of fruit. However, low temperature in sensitive fruit such as peach can induce loss of quality. Fruit exposed to a specific range of temperatures and for a longer period can show chilling injury (CI) symptoms. The susceptibility to CI at low temperature varies among cultivars and genetic backgrounds. Along with agronomic management, appropriate postharvest management can limit quality losses. The importance of correct temperature management during postharvest handling has been widely demonstrated. Nowadays, due to long-distance markets and complex logistics that require multiple actors, the management of storage/transportation conditions is crucial for the quality of products reaching the consumer.Peach fruit exposed to low temperatures activate a suite of physiological, metabolomic, and molecular changes that attempt to counteract the negative effects of chilling stress. In this review an overview of the factors involved, and plant responses is presented and critically discussed. Physiological disorders associated with CI generally only appear after the storage/transportation, hence early detection methods are needed to monitor quality and detect internal changes which will lead to CI development. CI detection tools are assessed: they need to be easy to use, and preferably non-destructive to avoid loss of products.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
11
|
Zhou H, Su M, Du J, Zhang X, Li X, Zhang M, Hu Y, Huan C, Ye Z. Crucial roles of sorbitol metabolism and energy status in the chilling tolerance of yellow peach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108092. [PMID: 37852068 DOI: 10.1016/j.plaphy.2023.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
In this study, we compared sorbitol metabolism, energy metabolism, and CI development in yellow peach fruit at 1 °C (less susceptible to CI) and 8 °C (more susceptible to CI) storage to elucidate potential connections between them. The results indicated that storage at 1 °C effectively maintained the textural quality of yellow peach fruit and delayed the onset of CI by 12 days compared to 8 °C. This positive effect might be attributable to 1 °C storage maintaining higher sorbitol content throughout the storage duration, thus sustaining the higher adenosine triphosphate (ATP) level and energy charge. The regulation of sorbitol accumulation by 1 °C storage was closely linked to the metabolic activity of sorbitol, which stimulated sorbitol synthesis by enhancing sorbitol-6-phosphate dehydrogenase (S6PDH) activity after 12 days while suppressing sorbitol degradation via decreased sorbitol oxidase (SOX) and NAD+-sorbitol dehydrogenase (NAD+-SDH) activities before 24 days. In addition, the notable up-regulation in the NAD+-SDH activity in the late storage period promoted the conversion of sorbitol to fructose and glucose under 1 °C storage, thereby providing ample energy substrate for ATP generation. Moreover, sorbitol acts as a vital signaling molecule, and substantially up-regulated expressions of sorbitol transporters genes (PpeSOT3, PpeSOT5, and PpeSOT7) were observed in fruit stored at 1 °C, which might promote sorbitol transport and improve cold tolerance in peach fruit. Taken together, these findings suggested that 1 °C storage delayed CI by enhancing sorbitol metabolism and transporter activity, promoting sorbitol accumulation, and finally elevating the energy status in yellow peach fruit.
Collapse
Affiliation(s)
- Huijuan Zhou
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210000, PR China.
| | - Mingshen Su
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Jihong Du
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xianan Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xiongwei Li
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Minghao Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Yang Hu
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210000, PR China.
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210000, PR China.
| |
Collapse
|
12
|
Hu S, Xie B, Hou Y, Zhao L, Zheng Y, Jin P. Postharvest 24-epibrassinolide treatment improves chilling resistance of peach fruit via PpHDT1 modulating brassinosteroid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108116. [PMID: 39491268 DOI: 10.1016/j.plaphy.2023.108116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Brassinosteroids (BRs) exhibit a positive effect on facilitating chilling resistance in fruits and vegetables. However, the change and regulatory mechanism of BR metabolism in fruits and vegetables are poorly understood. This study aimed to explore the underlying relationship among chilling injury (CI), BR metabolism and regulatory factor PpHDT1. The results showed that exogenous 24-epibrassinolide (EBR) retarded peaches CI, reduced endogenous brassinolide (BL) accumulation, repressed the transcriptions of BR synthesis-related genes, promoted expression of BR signal-related genes. The results of molecular assays in vivo demonstrated that PpHDT1 down-regulated BR synthesis gene PpDWF4 and up-regulated BR signal transduction gene PpBZR1. Moreover, EBR treatment enhanced PpHDT1 expression, revealing that EBR treatment might alleviate peaches CI through PpHDT1 modulating BL metabolism and signal pathway. Our study provides a new insight into the underlying mechanism of EBR on regulating chilling resistance in postharvest peaches.
Collapse
Affiliation(s)
- Shunqing Hu
- Shandong Institute of Pomology, Taian, 271000, PR China
| | - Bing Xie
- College of Food Science and Technology, Tarim University, Alaer, 843300, PR China
| | - Yuanyuan Hou
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Liangyi Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Liu G, Chen B, Liu H, Wang X, Zhang Y, Wang C, Liu C, Zhong Y, Qiao Y. Effects of Hydroxyethyl Cellulose and Sulfated Rice Bran Polysaccharide Coating on Quality Maintenance of Cherry Tomatoes during Cold Storage. Foods 2023; 12:3156. [PMID: 37685089 PMCID: PMC10486926 DOI: 10.3390/foods12173156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Cherry tomatoes are easily damaged due to their high moisture content. A composite coating was developed to delay deterioration and prolong storage by mixing antibacterial sulfated rice bran polysaccharides (SRBP) and edible hydroxyethyl cellulose (HEC) with film-forming properties. The effects of HEC, HEC-5% SRBP, and HEC-20% SRBP preservative coatings on the maintenance of the quality of cherry tomatoes (LycopersivonesculentumMill., Xiaohuang F2) during cold storage were investigated. The HEC-20% SRBP coating significantly reduced tomato deterioration and weight loss, delayed firmness loss, decreased polyphenol oxidase activity, and increased peroxidase activity. Furthermore, cherry tomatoes treated with HEC-20% SRBP maintained high levels of titratable acid, ascorbic acid, total phenols, and carotenoids. Cherry tomatoes coated with HEC-SRBP also had higher levels of volatile substances and a greater variety of these substances compared to uncoated tomatoes. In conclusion, the HEC-20% SRBP coating effectively delayed deterioration and preserved cherry tomatoes' nutrient and flavor qualities during postharvest cold storage, suggesting it could be a novel food preservation method.
Collapse
Affiliation(s)
- Guige Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Bingjie Chen
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Hongru Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Xiao Wang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Yi Zhang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Cunfang Wang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Chenxia Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Yaoguang Zhong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Yongjin Qiao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| |
Collapse
|
14
|
Dima ȘO, Constantinescu-Aruxandei D, Tritean N, Ghiurea M, Capră L, Nicolae CA, Faraon V, Neamțu C, Oancea F. Spectroscopic Analyses Highlight Plant Biostimulant Effects of Baker's Yeast Vinasse and Selenium on Cabbage through Foliar Fertilization. PLANTS (BASEL, SWITZERLAND) 2023; 12:3016. [PMID: 37631226 PMCID: PMC10458166 DOI: 10.3390/plants12163016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin-Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits.
