1
|
Xue J, Ma C, Yang S, Guo S, Yin X, Fan J, Li X, Wang M, Teng G. Janus hydrogel loaded with a CO 2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation. Food Chem 2024; 458:140271. [PMID: 38964097 DOI: 10.1016/j.foodchem.2024.140271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
In this study, we inserted a dynamic chemical reaction system that can generate CO2 into Janus hydrogel (JH) to develop a multidimensional preservation platform that integrates hygroscopicity, antibacterial activity, and modified atmospheric capacity. The double gel system developed using sodium alginate/trehalose at a 1:1 ratio effectively encapsulated 90% of citric acid. Furthermore, CO2 loss was avoided by separately embedding NaHCO3/cinnamon essential oil and citric acid microcapsules into a gelatin pad to develop JH. Freeze-dried JH exhibited a porous and asymmetric structure, very strongly absorbing moisture, conducting water, and rapidly releasing CO2 and essential oils. Furthermore, when preserving various fruits and vegetables in practical settings, JH provided several preservation effects, including color protection, microbial inhibition, and antioxidant properties. Our study findings broaden the application of JH technology for developing chemical reaction systems, with the resulting JH holding substantial promise for cold chain logistics.
Collapse
Affiliation(s)
- Jiawei Xue
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Changyao Ma
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Shuqi Yang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Shuchang Guo
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China.
| | - Xiuting Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China.
| | - Mengze Wang
- Horticulture Technology Extension Center of Ningxia, Yinchuan, China
| | - Guoxin Teng
- Shanghai Milkground Food Tech Co., Ltd., Shanghai, China
| |
Collapse
|
2
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Chen K, Zhang M, Bhandari B, Deng D. 3D printed cinnamon essential oil/banana peel carbon dots loaded corn starch/gelatin bilayer film with enhanced functionality for food packaging application. Food Chem 2024; 448:139176. [PMID: 38574719 DOI: 10.1016/j.foodchem.2024.139176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Using 3D printing technology, a gelatin-polyvinyl alcohol‑carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, QLD, Australia
| | - Dewei Deng
- Zhengzhou Xuemailon Food Flavor Co. R & D center, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Witek-Krowiak A, Szopa D, Anwajler B. Advanced Packaging Techniques-A Mini-Review of 3D Printing Potential. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2997. [PMID: 38930366 PMCID: PMC11205735 DOI: 10.3390/ma17122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Packaging and packaging technology constitute a pivotal industry deeply intertwined with our daily lives and prevalent in various settings, including grocery stores, supermarkets, restaurants, and pharmacies. The industry is constantly evolving thanks to technological advances. This article delves into the dynamic landscape of 3D printing in packaging, exploring its profound implications and potential. While this article highlights the advantages of traditional packaging approaches, it also highlights the many benefits of 3D printing technology. It describes how 3D printing enables personalization, rapid prototyping, and low-cost production, streamlining packaging design and manufacturing processes. Offering innovative solutions in design, functionality, and accessibility, the potential of 3D printing in packaging is promising.
