1
|
Zheng Y, Sun K, Sun X, Li Y, Xiao P, He C. Quality differences in sea buckthorn (Hippophaë rhamnoides L.) berries of major varieties in China based on key components and antioxidant activity. Food Chem 2025; 465:142139. [PMID: 39571424 DOI: 10.1016/j.foodchem.2024.142139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024]
Abstract
Sea buckthorn is rich in active ingredients, widespread, and has both medicinal and nutritional value. The present comparative study of wild and cultivated species remains insufficient, which is not conducive to their quality control. Therefore, this study aimed to compare the differences of 21 sea buckthorn samples in total phenolic content (TPC), total flavonoid content (TFC), phenolic components content, secondary metabolites, and antioxidant capacity and the fatty acid, to investigate the quality differences of different varieties. The TPC, TFC and antioxidant activity of wild varieties were higher than those of the cultivated. Multivariate statistical analysis revealed large differences in phenolic content, with higher levels of gallic acid and isorhamnetin-3-O-neohesperidin in the wild, whereas the cultivated were characterized by narcissin and kaempferol. These findings provided the scientific basis for the improvement of quality evaluation standards for different varieties and offered new insights for the further development of sea buckthorn resources.
Collapse
Affiliation(s)
- Yaping Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Kangmeng Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Xinyuan Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
2
|
Michalska-Ciechanowska A, Brzezowska J, Nicolet N, Haładyn K, Brück WM, Hendrysiak A, Andlauer W. Valorization of Rosehip ( Rosa canina L.) Pomace Using Unconventional Carbohydrate Carriers for Beverage Obtainment. Molecules 2025; 30:141. [PMID: 39795198 PMCID: PMC11722304 DOI: 10.3390/molecules30010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Rosehip is of notable scientific interest due to its rich content of bioactives and its wide-ranging applications in nutrition, cosmetics and pharmaceuticals. The valorization of rosehip by-products, such as pomace, is highly significant for promoting sustainability. This study investigates the development of rosehip-based powders and beverage prototypes derived from both juice and pomace to evaluate the potential use of pomace in instant beverage design and compare it with juice-based formulations. Three matrices were evaluated: non-pasteurized and pasteurized juice, as well as non-pasteurized pomace preparations. Powders were produced by freeze- and spray drying using maltodextrin, inulin and unconventional carriers, i.e., palatinose and trehalose. The results demonstrated that carrier addition significantly influenced the physical and techno-functional properties of the powders, such as moisture content (below 10%), water activity (below 0.35), solubility (above 85%), and color indexes (yellowness and browning). The water absorption capacity varied with drying techniques, particularly for inulin-enriched samples, while the matrix type affected the ascorbic acid content. Non-pasteurized pomace powders exhibited a higher antioxidant capacity (67.7 mmol Trolox/100 g dry matter) than their juice counterparts (52.2 mmol Trolox/100 g dry matter), highlighting the potential of the pomace matrix for beverage production. Because of their favorable properties, spray-dried samples were also selected for reconstitution into prototype beverages, among which those obtained from pomace showed a higher antioxidant potential. An analysis of particle sizes, which ranged between 34 nm and 7363 nm, revealed potential interactions between the carrier and matrix, reflected in the distinct behavior of carrier-only samples. Both the carrier type and the matrix significantly contributed to the final properties of the beverages, providing valuable insights for the design of functional food products.
Collapse
Affiliation(s)
- Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Str., 51-630 Wrocław, Poland; (J.B.); (K.H.); (A.H.)
| | - Jessica Brzezowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Str., 51-630 Wrocław, Poland; (J.B.); (K.H.); (A.H.)
| | - Nancy Nicolet
- Institute of Life Sciences, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland; (N.N.); (W.M.B.)
| | - Kamil Haładyn
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Str., 51-630 Wrocław, Poland; (J.B.); (K.H.); (A.H.)
| | - Wolfram Manuel Brück
- Institute of Life Sciences, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland; (N.N.); (W.M.B.)
| | - Aleksandra Hendrysiak
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Str., 51-630 Wrocław, Poland; (J.B.); (K.H.); (A.H.)
| | - Wilfried Andlauer
- Institute of Life Sciences, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland; (N.N.); (W.M.B.)
| |
Collapse
|
3
|
Yuan H, Huang H, Du Y, Zhao J, Yu S, Lin Y, Chen Y, Shan C, Zhao Y, Belwal T, Fu X. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem 2024; 469:142591. [PMID: 39721439 DOI: 10.1016/j.foodchem.2024.142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The potential health benefits of sea buckthorn polyphenols (SBP) have been extensively studied, attracting increasing attention from researchers. This paper reviews the composition of SBP, the effects of processing on SBP, its interactions with nutrients, and its protective role in the gastrointestinal tract. Polyphenols influence nutrient absorption and metabolism by regulating the intestinal flora, thereby enhancing bioavailability, protecting the gastrointestinal tract, and altering nutrient structures. Additionally, polyphenols exhibit anti-inflammatory and immunomodulatory effects, promoting intestinal health. The interaction between polyphenols and intestinal flora plays a significant role in gastrointestinal health, supporting the composition and diversity of the gut microbiota. However, further research is needed to emphasize the importance of human trials and to explore the intricate relationship between SBP and gut microbiota, as these insights are crucial for understanding the mechanisms underlying SBP's benefits for the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Hexi Yuan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yinglin Du
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jiaqi Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shiyang Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yanhong Lin
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan Chen
- GOBI Memory Brand Management Co. Ltd, Ninth Division 170 Regiment Sea buckthorn Picking-garden, Tacheng 834700, China
| | - Chunhui Shan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yue Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | | | - Xizhe Fu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
4
|
Huang H, Zhang L, Guan L, Zhang L. Metabolome and transcriptome reveal the biosynthesis of flavonoids and amino acids in Isatis indigotica fruit during development. PHYSIOLOGIA PLANTARUM 2024; 176:e14617. [PMID: 39528904 DOI: 10.1111/ppl.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
Isatis indigotica Fort. is a famous medicinal plant that is also used as a natural dye and functional vegetable. The characteristics of the I. indigotica fruit during development are largely unknown, information that is essential for the exploitation and seedlings cultivation of I. indigotica. In this study, the biochemical, metabolite characteristics and gene expression profiling of I. indigotica at four developmental stages were investigated. A total of 428 metabolites were detected and categorized into 17 categories. High contents of anthocyanins, especially cyanidin 3-glucoside, might contribute to the purple colouration of I. indigotica fruits. Moreover, dozens of flavonoid components, including taxifolin, quercetin, astragalin and isovitexin 2″-O-beta-D-glucoside, and several other active components were also up-regulated in mature fruits. The abundance of antioxidants might endow a significantly stronger antioxidant activity of mature I. indigotica fruits compared to many other reported species. Enrichment analyses revealed that flavonoid and anthocyanin biosynthesis genes were mostly enriched in up-regulated gene sets during fruit development. The up-regulated structural genes, including IiCHS, IiCHI, IiF3H, IiDFR, IiANS, IiFLS, IiUGT, and transcription factors such as IiMYBs, IibHLHs and IiNACs were identified as candidate regulators of flavonoid and anthocyanin biosynthetic pathway. Furthermore, biosynthesis of amino acids was enriched in all pairwise comparisons of metabolites in fruits at four developmental stages. The differential accumulation of amino acids might result from the differentially expressed genes involved in amino acid biosynthesis. Taken together, these findings provide a comprehensive understanding of metabolite profiling and gene expression patterns in I. indigotica fruit during maturity, which is useful for pharmaceutical extractions and seedling cultivation of I. indigotica.
Collapse
Affiliation(s)
- Hui Huang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Li Zhang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Liye Guan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Libin Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
5
|
Liu H, Feng X, Zhang R, Yuan S, Tian Y, Luo P, Chen J, Zhou X. Safety of medicinal and edible herbs from fruit sources for human consumption: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118429. [PMID: 38851470 DOI: 10.1016/j.jep.2024.118429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal and edible herbs from fruit sources have been increasingly used in traditional Chinese medicine dietotherapy. There are no restrictions on who could consume the medicinal and edible fruits or on the dosage of consumption. However, their safety for human consumption has yet to be established. AIM OF THE STUDY This systematic review aimed to assess the safety of human consumption of 30 medicinal and edible fruits. MATERIALS AND METHODS Seven English and Chinese databases were searched up to May 31, 2023, to collect AE reports following human consumption of medicinal and edible fruits. Eligible reports should include details on the occurrence, symptoms, treatments, and outcomes of AEs. AEs that were life-threatening or caused death, permanent or severe disability/functional loss, or congenital abnormality/birth defects were classified as serious AEs (SAEs). The causality between the consumption of fruits and AEs was graded as one of four ranks: "certain", "probable", "possible", or "unlikely". RESULTS Thirty AE reports related to the consumption of medicinal and edible fruits were included, involving 12 species of fruits: Crataegi fructus, Gardeniae fructus, Mori fructus, Hippophae fructus, Cannabis fructus, Siraitiae fructus, Perillae fructus, Rubi fructus, Longan arillus, Anisi stellati fructus, Zanthoxyli pericarpium, and Lycii fructus. No AE reports were found for the remaining 18 species. A total of 97 AEs, featuring predominantly gastrointestinal symptoms, followed by allergic reactions and neuropsychiatric symptoms, were recorded. Thirty SAEs were noted, with Zanthoxyli pericarpium accounting for the most (14 cases), followed by Perillae fructus (7 cases), Anisi stellati fructus (6 cases), and Gardeniae fructus, Rubi fructus, and Mori fructus (1 case each). Mori fructus was associated with one death. All AEs were concordant with a causality to fruit consumption, judged to be "certain" for 37 cases, "probable" for 53 cases, and "possible" for 7 cases. CONCLUSIONS Our findings suggest that among medicinal and edible fruits, 12 species have AE reports with a causality ranging from "possible" to "definite". SAEs were not scarce. Most AEs may be associated with an excessive dose, prolonged consumption, or usage among infants or young children. No AE reports were found for the remaining 18 species.