Collapse
Affiliation(s)
- Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biology, University of Bucharest, Splaiul Independenței nr. 91-95, Sector 5, 050095 Bucharest, Romania
| | - Marius Ghiurea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Luiza Capră
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Cristian-Andi Nicolae
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Victor Faraon
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Constantin Neamțu
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Florin Oancea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști nr. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
15
|
Li J, Guo T, Guo M, Dai X, Xu X, Li Y, Song Z, Liang M. Exogenous BR delayed peach fruit softening by inhibiting pectin degradation enzyme genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1226921. [PMID: 37600192 PMCID: PMC10436216 DOI: 10.3389/fpls.2023.1226921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
Peach fruit deteriorates and senesces rapidly when stored at room temperature. Brassinosteroids (BRs) play an important role in regulating plant growth and development and maintaining fruit quality. However, little information is available on the effect of BRs on the senescence of harvested peach fruit. In this study, different concentrations of BR were used to treat 'Hongniang' peach fruit, and the results showed that 10 μM BR was the most beneficial concentration to delay the senescence of peach fruits. BR treatment delayed the decrease of fruit firmness, the release of ethylene, the increase in water-soluble pectin (WSP) and ionic-soluble pectin (ISP) content and the decrease in covalently bound pectin (CBP) content, inhibited the activities of pectin degradation enzymes, and inhibited the gene expression of PpPME1/3, PpPG, PpARF2, and PpGAL2/16. In addition, BR treatment also inhibited the expression of PpBES1-5/6. Cis-acting regulatory element analysis of pectin degradation enzyme promoters showed that many of them contained BES1 binding elements. All the above results showed that BR treatment had a positive effect on delaying the senescence of peach fruit and prolonging its storage period.
Collapse
Affiliation(s)
- Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Tingting Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Meiling Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Xiaonan Dai
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Xiaofei Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Yanju Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Meixia Liang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| |
Collapse
|
16
|
Li M, He P, Zhao Z, Liu J, Liu H, Ma S, Shen Y, Li B. Effect of temperature on betacyanins synthesis and the transcriptome of Suaeda salsa. FRONTIERS IN PLANT SCIENCE 2023; 14:1203089. [PMID: 37434603 PMCID: PMC10330703 DOI: 10.3389/fpls.2023.1203089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/13/2023]
Abstract
Introduction Suaeda salsa (Linn.) Pall. is an important tourist resource and ecological restoration species in coastal wetlands. Environmental factors such as low temperature, darkness, phytohormone, salt stress and seawater flflooding, and light can induce betalain synthesis in S. salsa, which plays an important role in plant adaptation to abiotic stress processes and in shaping the beautiful "red beach" landscape. Methods In this study, Illumina sequencing was used to profifile the transcriptome sequence (RNA-Seq) of S. salsa leaves at different temperatures (5° C, 10°C, 15°C, 20°C, 25°C, and 30°C) and to validate differentially expressed genes (DEGs) indicated by real-time PCR (RT-qPCR). Results The betacyanin content was highest in S. salsa leaves at 15°C. Transcription group data showed that compared to the control group (15°C), the "betacyanin biosynthesis pathway" was signifificantly enriched in the fifive different temperature groups. KEGG analysis showed that the DEGs were mainly involved in pathways of phenylpropanoid biosynthesis, carbon fifixation in photosynthetic organisms, flflavonoid biosynthesis, and betacyanin biosynthesis. Among the key enzymes involved in biosynthesis of betacyanin, genes for tyrosinase, CYP76AD1 and 4,5-DOPA dioxygenase were signifificantly upregulated and most abundantly expressed at 15°C. It is possible that the gene for betacyanin synthesis from S. salsa is primarily regulated by the MYB1R1 and MYB1 transcription factor. Four DEGs were randomly selected for quantitative PCR analysis, and DEG expression was generally consistent with the RNA-Seq data, verifying the validity of the transcriptome sequencing data. Discussion Relative to other temperatures, 15°C was optimum for S. salsa betacyanin synthesis, and this provides a theoretical reference for coastal wetland ecological remediation, reveals mechanisms of S. salsa discoloration, and further mines its potential application for landscape vegetation.
Collapse
Affiliation(s)
- Min Li
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Peimin He
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zitao Zhao
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jinlin Liu
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Hongtao Liu
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shaozu Ma
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Yifei Shen
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Bin Li
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
17
|
You S, Jiang M, Lan W, Chen M, Bai B, Zhang L, Tu K, Song L, Pan L. Assessment of the optical properties with physicochemical properties and cell wall polysaccharides of 'Korla' pear flesh during Alternaria alternata-induced disease development. Food Chem 2023; 409:135302. [PMID: 36623358 DOI: 10.1016/j.foodchem.2022.135302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Cell wall polysaccharides and physicochemical properties are the major quality characteristics of fruit, but they are significantly affected by the postharvest disease. In this study, the influence of Alternaria alternata-induced disease on the contents of cell wall polysaccharides and physicochemical properties in 'Korla' pear flesh during storage, as well as their relationships of the optical absorption (μa) and reduced scattering (μs') were explored. The infected pear had lower individual sugars, covalent-soluble pectin, cellulose and hemicellulose contents than the healthy ones. The successive decreases of μa and increases of μs' in pears were observed while the process of pathogen infection. Path-coefficient analysis indicated the ionic-soluble pectin was the main reason responsible for the change of μs' in infected pear at 675 nm and 980 nm. This study indicated the optical properties have the possibility to present the physicochemical characteristics and cell wall polysaccharides of pears during postharvest pathogen infection.
Collapse
Affiliation(s)
- Sicong You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mengwei Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weijie Lan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingrui Chen
- Nantes Université, Ecole Doctorale Ecologie Géosciences Agronomie ALimentation, Nantes, France
| | - Bingyao Bai
- College of Life Science, Tarim University, Alaer 843300, China
| | - Li Zhang
- College of Life Science, Tarim University, Alaer 843300, China; College of Food and Biological Engineering, Bengbu University, Bengbu 233030, Anhui, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lijun Song
- College of Life Science, Tarim University, Alaer 843300, China; College of Food and Biological Engineering, Bengbu University, Bengbu 233030, Anhui, China.
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China.
| |
Collapse
|
18
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Xu H, Zhang W, Zhou Y, Yue Z, Yan T, Zhang Y, Liu Y, Hong Y, Liu S, Zhu F, Tao L. Systematic Description of the Content Variation of Natural Products (NPs): To Prompt the Yield of High-Value NPs and the Discovery of New Therapeutics. J Chem Inf Model 2023; 63:1615-1625. [PMID: 36795011 DOI: 10.1021/acs.jcim.2c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Natural products (NPs) have long been associated with human production and play a key role in the survival of species. Significant variations in NP content may severely affect the "return on investment" of NP-based industries and render ecological systems vulnerable. Thus, it is crucial to construct a platform that relates variations in NP content to their corresponding mechanisms. In this study, a publicly accessible online platform, NPcVar (http://npcvar.idrblab.net/), was developed, which systematically described the variations of NP contents and their corresponding mechanisms. The platform comprises 2201 NPs and 694 biological resources, including plants, bacteria, and fungi, curated using 126 diverse factors with 26,425 records. Each record contains information about the species, NP, and factors involved, as well as NP content data, parts of the plant that produce NPs, the location of the experiment, and reference information. All factors were manually curated and categorized into 42 classes which belong to four mechanisms (molecular regulation, species factor, environmental condition, and combined factor). Additionally, the cross-links of species and NP to well-established databases and the visualization of NP content under various experimental conditions were provided. In conclusion, NPcVar is a valuable resource for understanding the relationship between species, factors, and NP contents and is anticipated to serve as a promising tool for improving the yield of high-value NPs and facilitating the development of new therapeutics.
