1
|
Yang L, Yuan QY, Lou CW, Lin JH, Li TT. Recent Advances of Cellulose-Based Hydrogels Combined with Natural Colorants in Smart Food Packaging. Gels 2024; 10:755. [PMID: 39727513 DOI: 10.3390/gels10120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging. In traditional smart food packaging, the indicator and the packaging bag substrate have different degrees of toxicity. Smart food packaging that combines natural colorants and cellulose-based hydrogels is becoming more and more popular with consumers for being natural, non-toxic, environmentally friendly, and renewable. This paper reviews the synthesis methods and characteristics of cellulose-based hydrogels, as well as the common types and characteristics of natural pigments, and discusses the application of natural colorants and cellulose-based hydrogels in food packaging, demonstrating their great potential in smart food packaging.
Collapse
Affiliation(s)
- Lan Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qian-Yu Yuan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| |
Collapse
|
2
|
Qin Z, Liu M, Ren X, Zeng W, Luo Z, Zhou J. De Novo Biosynthesis of Lutein in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5348-5357. [PMID: 38412053 DOI: 10.1021/acs.jafc.3c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Lutein is a high-value tetraterpenoid carotenoid that is widely used in feed, cosmetics, food, and drugs. Microbial synthesis of lutein is an important method for green and sustainable production, serving as an alternative to plant extraction methods. However, an inadequate precursor supply and low catalytic efficiency of key pathway enzymes are the main reasons for the low efficacy of microbial synthesis of lutein. In this study, some strategies, such as enhancing the MVA pathway and localizing α-carotene synthase OluLCY within the subcellular organelles in Yarrowia lipolytica, were adopted to enhance the synthesis of precursor α-carotene, which resulted in a 10.50-fold increase in α-carotene titer, reaching 38.50 mg/L. Subsequently, by improving hydroxylase activity with truncated N-terminal transport peptide and locating hydroxylases to subcellular organelles, the final strain L9 producing 75.25 mg/L lutein was obtained. Eventually, a lutein titer of 675.40 mg/L (6.13 mg/g DCW) was achieved in a 5 L bioreactor by adding the antioxidant 2,6-ditert-butyl-4-methylphenol. This study realizes de novo synthesis of lutein in Y. lipolytica for the first time and achieves the highest lutein titer reported so far.
Collapse
Affiliation(s)
- Zhilei Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuefeng Ren
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhengshan Luo
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Machado KLDG, Faria DV, Duarte MBS, Silva LAS, de Oliveira TDR, Falcão TCA, Batista DS, Costa MGC, Santa-Catarina C, Silveira V, Romanel E, Otoni WC, Nogueira FTS. Plant age-dependent dynamics of annatto pigment (bixin) biosynthesis in Bixa orellana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1390-1406. [PMID: 37975812 DOI: 10.1093/jxb/erad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.
Collapse
Affiliation(s)
- Kleiton Lima de Godoy Machado
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Daniele Vidal Faria
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Marcos Bruno Silva Duarte
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lázara Aline Simões Silva
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Tadeu Dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Thais Castilho Arruda Falcão
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, 58220-000, Bananeiras, PB, Brazil
| | | | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Elisson Romanel
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | | |
Collapse
|
4
|
Rivero-Manzanilla G, Narváez-Zapata JA, Aguilar-Espinosa M, Carballo-Uicab VM, Rivera-Madrid R. Gene structure and potential regulation of the lycopene cyclase genes in Bixa orellana L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1423-1435. [PMID: 38076759 PMCID: PMC10709282 DOI: 10.1007/s12298-023-01384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 10/04/2024]
Abstract
Lycopene cyclases (LCYs) are a key branching point in regulating the carotenoid biosynthesis pathway in plants. Bixa orellana L. is characterized by the presence in its seed of bixin, an apocarotenoid of significant importance in the food, pharmaceutical, and cosmetic industries. Gene analysis provides the opportunity to investigate the LCY gene structure in plant species and its relationship with the synthesis of carotenoids. Coding sequences of the LCY genes were retrieved from a B. orellana genome DNA. Boβ-LCY1 and Boβ-LCY2 genes exhibit 100% of identity to their respective cDNA accessions, and exhibit a single coding region of 1512 bp (504 aa) and 1495 bp (498 aa), respectively. In contrast, Boε-LCY gene shows a coding region of 1581 bp (527 aa) with 10 introns of diverse lengths. Putative Transcription Factors (TFs) binding sites were upstream (3000 bp) identified for each LCY gene. TFs cover two groups, one with the categories of photosynthesis, reproduction, and oxidative processes that are frequent. The second one with the categories of defense, cell cycle, signaling, and carbohydrate metabolism, which are poorly represented. Besides, repetitive DNA elements showed motifs and proteins related to LTR from the Ty3/Gypsy family, were associated with the TFs regions. In general, TFs vary in the different BoLCY genes, being more abundant in the Boε-LCY gene. LCY expression analyzed from a transcriptome database, and validated by RT-qPCR, shows an upregulation of the three LCYs, mainly oriented to the synthesis of essential carotenoids in photosynthetic tissues (leaves), as well as an upregulation of the Boβ-LCY2 gene in the non-photosynthetic tissues (firsts seed development stages) related to the bixin accumulation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01384-8.