Collapse
Affiliation(s)
- Huilin Liu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xianjie Feng
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Rui Zhang
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuai Yuan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaqi Tian
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ping Luo
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xu Zhou
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China; Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Chengdu, China.
| |
Collapse
|
6
|
Michalska-Ciechanowska A, Brzezowska J, Nowicka P, Tkacz K, Turkiewicz IP, Hendrysiak A, Oszmiański J, Andlauer W. Advantages of Spray Drying over Freeze Drying: A Comparative Analysis of Lonicera caerulea L. Juice Powders-Matrix Diversity and Bioactive Response. Molecules 2024; 29:3586. [PMID: 39124991 PMCID: PMC11313881 DOI: 10.3390/molecules29153586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The study investigated the impact of Lonicera caerulea L. juice matrix modification and drying techniques on powder characteristics. The evaluation encompassed phenolics (514.7-4388.7 mg/100 g dry matter), iridoids (up to 337.5 mg/100 g dry matter), antioxidant and antiglycation capacity, as well as anti-ageing properties of powders produced using maltodextrin, inulin, trehalose, and palatinose with a pioneering role as a carrier. Spray drying proved to be competitive with freeze drying for powder quality. Carrier application influenced the fruit powder properties. Trehalose protected the phenolics in the juice extract products, whereas maltodextrin showed protective effect in the juice powders. The concentrations of iridoids were influenced by the matrix type and drying technique. Antiglycation capacity was more affected by the carrier type in juice powders than in extract products. However, with carrier addition, the latter showed approximately 12-fold higher selectivity for acetylcholinesterase than other samples. Understanding the interplay between matrix composition, drying techniques, and powder properties provides insights for the development of plant-based products with tailored attributes, including potential health-linked properties.
Collapse
Affiliation(s)
- Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Jessica Brzezowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Aleksandra Hendrysiak
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Wilfried Andlauer
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| |
Collapse
|
7
|
Wu D, Yang Z, Li J, Huang H, Xia Q, Ye X, Liu D. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn ( Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024; 13:482. [PMID: 38338617 PMCID: PMC10855374 DOI: 10.3390/foods13030482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Sea buckthorn pomace (SBP) is a by-product of sea buckthorn processing that is rich in bioactive compounds. In this study, different active ingredients were extracted by using different solvents (water, methanol, ethanol, glycerol, ethyl acetate, and petroleum ether) combined with an ultrasonic assisted method. The correlation between the active ingredients and antioxidant properties of the extract was studied, which provided a research basis for the comprehensive utilization of SBP. This study revealed that the 75% ethanol extract had the highest total phenolic content (TPC) of 42.86 ± 0.73 mg GAE/g, while the 75% glycerol extract had the highest total flavonoid content (TFC) of 25.52 ± 1.35 mg RTE/g. The ethanol extract exhibited the strongest antioxidant activity at the same concentration compared with other solvents. The antioxidant activity of the ethanol, methanol, and glycerol extracts increased in a concentration-dependent manner. Thirteen phenolic compounds were detected in the SBP extracts using UPLC-MS/MS analysis. Notably, the 75% glycerol extract contained the highest concentration of all identified phenolic compounds, with rutin (192.21 ± 8.19 μg/g), epigallocatechin (105.49 ± 0.69 μg/g), and protocatechuic acid (27.9 ± 2.38 μg/g) being the most abundant. Flavonols were found to be the main phenolic substances in SBP. A strong correlation was observed between TPC and the antioxidant activities of SBP extracts. In conclusion, the choice of solvent significantly influences the active compounds and antioxidant activities of SBP extracts. SBP extracts are a valuable source of natural phenolics and antioxidants.
Collapse
Affiliation(s)
- Dan Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Zhihao Yang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Jiong Li
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Huilin Huang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Qile Xia
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| |
Collapse
|
8
|
Xu X, Guo Y, Chen M, Li N, Sun Y, Ren S, Xiao J, Wang D, Liu X, Pan Y. Hypoglycemic activities of flowers of Xanthoceras sorbifolia and identification of anti-oxidant components by off-line UPLC-QTOF-MS/MS-free radical scavenging detection. CHINESE HERBAL MEDICINES 2024; 16:151-161. [PMID: 38375044 PMCID: PMC10874760 DOI: 10.1016/j.chmed.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 11/11/2022] [Indexed: 02/21/2024] Open
Abstract
Objective To identify phytochemical constituents present in the extract of flowers of Xanthoceras sorbifolia and evaluate their anti-oxidant and anti-hyperglycemic capacities. Methods The AlCl3 colorimetric method and Prussian Blue assay were used to determine the contents of total flavonoids and total phenolic acids in extraction layers, and the bioactive layers was screened through anti - oxidative activity in vitro. The Waters ACQUITY UPLC system and a Waters ACQUITY UPLC BEH C18 column (2.0 mm × 150 mm, 5 μm) were used to identify the ingredients. And anti-oxidative ingredients were screened by off-line UPLC-QTOF-MS/MS-free radical scavenging. The ameliorative role of it was further evaluated in a high-fat, streptozotocin-induced type 2 diabetic rat model and the study was carried out on NADPH oxidase (PDB ID: 2CDU) by molecular docking. Results Combined with the results of activity screening in vitro, the anti - oxidative part was identified as the ethyl acetate layer. A total of 24 chemical constituents were identified by liquid chromatography-mass spectrometry in the ethyl acetate layer and 13 main anti-oxidative active constituents were preliminarily screened out through off-line UPLC-QTOF-MS/MS-free radical scavenging. In vivo experiments showed that flowers of X. sorbifolia could significantly reduce the blood glucose level of diabetic mice and alleviate liver cell damage. Based on the results of docking analysis related to the identified phytocompounds and oxidase which involved in type 2 diabetes, quercetin 3-O-rutinoside, kaempferol-3-O-rhamnoside, isorhamnetin-3-O-glucoside, and isoquercitrin showed a better inhibitory profile. Conclusion The ethyl acetate layer was rich in flavonoids and phenolic acids and had significant anti-oxidant activity, which could prevent hyperglycemia. This observed activity profile suggested X. sorbifolia flowers as a promising new source of tea to develop alternative natural anti-diabetic products with a high safety margin.
Collapse
Affiliation(s)
- Xiajing Xu
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongli Guo
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Menglin Chen
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Li
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shumeng Ren
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Xiao
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoqiu Liu
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingni Pan
- School of Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
9
|
Mahnashi MH, Ashraf M, Alhasaniah AH, Ullah H, Zeb A, Ghufran M, Fahad S, Ayaz M, Daglia M. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer's disease: In Vitro, In Vivo and In Silico approaches. Biomed Pharmacother 2023; 165:115144. [PMID: 37437376 DOI: 10.1016/j.biopha.2023.115144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The current study aims to quantify HPLC-DAD polyphenolics in the crude extracts of Desmodium elegans, evaluating its cholinesterase inhibitory, antioxidant, molecular docking and protective effects against scopolamine-induced amnesia in mice. A total of 16 compounds were identified which include gallic acid (239 mg g-1), p-hydroxybenzoic acid (11.2 mg g-1), coumaric acid (10.0 mg g-1), chlorogenic acid (10.88 mg g-1), caffeic acid (13.9 mg g-1), p-coumaroylhexose (41.2 mg g-1), 3-O-caffeoylquinic acid (22.4 mg g-1), 4-O-caffeoylquinic acid (6.16 mg g-1), (+)-catechin (71.34 mg g-1), (-)-catechin (211.79 mg g-1), quercetin-3-O-glucuronide (17.9 mg g-1), kaempferol-7-O-glucuronide (13.2 mg g-1), kaempferol-7-O-rutinoside (53.67 mg g-1), quercetin-3-rutinoside (12.4 mg g-1), isorhamnetin-7-O-glucuronide (17.6 mg g-1) and isorhamnetin-3-O-rutinoside (15.0 mg g-1). In a DPPH free radical scavenging assay, the chloroform fraction showed the highest antioxidant activity, with an IC50 value of 31.43 µg mL-1. In an AChE inhibitory assay, the methanolic and chloroform fractions showed high inhibitory activities causing 89% and 86.5% inhibitions with IC50 values of 62.34 and 47.32 µg mL-1 respectively. In a BChE inhibition assay, the chloroform fraction exhibited 84.36% inhibition with IC50 values of 45.98 µg mL-1. Furthermore, molecular docking studies revealed that quercetin-3-rutinoside and quercetin-3-O-glucuronide fit perfectly in the active sites of AChE and BChE respectively. Overall, the polyphenols identified exhibited good efficacy, which is likely as a result of the compounds' electron-donating hydroxyl groups (-OH) and electron cloud density. The administration of methanolic extract improved cognitive performance and demonstrated anxiolytic behavior among tested animals.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Ashraf
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia.
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Liu J, Bi J, Liu X, Liu D, Lyu J, Liu M, Verkerk R, Dekker M, Fogliano V. Polygalacturonase treatment affects carotenoid absorption from veggie juice. Food Chem 2023; 415:135748. [PMID: 36854238 DOI: 10.1016/j.foodchem.2023.135748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The present study was conducted to investigate the effects of polygalacturonase (PG) treatment on carotenoid absorption upon digestion of HPH-treated combined peach and carrot juice (CJ) with or without the presence of lipids. Results showed that PG treatment reduced median particle diameter (D50) and viscosity of CJ, and increased total carotenoid bioaccessibility by 41%. In the presence of emulsion, the bioaccessibility of carotenoids was higher and it was not significantly affected by PG treatment. Xanthophylls (lutein and zeaxanthin) had higher bioaccessibility than the more lipophilic carotenes (β-carotene and α-carotene); also, uptake in Caco-2 cells and transport of lutein and zeaxanthin were higher than for β-carotene and α-carotene. Individual carotenoids bioaccessibility was negatively correlated with their transport. All together data showed digestion and absorption processes were two independent processes: factors improving carotenoid bioaccessibility did not necessarily affect their bioavailability.