Collapse
Affiliation(s)
- Hongquan Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Affiliated Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Zixuan Yue
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianci Yan
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuanyuan Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanfeng Hong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Feng Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Affiliated Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
20
|
Wang L, Zhang C, Shi K, Chen S, Shao J, Huang X, Wang M, Wang Y, Song Q. Hydrogen Sulfide Enhances Browning Repression and Quality Maintenance in Fresh-Cut Peaches via Modulating Phenolic and Amino Acids Metabolisms. Foods 2023; 12:foods12061158. [PMID: 36981085 PMCID: PMC10048349 DOI: 10.3390/foods12061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Effects of hydrogen sulfide (H2S) on the browning and quality maintenance of fresh-cut peach fruit were studied. The results showed that H2S treatment repressed the development of surface browning, suppressed the increase in respiration rate and weight loss, and delayed the decline of firmness while soluble solids content (SSC) and microbial growth were unaffected during storage. H2S treatment maintained higher contents of phenolic compounds, especially neo-chlorogenic acid, catechin, and quercetin, and delayed the degradation of phenolic compounds by enhancing the activities of phenolic biosynthesis-related enzymes and inhibiting the oxidative activities of polyphenol oxidase (PPO) in comparison with control. Moreover, H2S stimulated the accumulation of amino acids and their derivatives including proline, γ-aminobutyric acid (GABA), and polyamines (PAs) via enhancing biosynthesis and repressing degradation compared to control. These results suggested that H2S treatment enhanced the accumulation of phenolic, amino acids, and their derivatives by modulating phenolic and amino acids metabolisms, which contributed to the higher antioxidant activity and membrane integrity maintenance, ultimately repressing browning development and maintaining the quality. Therefore, the current study speculated that H2S might be a promising approach for browning inhibition and quality maintenance in fresh-cut peach fruit.
Collapse
Affiliation(s)
- Li Wang
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Chen Zhang
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Kaili Shi
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Shouchao Chen
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Jiawei Shao
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Xingli Huang
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Mingliang Wang
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Yanyan Wang
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| | - Qingyuan Song
- Anhui Agricultural Products Processing Engineering Laboratory, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 210036, China
| |
Collapse
|
21
|
Song Z, Lai X, Chen H, Wang L, Yao Y, Chen W, Zhu X, Li X. MaC2H2-like regulates chilling stress response of ‘Fenjiao’ banana by modulating flavonoid synthesis and fatty acid desaturation. Food Chem 2023; 419:136089. [PMID: 37023674 DOI: 10.1016/j.foodchem.2023.136089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Chilling injury (CI) is a major problem that affects fruit quality and ripening. Herein, chilling stress severely inhibited the expression of transcription factor MaC2H2-like. MaC2H2-like activates the expression of genes associated with flavonoid synthesis (MaC4H-like1, Ma4CL-like1, MaFLS, and MaFLS3) and fatty acid desaturation (MaFAD6-2 and MaFAD6-3), the leading indicators of chilling tolerance. MaC2H2-like interacts with MaEBF1 and boosts the transcriptional activity of MaFAD6-2, MaFAD6-3, Ma4CL-like1, and MaFLS. The overexpression of MaC2H2-like reduced fruit CI, induced the expression of these genes and increased the content of flavonoid and unsaturated fatty acid. Meanwhile, the silencing of MaC2H2-like increased fruit CI and downregulated the expression of those genes and reduced the content of flavonoid and unsaturated fatty acid. These results indicate that MaC2H2-like function as new player in modulating fruit CI by regulating flavonoid synthesis and fatty acid desaturation. MaC2H2-like could be a useful candidate gene for improving cold tolerance in 'Fenjiao' banana.
Collapse
|
22
|
Li J, Muneer MA, Sun A, Guo Q, Wang Y, Huang Z, Li W, Zheng C. Magnesium application improves the morphology, nutrients uptake, photosynthetic traits, and quality of tobacco ( Nicotiana tabacum L.) under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1078128. [PMID: 36844047 PMCID: PMC9948613 DOI: 10.3389/fpls.2023.1078128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Cold stress is one of the major constraints limiting the productivity of many important crops, including tobacco (Nicotiana tabacum L.) production and quality worldwide. However, the role of magnesium (Mg) nutrition in plants has been frequently overlooked, especially under cold stress, and Mg deficiency adversely affects plant growth and development. Here, we evaluated the influence of Mg under cold stress on tobacco morphology, nutrient uptake, photosynthetic and quality attributes. The tobacco plants were grown under different levels of cold stress, i.e., 8°C, 12°C, 16°C, including with a controlled temperature of 25°C, and evaluated their effects with Mg (+Mg) and without Mg (-Mg) application. Cold stress resulted in reduced plant growth. However, the +Mg alleviated the cold stress and significantly increased the plant biomass on an average of 17.8% for shoot fresh weight, 20.9% for root fresh weight, 15.7% for shoot dry weight, and 15.5% for root dry weight. Similarly, the nutrients uptake also increased on average for shoot-N (28.7%), root-N (22.4%), shoot-P (46.9%), root-P (7.2%), shoot-K (5.4%), root-K (28.9%), shoot-Mg (191.4%), root-Mg (187.2%) under cold stress with +Mg compared to -Mg. Mg application significantly boosted the photosynthetic activity (Pn 24.6%) and increased the chlorophyll contents (Chl-a (18.8%), Chl-b (25%), carotenoids (22.2%)) in the leaves under cold stress in comparison with -Mg treatment. Meanwhile, Mg application also improved the quality of tobacco, including starch and sucrose contents, on an average of 18.3% and 20.8%, respectively, compared to -Mg. The principal component analysis revealed that tobacco performance was optimum under +Mg treatment at 16°C. This study confirms that Mg application alleviates cold stress and substantially improves tobacco morphological indices, nutrient absorption, photosynthetic traits, and quality attributes. In short, the current findings suggest that Mg application may alleviate cold stress and improve tobacco growth and quality.