Collapse
Affiliation(s)
- G. Rivero-Manzanilla
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C. Calle 43 # 130, Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico
| | - J. A. Narváez-Zapata
- Instituto Politécnico Nacional - Centro de Biotecnología Genómica, Blvd Del Maestro esq. Elias Piña, 88710 Reynosa, Tamaulipas Mexico
| | - M. Aguilar-Espinosa
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C. Calle 43 # 130, Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico
| | - V. M. Carballo-Uicab
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C. Calle 43 # 130, Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico
| | - R. Rivera-Madrid
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C. Calle 43 # 130, Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico
| |
Collapse
|
5
|
Zhu L, Shan W, Cai D, Lin Z, Wu C, Wei W, Yang Y, Lu W, Chen J, Su X, Kuang J. High temperature elevates carotenoid accumulation of banana fruit via upregulation of MaEIL9 module. Food Chem 2023; 412:135602. [PMID: 36739724 DOI: 10.1016/j.foodchem.2023.135602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Banana is a good source of carotenoids, which are bioactive metabolites with health beneficial properties for human. However, the molecular mechanism of carotenoid accumulation in banana fruit is largely unclear. In this study, we found that high temperature elevated carotenoid production in banana pulp, which is presumably due to upregulation of a subset of carotenogenic genes as well as a carotenoid biosynthesis regulator MaSPL16. Moreover, an ethylene signaling component MaEIL9 was identified, whose transcript and protein contents were also induced by high temperature. In addition, MaEIL9 positively regulates transcription of MaDXR1, MaPDS1, MaZDS1 and MaSPL16 through directly targeting their promoters. Overexpression of MaEIL9 in tomato fruit substantially increased the expression of carotenoid formation genes and elevated carotenoid content. Importantly, transiently silencing MaEIL9 in banana fruit weakened carotenoid production caused by high temperature. Taken together, these results indicate that high temperature induces carotenoid production in banana fruit, at least in part, through MaEIL9-mediated activation of MaDXR1, MaPDS1, MaZDS1 and MaSPL16 expression.
Collapse
Affiliation(s)
- Lisha Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zengxiang Lin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chaojie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinguo Su
- Guangdong AIB Polytechnic College, Guangzhou 510507, China.
| | - Jianfei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Rodríguez-Mena A, Ochoa-Martínez LA, González-Herrera SM, Rutiaga-Quiñones OM, González-Laredo RF, Olmedilla-Alonso B. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chem 2023; 398:133908. [DOI: 10.1016/j.foodchem.2022.133908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
7
|
Concurrent Production of α- and β-Carotenes with Different Stoichiometries Displaying Diverse Antioxidative Activities via Lycopene Cyclases-Based Rational System. Antioxidants (Basel) 2022; 11:antiox11112267. [DOI: 10.3390/antiox11112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
α- and β-carotenes belong to the most essential carotenoids in the human body and display remarkable pharmacological value for health due to their beneficial antioxidant activities. Distinct high α-/β-carotene stoichiometries have gained increasing attention for their effective preventions of Alzheimer’s disease, cardiovascular disease, and cancer. However, it is extremely difficult to obtain α-carotene in nature, impeding the accumulations of high α-/β-carotene stoichiometries and excavation of their antioxidant activities. Herein, we developed a dynamically operable strategy based on lycopene cyclases (LCYB and LCYE) for concurrently enriching α- and β-carotenes along with high stoichiometries in E. coli. Membrane-targeted and promoter-centered approaches were firstly implemented to spatially enhance catalytic efficiency and temporally boost expression of TeLCYE to address its low competitivity at the starting stage. Dynamically temperature-dependent regulation of TeLCYE and TeLCYB was then performed to finally achieve α-/β-carotene stoichiometries of 4.71 at 37 °C, 1.65 at 30 °C, and 1.06 at 25 °C, respectively. In the meantime, these α-/β-carotene ratios were confirmed to result in diverse antioxidative activities. According to our knowledge, this is the first time that both the widest range and antioxidant activities of high α/β-carotene stoichiometries were reported in any organism. Our work provides attractive potentials for obtaining natural products with competitivity and a new insight on the protective potentials of α-/β-carotenes with high ratios for health supply.