Collapse
Affiliation(s)
- Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland;
| | - Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland;
| | - Beata Anwajler
- Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland;
| |
Collapse
|
5
|
He Y, Yuan Y, Gao Y, Chen M, Li Y, Zou Y, Liao L, Li X, Wang Z, Li J, Zhou W. Enhancement of Colorimetric pH-Sensitive Film Incorporating Amomum tsao-ko Essential Oil as Antibacterial for Mantis Shrimp Spoilage Tracking and Fresh-Keeping. Foods 2024; 13:1638. [PMID: 38890874 PMCID: PMC11171633 DOI: 10.3390/foods13111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Anthocyanin-based smart packaging has been widely used for food freshness monitoring, but it cannot meet the requirements of smart films with antibacterial properties. This study aimed to enhance the antibacterial properties of intelligent films by incorporating Amomum tsao-ko essential oil (AEO) for mantis shrimp spoilage tracking and keeping the product fresh. A smart film was designed by introducing AEO and purple potato anthocyanin (PPA) to a polyvinyl alcohol/cellulose nanocrystal (PVA/CNC) polymer matrix. Our findings revealed that APP and AEO imparted the smart film with a favorable oxygen barrier, UV protection, mechanical properties, and antioxidant and pH/NH3-sensitive functions. Interestingly, the PVA/CNC-AEO-PPA film achieved 45.41% and 48.25% bactericidal efficacy against S. putrefaciens and V. parahaemolyticus, respectively. Furthermore, a visual observation confirmed that the target film (PVA/CNC-AEO-PPA) changed color significantly during mantis shrimp spoilage: rose red-light red-pink-light gray-dark gray. Meanwhile, the PVA/CNC-AEO-PPA film retarded the quality deterioration of the mantis shrimp effectively. The PVA/CNC-AEO-PPA film shows great application potential in mantis shrimp preservation and freshness monitoring; it is expected to become a rapid sensor for detecting seafood quality non-destructively and a multifunctional film for better preservation of product quality.
Collapse
Affiliation(s)
- Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yuan Yuan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yuanyuan Gao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yingying Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Ying Zou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Xiaotong Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| |
Collapse
|
6
|
Yue R, Zhang Y, Liu J, Sun J. Preparation of Steamed Purple Sweet Potato-Based Films Containing Mandarin Essential Oil for Smart Packaging. Molecules 2024; 29:2314. [PMID: 38792175 PMCID: PMC11124375 DOI: 10.3390/molecules29102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.
Collapse
Affiliation(s)
- Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| | - Yiren Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| |
Collapse
|
7
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
8
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Bao Y, Wang M, Si X, Li D, Gui H, Jiang Q, Li J, Yang S, Yang Y, Li Z, Li B. Customized development of 3D printed anthocyanin-phycocyanin polychromatic oral film via chondroitin sulfate homeostasis: A platform based on starch and κ-carrageenan. Carbohydr Polym 2024; 330:121817. [PMID: 38368099 DOI: 10.1016/j.carbpol.2024.121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
The development of oral film with diverse colors and customized nutrition is in line with the innovation of emerging food. In this study, polychromatic system was formed by regulating the ratio of phycocyanin (PC) to blueberry anthocyanin (BA). Further, chondroitin sulfate (CS) was utilized to achieve color-enhanced and homeostatic effects on PC-BA, and κ-carrageenan (KC) - starch complex was exploited as printing ink to construct oral film system. The color-enhanced effect of CS is mainly related to the complexation of sulfate groups, and the film-forming substrates are combined mainly through hydrogen bonding. In addition, the proportion of KC modulated the gel structure of printing ink, and affected 3D printability and physical properties of oral film. OF II (1.5 % KC content) had a uniform and dense network structure, with the most stable color and the highest BA retention (70.33 %) after 8 d of light exposure. Importantly, OF II had an excellent slow-release effect, and BA release rate was as high as 92.52 %. The optimized components can form polychromatic oral film with controllable color and structure, and provide new insights for the creation of sensory personalized and nutritionally customized food.