Collapse
Affiliation(s)
- Jian Li
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Atif Muneer
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aihua Sun
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinyu Guo
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuemin Wang
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Key Laboratory of Crop Genetics and Improvement/Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenqing Li
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
| | - Chaoyuan Zheng
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Castro-Cegrí A, Sierra S, Hidalgo-Santiago L, Esteban-Muñoz A, Jamilena M, Garrido D, Palma F. Postharvest Treatment with Abscisic Acid Alleviates Chilling Injury in Zucchini Fruit by Regulating Phenolic Metabolism and Non-Enzymatic Antioxidant System. Antioxidants (Basel) 2023; 12:211. [PMID: 36671073 PMCID: PMC9854589 DOI: 10.3390/antiox12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Reports show that phytohormone abscisic acid (ABA) is involved in reducing zucchini postharvest chilling injury. During the storage of harvested fruit at low temperatures, chilling injury symptoms were associated with cell damage through the production of reactive oxygen species. In this work, we have studied the importance of different non-enzymatic antioxidants on tolerance to cold stress in zucchini fruit treated with ABA. The application of ABA increases the antioxidant capacity of zucchini fruit during storage through the accumulation of ascorbate, carotenoids and polyphenolic compounds. The quantification of specific phenols was performed by UPLC/MS-MS, observing that exogenous ABA mainly activated the production of flavonoids. The rise in all these non-enzymatic antioxidants due to ABA correlates with a reduction in oxidative stress in treated fruit during cold stress. The results showed that the ABA mainly induces antioxidant metabolism during the first day of exposure to low temperatures, and this response is key to avoiding the occurrence of chilling injury. This work suggests an important protective role of non-enzymatic antioxidants and polyphenolic metabolism in the prevention of chilling injury in zucchini fruit.
Collapse
Affiliation(s)
- Alejandro Castro-Cegrí
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Sandra Sierra
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Laura Hidalgo-Santiago
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), University of Almería, 04120 Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
24
|
Hu S, Hou Y, Zhao L, Zheng Y, Jin P. Exogenous 24-epibrassinolide alleviates chilling injury in peach fruit through modulating PpGATA12-mediated sucrose and energy metabolisms. Food Chem 2023; 400:133996. [DOI: 10.1016/j.foodchem.2022.133996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/31/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
|
25
|
Aslam MM, Deng L, Meng J, Wang Y, Pan L, Niu L, Lu Z, Cui G, Zeng W, Wang Z. Characterization and expression analysis of basic leucine zipper (bZIP) transcription factors responsive to chilling injury in peach fruit. Mol Biol Rep 2023; 50:361-376. [PMID: 36334232 DOI: 10.1007/s11033-022-08035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits. Formerly, the underlying molecular and regulatory mechanism of (bZIP) transcription factors responsive to chilling injury in peach fruit is still elusive. METHODS AND RESULTS In the current experiment, the solute peach 'Zhongyou Peach No. 13' was used as the test material and cold storage at low temperature (4 °C). It was found that long-term low-temperature storage induced the production of ethylene, the hardness of the pulp decreased, and the low temperature also induced ABA accumulation. The changes of ABA and ethylene in peach fruits during low-temperature storage were clarified. Since the bZIP transcription factor is involved in the regulation of downstream pathways of ABA signals, 47 peach bZIP transcription factor family genes were identified through bioinformatics analysis. Further based on RT-qPCR analysis, 18 PpbZIP genes were discovered to be expressed in refrigerated peach fruits. Among them, the expression of PpbZIP23 and PpbZIP25 was significantly reduced during the refrigeration process, the promoter analysis of these genes found that this region contains the MYC/MYB/ABRES binding element, but not the DRES/CBFS element, indicating that the expression may be regulated by the ABA-dependent cold induction pathway, thereby responding to chilling injury in peach fruit. CONCLUSIONS Over investigation will provide new insights for further postharvest protocols related to molecular changes during cold storage and will prove a better cope for chilling injury.
Collapse
Affiliation(s)
- Muhammad Muzammal Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Li Deng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Junren Meng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Yan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Lei Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liang Niu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Guochao Cui
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| |
Collapse
|
26
|
JIANG W, PAN L, ZHU Z. Effect of calcium on rheological properties of Abelmoschus esculentus (okra) pod polysaccharide and its application in Annona squamosa. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wei JIANG
- Tianjin University of Science and Technology, China; Tianjin University of Science and Technology, China; Zunyi Medical and Pharmaceutical College, China
| | - Lichao PAN
- Tianjin University of Science and Technology, China; Tianjin University of Science and Technology, China
| | - Zhenyuan ZHU
- Tianjin University of Science and Technology, China; Tianjin University of Science and Technology, China
| |
Collapse
|
27
|
Zhang Q, Tang F, Cai W, Peng B, Ning M, Shan C, Yang X. Chitosan treatment reduces softening and chilling injury in cold-stored Hami melon by regulating starch and sucrose metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:1096017. [PMID: 36589112 PMCID: PMC9795072 DOI: 10.3389/fpls.2022.1096017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Cold-stored Hami melon is susceptible to chilling injury, resulting in quality deterioration and reduced sales. Pre-storage treatment with chitosan reduces fruit softening and chilling injury in melon; however, the underlying mechanism remains unclear. In this study, Gold Queen Hami melons were treated with 1.5% chitosan solution for 10 min before cold storage at 3°C and then the effect of chitosan was examined on fruit firmness, weight loss, chilling injury, soluble solid content (SSC), pectin, and soluble sugar contents of melon fruit. Also, the enzyme activities and gene expressions related to fruit softening and starch and sucrose metabolism were investigated. Chitosan treatment reduced the fruit softening and chilling injury, maintained the high levels of starch and sucrose contents, and regulated the enzyme activities and gene expressions related to starch and sucrose metabolism. Fruit firmness was significantly positively correlated with sucrose and starch contents. Altogether, we uncovered the potential mechanism of chitosan coating mitigating melon softening and chilling injury through the regulation of starch and sucrose metabolism.
Collapse
Affiliation(s)
- Qin Zhang
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Fengxian Tang
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wenchao Cai
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Bo Peng
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ming Ning
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Chunhui Shan
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Engineering Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing, Ministry of Education, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Xinquan Yang
- College of Food, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
28
|
Zhou Y, Wu W, Wang L, Goksen G, Shao P. Multifunctional pectin films based on mussel-inspired modified 2D Ag nanosheets for long-lasting antibacterial and enhanced barrier properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Huang S, Ying Lim S, Lau H, Ni W, Fong Yau Li S. Effect of glycinebetaine on metabolite profiles of cold-stored strawberry revealed by 1H NMR-based metabolomics. Food Chem 2022; 393:133452. [PMID: 35751219 DOI: 10.1016/j.foodchem.2022.133452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Glycinebetaine (GB) has long been used as a preservative for refrigerated fruits, but the effect of GB on the global metabolites of cold-stored strawberries is still unclear. In this study, the effects of exogenous application of GB on quality-related metabolites of cold-stored strawberries were investigated by nuclear magnetic resonance (NMR)-based metabolomic analysis. The results showed that the application of GB (especially at the concentration of 10 mM) on cold-stored strawberries effectively stabilized the sugars (d-xylose and d-glucose) and amino acids (tyrosine, leucine, and tryptophan) content, and lowered the acid (acetic acid) content as well. Additionally, the GB content in strawberries also increased. This implies that the appropriate concentration of GB is a natural and safe treatment, which could maintain the quality of cold-stored strawberries by regulating levels of quality-related metabolites, and the ingestion of GB-preserved strawberries may serve as a source of methyl-donor supplementation in our daily diet.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang 310058, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Si Ying Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang 310058, China.