Collapse
|
8
|
Fu X, Chen J, Li J, Dai G, Tang J, Yang Z. Mechanism underlying the carotenoid accumulation in shaded tea leaves. Food Chem X 2022; 14:100323. [PMID: 35571330 PMCID: PMC9097638 DOI: 10.1016/j.fochx.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Long-term shading treatment (14 days) increased carotenoid content in tea leaves. Long-term darkness (14 days) decreased carotenoid content in tea leaves. Long-term shading treatment increased carotenoid biosynthetic gene expression levels. Long-term darkness decreased carotenoid biosynthetic gene expression levels. The functions of CsDXS1, CsDXS3, CsPSY, CsLCYB and CsLCYE genes have been verified.
Carotenoids contribute to tea leaf coloration and are the precursors of important aromatic compounds. Shading can promote the accumulation of carotenoids in tea leaves, but the underlying mechanism remains unknown. In the study, we analyzed the content and composition of carotenoids, and transcript levels and functions of related genes in carotenoid biosynthesis using HPLC, qRT-PCR, and heterologous expression system. It was found that long-term shading (14 days, 90% shading) significantly increased the total carotenoid content in tea leaves, and increased the expression of non-mevalonate pathway (MEP) genes (CsDXS1 and CsDXS3) and key genes in carotenoid synthesis pathway (CsPSY, CsLCYB, and CsLCYE). Long-term exposure to darkness (14 days, 0 lx) decreased the transcription of most carotenoid biosynthetic genes and adversely affected carotenoid accumulation. Furthermore, CsDXS1, CsDXS3, CsPSY, CsLCYB, and CsLCYE were functionally identified and contributed to the enhanced accumulation of carotenoids in tea leaves in response to long-term shading.
Collapse
|
9
|
Song W, Wei F, Gao S, Dong C, Hao J, Jin L, Li F, Wei P, Guo J, Wang R. Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum. BMC PLANT BIOLOGY 2022; 22:252. [PMID: 35597910 PMCID: PMC9123772 DOI: 10.1186/s12870-022-03634-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lycopene epsilon-cyclase (ε-LCY) is a key enzyme in the carotenoid biosynthetic pathway (CBP) of higher plants. In previous work, we cloned two Ntε-LCY genes from allotetraploid tobacco (Nicotiana tabacum), Ntε-LCY2 and Ntε-LCY1, and demonstrated the overall effect of Ntε-LCY genes on carotenoid biosynthesis and stress resistance. However, their genetic and functional characteristics require further research in polyploid plants. RESULTS Here, we used CRISPR/Cas9 to obtain Ntε-LCY2 and Ntε-LCY1 mutants in allotetraploid N.tabacum K326. Ntε-LCY2 and Ntε-LCY1 had similar promoter cis-acting elements, including light-responsive elements. The Ntε-LCY genes were expressed in roots, stems, leaves, flowers, and young fruit, and their highest expression levels were found in leaves. Ntε-LCY2 and Ntε-LCY1 genes responded differently to normal light and high light stress. Both the Ntε-LCY2 and the Ntε-LCY1 mutants had a more rapid leaf growth rate, especially ntε-lcy2-1. The expression levels of CBP genes were increased in the ntε-lcy mutants, and their total carotenoid content was higher. Under both normal light and high light stress, the ntε-lcy mutants had higher photosynthetic capacities and heat dissipation levels than the wild type, and this was especially true of ntε-lcy2-1. The reactive oxygen species content was lower in leaves of the ntε-lcy mutants. CONCLUSION In summary, the expression patterns and biological functions of the Ntε-LCY genes Ntε-LCY1 and Ntε-LCY2 differed in several respects. The mutation of Ntε-LCY2 was associated with a greater increase in the content of chlorophyll and various carotenoid components, and it enhanced the stress resistance of tobacco plants under high light.