Collapse
Affiliation(s)
- Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingshuang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji, Zhejiang 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji, Zhejiang 311800, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
10
|
Pang H, Wu Y, Tao Q, Xiao Y, Ji W, Li L, Wang H. Active cellulose acetate/purple sweet potato anthocyanins@cyclodextrin metal-organic framework/eugenol colorimetric film for pork preservation. Int J Biol Macromol 2024; 263:130523. [PMID: 38428771 DOI: 10.1016/j.ijbiomac.2024.130523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
As a natural pH-sensing colorant, purple sweet potato anthocyanins (PSPAs) have demonstrated great potential in colorimetric film for freshness monitoring. However, the photothermal instability of PSPAs is still a challengeable issue. Herein, γ-cyclodextrin metal-organic framework (CD-MOF) loaded with PSPAs (PSPAs@CD-MOF, i.e., PM) and eugenol (EUG) were incorporated in cellulose acetate (CA) matrix for developing a smart active colorimetric film of CA/PM/EUG, where PM and EUG were hydrogen-bonded with CA. Attentions were focused on the photothermal colorimetric stability, colorimetric response, and antibacterial activity of the films. The presence of PM and EUG endowed the film outstanding UV-blocking performance and enhanced the barrier against water vapor and oxygen. Target film of CA/PM15/EUG10 had good photothermal colorimetric stability due to the protection of CD-MOF on PSPAs and the color changes with pH-stimuli were sensitive and reversible. In addition to antioxidant activity, CA/PM15/EUG10 had antibacterial activity against Escherichia coli and Staphylococcus aureus. The application trial results indicated that the CA/PM15/EUG10 was valid to indicate pork freshness and extended the shelf-life by 100 % at 25 °C, which has demonstrated a good perspective on smart active packaging for freshness monitoring and shelf-life extension.
Collapse
Affiliation(s)
- Huaiting Pang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yimin Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Qianlan Tao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Wei Ji
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Linlin Li
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, Anhui, China; Province Key Laboratory of Agricultural Products Modern Processing, 230601 Hefei, Anhui, China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Province Engineering Research Center of Flexible and Intelligent Materials, 230009 Hefei, Anhui, China; Province Key Laboratory of Agricultural Products Modern Processing, 230601 Hefei, Anhui, China.
| |
Collapse
|
11
|
Song A, Wu Y, Li C. Time-temperature indicator of hydroxyethyl cellulose ink labels for assessing pork freshness. Int J Biol Macromol 2024; 265:130592. [PMID: 38471609 DOI: 10.1016/j.ijbiomac.2024.130592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Pork is widely consumed worldwide, and many consumers now utilize sensory evaluation techniques to determine the freshness of pork when buying it. A color-changing ink label utilizing bromocresol purple (BCP) and N-hydroxyphthalimide (NHPI) had been created to help consumers better and more rapidly determine the freshness of pork while it is stored. The ink was easy to prepare and could be readily transferred to A4 paper using screen printing technology. This study delved deeper into the impact of hydroxyethyl cellulose (HEC) on the functional properties of inks to enhance printing performance. The experiment demonstrated that a 1 % mass fraction of HEC improved thixotropy and facilitated the even distribution of ink on A4 paper, as confirmed by scanning electron microscopy. Screen-printed labels with varying concentrations displayed distinct color change rates when stored at different temperatures, indicating their capability to assess pork freshness. FT-IR, laboratory, and stability tests verified the ink's exceptional color change capabilities and printing attributes. An analysis using the Arrhenius equation revealed a substantial synergistic effect between BCP and NHPI, resulting in improved sensitivity and accuracy of the ink. This study offers a practical and feasible method to monitor the storage quality of pork effectively.