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
30
|
Zhao M, Li J, Zhou S, Rao G, Xu D. Effects of tetracycline on the secondary metabolites and nutritional value of oilseed rape (Brassica napus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81222-81233. [PMID: 35731441 DOI: 10.1007/s11356-022-21267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolism, which helps a plant cope with external stress, is sensitive to environmental changes and plays a prominent role in maintaining plant health. However, few studies of the effects of tetracycline on the relationships between secondary metabolism and plant stress responses have been performed. Here, secondary metabolism, nutritional value, and oxidative stress responses in oilseed rape (Brassica napus L.) exposed to tetracycline for 14 days were investigated. Tetracycline inhibited growth and biomass accumulation and decreased the chlorophyll content. The sinapine, phenol, and flavonoid contents were 118.46%, 99.67%, and 93.07% higher, respectively, but the carotenoid content was 76.47% lower in plants exposed to 8 mg/L tetracycline than the control plants. Tetracycline affected the nutritional value of oilseed rape. Tetracycline decreased the dietary fiber, soluble sugar contents, and microelement (Fe, Mn, and Zn) contents. The antioxidant system also responded strongly to tetracycline. The catalase and peroxidase activities were increased and the superoxide dismutase activity was decreased by tetracycline. Tetracycline caused oxidative damage and secondary metabolite disturbances and adversely affected oilseed rape growth and quality. The results provide a new perspective on the effects of tetracycline on plants in relation to secondary metabolites and improve our understanding involved in the toxicity of tetracycline.
Collapse
Affiliation(s)
- Mengting Zhao
- College of Environment and Resources, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jun Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shanshan Zhou
- College of Environment and Resources, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Guiwei Rao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
31
|
Lurie S. Proteomic and metabolomic studies on chilling injury in peach and nectarine. FRONTIERS IN PLANT SCIENCE 2022; 13:958312. [PMID: 36267944 PMCID: PMC9577496 DOI: 10.3389/fpls.2022.958312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Peaches and nectarines are temperate climate stone fruits, which should be stored at 0°C to prevent the ripening of these climacteric fruits. However, if stored for too long or if stored at a higher temperature (4 or 5°C), they develop chilling injury. Chilling injury damage includes (1) dry, mealy, wooly (lack of juice) fruits, (2) hard-textured fruits with no juice (leatheriness), (3) flesh browning, and (4) flesh bleeding or internal reddening. There are genetic components to these disorders in that early season fruits are generally more resistant than late season fruits, and white-fleshed fruits are more susceptible to internal browning than yellow-fleshed fruits. A recent review covered the recent research in genomic and transcriptomic studies, and this review examines findings from proteomic and metabolomics studies. Proteomic studies found that the ethylene synthesis proteins are decreased in cold compromised fruits, and this affects the processes initiated by ethylene including cell wall and volatile changes. Enzymes in metabolic pathways were both higher and lower in abundance in CI fruits, an indication of an imbalance in energy production. Stress proteins increased in both fruits with or without CI, but were higher in damaged fruits. Metabolomics showed the role of levels of sugars, sucrose, raffinose, galactinol, and glucose-6-phosphate in protection against chilling injury, along with other membrane stabilizers such as polyamines. Amino acid changes were inconsistent among the studies. Lipid species changes during storage could be correlated with sensitivity or resistance to CI, but more studies are needed.
Collapse
|
32
|
Zhou H, Zhang X, Su M, Du J, Li X, Zhang M, Hu Y, Huan C, Ye Z. Controlled atmosphere storage alleviates internal browning in flat peach fruit by regulating energy and sugar metabolisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:107-120. [PMID: 35835077 DOI: 10.1016/j.plaphy.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Flat peach fruit are cold-sensitive and vulnerable to chilling injury (CI), particularly internal browning (IB) during cold storage, which limits the consumer acceptance and market value of the fruit. Controlled atmosphere (CA) has been used to alleviate IB in fruit. However, the mechanisms of CA on IB in peach remains unknown. This study investigated the effects of CA (3-3.5% Oxygen, 3-3.5% Carbon dioxide, and 93-94% nitrogen) treatment on IB development, sugar metabolism, and energy metabolism in cold-stored (1 ± 0.5 °C) peach. The CA treatment effectively inhibited the development of IB and markedly inhibited the reduction of sugar contents and energy charge. The protein expression of the V-type proton ATPase subunit was significantly inhibited by the CA treatment, accompanied by higher adenosine triphosphate (ATP) content, and energy charge than the control fruit. Notably, the expressions of the pyruvate kinase family of proteins, pyruvate decarboxylases, and sucrose synthase were induced by CA treatment that had complex protein interactions with the ATPase and the energy metabolism pathway. These results indicated that CA treatment enhanced the chilling tolerance attributed to maintaining higher levels of energy status and sugar contents by regulating the expression of key proteins involved in energy metabolism during cold storage and shelf life. Taken together, our study can provide theoretical support for the research and development of fresh-keeping and cold-chain logistics technology.
Collapse
Affiliation(s)
- Huijuan Zhou
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China.
| | - Xianan Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Mingshen Su
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Jihong Du
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xiongwei Li
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Minghao Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Yang Hu
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China.
| |
Collapse
|
33
|
Li Q, Yang S, Zhang R, Liu S, Zhang C, Li Y, Li J. Characterization of honey peach (Prunus persica (L.) Batsch) aroma variation and unraveling the potential aroma metabolism mechanism through proteomics analysis under abiotic stress. Food Chem 2022; 386:132720. [PMID: 35339764 DOI: 10.1016/j.foodchem.2022.132720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022]
Abstract
Honey peach (Prunus persica (L.) Batsch) is a climacteric fruit with short storage period. Generally, the low temperature storage (LTS) technology is implemented to lessen aroma loss and keep the quality. However, the LTS procedure brings about cold stress issues and affects the aroma metabolism. It is essential to unravel the primary aroma and the corresponding metabolism mechanism through key proteins under abiotic stress. In this study, the primary components were characterized under LTS at 1 °C during 0 to 40 days. Furthermore, the proteomics analysis was performed to acquire differentially expressed proteins to clarify the underlying metabolism mechanisms of the primary aroma and potential proteins. As a result, four proteins were considered as potential key proteins that associated with fatty acid and amino acid metabolism under cold stress. Additionally, this study provides theoretical cornerstones for regulating and improving the quality of honey peach.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Hubei 445000, China
| | - Chaoyang Zhang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Hubei 445000, China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
34
|
Methyl salicylate affects the lipophilic and hydrophilic antioxidant capacities of apricot by regulating carotenoid biosynthesis and phenolic metabolism. Food Chem 2022; 385:132709. [DOI: 10.1016/j.foodchem.2022.132709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/23/2022] [Accepted: 03/13/2022] [Indexed: 11/23/2022]
|
35
|
Ben Amor A, Rahmani R, Bennani L, Ben Yahia L, Ben Atia Zrouga K, Chaira N, Nagaz K. Investigation of phenolic compounds potential to reduce dust pollution of pomegranate trees. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:430-440. [PMID: 35786086 DOI: 10.1080/15226514.2022.2089090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study was carried out in two seasons from two areas at different distances from the industrial zone of Gabes city which is classified as a Mediterranean host-spot pollution region. Pomegranate tree were highly exposed to various industrial air pollutants containing Zn and Cu. The relation between Zn, Cu, morphological, physiological and biochemical changes induced in pomegranate leaves was evaluated based to the measurement of leaf heavy metals, leaf changes, total phenolic content and quali-quantification of individual phenol profile by LC-ESI-MS.Results showed that the highest levels of metals were found in the closet site to the industrial area. This accumulation varied significantly between areas and seasons and cause significant increase of necrosis leaf area, decrease of leaf area, green leaf area and specific leaf area. LC-ESI-MS analysis showed a spatial and seasonal variation of total phenolic acids and flavonoids which indicate that phenolic compounds are rigorously depending to stressful conditions. A significant positive correlation was found among total Zn, Cu, necrosis, cirsiliol, caffeic and trans-ferulic acids. This accumulation can serve as protective defensive mechanism to minimize the air pollutants effects, chelate Zn and Cu and then to improve the resistance of pomegranate trees.