Collapse
Affiliation(s)
- Weina Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shuwen Gao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, Henan, China
| | - Chen Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Jianfeng Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lifeng Jin
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Feng Li
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Pan Wei
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Jinggong Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, Henan, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
10
|
Metabolomic Analysis Reveals Nutritional Diversity among Three Staple Crops and Three Fruits. Foods 2022; 11:foods11040550. [PMID: 35206028 PMCID: PMC8870860 DOI: 10.3390/foods11040550] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022] Open
Abstract
More than 2 billion people worldwide are under threat of nutritional deficiency. Thus, an in-depth comprehension of the nutritional composition of staple crops and popular fruits is essential for health. Herein, we performed LC-MS-based non-targeted and targeted metabolome analyses with crops (including wheat, rice, and corn) and fruits (including grape, banana, and mango). We detected a total of 2631 compounds by using non-targeted strategy and identified more than 260 nutrients. Our work discovered species-dependent accumulation of common present nutrients in crops and fruits. Although rice and wheat lack vitamins and amino acids, sweet corn was rich in most amino acids and vitamins. Among the three fruits, mango had more vitamins and amino acids than grape and banana. Grape and banana provided sufficient 5-methyltetrahydrofolate and vitamin B6, respectively. Moreover, rice and grape had a high content of flavonoids. In addition, the three crops contained more lipids than fruits. Furthermore, we also identified species-specific metabolites. The crops yielded 11 specific metabolites, including flavonoids, lipids, and others. Meanwhile, most fruit-specific nutrients were flavonoids. Our work discovered the complementary pattern of essential nutrients in crops and fruits, which provides metabolomic evidence for a healthy diet.
Collapse
|
11
|
Chen A, Liu L, Liu X, Fu Y, Li J, Zhao J, Hou X. Exploring the differential stages of the pigment metabolism by pre-harvest bagging and post-harvest ethylene de-greening of Eureka lemon peel. PeerJ 2021; 9:e11504. [PMID: 34164234 PMCID: PMC8194417 DOI: 10.7717/peerj.11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Pre-harvest bagging or post-harvest ethylene treatments on lemons are commonly applied to change the surface color from green to favorable yellow. In this study, the differential mechanisms of the pigment metabolism by the two treatments were investigated by pigments contents and related genetic expression. The results showed that both treatments reduced the number of chloroplasts and the content of chlorophyll. The differential expression of PSY1 and PSY2 were observed, causing the different accumulation of the main carotenoid phytoene content. The differential expression of NYC resulted in altered contents of chlorophyll a and chlorophyll b, and further led to the difference in a* value. More interestingly, the degradation of chlorophyll uncovered the color of carotenoids, leading to the color changed from green to yellow.
Collapse
Affiliation(s)
- Anjun Chen
- Sichuan Agricultural University, Yaan, China
| | - Lu Liu
- Sichuan Agricultural University, Yaan, China
| | | | - Yunyun Fu
- Sichuan Agricultural University, Yaan, China
| | - Jie Li
- Sichuan Agricultural University, Yaan, China
| | | | - Xiaoyan Hou
- Sichuan Agricultural University, Yaan, China
| |
Collapse
|
12
|
Bian Q, Zhou P, Yao Z, Li M, Yu H, Ye L. Heterologous biosynthesis of lutein in S. cerevisiae enabled by temporospatial pathway control. Metab Eng 2021; 67:19-28. [PMID: 34077803 DOI: 10.1016/j.ymben.2021.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023]
Abstract
The market-expanding lutein is currently mainly supplied by plant extraction, with microbial fermentation using engineered cell factory emerging as a promising substitution. During construction of lutein-producing yeast, α-carotene formation through asymmetric ε- and β-cyclization of lycopene was found as the main limiting step, attributed to intra-pathway competition of the cyclases for lycopene, forming β-carotene instead. To solve this problem, temperature-responsive expression of β-cyclase was coupled to constitutive expression of ε-cyclase for flux redirection to α-carotene by allowing ε-cyclization to occur first. Meanwhile, the ε-cyclase was engineered and re-localized to the plasma membrane for further flux reinforcement towards α-carotene. Finally, pathway extension with proper combination of carotenoid hydroxylases enabled lutein (438 μg/g dry cells) biosynthesis in S. cerevisiae. The success of heterologous lutein biosynthesis in yeast suggested temporospatial pathway control as a potential strategy in solving intra-pathway competitions, and may also be applicable for promoting the biosynthesis of other natural products.