Collapse
Affiliation(s)
- Jianing Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xuan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Dazhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Jian Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Meng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ruud Verkerk
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
11
|
Wang H, Chen L, Yang B, Du J, Chen L, Li Y, Guo F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023; 15:nu15081947. [PMID: 37111165 PMCID: PMC10143801 DOI: 10.3390/nu15081947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, people have tended to consume phytonutrients and nutrients in their daily diets. Isorhamnetin glycosides (IGs) are an essential class of flavonoids derived from dietary and medicinal plants such as Opuntia ficus-indica, Hippophae rhamnoides, and Ginkgo biloba. This review summarizes the structures, sources, quantitative and qualitative analysis technologies, health benefits, bioaccessibility, and marketed products of IGs. Routine and innovative assay methods, such as IR, TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the characterization and quantification of IGs. All of the therapeutic effects of IGs discovered to date are collected and discussed in this study, with an emphasis on the relevant mechanisms of their health-promoting effects. IGs exhibit diverse biological activities against cancer, diabetes, hepatic diseases, obesity, and thrombosis. They exert therapeutic effects through multiple networks of underlying molecular signaling pathways. Owing to these benefits, IGs could be utilized to make foods and functional foods. IGs exhibit higher bioaccessibility and plasma concentrations and longer average residence time in blood than aglycones. Overall, IGs as phytonutrients are very promising and have excellent application potential.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binrui Yang
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Liang Chen
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
12
|
Nowicka P, Wojdyło A, Tkacz K, Turkiewicz IP. Quantitative and qualitative determination of carotenoids and polyphenolics compounds in selected cultivars of Prunus persica L. and their ability to in vitro inhibit lipoxygenase, cholinoesterase, α-amylase, α-glucosidase and pancreatic lipase. Food Chem X 2023; 17:100619. [PMID: 36974173 PMCID: PMC10039266 DOI: 10.1016/j.fochx.2023.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The present study aimed to evaluate the content of polyphenols and carotenoids as well as the health-promoting properties (antioxidant, antidiabetic, antiobesity, antiaging, and anti-inflammatory activities) in selected peaches cultivated in Poland. The qualitative analysis of the tested cultivars showed that the content of polyphenols was dominated by flavan-3-ols, and phenolic acids. In turn, the performed analysis clearly indicated that the dominant carotenoid was β-carotene, which constituted on average 88% of the total amount of carotenoids. The general content of yellow pigments is as follows: all-trans-β-carotene > 13 cis-β-carotene > 9 cis-β-carotene > zeaxanthin > β-cryptoxanthin ≥ β-cryptoxanthin-myristate > β-cryptoxanthin-palmitate > crocin ≥ cis-violaxanthin > lutein. In addition, the present study showed that the peach fruit has a high potential in the context of inhibition of pancreatic lipase, which may indicate a potential antiobesity effect. However, the potential of the peaches to inhibit α-amylase, α-glucosidase, or 15-LOX has not been demonstrated.
Collapse
Affiliation(s)
- Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| |
Collapse
|
13
|
Ma QG, He NX, Huang HL, Fu XM, Zhang ZL, Shu JC, Wang QY, Chen J, Wu G, Zhu MN, Sang ZP, Cao L, Wei RR. Hippophae rhamnoides L.: A Comprehensive Review on the Botany, Traditional Uses, Phytonutrients, Health Benefits, Quality Markers, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4769-4788. [PMID: 36930583 DOI: 10.1021/acs.jafc.2c06916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hippophae rhamnoides L. (sea buckthorn), consumed as a food and health supplement worldwide, has rich nutritional and medicinal properties. Different parts of H. rhamnoides L. were used in traditional Chinese medicines for relieving cough, aiding digestion, invigorating blood circulation, and alleviating pain since ancient times. Phytochemical studies revealed a wide variety of phytonutrients, including nutritional components (proteins, minerals, vitamins, etc.) and functional components like flavonoids (1-99), lignans (100-143), volatile oils (144-207), tannins (208-230), terpenoids (231-260), steroids (261-270), organic acids (271-297), and alkaloids (298-305). The pharmacological studies revealed that some crude extracts or compounds of H. rhamnoides L. demonstrated various health benefits, such as anti-inflammatory, antioxidant, hepatoprotective, anticardiovascular disease, anticancer, hypoglycemic, hypolipidemic, neuroprotective, antibacterial activities, and their effective doses and experimental models were summarized and analyzed in this paper. The quality markers (Q-markers) of H. rhamnoides L. were predicted and analyzed based on protobotanical phylogeny, traditional medicinal properties, expanded efficacy, pharmacokinetics and metabolism, and component testability. The applications of H. rhamnoides L. in juice, wine, oil, ferment, and yogurt were also summarized and future prospects were examined in this review. However, the mechanism and structure-activity relationship of some active compounds are not clear, and quality control and potential toxicity are worth further study in the future.
Collapse
Affiliation(s)
- Qin-Ge Ma
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Neng-Xin He
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui-Lian Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiao-Mei Fu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhong-Li Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ji-Cheng Shu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qin-Yuan Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Guang Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Mei-Ning Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lan Cao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Rong-Rui Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
14
|
A Comprehensive Review on Extraction, Structure, Detection, Bioactivity, and Metabolism of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.). J Food Biochem 2023. [DOI: 10.1155/2023/4839124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is an important plant with homology of medicine and food. It has rich nutritional and medicinal properties. It is used as a traditional Chinese medicine with therapeutic functions of invigorating spleen, relieving cough, eliminating food, eliminating phlegm, dispersing blood stasis, and promoting blood circulation. This review comprehensively summarized flavonoids from sea buckthorn (Hippophae rhamnoides L.), including extraction methods (solvent extraction, ultrasound-assisted extraction, microwave-assisted extraction, enzyme-assisted extraction, and collaborative extraction), two structure types (18 flavone aglycones and 81 flavone glycosides), detection methods (UV, HPLC, and NMR), bioactivities (antiviral, anti-inflammatory, hepatoprotective, weight-reducing, and hypoglycemic activities), and physiological metabolisms (most of flavonoids are converted into small molecule monophenolic acids through intestinal microbial catabolism). It will supply an important theoretical basis and valuable reference for researching and exploiting sea buckthorn (Hippophae rhamnoides L.) in the future. Practical Applications. Sea buckthorn (Hippophae rhamnoides L.) is an edible and medical plant with many functional properties. A comprehensive review on extraction, structure, detection, bioactivity, and metabolism of flavonoids from sea buckthorn (Hippophae rhamnoides L.) was made in this paper. This review will provide an important foundation for further studies of sea buckthorn (Hippophae rhamnoides L.) focusing on its development and utilization.
Collapse
|
15
|
Galitsyn G, Lomovskiy I, Podgorbunskikh E. Seasonal and Geographic Variation in Serotonin Content in Sea Buckthorn. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:186-192. [PMID: 36534234 DOI: 10.1007/s11130-022-01038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Plants growing in unfavorable environments, such as sea buckthorn, can have a high serotonin content. The potential of using different parts of sea buckthorn (Hippophae rhamnoides L.) as a natural source of serotonin was investigated. The feasibility of extracting serotonin hormone from the non-fruit parts of sea buckthorn is demonstrated. One- and two-year-old woody shoots were the best material for obtaining serotonin-containing raw product. Serotonin content in shoots of different sea buckthorn varieties growing in different regions and its dynamics during the vegetation period were determined by high-performance liquid chromatography. Serotonin is a water-soluble substance prone to microbial degradation, so proper preparation of raw materials plays a very important role in preserving serotonin in plant samples. A method for serotonin extraction using preliminary mechanochemical treatment is presented: it consists in pre-grinding, followed by mechanical treatment of raw materials with 5% adipic acid in a semi-industrial centrifugal mill. The highest degree of serotonin extraction was achieved when using air circulation at a drying temperature of 60-80 °C; serotonin concentration decreased when temperature was further increased. Serotonin content depended on the place and time of harvesting, the method used for drying the branches, and the characteristics of the plant variety. The minimum serotonin concentration (29 mg/g dry basis) was observed during summer; the maximum concentration was observed during winter; the annual changes in concentration can be as significant as 10-fold. The possibility of industrial cultivation and harvesting of different sea buckthorn varieties was also considered.