Collapse
Affiliation(s)
- Afef Ben Amor
- Drylands and Oases Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, Gabes, Tunisia
| | - Rami Rahmani
- Research Laboratory of Valorization of Active Biomolecules, Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Leila Bennani
- Drylands and Oases Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, Gabes, Tunisia
| | - Leila Ben Yahia
- Drylands and Oases Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, Gabes, Tunisia
| | - Khaoula Ben Atia Zrouga
- Department of Horticultural Sciences and Landscape, High Institute of Agronomic Sciences of Chott Meriem, Sousse University, Sousse, Tunisia
| | - Nizar Chaira
- Drylands and Oases Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, Gabes, Tunisia
| | - Kamel Nagaz
- Drylands and Oases Cropping Laboratory, Institute of Arid Regions of Medenine, University of Gabes, Gabes, Tunisia
| |
Collapse
|
36
|
Jia Z, Wang Y, Wang L, Zheng Y, Jin P. Amino acid metabolomic analysis involved in flavor quality and cold tolerance in peach fruit treated with exogenous glycine betaine. Food Res Int 2022; 157:111204. [DOI: 10.1016/j.foodres.2022.111204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
|
37
|
Song C, Wang K, Xiao X, Liu Q, Yang M, Li X, Feng Y, Li S, Shi L, Chen W, Yang Z. Membrane lipid metabolism influences chilling injury during cold storage of peach fruit. Food Res Int 2022; 157:111249. [DOI: 10.1016/j.foodres.2022.111249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/04/2022]
|
38
|
Chen H, Lin H, Jiang X, Lin M, Fan Z. Amelioration of chilling injury and enhancement of quality maintenance in cold-stored guava fruit by melatonin treatment. Food Chem X 2022; 14:100297. [PMID: 35372825 PMCID: PMC8971855 DOI: 10.1016/j.fochx.2022.100297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022] Open
Abstract
The influence of melatonin treatment on the quality and chilling injury of guavas during storage at 4 ± 1 °C were evaluated. Compared with control group, fruit of guava cv. Xiguahong exposed to various concentrations (50, 100, 150, and 200 μmol/L) of melatonin showed a significantly lower fruit respiration rate, weight loss, cell membrane permeability, and chilling injury index, but a higher commercially acceptable fruit rate, higher peel L*, h° value, and chlorophyll content. Melatonin treatment also delayed the decreases of fruit firmness, sucrose, total soluble sugar, vitamin C, titratable acidity, and total soluble solids. These data indicate that melatonin treatment could increase chilling tolerance and retain quality of cold-stored guavas. Among various concentrations of melatonin treatment, 100 μmol/L melatonin-treated guavas showed the preferable quality properties and lowest chilling injury index. Thus, melatonin may be a novel method of postharvest handling to enhance cold resistance and extend storage-life of cold-stored guava fruit.
Collapse
Affiliation(s)
- Hongbin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211-5160, United States
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| |
Collapse
|
39
|
Changes of Sensory Quality, Flavor-Related Metabolites and Gene Expression in Peach Fruit Treated by Controlled Atmosphere (CA) under Cold Storage. Int J Mol Sci 2022; 23:ijms23137141. [PMID: 35806145 PMCID: PMC9266655 DOI: 10.3390/ijms23137141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Controlled atmosphere (CA) has been used to alleviate chilling injury (CI) of horticultural crops caused by cold storage. However, the effects of CA treatment on peach fruit sensory quality and flavor-related chemicals suffering from CI remain largely unknown. Here, we stored peach fruit under CA with 5% O2 and 10% CO2 at 0 °C up to 28 d followed by a subsequent 3 d shelf-life at 20 °C (28S3). CA significantly reduced flesh browning and improved sensory quality at 28S3. Though total volatiles declined during extended cold storage, CA accumulated higher content of volatile esters and lactones than control at 28S3. A total of 14 volatiles were positively correlated with consumer acceptability, mainly including three C6 compounds, three esters and four lactones derived from the fatty acid lipoxygenase (LOX) pathway. Correspondingly, the expression levels of genes including PpLOX1, hyperoxide lyase PpHPL1 and alcohol acyltransferase PpAAT1 were positively correlated with the change of esters and lactones. CA elevated the sucrose content and the degree of fatty acids unsaturation under cold storage, which gave us clues to clarify the mechanism of resistance to cold stress. The results suggested that CA treatment improved sensory quality by alleviating CI of peach fruits under cold storage.
Collapse
|
40
|
Habibi F, Valero D, Serrano M, Guillén F. Exogenous Application of Glycine Betaine Maintains Bioactive Compounds, Antioxidant Activity, and Physicochemical Attributes of Blood Orange Fruit During Prolonged Cold Storage. Front Nutr 2022; 9:873915. [PMID: 35811946 PMCID: PMC9269930 DOI: 10.3389/fnut.2022.873915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous application of glycine betaine (GB) was evaluated on bioactive compounds, antioxidant activity, and physicochemical attributes of blood orange fruit cv. Moro at 3°C for 90 days. Vacuum infiltration (30 kPa) of GB was applied at 15 and 30 mM for 8 min. Parameters were measured after 1, 30, 60, and 90 days of storage plus 2 days at 20°C to simulate the shelf-life period. GB treatments significantly reduced weight and firmness losses in "Moro" blood orange fruit during cold storage. GB treatment maintained a higher concentration of organic acids (citric, malic, succinic, and oxalic acids) and sugars (sucrose, glucose, and fructose), especially for the higher GB doses (30 mM). During storage, GB treatments enhanced total anthocyanin concentration, total phenolic content, and total antioxidant activity. With respect to enzyme activities, the application of exogenous GB showed increases in catalase (CAT), ascorbate peroxidase, superoxide dismutase, phenylalanine ammonia-lyase, while suppressing the polyphenol oxidase activity. Overall, the most effective treatment was 30 mM GB leading to maintaining bioactive compounds, antioxidant activity, and quality in "Moro" blood orange fruit during long-term storage. The positive results would permit the use of GB as a postharvest tool to maintain the quality attributes of blood orange fruit.