Collapse
Affiliation(s)
- Qi Bian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zhen Yao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
13
|
Yin L, Liu JX, Tao JP, Xing GM, Tan GF, Li S, Duan AQ, Ding X, Xu ZS, Xiong AS. The gene encoding lycopene epsilon cyclase of celery enhanced lutein and β-carotene contents and confers increased salt tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:339-347. [PMID: 33186851 DOI: 10.1016/j.plaphy.2020.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 05/13/2023]
Abstract
Celery (Apium graveolens L.) is a leafy vegetable of Apiaceae, which is greatly popular because of its rich nutrients. Lutein and β-carotene are two important carotenoids. Lycopene epsilon cyclase (LCY-ε) is a key branch point enzyme in the carotenoid biosynthetic pathway. In this study, we cloned the AgLCY-ε gene from celery and overexpressed it in Arabidopsis. The results showed that both lutein and β-carotene accumulation increased significantly in transgenic Arabidopsis hosting AgLCY-ε gene, compared with wild type (WT) plants. The transcription levels of AtPSY and AtCRTISO genes involved in carotenoids biosynthesis also increased in transgenic lines. One-month-old transgenic Arabidopsis seedlings were treated with 200 mM NaCl. The malondialdehyde (MDA) content in transgenic Arabidopsis plants after salt treatment was significantly lower, and the activities of the two antioxidant enzymes, superoxide dismutase (SOD) and peroxidase (POD), were significantly increased than that of WT plants. Overexpression of AgLCY-ε gene showed increased lutein and β-carotene accumulations, and enhanced salt tolerance in transgenic plants.
Collapse
Affiliation(s)
- Lian Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, 55006, China
| | - Sen Li
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xu Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
14
|
Zhao Z, Liu Z, Mao X. Biotechnological Advances in Lycopene β-Cyclases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11895-11907. [PMID: 33073992 DOI: 10.1021/acs.jafc.0c04814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lycopene β-cyclase is one of the key enzymes in the biosynthesis of carotenoids, which catalyzes the β-cyclization of both ends of lycopene to produce β-carotene. Lycopene β-cyclases are found in a wide range of sources, mainly plants and microorganisms. Lycopene β-cyclases have been extensively studied for their important catalytic activity, including for use in genetic engineering to modify plants and microorganisms, as a blocking target for lycopene industrial production strains, and for their genetic and physiological effects related to microorganic and plant biological traits. This review of lycopene β-cyclases summarizes the major studies on their basic classification, functional activity, metabolic engineering, and plant science.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
15
|
Zhu LS, Liang SM, Chen LL, Wu CJ, Wei W, Shan W, Chen JY, Lu WJ, Su XG, Kuang JF. Banana MaSPL16 Modulates Carotenoid Biosynthesis during Fruit Ripening through Activating the Transcription of Lycopene β-Cyclase Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1286-1296. [PMID: 31891496 DOI: 10.1021/acs.jafc.9b07134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carotenoids are a class of bioactive compounds that exhibit health-promoting properties for humans, but their regulation in bananas during fruit ripening remains largely unclear. Here, we found that the total carotenoid content continued to be elevated along the course of banana ripening and peaked at the ripening stage followed by a decrease, which is presumably caused by the transcript abundances of carotenoid biosynthetic genes MaLCYB1.1 and MaLCYB1.2. Moreover, a ripening-inducible transcription factor MaSPL16 was characterized, which was a nuclear protein with transactivation activity. Transient transformation of MaSPL16 in banana fruits led to enhanced transcript levels of MaLCYB1.1 and MaLCYB1.2 and hence the total carotenoid accumulation. Importantly, MaSPL16 stimulated the transcription of MaLCYB1.1 and MaLCYB1.2 through directly binding to their promoters. Collectively, our findings indicate that MaSPL16 behaves as an activator to modulate banana carotenoid biosynthesis, which may provide a new target for molecular improvement of the nutritional and bioactive qualities of agricultural crops that accumulate carotenoids.