Collapse
Affiliation(s)
- Anning Song
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yanglin Wu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
12
|
Koshovyi O, Komisarenko M, Osolodchenko T, Komissarenko A, Mändar R, Kõljalg S, Heinämäki J, Raal A. Eucalypt Extracts Prepared by a No-Waste Method and Their 3D-Printed Dosage Forms Show Antimicrobial and Anti-Inflammatory Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:754. [PMID: 38592748 PMCID: PMC10976152 DOI: 10.3390/plants13060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
The pharmaceutical industry usually utilizes either hydrophobic or hydrophilic substances extracted from raw plant materials to prepare a final product. However, the waste products from the plant material still contain biologically active components with the opposite solubility. The aim of this study was to enhance the comprehensive usability of plant materials by developing a new no-waste extraction method for eucalypt leaves and by investigating the phytochemical and pharmacological properties of eucalypt extracts and their 3D-printed dosage forms. The present extraction method enabled us to prepare both hydrophobic soft extracts and hydrophilic (aqueous) dry extracts. We identified a total of 28 terpenes in the hydrophobic soft extract. In the hydrophilic dry extract, a total of 57 substances were identified, and 26 of them were successfully isolated. The eucalypt extracts studied showed significant antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans, Corynebacterium diphtheriae gravis, and Corynebacterium diphtheriae mitis. The anti-inflammatory activity of the dry extract was studied using a formalin-induced-edema model in mice. The maximum anti-exudative effect of the dry extract was 61.5% at a dose of 20 mg/kg. Composite gels of polyethylene oxide (PEO) and eucalypt extract were developed, and the key process parameters for semi-solid extrusion (SSE) 3D printing of such gels were verified. The SSE 3D-printed preparations of novel synergistically acting eucalypt extracts could have uses in antimicrobial and anti-inflammatory medicinal applications.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Mykola Komisarenko
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Tatyana Osolodchenko
- State Institution “I.Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine”, 14-16, Pushkinskaya St., 61057 Kharkov, Ukraine;
| | - Andrey Komissarenko
- Pharmacognosy Department, The National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine; (M.K.); (A.K.)
| | - Reet Mändar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (R.M.); (S.K.)
| | - Siiri Kõljalg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (R.M.); (S.K.)
- Laboratory of Clinical Microbiology, United Laboratories, Tartu University Hospital, L. Puusepa 1a, 50406 Tartu, Estonia
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| |
Collapse
|
13
|
Chen Y, Wang S, Yang C, Zhang L, Li Z, Jiang S, Bai R, Ye X, Ding W. Chitosan/konjac glucomannan bilayer films: Physical, structural, and thermal properties. Int J Biol Macromol 2024; 257:128660. [PMID: 38065457 DOI: 10.1016/j.ijbiomac.2023.128660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
To overcome the limitations of chitosan (CS) and konjac glucomannan (KGM), the bilayer films of CS and KGM were prepared by layer-by-layer (LBL) casting method, and the effects of different mass ratios (i.e., C5: K0, C4:K1, C3:K2, C1:K1, C2:K3, C1:K4, and C0:K5) on the microstructures and physicochemical properties of bilayer films were examined to evaluate their applicability in food packaging. The results revealed that the bilayer films had uniform microstructures. When compared with pure films, the bilayer films displayed lower swelling degrees and water vapor permeability. However, the tensile tests revealed a reduction in the mechanical properties of the bilayer films, which was nonetheless superior to that of the pure KGM film. In addition, the intermolecular interactions between the CS and KGM layers were observed through FTIR and XRD analyses. Finally, TGA and DSC analyses demonstrated a decrease in the thermal stability of the bilayer films. Our cumulative results verified that CS-KGM bilayer films may be a promising material for use in food packaging and further properties of the bilayer films can be supplemented in the future through layer-by-layer modification and the addition of active ingredients.
Collapse
Affiliation(s)
- Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Li H, Liu M, Li J, Zhang X, Zhang H, Zheng L, Xia N, We I A, Hua S. 3D Printing of smart labels with curcumin-loaded soy protein isolate. Int J Biol Macromol 2024; 255:128211. [PMID: 37989429 DOI: 10.1016/j.ijbiomac.2023.128211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
A two-step method for preparing smart labels that can monitor food freshness through color change is presented. The conventional casting method for such labels is not cost-effective, as it uses organic solvents and requires additional cutting processes. Our method is more eco-friendly and customizable, as it uses water as the sole solvent and 3D printing as the fabrication technique. First, curcumin was encapsulated with soy protein isolate (SPI) by a pH-driven method involving hydrogen bonding and hydrophobic interactions. Subsequently, the SPI-curcumin complex was blended with gelatin to create a printable ink. The ink has suitable rheological properties for extrusion, with a yield stress of 400-600 Pa and a viscosity of 122.93-142.82 Pa·s at the optimal printing temperature. The complex modulus of the ink increases to above 2 × 103 Pa when cooled to 25 °C, indicating rapid gel formation. The application of these smart labels to minced meat demonstrated their ability to reflect its freshness by transitioning from yellow to red. Furthermore, the printability and mechanical properties of the labels can be adjusted by changing the glycerol/water ratio. This innovative approach is a promising solution for producing environmentally friendly and customizable smart labels for food freshness monitoring.