Collapse
Affiliation(s)
- Fariborz Habibi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| | - Daniel Valero
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| | - María Serrano
- Department of Applied Biology, University Miguel Hernández, Orihuela, Spain
| | - Fabián Guillén
- Department of Agro-Food Technology, University Miguel Hernández, Orihuela, Spain
| |
Collapse
|
41
|
Comparative Proteomic Analysis of Wild-type and a SlETR-3 (Nr) Mutant Reveals an Ethylene-Induced Physiological Regulatory Network in Fresh-Cut Tomatoes. Food Res Int 2022; 161:111491. [DOI: 10.1016/j.foodres.2022.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
|
42
|
Nkomo M, Gokul A, Ndimba R, Badiwe M, Keyster M, Klein A. Piperonylic acid alters growth, mineral content accumulation and reactive oxygen species-scavenging capacity in chia seedlings. AOB PLANTS 2022; 14:plac025. [PMID: 35734448 PMCID: PMC9206689 DOI: 10.1093/aobpla/plac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
p-Coumaric acid synthesis in plants involves the conversion of phenylalanine to trans-cinnamic acid via phenylalanine ammonia-lyase (PAL), which is then hydroxylated at the para-position under the action of trans-cinnamic acid 4-hydroxylase. Alternatively, some PAL enzymes accept tyrosine as an alternative substrate and convert tyrosine directly to p-coumaric acid without the intermediary of trans-cinnamic acid. In recent years, the contrasting roles of p-coumaric acid in regulating the growth and development of plants have been well-documented. To understand the contribution of trans-cinnamic acid 4-hydroxylase activity in p-coumaric acid-mediated plant growth, mineral content accumulation and the regulation of reactive oxygen species (ROS), we investigated the effect of piperonylic acid (a trans-cinnamic acid 4-hydroxylase inhibitor) on plant growth, essential macroelements, osmolyte content, ROS-induced oxidative damage, antioxidant enzyme activities and phytohormone levels in chia seedlings. Piperonylic acid restricted chia seedling growth by reducing shoot length, fresh weight, leaf area measurements and p-coumaric acid content. Apart from sodium, piperonylic acid significantly reduced the accumulation of other essential macroelements (such as K, P, Ca and Mg) relative to the untreated control. Enhanced proline, superoxide, hydrogen peroxide and malondialdehyde contents were observed. The inhibition of trans-cinnamic acid 4-hydroxylase activity significantly increased the enzymatic activities of ROS-scavenging enzymes such as superoxide dismutase, ascorbate peroxidase, catalase and guaiacol peroxidase. In addition, piperonylic acid caused a reduction in indole-3-acetic acid and salicylic acid content. In conclusion, the reduction in chia seedling growth in response to piperonylic acid may be attributed to a reduction in p-coumaric acid content coupled with elevated ROS-induced oxidative damage, and restricted mineral and phytohormone (indole-3-acetic acid and salicylic) levels.
Collapse
Affiliation(s)
- Mbukeni Nkomo
- Plant Omics Laboratory, Department of Biotechnology, Life Science Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
- Department of Agriculture, University of Zululand, Main Road, KwaDlagezwe 3886, South Africa
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Roya Ndimba
- Radiation Biophysics Division, Ithemba LABS (Laboratory for Accelerator Based Sciences), Nuclear Medicine Department, National Research Foundation, Cape Town 8000, South Africa
| | - Mihlali Badiwe
- Plant Omics Laboratory, Department of Biotechnology, Life Science Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology, Department of Biotechnology, Life Science Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
- Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Life Science Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| |
Collapse
|
43
|
Nataraj N, Hussain M, Ibrahim M, Hausmann AE, Rao S, Kaur S, Khazir J, Mir BA, Olsson SB. Effect of Altitude on Volatile Organic and Phenolic Compounds of Artemisia brevifolia Wall ex Dc. From the Western Himalayas. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.864728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adaptation to changing environmental conditions is a driver of plant diversification. Elevational gradients offer a unique opportunity for investigating adaptation to a range of climatic conditions. The use of specialized metabolites as volatile and phenolic compounds is a major adaptation in plants, affecting their reproductive success and survival by attracting pollinators and protecting themselves from herbivores and other stressors. The wormseed Artemisia brevifolia can be found across multiple elevations in the Western Himalayas, a region that is considered a biodiversity hotspot and is highly impacted by climate change. This study aims at understanding the volatile and phenolic compounds produced by A. brevifolia in the high elevation cold deserts of the Western Himalayas with the view to understanding the survival strategies employed by plants under harsh conditions. Across four sampling sites with different elevations, polydimethylsiloxane (PDMS) sampling and subsequent GCMS analyses showed that the total number of volatile compounds in the plant headspace increased with elevation and that this trend was largely driven by an increase in compounds with low volatility, which might improve the plant’s resilience to abiotic stress. HPLC analyses showed no effect of elevation on the total number of phenolic compounds detected in both young and mature leaves. However, the concentration of the majority of phenolic compounds decreased with elevation. As the production of phenolic defense compounds is a costly trait, plants at higher elevations might face a trade-off between energy expenditure and protecting themselves from herbivores. This study can therefore help us understand how plants adjust secondary metabolite production to cope with harsh environments and reveal the climate adaptability of such species in highly threatened regions of our planet such as the Himalayas.
Collapse
|
44
|
Luo M, Sun H, Ge W, Sun Y, Zhou X, Zhou Q, Ji S. Effect of Glycine Betaine Treatment on Aroma Production of ‘Nanguo’ Pears After Long-Term Cold Storage–Possible Involvement of Ethylene Synthesis and Signal Transduction Pathways. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Influence of Blanching on the Gene Expression Profile of Phenylpropanoid, Flavonoid and Vitamin Biosynthesis, and Their Accumulation in Oenanthe javanica. Antioxidants (Basel) 2022; 11:antiox11030470. [PMID: 35326120 PMCID: PMC8944621 DOI: 10.3390/antiox11030470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Field blanching is a process used in agriculture to obtain sweet, delicious, and tender stems of water dropwort by obstructing sunlight. The nutritional and transcriptomic profiling of blanched water dropwort has been investigated in our previous studies. However, the effect of blanching on the production of secondary metabolites and different vitamins in water dropwort has not been investigated at the transcriptomic level. This study explored the transcriptomic variations in the phenylpropanoid biosynthesis, flavonoid biosynthesis, and different vitamin biosynthesis pathways under different blanching periods in the water dropwort stems (pre-blanching, mid-blanching, post-blanching, and control). The results show that polyphenol and flavonoid contents decreased; however, the contents of vitamins (A, B1, B2, and C) and antioxidant activity increased significantly after blanching. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of blanched water dropwort showed the downregulation of many important genes involved in phenylpropanoid and flavonoid biosynthesis pathways, and the downregulation of these genes might be the reason for the reduction in polyphenol and flavonoid contents. We also examined and highlighted the genes involved in the higher vitamin content, antioxidant activity, pale color, tenderness, and sweetness of the blanched stem of water dropwort. In conclusion, the present study explored the role of phenylpropanoid and vitamin biosynthesis, and it will provide a basis for future investigation and application in the blanch cultivation of water dropwort.