Collapse
Affiliation(s)
- George Galitsyn
- Institute of Cytology and Genetics, Laboratory of Gene Engineering, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Igor Lomovskiy
- Institute of Solid State Chemistry and Mechanochemistry, Laboratory of Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Ekaterina Podgorbunskikh
- Institute of Solid State Chemistry and Mechanochemistry, Laboratory of Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
16
|
Aiguo Z, Ruiwen D, Cheng W, Cheng C, Dongmei W. Insights into the catalytic and regulatory mechanisms of dihydroflavonol 4-reductase, a key enzyme of anthocyanin synthesis in Zanthoxylum bungeanum. TREE PHYSIOLOGY 2023; 43:169-184. [PMID: 36054375 DOI: 10.1093/treephys/tpac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of anthocyanins largely determines the fruit color, and dihydroflavonol 4-reductase (DFR) is a key enzyme involved in the formation of anthocyanins. However, the catalytic and regulatory mechanisms of DFR are unclear. In this study, the gene encoding DFR from Zanthoxylum bungeanum Maxim. was cloned and ZbDFR was analyzed in detail. The ZbDFR accepted dihydrokaempferol, dihydroquercetin and dihydromyricetin as substrates. Flavonols such as myricetin, quercetin and kaempferol significantly inhibited the activity of ZbDFR, while quercitrin and isoquercitrin slightly increased the activity. Quercetin was a competitive inhibitor at low concentrations, and it had a combined effect of competitive and noncompetitive inhibition at high concentrations, which was consistent with ZbDFR having two inhibitor binding sites. In addition, the content of different types of flavonoids in Z. bungeanum peel at green, semi-red and red stage was analyzed, and the in vivo results could be explained by the regulation of ZbDFR activity in vitro. Site-directed mutagenesis combined with enzyme activity experiments showed that Ser128, Tyr163, Phe164 and Lys167 are the key catalytic amino acid residues. The Ser128, Tyr163 and Lys167 were crucial for the hydrogen transfer reaction, and mutation of these amino acids resulted in the loss of all or most of the activity. Phe164 was found to be important for the regulation of ZbDFR by flavonols. Accordingly, ZbDFR is a node at which flavonoids regulate the synthesis of anthocyanins and proanthocyanins.
Collapse
Affiliation(s)
- Zhao Aiguo
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Ding Ruiwen
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wang Cheng
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chen Cheng
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wang Dongmei
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Exploitation and Utilization of Economic Plant Resources in Shaanxi Province, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Żuchowski J. Phytochemistry and pharmacology of sea buckthorn ( Elaeagnus rhamnoides; syn. Hippophae rhamnoides): progress from 2010 to 2021. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:3-33. [PMID: 35971438 PMCID: PMC9366820 DOI: 10.1007/s11101-022-09832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 06/01/2023]
Abstract
Sea buckthorn (Elaeagnus rhamnoides; syn. Hippophae rhamnoides) is a thorny shrub or a small tree belonging to the Elaeagnaceae family, native to Eurasia. Sea buckthorn fruit is rich in vitamins and minerals, oils from the seeds and fruit flesh find use in medicine and the cosmetic industry or as nutraceutical supplements. Fruit, leaves and other parts of buckthorn have been used in traditional medicine, especially in China, Tibet, Mongolia, and Central Asia countries, and are a rich source of many bioactive substances. Due to its health-promoting and medicinal properties, the plant has been extensively investigated for several decades, and its phytochemical composition and pharmacological properties are well characterized. The years 2010-2021 brought significant progress in phytochemical research on sea buckthorn. Dozens of new compounds, mainly phenolics, were isolated from this plant. Numerous pharmacological studies were also performed, investigating diverse aspects of the biological activity of different extracts and natural products from sea buckthorn. This review focuses on the progress in research on sea buckthorn specialized metabolites made in this period. Pharmacological studies on sea buckthorn are also discussed. In addition, biosynthetic pathways of the main groups of these compounds have been shortly described.
Collapse
Affiliation(s)
- Jerzy Żuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
18
|
Zhao H, Kong L, Shao M, Liu J, Sun C, Li C, Wang Y, Chai X, Wang Y, Zhang Y, Li X. Protective effect of flavonoids extract of Hippophae rhamnoides L. on alcoholic fatty liver disease through regulating intestinal flora and inhibiting TAK1/p38MAPK/p65NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115225. [PMID: 35341932 DOI: 10.1016/j.jep.2022.115225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The therapeutic properties of Hippophae rhamnoides L. were already known in ancient Greece as well as in Tibetan and Mongolian medicine. Modern studies have indicated that Hippophae rhamnoides L. fermentation liquid protected against alcoholic fatty liver disease (AFLD). However, the underlying mechanism of Hippophae rhamnoides L. flavonoids extract (HLF) treating AFLD remains elusive. AIM OF THE STUDY This study aimed to investigate the hepatoprotective effect of HLF in mice with AFLD and the interaction between AFLD and gut microbiota. MATERIALS AND METHODS Chemical constituents of HLF were analyzed by Liquid Chromatography-Ion Trap-ESI-Mass Spectrometry. The Hepatoprotective effect of HLF was evaluated in mice with AFLD induced by alcohol (six groups, n = 10) daily at doses of 0.1, 0.2, and 0.4 g/kg for 30 consecutive days. At the end of experiment, mice were sacrificed and the liver, serum and feces were harvested for analysis. The liver histological changes were observed by H&E staining and oil red O staining. Moreover, the alterations of fecal microflora were detected by 16S rRNA gene sequencing. The inflammatory related genes were determined by qRT-PCR and western blotting respectively. RESULTS The results showed that the oral administration of HLF remarkably alleviated hepatic lipid accumulation by decreasing the levels of ALT, AST, TG and TC. The levels of TNF-α, TGF-β, and IL-6 were also reduced after treatment with HLF. Meanwhile, the protein and mRNA expression of NF-kB p65, MAPK p38 and TAK-1 in the liver of mice with AFLD were all reduced by HLF compared with model group. Furthermore, the 16S rRNA gene sequencing analysis demonstrated that HLF treatment can help restore the imbalance of intestinal microbial ecosystem and reverse the changes in Fimicutes/Bacterodietes, Clostridiales, Lachnospiraceae, S24-7, and Prevotella in mice with AFLD. CONCLUSION HLF can effectively ameliorate liver injury in mice with AFLD, and regulate the composition of gut microbiota. Its regulatory mechanism may be related to TAK1/p38MAPK/p65NF-κB pathway. This study may provide novel insights into the mechanism of HLF on AFLD and a basis for promising clinical usage.
Collapse
Affiliation(s)
- Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Lingzhou Kong
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Mengting Shao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Jiayue Liu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Changhai Sun
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Changxu Li
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yanyan Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Xue Chai
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Xiaoliang Li
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
19
|
Janceva S, Andersone A, Lauberte L, Bikovens O, Nikolajeva V, Jashina L, Zaharova N, Telysheva G, Senkovs M, Rieksts G, Ramata-Stunda A, Krasilnikova J. Sea Buckthorn ( Hippophae rhamnoides) Waste Biomass after Harvesting as a Source of Valuable Biologically Active Compounds with Nutraceutical and Antibacterial Potential. PLANTS (BASEL, SWITZERLAND) 2022; 11:642. [PMID: 35270111 PMCID: PMC8912587 DOI: 10.3390/plants11050642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
For sustainable sea buckthorn (Hippophae rhamnoides) berry production, the task at hand is to find an application for the large amount of biomass waste arising at harvesting. Sea buckthorn (SBT) vegetation is currently poorly studied. The purpose of this research was to assess the composition and potential of SBT twigs as a source of valuable biologically active substances. Water and 50% EtOH extracts of twigs of three Latvian SBT cultivars with a high berry yield and quality, popular for cultivation in many countries (H. rhamnoides 'Maria Bruvele', 'Tatiana', 'Botanicheskaya Lubitelskaya'), were investigated for the first time. The phytochemical composition (UHPLC-ESI-MS/MS analysis) and biological activity of the obtained hydrophilic extracts were determined. The highest yield of polyphenolic compounds and serotonin was observed for 'Maria Bruvele'. Hydrophilic extracts were investigated for radical scavenging activity (DPPH˙ test), antibacterial/antifungal activity against five pathogenic bacteria/yeast, cytotoxicity, and the enzymatic activity of alpha-amylase (via in vitro testing), which is extremely important for the treatment of people with underweight, wasting, and malabsorption. The results showed a high potential of sea buckthorn biomass as a source of valuable biologically active compounds for the creation of preparations for the food industry, nutraceuticals, and cosmetics.
Collapse
Affiliation(s)
- Sarmite Janceva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (S.J.); (L.L.); (O.B.); (L.J.); (N.Z.); (G.R.)
| | - Anna Andersone
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (S.J.); (L.L.); (O.B.); (L.J.); (N.Z.); (G.R.)
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Liga Lauberte
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (S.J.); (L.L.); (O.B.); (L.J.); (N.Z.); (G.R.)
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Oskars Bikovens
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (S.J.); (L.L.); (O.B.); (L.J.); (N.Z.); (G.R.)
| | - Vizma Nikolajeva
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.N.); (M.S.); (A.R.-S.)
| | - Lilija Jashina
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (S.J.); (L.L.); (O.B.); (L.J.); (N.Z.); (G.R.)
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Natalija Zaharova
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (S.J.); (L.L.); (O.B.); (L.J.); (N.Z.); (G.R.)