Collapse
Affiliation(s)
- Li-Sha Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Shu-Min Liang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Lu-Lu Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Chao-Jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Jian-Ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Wang-Jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| | - Xin-Guo Su
- Guangdong Food and Drug Vocational College , Longdongbei Road 321 , Tianhe District, Guangzhou 510520 , P. R. China
| | - Jian-Fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture , South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|
16
|
Kaur N, Alok A, Kumar P, Kaur N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey AK, Tiwari S. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab Eng 2020; 59:76-86. [PMID: 32006663 DOI: 10.1016/j.ymben.2020.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/25/2020] [Indexed: 12/22/2022]
Abstract
Banana is one of the most economically important fruit crops worldwide. Genetic improvement in banana is a challenging task due to its parthenocarpic nature and triploid genome. Genetic modification of crops via the CRISPR/Cas9 module has emerged as a promising tool to develop important traits. In the present work, a CRISPR/Cas9-based approach was used to develop the β-carotene-enriched Cavendish banana cultivar (cv.) Grand Naine (AAA genome). The fifth exon of the lycopene epsilon-cyclase (LCYε) gene was targeted. The targeting specificity of the designed guide-RNA was also tested by its ability to create indels in the LCYε gene at the A genome of cv. Rasthali (AAB genome). Sequence analysis revealed multiple types of indels in the genomic region of Grand Naine LCYε (GN-LCYε). Metabolic profiling of the fruit pulp of selected edited lines showed enhanced accumulation of β-carotene content up to 6-fold (~24 μg/g) compared with the unedited plants. These lines also showed either an absence or a drastic reduction in the levels of lutein and α-carotene, suggesting metabolic reprogramming, without any significant effect on the agro-morphological parameters. In addition, differential expression of carotenoid pathway genes was observed in the edited lines in comparison to unedited plants. Overall, this is the first report in banana to improve nutritional trait by using a precise genome editing approach.
Collapse
Affiliation(s)
- Navneet Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anshu Alok
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Pankaj Kumar
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Navjot Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Praveen Awasthi
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Siddhant Chaturvedi
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Pankaj Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Ashutosh Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Ajay K Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India.
| |
Collapse
|
17
|
Yu W, Liu X, Zhang Y, Lin Y, Qiu J, Kong F. Simultaneous Determination of Pigments in Tea by Ultra-Performance Convergence Chromatography (UPC2). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1715420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Weisong Yu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Xue Liu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Yizhi Zhang
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Yingnan Lin
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Jun Qiu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Fanyu Kong
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, PR China
| |
Collapse
|
18
|
Xiang N, Li C, Li G, Yu Y, Hu J, Guo X. Comparative Evaluation on Vitamin E and Carotenoid Accumulation in Sweet Corn ( Zea mays L.) Seedlings under Temperature Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9772-9781. [PMID: 31398019 DOI: 10.1021/acs.jafc.9b04452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aims to investigate the response profiles of vitamin E and carotenoids on transcription and metabolic levels of sweet corn seedlings under temperature stress. The treated temperatures were set as 10 °C (low temperature, LT), 25 °C (control, CK), and 40 °C (high temperature, HT) for sweet corn seedlings. The gene expression profiles of vitamin E and carotenoids biosynthesis pathways were analyzed by real time quantitative polymerase chain reaction (RT-qPCR), and the composition profiles were analyzed by high performance liquid chromatography (HPLC). Results showed that vitamin E gradually accumulated in response to LT stress but was limited by HT stress. The increase of carotenoids was suppressed by LT stress whereas HT stress promoted it. The existing results elaborated the interactive and competitive relationships of vitamin E and carotenoids in sweet corn seedlings to respond to extreme temperature stress at transcriptional and metabolic levels. The present study would improve sweet corn temperature resilience with integrative knowledge in the future.
Collapse
Affiliation(s)
- Nan Xiang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , School of Food Science and Engineering, South China University of Technology , Guangzhou 510640 , China
| | - Chunyan Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Gaoke Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Yongtao Yu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province , Crop Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , 510640 , China
| | - Xinbo Guo
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , School of Food Science and Engineering, South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|