Collapse
|
46
|
Wang C, Chen C, Zhao X, Wu C, Kou X, Xue Z. Propyl Gallate Treatment Improves the Postharvest Quality of Winter Jujube (Zizyphus jujuba Mill. cv. Dongzao) by Regulating Antioxidant Metabolism and Maintaining the Structure of Peel. Foods 2022; 11:foods11020237. [PMID: 35053969 PMCID: PMC8775024 DOI: 10.3390/foods11020237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
The quality and color of winter jujube fruits are easy to change after harvest. We studied the regulation mechanism of propyl gallate (PG) on post-harvest physiological quality of winter jujube, from the perspective of antioxidant metabolism and peel structure. In our research, winter jujube fruits were treated with 0.001 mol L−1 PG solution for 20 min. Our results showed that PG delayed the development of peel color, and improved the firmness, total soluble solids (TSS), and titratable acid (TA) of winter jujube. Meanwhile, the PG treatment had higher content of total phenols, total flavonoids, ascorbic acid (AsA), and reduced glutathione (GSH), and kept the enzyme activity including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) at a higher level. PG treatment reduced membrane oxidative damage and maintained the integrity of pericarp structure by reducing electrolyte leakage (EL), lipoxygenase activity (LOX), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content in the peel. Accordingly, PG improved the postharvest quality of jujube fruits by regulating antioxidant metabolism and maintaining the structure of peel. The appropriate concentration of PG has good application potential in the storage and preservation of fresh fruits such as winter jujube.
Collapse
Affiliation(s)
- Chao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.W.); (X.Z.); (Z.X.)
| | - Cunkun Chen
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China;
| | - Xiaoyang Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.W.); (X.Z.); (Z.X.)
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.W.); (X.Z.); (Z.X.)
- Correspondence:
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.W.); (X.Z.); (Z.X.)
| |
Collapse
|
47
|
Zahedi SM, Hosseini MS, Fahadi Hoveizeh N, Gholami R, Abdelrahman M, Tran LSP. Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. PHYSIOLOGIA PLANTARUM 2021; 173:1682-1694. [PMID: 34716914 DOI: 10.1111/ppl.13589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 05/22/2023]
Abstract
Melatonin (MEL) is a ubiquitous molecule with pleiotropic roles in plant adaption to stress. In this study, we investigated the effects of foliar spray of 100 and 200 μM MEL on the biochemical and physiological traits linked with the growth performance of olive seedlings exposed to moderate (45 mM NaCl) and severe (90 mM NaCl) salinity. Both salt stress conditions caused a considerable reduction in leaf relative water content and the contents of photosynthetic pigments (carotenoids, chlorophylls a and b, and total chlorophylls), K+ and Ca+2 , while the contents of Na+ and the activities of antioxidant enzymes increased. In addition, salt-stressed olive seedlings showed high accumulations of hydrogen peroxide (H2 O2 ), malondialdehyde (MDA), and electrolyte leakage (EL), indicating that olive seedlings suffered from salinity-induced oxidative damage. In contrast, MEL application revived the growth of olive seedlings, including shoot height, root length and biomass under salt stress conditions. MEL protected the photosynthetic pigments and decreased the Na+ /K+ ratio under both moderate and severe salt stresses. Furthermore, MEL induced the accumulations of proline, total soluble sugars, glycine betaine, abscisic acid, and indole acetic acid in salt-stressed olive seedlings, which showed a positive correlation with improved leaf water status and biomass. MEL application also increased the activities of catalase, superoxide dismutase, ascorbate peroxidase, and peroxidase in salt-stressed seedlings, resulting in lower levels of H2 O2 , MDA, and EL in these plants. Taken together, MEL mitigates salinity through its roles in various biochemical and physiological processes, thereby representing a promising agent for application in crop protection.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
- Faculty of Science, Galala University, Suze, Galala, Egypt
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
48
|
Guo S, Ma Y, Liang H, Zhao X, Wang D. The effect of diphenyliodonium iodide treatment on bisdemethoxycurcumin accumulation in fresh‐cut yam. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shuang Guo
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
| | - Yue Ma
- Institute of Agri‐food Processing and Nutrition Beijing Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and rural affairs Beijing China
| | - Hao Liang
- Longda Food Group Co. LTD Shandong China
| | - Xiaoyan Zhao
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
- Institute of Agri‐food Processing and Nutrition Beijing Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and rural affairs Beijing China
| | - Dan Wang
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
- Institute of Agri‐food Processing and Nutrition Beijing Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and rural affairs Beijing China
| |
Collapse
|
49
|
Huang S, Zuo T, Zheng X, Zhuo C, Hou Q, Yao L, Wang X, Wang J, Ni W. Foliar application of glycinebetaine and Zn fertilizer improves both the apparent and functional qualities of albino tea [ Camellia sinensis (L.) O. Kuntze]. Food Funct 2021; 12:9476-9485. [PMID: 34476427 DOI: 10.1039/d1fo01398j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With Zn deficiency increasing in the global population, functional plant food (including tea) can help to fill the nutrition gap that the main crops cannot meet. Glycinebetaine (GB), an important bioactive substance with a wide range of natural sources, has received limited attention towards its effects on Zn biofortification and the quality of tea. The Zn enrichment and metabolite responses of albino tea [cv. White leaf No. 1 (WL-1)] to the foliar application of GB, Zn, and their combination (Zn + GB) were investigated in a field experiment. The result indicated that the 100-buds weight, total N, Zn, Thea, and total amino acid content in the young leaves of WL-1 with Zn2 + GB2 treatment were significantly increased, whereas the Chla contents were decreased (p < 0.05). The total catechins and CAF contents of Zn2 + GB2 treatment were lower than those of other treatments, with significance (p < 0.05). Multivariate analysis and general quantitative analysis returned complementary results, revealing that Zn2 + GB2 treatment was better for the apparent and functional quality of WL-1. The more theanine and Zn, limited chlorophyll, catechin, and caffeine contributed to the quality improvement, as well as to maintaining the leaf albinistic characteristics, inhibiting astringency and bitterness, exerting flavor and umami, and improving the ultimate beneficial functions. The combined application of Zn and GB is a promising practice for Zn biofortification and for the quality improvement of tea, with spraying 750 L ha-1 of 2.0 g L-1 Zn fertilizer and 3.2 g L-1 GB mixture recommended.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang, 310058, China.
| | - Ting Zuo
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang, 310058, China.
| | - Xin Zheng
- Zhejiang Environment Technology Co., Ltd, Hangzhou, Zhejiang, 311100, China
| | - Chao Zhuo
- Zhejiang Anji Summit Angeltea Co., Ltd, Anji, Zhejiang, 313300, China
| | - Qiong Hou
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang, 310058, China.
| | - Longren Yao
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang, 310058, China.
| | - Xiaojun Wang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang, 310058, China.
| | - Jian Wang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang, 310058, China.
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
50
|
Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int J Mol Sci 2021; 22:8995. [PMID: 34445697 PMCID: PMC8396434 DOI: 10.3390/ijms22168995] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phytochemical-based applications in both agricultural and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.S.); (K.G.); (K.G.); (J.K.); (F.Y.); (P.Y.)
| |
Collapse
|