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Galina Telysheva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (S.J.); (L.L.); (O.B.); (L.J.); (N.Z.); (G.R.)
| | - Maris Senkovs
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.N.); (M.S.); (A.R.-S.)
| | - Gints Rieksts
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia; (S.J.); (L.L.); (O.B.); (L.J.); (N.Z.); (G.R.)
| | - Anna Ramata-Stunda
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.N.); (M.S.); (A.R.-S.)
| | - Jelena Krasilnikova
- Department of Biochemistry, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| |
Collapse
|
20
|
He L, Zhou Y, Wan G, Wang W, Zhang N, Yao L. Antinociceptive effects of flower extracts and the active fraction from Styrax japonicus. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114779. [PMID: 34715297 DOI: 10.1016/j.jep.2021.114779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flowers from Styrax japonicus sieb. et Zucc. have been used as a Chinese folk medicine to alleviate pain such as toothache and sore throat. AIM OF THE STUDY To testify the analgesic effect of flowers from Styrax japonicus, analyze components of the active fraction, and investigate the mechanism of analgesia. MATERIALS AND METHODS Flower extracts were obtained by ethanol, petroleum ether and hydrodistillation extraction. Different fractions of ethanol extracts (EE) were isolated by silica gel column chromatography and preparative liquid chromatography. Analgesic effects of EE, petroleum ether extracts (PEE), hydrodistillation extracts (HDE), and fractions of EE were evaluated using hot plate, acetic acid-induced writhing and formalin tests on mice. Components of the active fraction 1 (F1) were determined by the ultrahigh-performance liquid chromatography Q extractive mass spectrometry (UHPLC-QE-MS). Anti-inflammatory and sedative effects involving analgesic mechanisms were evaluated by carrageenan induced hind paw oedema and pentobarbital sodium sleep tests, respectively. In addition, antagonists including naloxone hydrochloride (NXH), flumazenil (FM), SCH23390 (SCH) and WAY100635 (WAY) were used to investigate the possible mechanism of analgesia. Contents of neurotransmitters and relevant metabolites in different brain regions of mice were also quantified by the ultraperformance liquid chromatography with a fluorescence detector (UPLC-FLD). RESULTS EE rather than PEE and HDE at medium and high doses (150 mg/kg and 300 mg/kg) significantly prolonged the latency time of the response of mice to the thermal stimulation in the hot plate test. Moreover, EE significantly decreased number of writhes in the acetic acid-induced writhing test, and reduced licking time in both two phases of the formalin test in a dose-dependent manner. The F1 (50 mg/kg) showed effective antinociceptive responses in all mice models. However, fraction 2 (F2) and fraction 3 (F3) at 50 mg/kg performed no analgesic action. Kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, pinoresinol-4-O-glucoside, forsythin and arctiin were identified from components of the F1. Furthermore, F1 (50 mg/kg) did not significantly affect hind paw oedema of mice induced by carrageenan but significantly shortened sleep latency and increased sleep duration in the pentobarbital sodium sleep test. In addition, the antinociceptive response of F1 was not affected by NXH in two mice models, but significantly blocked by FM and WAY in the hot plate test. In the formalin test, FM avoided the effect of F1 only in the first phase, while the analgesic activity of F1 was totally suppressed by WAY in both two phases. Otherwise, contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) increased significantly in hippocampus and striatum of mice in the F1 group. CONCLUSION EE from flowers of Styrax japonicus, and F1, the active part isolated from EE, showed significant antinociceptive activities. The analgesic effect of F1 appeared to be related to the sedative effect, partially mediated by the GABAergic system, and highly involved in the serotonergic system. This was the first study confirming the analgesic effect of Styrax japonicus flower, which provided a candidate for the development of non-opioid analgesics.
Collapse
Affiliation(s)
- Lei He
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| | - Ying Zhou
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Guangjun Wan
- Nanjing Fragrant Jasmine Agricultural Technology Co., Ltd, Liuhe District, Nanjing, 211521, China
| | - Wencui Wang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Nan Zhang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Lei Yao
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China; R&D Center for Aromatic Plants, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| |
Collapse
|
21
|
Luntraru CM, Apostol L, Oprea OB, Neagu M, Popescu AF, Tomescu JA, Mulțescu M, Susman IE, Gaceu L. Reclaim and Valorization of Sea Buckthorn (Hippophae rhamnoides) By-Product: Antioxidant Activity and Chemical Characterization. Foods 2022; 11:foods11030462. [PMID: 35159612 PMCID: PMC8834190 DOI: 10.3390/foods11030462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The by-product resulting from the production of the sea-buckthorn (Hippophae rhamnoides) juice may be a functional food ingredient, being a valuable source of bioactive compounds, such as polyphenols, flavonoids, minerals, and fatty acids. For checking this hypothesis, two extracts were obtained by two different methods using 50% ethyl alcohol solvent, namely through maceration–recirculation (E-SBM) and through ultrasound extraction (E-SBUS), followed by concentration. Next, sea-buckthorn waste (SB sample), extracts (E-SBM and E-SBUS samples) and the residues obtained from the extractions (R-SBM and R-SBUS samples) were characterized for the total polyphenols, flavonoid content, antioxidant capacity, mineral contents, and fatty acids profile. The results show that polyphenols and flavonoids were extracted better by the ultrasound process than the other methods. Additionally, the antioxidant activity of the E-SBUS sample was 91% higher (expressed in Trolox equivalents) and approximately 45% higher (expressed in Fe2+ equivalents) than that of the E-SBM sample. Regarding the extraction of minerals, it was found that both concentrated extracts had almost 25% of the RDI value of K and Mg, and also that the content of Zn, Mn, and Fe is significant. Additionally, it was found that the residues (R-SBM and R-SBUS) contain important quantities of Zn, Cu, Mn, Ca, and Fe. The general conclusion is that using the ultrasound extraction method, followed by a process of concentrating the extract, a superior recovery of sea-buckthorn by-product resulting from the juice extraction can be achieved.
Collapse
Affiliation(s)
- Cristina Mihaela Luntraru
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Livia Apostol
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
- Correspondence: (L.A.); (O.B.O.); Tel.: +40-740-001-473 (L.A.); Tel.: +40-727-171-083 (O.B.O.)
| | - Oana Bianca Oprea
- Faculty of Food and Tourism, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania;
- Correspondence: (L.A.); (O.B.O.); Tel.: +40-740-001-473 (L.A.); Tel.: +40-727-171-083 (O.B.O.)
| | - Mihaela Neagu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Adriana Florina Popescu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Justinian Andrei Tomescu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Mihaela Mulțescu
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
| | - Iulia Elena Susman
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania;
- CSCBAS &CE-MONT Centre/INCE-Romanian Academy, 010071 Bucharest, Romania
- Assoc. m. Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
22
|
Chen M, He X, Sun H, Sun Y, Li L, Zhu J, Xia G, Guo X, Zang H. Phytochemical analysis, UPLC-ESI-Orbitrap-MS analysis, biological activity, and toxicity of extracts from Tripleurospermum limosum (Maxim.) Pobed. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
Tkacz K, Gil-Izquierdo Á, Medina S, Turkiewicz IP, Domínguez-Perles R, Nowicka P, Wojdyło A. Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:185-197. [PMID: 34061348 DOI: 10.1002/jsfa.11345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Juices are currently a fast-growing segment in the fruit and vegetable industry sector. However, there are still no reports on the diversity of the phytochemical profile and health-promoting properties of commercial sea buckthorn (Hippophaë rhamnoides) juices. This study aimed to identify and quantify phytoprostanes, phytofurans by ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS), tocopherols, tocotrienols by ultra-performance liquid chromatography coupled with a fluorescence detector (UPLC-FL), carotenoids, and free amino acids by ultra-performance liquid chromatography coupled with a photodiode detector-quadrupole and tandem time-of-flight mass spectrometry (UPLC-PDA-Q/TOF-MS), and assess their anti-cholinergic, anti-diabetic, anti-obesity, anti-inflammatory, and antioxidant potential by in vitro assays of commercial sea buckthorn juices. RESULTS Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) in sea buckthorn juices were identified for the first time. Juices contained eight F1 -, D1 -, B1 - and L1 -phytoprostanes and one phytofuran (32.31-1523.51 ng and up to 101.47 μg/100 g dry weight (DW)), four tocopherol congeners (22.23-94.08 mg 100 g-1 DW) and three tocotrienols (5.93-25.34 mg 100 g-1 DW). Eighteen carotenoids were identified, including ten xanthophylls, seven carotenes and phytofluene, at a concentration of 133.65 to 839.89 mg 100 g-1 DW. Among the 20 amino acids (175.92-1822.60 mg 100 g-1 DW), asparagine was dominant, and essential and conditionally essential amino acids constituted 11 to 41% of the total. The anti-enzyme and antioxidant potential of juices correlated selectively with the composition. CONCLUSION Sea buckthorn juice can be a valuable dietary source of vitamins E and A, oxylipins and amino acids, used in the prevention of metabolic syndrome, inflammation, and neurodegenerative processes. The differentiation of the composition and the bioactive potential of commercial juices indicate that, for the consumer, it should be important to choose juices from the declared berry cultivars and crops. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
24
|
Nugraha AT, Ramadani AP, Werdyani S, Pratiwi IA, Juniardy T, Arfadila S, Mahardhika MRP. Cytotoxic activity of flavonoid from local plant Eriocaulon cinereum R.B against MCF-7 breast cancer cells. J Adv Pharm Technol Res 2021; 12:425-429. [PMID: 34820320 PMCID: PMC8588909 DOI: 10.4103/japtr.japtr_69_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Eriocaulon cinereum R. Br is used as traditional medicine by the local community in Bangka Belitung Island, Indonesia. The plant is processed as an infusion for fever, boosts the immune system, and treats tumor cells. However, scientific research on this species is still limited. The aims of this study were to determine the cytotoxic of E. cinereum against MCF-7 cells. The results suggested that one of the compounds has a good cytotoxic activity. Therefore, it is quite promising in the effort of cancer drug discovery. The active compound has a flavonoid, which plays a role in several anticancer mechanisms. This study provided scientific evidence regarding the utilization of E. cinereum by the local community for cancer therapy. The plant can be further developed as an alternative agent to treat cancer or as cancer adjuvant therapy.
Collapse
Affiliation(s)
- Arde Toga Nugraha
- Department of Pharmacy, Microbiology and Parasitology Laboratory, Universitas Islam Indonesia
| | | | - Sista Werdyani
- Department of Pharmacy, Pharmaceutical Chemistry Laboratory, Universitas Islam Indonesia
| | | | - Topan Juniardy
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Sita Arfadila
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | | |
Collapse
|
25
|
Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn ( Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021; 26:molecules26237189. [PMID: 34885771 PMCID: PMC8659002 DOI: 10.3390/molecules26237189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Sea buckthorn berries are rich in bioactive compounds and can be used for medicine and food. The variety and drying method used have an important influence on quality. In this study, different sea buckthorn varieties from China were selected and dried with four common drying methods. The total phenolic content (TPC), total flavonoids content (TFC), contents of 12 phenolic compounds and antioxidant capacity in vitro were analyzed. The results showed that the TPC, TFC and antioxidant activity of two wild sea buckthorn berries were higher than those of three cultivated berries, and for the same varieties, measured chemical contents and antioxidant activity of the freeze-dried fruit were significantly higher than those obtained with three conventional drying methods. In addition, forty-one compounds in sea buckthorn berry were identified by UPLC-PDA-Q/TOF-MS, most of which were isorhamnetin derivatives. Multivariate statistical analysis revealed narcissin and isorhamnetin-3-O-glucoside varied significantly in sea buckthorn berries of different varieties and with different drying methods; they were potential quality markers. Strong correlations were found between TPC, gallic acid and antioxidant capacity (p < 0.05). The results revealed how components and antioxidant activity varied in different sea buckthorn, which provides a valuable reference for quality control and further development and utilization of sea buckthorn.
Collapse
|
26
|
Phenolic Compounds in Calafate Berries Encapsulated by Spray Drying: Neuroprotection Potential into the Ingredient. Antioxidants (Basel) 2021; 10:antiox10111830. [PMID: 34829700 PMCID: PMC8614940 DOI: 10.3390/antiox10111830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Calafate is a berry rich in anthocyanins that presents higher content of polyphenols than other fruits. Its compounds have been described previously, however, the potential thereof in preventing and treating degenerative disorders has not yet been studied. Due to its astringency, the consumption of this berry in its natural state is limited. To profit from the aforementioned properties and reduce palatability issues, calafate berry extracts were microencapsulated by spray drying, a rapid, cost-effective and scalable process, and were then compared with freeze drying as a control. The stability of its contents and its in-vitro potential, with respect to AChE activity and neuroprotection, were measured from the obtained microcapsules, resulting from temperature treatments and different encapsulant contents. The results indicated that the spray-dried powders were stable, despite high temperatures, and their encapsulation exhibited nearly 50% efficiency. The highest quantity of polyphenols and 3-O-glycosylated anthocyanins was obtained from encapsulation with 20% maltodextrin, at 120 °C. Temperature did not affect the microcapsules’ biological action, as demonstrated by their antioxidant activities. The prevention of Aβ peptide cytotoxicity in PC12 cells (20%) revealed that encapsulated calafate can confer neuroprotection. We conclude that spray-drying is an appropriate technique for scaling-up and producing new value-added calafate formulations with anti-neurodegenerative effects and vivid colors.
Collapse
|
27
|
Wojdyło A, Nowicka P, Turkiewicz IP, Tkacz K, Hernandez F. Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince. Sci Rep 2021; 11:20253. [PMID: 34642358 PMCID: PMC8511160 DOI: 10.1038/s41598-021-99293-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/14/2021] [Indexed: 01/28/2023] Open
Abstract
This paper presents characterization of healthy potential new sources of functional constituents with reference to basic plant sources. In this study, the phenolics, triterpene, isoprenoids (chlorophylls and carotenoids), amino acids, minerals, sugars and organic acids of different cultivars of pome species—apple, pear, quince—leaves vs. fruits and their enzymatic in vitro enzyme inhibition of hyperglycemic (α-glucosidase, α-amylase), obesity (pancreatic lipase), cholinesterase (acetylcholinesterase, butylcholinesterase), inflammatory (15-LOX, COX-1 and -2) and antioxidant capacity (ORAC, FRAP, ABTS) were evaluated. Leaves of pome species as a new plant sources were characterized by higher content of bioactive and nutritional compounds than basic fruits. The dominant fraction for quince, pear, and apple fruits was polymeric procyanidins. In quince and pear leaves flavan-3-ols, and in apple dihydrochalcones dominated. Triterpene was present in equal content in leaves and fruits. Leaves are excellent sources of amino acids and minerals (especially Ca, Mg, Fe, and K), with high content of organic acids and low content of sugars compared to fruits of pome species. Leaves of apples and pears most effectively inhibited COX-1, COX-2, α-amylase, and α-glucosidase enzyme but quince leaves showed the most effective inhibition of pancreatic lipase, AChE and BuChE, 15-LOX, and antioxidant capacity, which particularly correlated with bioactive compounds. Present study shows that leaves are promising sources of valuable compounds and may be used to produce functional foods as well as for medical purposes.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland.
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Francisca Hernandez
- Department of Plant Science and Microbiology, Universidad Miguel Hernández de Elche, Carretera de Beniel, km 3.2, Orihuela, 03312, Alicante, Spain
| |
Collapse
|
28
|
Segliņa D, Krasnova I, Grygier A, Radziejewska‐Kubzdela E, Rudzińska M, Górnaś P. Unique bioactive molecule composition of sea buckthorn (
Hippophae rhamnoides
L.) oils obtained from the peel, pulp, and seeds via physical “solvent‐free” approaches. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Anna Grygier
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition Poznań University of Life Sciences Poznań Poland
| | - Elżbieta Radziejewska‐Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition Poznań University of Life Sciences Poznań Poland
| | - Magdalena Rudzińska
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition Poznań University of Life Sciences Poznań Poland
| | | |
Collapse
|
29
|
Fernández-Galleguillos C, Quesada-Romero L, Puerta A, Padrón JM, Souza E, Romero-Parra J, Simirgiotis MJ. UHPLC-MS Chemical Fingerprinting and Antioxidant, Antiproliferative, and Enzyme Inhibition Potential of Gaultheria pumila Berries. Metabolites 2021; 11:metabo11080523. [PMID: 34436464 PMCID: PMC8401902 DOI: 10.3390/metabo11080523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Gaultheria pumila (Ericaceae) (known as Chaura or Mutilla) is a Chilean native small shrub that produces berry fruits consumed by local Mapuche people. In this study, the chemical fingerprinting and antioxidant, enzyme inhibition, and antiproliferative activities of the berries were investigated for the first time. Thirty-six metabolites were identified in the fruits by ultra-high performance liquid chromatography-photodiode array detection, hyphenated with Orbitrap mass spectrometry analysis (UHPLC-DAD-Orbitrap-MS). Metabolites, included anthocyanins, phenolic acids, flavonoids, iridoids, diterpenes, and fatty acids. Moderate inhibitory activities against acetylcholinesterase (7.7 ± 0.3 µg/mL), butyrylcholinesterase (34.5 ± 0.5 µg/mL), and tyrosinase (3.3 ± 0.2 µg/mL) enzymes were found. Moreover, selected major compounds were subjected to docking assays in light of their experimental inhibition. Results indicated that hydrogen bonding, π–π interaction, and a salt bridge interaction contributed significantly. Gaultheria pumila berries showed a total phenolic content of 189.2 ± 0.2 mg of gallic acid equivalents/g, total flavonoid content of 51.8 ± 0.1 mg quercetin equivalents/g, and total anthocyanin content of 47.3 ± 0.2 mg of cianydin-3-glucoside equivalents/g. Antioxidant activity was assessed using DPPH (92.8 ± 0.1 µg/mL), FRAP (134.1 ± 0.1 μmol Trolox equivalents/g), and ORAC (4251.6 ± 16.9 μmol Trolox equivalents/g) assays. Conversely, Gaultheria pumila showed a scarce antiproliferative potential against several solid human cancer cells. Our findings suggest that Gaultheria pumila berries have several bioactive metabolites with inhibitory effects against acetylcholinesterase, butyrylcholinesterase, and tyrosinase, and have the potential for use in food supplements.
Collapse
Affiliation(s)
- Carlos Fernández-Galleguillos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| | - Luisa Quesada-Romero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
- Correspondence: (L.Q.-R.); (M.J.S.); Tel.: +56-632632811 (L.Q.-R.)
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, 38206 La Laguna, Spain; (A.P.); (J.M.P.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, 38206 La Laguna, Spain; (A.P.); (J.M.P.)
| | - Ernane Souza
- The Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33401, USA;
| | - Javier Romero-Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla 233, Santiago 6640022, Chile;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: (L.Q.-R.); (M.J.S.); Tel.: +56-632632811 (L.Q.-R.)
| |
Collapse
|
30
|
Li N, Jiang H, Yang J, Wang C, Wu L, Hao Y, Liu Y. Characterization of phenolic compounds and anti-acetylcholinase activity of coconut shells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Chen WY, Yang T, Yang J, Qiu ZC, Ding XY, Wang YH, Wang YH. Wild plants used by the Lhoba people in Douyu Village, characterized by high mountains and valleys, in southeastern Tibet, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2021; 17:46. [PMID: 34301287 PMCID: PMC8305498 DOI: 10.1186/s13002-021-00472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/14/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Douyu Village, inhabited by the Lhoba people, is situated within the Eastern Himalayas, in southeastern Tibet, China. The village is located among high mountains and valleys, which feature complex terrain with cold and dry climates and distinctive vegetation types and species. The Lhoba people in this village are isolated from other groups in China. The Lhoba people have lived in this village since the 15th century and mainly depended on gathering, hunting, and swidden agriculture before the 1960s. Because they have a long history and live under extreme climatic, geographical, and ecological conditions, the Lhoba people in Douyu Village may have unique traditional knowledge about wild plants. Thus, this research aims to record the traditional botanical knowledge of the Lhoba people in Douyu. METHODS An ethnobotanical study was conducted on the Lhoba people in Douyu Village in Longzi County, Tibet, China. Semi-structured interviews and group discussions with informed consent were used in the study. We interviewed 41 informants (14 key informants) between 18 and 75 years of age. All information was collected, organized, and compiled into "use reports" for quantitative analysis. The informant consensus factor (ICF) was used to determine the homogeneity of the informants' knowledge of medicinal plants, while the cultural importance index (CI) was used to estimate the cultural importance of shared species. RESULTS A total of 91 wild species (90 vascular plants and 1 fungus) belonging to 71 genera and 39 families utilized by the Lhoba people in Douyu were documented. Of these species, Pimpinella xizangense and Wikstroemia lungtzeensis are endemic to Longzi County, while Sinopodophyllum hexandrum and Paeonia ludlowii are endangered species in China. All habitats, from the field vegetation at the valley bottoms to the alpine shrubland and meadows, were used for plant collection, and the numbers of species of plants collected from the various vegetation types (except for fields) decreased with increasing altitude. Our study found that 55 species are edible plants and fungi, 29 species are medicinal plants, and 38 species are used for other purposes. Medicinal plants are used for 11 categories of diseases, among which diseases of blood-forming organs (ICF = 0.96) and gastrointestinal diseases (ICF = 0.95) exhibited the highest ICF values. Based on the CI values, the most important plants in this study area are Berberis xanthophloea, B. kongboensis, Sinopodophyllum hexandrum, Vicatia thibetica, and Hippophae rhamnoides subsp. gyantsensis. Moreover, a comparison of the wild plants used by Lhoba ethnic groups in three counties in China showed significant differences among these regions. CONCLUSIONS Our study demonstrates that the wild plants utilized by the Lhoba people in Douyu Village are highly diverse, at 90 plant and one fungal species, which reflects not only the number of species but also their diversified functions. The extreme climatic, geographical, and ecological conditions of Douyu within the high mountains and valleys of the Eastern Himalayas potentially affect the Lhoba people's culture, including plant utilization practices, and contribute to the rich diversity of the wild plants used by the local people.
Collapse
Affiliation(s)
- Wen-Yun Chen
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Tao Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Zhu-Chuan Qiu
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiao-Yong Ding
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu-Hua Wang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| |
Collapse
|
32
|
Lyu X, Wang X, Wang Q, Ma X, Chen S, Xiao J. Encapsulation of sea buckthorn (Hippophae rhamnoides L.) leaf extract via an electrohydrodynamic method. Food Chem 2021; 365:130481. [PMID: 34237566 DOI: 10.1016/j.foodchem.2021.130481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols from the leaves of sea buckthorn (Hippophae rhamnoides L.) are nutritious and bioactive substances that can be used as nutritional supplements. To improve their stability and bioaccessibility in vivo, chemical extracts of sea buckthorn leaves were, for the first time, encapsulated using electrohydrodynamic technology. The microcapsules were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The extract and microcapsules were evaluated for total phenols and flavonoids, total antioxidant activity, and their inhibitory effects on metabolic syndrome-related enzymes (α-glucosidase, α-amylase, and pancreatic lipase) under in vitro simulated digestion. The results indicated that the extract was successfully encapsulated; encapsulation protected polyphenols and flavonoids from degradation and increase their bioaccessibility in the intestine. The antioxidant activity and the inhibition of metabolic syndrome-related enzymes were better reserved after encapsulation. Our findings will help in promoting the potential of sea buckthorn as a nutritional supplement and expanding its commercial use.
Collapse
Affiliation(s)
- Xingang Lyu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Xiao Wang
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qilei Wang
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xueying Ma
- Food Chemistry and Food Development, University of Turku, FI-20014 Turku, Finland
| | - Suolian Chen
- Inner Mongolia Tianjiao Industrial Group Co. Ltd., Ordos 017000, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
33
|
Liu S, Xiao P, Kuang Y, Hao J, Huang T, Liu E. Flavonoids from sea buckthorn: A review on phytochemistry, pharmacokinetics and role in metabolic diseases. J Food Biochem 2021; 45:e13724. [PMID: 33856060 DOI: 10.1111/jfbc.13724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Sea buckthorn (Hippophae rhamnoides L., SBT) is being used as a folk medicine for their diverse medicinal properties. Flavonoids are generally considered as the main bioactive and characteristic ingredients in SBT. This review was conducted using a comprehensive literature search on the chemical components, quality control, pharmacokinetics of flavonoids from SBT (FSBT). Particularly, we highlighted the therapeutic potential in metabolic diseases and clinical applications of FSBT. More than 95 flavonoids have been identified from SBT. Although the oral bioavailability of FSBT was relatively low, FSBT displays significant effect on the regulation of metabolism to ameliorate metabolic disorders and their complications. There is a heightened need to explore the bioactive compounds in SBT and mechanism(s) of action of FSBT in order to fully understand the pathways of their activities. PRACTICAL APPLICATIONS: For years, due to the increasing emergence of metabolic syndrome and diverse functions of FSBT in regulating metabolism, they can be efficiently utilized for human health and have an urgent need to become a hotspot for research. This review will broaden the understanding of FSBT, providing some directions for further development and expanding the therapeutic applications of FSBT.
Collapse
Affiliation(s)
- Shiyu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Pingting Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Yujia Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Jinhua Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Tianqing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Ehu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
34
|
Nutritional, Phytochemical Characteristics and In Vitro Effect on α-Amylase, α-Glucosidase, Lipase, and Cholinesterase Activities of 12 Coloured Carrot Varieties. Foods 2021; 10:foods10040808. [PMID: 33918549 PMCID: PMC8070462 DOI: 10.3390/foods10040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Twelve carrot varieties with different colours (purple, orange, yellow, and white) and sizes (normal, mini, and micro) were analysed for prospective health benefits (activities against diabetes-, obesity-, and aging- related enzymes-α-amylase, α-glucosidase, lipase, acetylocholinesterase, and butyrylocholinesterase, respectively) and nutritional contents (polyphenols, carotenoids, and chlorophylls). The conducted studies showed that the highest content of total polyphenols was observed in different sizes of purple carrots. The normal yellow and mini orange carrots demonstrated the highest content of carotenoids. According to the study results, the mini purple carrot showed the highest activities against diabetes-related enzyme (α-glucosidase); furthermore, the highest activities of cholinesterase inhibitors were observed for micro purple carrot. Nevertheless, normal orange carrot exhibited the highest activity against lipase. The results of the present study showed that purple-coloured carrot samples of different sizes (normal, mini, and micro) exhibited attractive nutritional contents. However, their pro-health effects (anti-diabetic, anti-obesity, anti-aging) should not be seen in the inhibition of amylase, glucosidase, lipase, and cholinesterase. Probably the mechanisms of their action are more complex, and the possible health-promoting effect results from the synergy of many compounds, including fibre, phytochemicals, vitamins, and minerals. Therefore, it would be worth continuing research on different varieties of carrots.
Collapse
|
35
|
Siegień J, Buchholz T, Popowski D, Granica S, Osińska E, Melzig MF, Czerwińska ME. Pancreatic lipase and α-amylase inhibitory activity of extracts from selected plant materials after gastrointestinal digestion in vitro. Food Chem 2021; 355:129414. [PMID: 33773461 DOI: 10.1016/j.foodchem.2021.129414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
A screening of inhibitory activity of α-amylase, as well as pancreatic lipase (PL), under the influence of aqueous and ethanolic preparations from 12 plant materials was performed. The most active aqueous extracts from the fruits of Chaenomeles japonica (CJ) and Hippophaë rhamnoides (HR) were selected for artificial gastrointestinal digestion (GID). The aim of this study was to evaluate the inhibitory effect of the fractions obtained after GID on PL and α-amylase activities using a fluorescence assay. The changes in the composition of crude extracts in GID aliquots were followed by analysis with HPLC-DAD-MSn method in order to indicate active constituents. The main constituents of CJ and HR extracts were procyanidins and isorhamnetin derivatives, respectively. The most abundant compounds of extracts were found in all compartments of the digestion model correlated with relevant lipase/α-amylase inhibitory activity. What is more, the gastric and intestinal fractions inhibited enzymatic activity by at least 40%.
Collapse
Affiliation(s)
- Justyna Siegień
- Student Scientific Association, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Tina Buchholz
- Institute of Pharmacy-Pharmaceutical Biology, Freie Universitaet Berlin, 2+4 Koenigin-Luise street, D-14195 Berlin, Germany
| | - Dominik Popowski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland
| | - Ewa Osińska
- Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences, 159 Nowoursynowska street, 02-776 Warsaw, Poland
| | - Matthias F Melzig
- Institute of Pharmacy-Pharmaceutical Biology, Freie Universitaet Berlin, 2+4 Koenigin-Luise street, D-14195 Berlin, Germany
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Centre for Preclinical Studies, Medical University of Warsaw, 1 Banacha street, 02-097 Warsaw, Poland.
| |
Collapse
|
36
|
Wojdyło A, Nowicka P, Tkacz K, Turkiewicz IP. Fruit tree leaves as unconventional and valuable source of chlorophyll and carotenoid compounds determined by liquid chromatography-photodiode-quadrupole/time of flight-electrospray ionization-mass spectrometry (LC-PDA-qTof-ESI-MS). Food Chem 2021; 349:129156. [PMID: 33581431 DOI: 10.1016/j.foodchem.2021.129156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
This study focused on the identification (by LC-PDA-qTof-ESI-MS) and quantification (by UPLC-PDA) of isoprenoids of the fruit tree leaves (FTL) of commonly consumed fruits: apple, pears, quince, apricot, peach, plums, sweet and sour cherry. The FTL were collected at 2 time points: after tree blooming and after fruit collection. In FTL 7 carotenoids and 16 chlorophylls were identified, but the number of labeled chlorophyll compounds depended on the species. FTL of apple, sour cherry and apricot were identified as the best sources of chlorophylls (mean 404.8, 388.7 and 364.5 mg/100 g dw, respectively) and sweet and sour cherry leaves as the best sources of carotenoids (831.4 and 1162.0 mg/100 g dw, respectively). A lower content of chlorophylls and carotenoids, but not significantly, was detected in leaves after autumn collection of fruits compared to leaves collected after blooming. Fruit tree leaves are good material for isolation of chlorophylls and carotenoids for application in cosmetics, pharmaceuticals or in the food industry, e.g. production of beverages or puree.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Paulina Nowicka
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Karolina Tkacz
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Igor Piotr Turkiewicz
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
37
|
Ma X, Yang W, Kallio H, Yang B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn ( Hippophaë rhamnoides). Crit Rev Food Sci Nutr 2021; 62:3798-3816. [PMID: 33412908 DOI: 10.1080/10408398.2020.1869921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sea buckthorn (Hippophaë rhamnoides L., SB), as a multi-functional plant, is widely grown in Asia, Europe and Canada. The berries and leaves of SB contain a diverse array of health-supporting phytochemicals, which are also related to the sensory qualities of berry and berry products. This review summarizes the biologically active key-compounds of the berries and leaves of SB, their health-promoting effects, as well as the contributions to the sensory quality of the berries. The target compounds consist of sugars, sugar derivatives, organic acids, phenolic compounds and lipophilic compounds (mainly carotenoids and tocopherols), which play an important role in anti-inflammatory and antioxidant functions, as well as in metabolic health. In addition, these compounds contribute to the orosensory qualities of SB berries, which are closely related to consumer acceptance and preference of the products. Studies regarding the bioavailability of the compounds and the influence of the processing conditions are also part of this review. Finally, the role of the sensory properties is emphasized in the development of SB products to increase utilization of the berry as a common meal component and to obtain value-added products to support human health.
Collapse
Affiliation(s)
- Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland.,Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
38
|
Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem 2020; 332:127382. [DOI: 10.1016/j.foodchem.2020.127382] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
|
39
|
Tkacz K, Wojdyło A, Turkiewicz IP, Nowicka P. Anti-diabetic, anti-cholinesterase, and antioxidant potential, chemical composition and sensory evaluation of novel sea buckthorn-based smoothies. Food Chem 2020; 338:128105. [PMID: 33092003 DOI: 10.1016/j.foodchem.2020.128105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
Sea buckthorn berries fit into the strategy of seeking natural factors in the non-communicable diseases prevention, but their sensory qualities are a challenge for consumers and food industry. The study aimed to evaluate anti-cholinesterase (anti-acetylcholinesterase and -butylcholinesterase), anti-diabetic (anti-α-amylase, -α-glucosidase, -pancreatic lipase) and antioxidant potential (FRAP, ORAC), phenolic compounds (UPLC-PDA-FL), basic chemical composition, and sensory quality of sea buckthorn-based smoothies. Eighteen novel products containing sea buckthorn (25-50%) with other fruits and vegetables were analyzed. Sea buckthorn enriched the smoothies in flavonols (25.46-95.13 mg/100 g), and fruits and vegetables provided phenolic acids and procyanidins. The anti-BuChE effect was higher than anti-AChE, while products with apricot, orange, grape and parsley root were strong inhibitors of carbohydrates digesting enzymes. Lipase inhibition by all smoothies was over 50%. Products with 75% fruits or 50% vegetables were the most sensory attractive. The results will be valuable in designing innovative food with rarely used berries.
Collapse
Affiliation(s)
- Karolina Tkacz
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Aneta Wojdyło
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Igor Piotr Turkiewicz
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Paulina Nowicka
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| |
Collapse
|
40
|
Qader SW, Abdallah HH, Zahid M, Chua LS. In vitro Acetylcholinesterase inhibitory activity of polyphenolic compounds identified from Matricaria recutita. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acetylcholinesterase (AChE) is a key enzyme enhancing the cognitive disorder, leading to Alzheimer’s disease, and AChE inhibition is a crucial therapeutic mechanism against it. Matricaria recutita (MR) is widely used as a herbal medicine due to its phytotherapeutic properties. For this reason, MR flower was evaluated to identify polyphenolic compounds (PC), and then each PC is examined for AChE inhibitory activity. The ultra-performance liquid chromatography-electrospray tandem mass spectrometry UPLC-ESI-MS/MS was used to detect PC, and molecular docking was performed to insight potential inhibitory activity of PC against AChE. A series of 13 PC compounds were identified in the fractions of MR plant. Docking studies revealed that the inhibitory free energy and the position of the docked compounds in the active site are favored for the active compounds complex formed between AChE and the identified PC compounds. The accurate analysis of the docking result demonstrates that Kaempferol-3-O-rutinoside (KR) and Luteolin-8-C-glucoside (orientin) (LG) are the most significant inhibitory compounds against AChE. It can be concluded that MR is a significant source of PC compounds, and KR and LG are the most promising compounds that have high-affinity binding to AChE, based on docking outcome. Further experiments are recommended to explore in vivo enzyme compound interaction and toxicity models to establish the maximum suggested dose.
Collapse
Affiliation(s)
- Suhailah Wasman Qader
- Department For Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hassan H. Abdallah
- Department of Chemistry, College of Education, Salahaddin University, 44001 Erbil, Iraq
| | - Mstaffa Zahid
- Department of Biology, College of Education, Salahaddin University, 44001 Erbil, Iraq
| | - Lee Suan Chua
- Institute of Bioproduct Development, University Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
41
|
Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules 2020; 25:molecules25173801. [PMID: 32825580 PMCID: PMC7503870 DOI: 10.3390/molecules25173801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/02/2023] Open
Abstract
Sea buckthorn (Hippophaë rhamnoides L.) juice with inulin, maltodextrin, and inulin:maltodextrin (1:2 and 2:1) were spray-, freeze- and vacuum-dried at 50, 70 and 90 °C. The study aimed to assess the impact of drying methods and carrier agents on physical properties (moisture content, water activity, true and bulk density, porosity, color parameters, browning index), chemical components (hydroxymethylfurfural and phenolic compounds) and antioxidant capacity of sea buckthorn juice powders. Storage of powders was carried out for six months. Inulin caused stronger water retention in powders than maltodextrin. Vacuum drying provided powders with the highest bulk density. Maltodextrin did not promote browning and HMF formation as strongly as inulin. More phenolic compounds were found in powders with maltodextrin. Storage increased the antioxidant capacity of powders. The results obtained will be useful in optimizing the powders production on an industrial scale, designing attractive food ingredients.
Collapse
|
42
|
Criste A, Urcan AC, Bunea A, Pripon Furtuna FR, Olah NK, Madden RH, Corcionivoschi N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn ( Hippophae Rhamnoides L.) Varieties. Molecules 2020; 25:E1170. [PMID: 32150954 PMCID: PMC7179145 DOI: 10.3390/molecules25051170] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
Hippophae rhamnoides L. is an important source of natural antioxidant and antimicrobial agents. Phytochemical compounds, antioxidant and antibacterial properties of berries, and leaf extracts from four Romanian sea buckthorn cultivars were investigated. Large differences in the content of total polyphenols and flavonoids between the varieties were observed. HPLC analysis of the polyphenolic compounds showed greater differences in content in leaves than in berries. This study confirmed that sea buckthorn leaves and berries are a rich source of phenolic compounds, especially quercetin derivatives and hydrocinnamic acid derivatives. Five carotenoid compounds were identified in the berries: lutein, zeaxanthin, β-cryptoxanthin, cis-β-carotene, and β-carotene. From the results obtained in this study, it can be stated that the varieties whose berries yielded the highest quantities of polyphenols, flavonoids, and antioxidant activity, can be ranked as follows: SF6 > Golden Abundant > Carmen > Colosal, and for leaf extracts the ranked order is SF6 > Golden Abundant > Colosal > Carmen. A strong correlation between the total flavonoid yield and antioxidant activity (r = 0.96), was observed. All extracts showed antibacterial activity against S. aureus, B. cereus, and P. aeruginosa, however extracts from berries were less potent than extracts from leaves.
Collapse
Affiliation(s)
- Adriana Criste
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Andrea Bunea
- Department of Chemistry and Biochemistry, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania;
| | | | - Neli Kinga Olah
- SC PlantExtrakt SRL, Rădaia, jud. Cluj 407059, Romania; (F.R.P.F.); (N.K.O.)
| | - Robert H. Madden
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (R.H.M.); (N.C.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (R.H.M.); (N.C.)
| |
Collapse
|
43
|
Ren R, Li N, Su C, Wang Y, Zhao X, Yang L, Li Y, Zhang B, Chen J, Ma X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv 2020; 10:44654-44671. [PMID: 35516250 PMCID: PMC9058667 DOI: 10.1039/d0ra06488b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Sea buckthorn (SB), also named sea berry, Hippophae rhamnoides L. or Elaeagnus rhamnoides L., has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases. SB is well known more than just a fruit. So far, a unique mixture of bioactive components was elucidated in SB including flavonoids, phenolic acids, proanthocyanidins, carotenoids, fatty acids, triterpenoids, vitamins and phytosterols, which implied the great medicinal worth of this seaberry. Both in vitro and in vivo experiments, ranged from cell lines to animals as well as a few in patients and healthy volunteers, indicated that SB possessed various biological activities including anti-inflammatory and immunomodulatory effects, antioxidant properties, anti-cancer activities, hepato-protection, cardiovascular-protection, neuroprotection, radioprotection, skin protection effect as well as the protective effect against some eye and gastrointestinal sickness. Furthermore, the toxicological results revealed neither the fruits, nor the seeds of SB were toxic. The present review summarizes the unique profile of the chemical compounds, the nutritional and health effects as well as the toxicological properties of SB, which lay the foundation for practical applications of SB in treatment of human diseases. Sea buckthorn (SB), also named sea berry, has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases.![]()
Collapse
|