Collapse
Affiliation(s)
- Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jinghong Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiaohan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Afeng We I
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shihui Hua
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| |
Collapse
|
15
|
Huang X, Wang F, Hu W, Zou Z, Tang Q, Li H, Xu L. Smart packaging films based on corn starch/polyvinyl alcohol containing nano SIM-1 for monitoring food freshness. Int J Biol Macromol 2024; 256:128373. [PMID: 38000590 DOI: 10.1016/j.ijbiomac.2023.128373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
There is at present an acute need for the construction of biopolymer-based smart packaging material that can be applied for the real-time visual monitoring of food freshness. Herein, a nano-sized substituted imidazolate material (SIM-1) with ammonia-sensitive and antibacterial ability was effectively manufactured and then anchored within corn starch/polyvinyl alcohol (CS/PVA) blend to construct biopolymeric smart active packaging material. The structure, physical and functional performances of CS/PVA-based films with different content of SIM-1 (0.5, 1.0 and 2.0 wt% on CS/PVA basis) were then explored in detail. Results revealed that the incorporated SIM-1 nanocrystals were equally anchored within the CS/PVA matrix owing to the establishment of potent hydrogen-bonding interactions, which produced an obvious improvement in the compatibility of CS/PVA blend film, as well as its mechanical strength, water/oxygen barrier and UV-screening performances. The constructed CS/PVA/SIM-1 blend films further demonstrated superior long-term color stability property, ammonia-sensitive and antibacterial functions. Furthermore, the CS/PVA/SIM-1 blend films were utilized for effectively monitoring the deterioration of shrimp via observable color alteration. The above findings suggested the potential applications of CS/PVA/SIM-1 blend films in smart active packaging.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Fangfang Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Wenkai Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Lin Xu
- Biomaterials R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, PR China.
| |
Collapse
|
16
|
Zhu B, Zhong Y, Wang D, Deng Y. Active and Intelligent Biodegradable Packaging Based on Anthocyanins for Preserving and Monitoring Protein-Rich Foods. Foods 2023; 12:4491. [PMID: 38137296 PMCID: PMC10742553 DOI: 10.3390/foods12244491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, active and intelligent packaging has been developed to solve the spoilage problem for protein-rich foods during storage, especially by adding anthocyanin extracts. In such a film system, the antioxidant and antibacterial properties were dramatically increased by adding anthocyanins. The physicochemical properties were enhanced through interactions between the active groups in the anthocyanins and reactive groups in the polymer chains. Additionally, the active and intelligent film could monitor the spoilage of protein-rich foods in response to pH changes. Therefore, this film could monitor the sensory acceptance and extend the shelf life of protein-rich foods simultaneously. In this paper, the structural and functional properties of anthocyanins, composite actions of anthocyanin extracts and biomass materials, and reinforced properties of the active and intelligent film were discussed. Additionally, the applications of this film in quality maintenance, shelf-life extension, and quality monitoring for fresh meat, aquatic products, and milk were summarized. This film, which achieves high stability and the continuous release of anthocyanins on demand, may become an underlying trend in packaging applications for protein-rich foods.
Collapse
Affiliation(s)
| | | | | | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (B.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
17
|
Huang J, Hu Z, Li G, Chin Y, Pei Z, Yao Q, Li D, Hu Y. The highly stable indicator film incorporating roselle anthocyanin co-pigmented with oxalic acid: Preparation, characterization and freshness monitoring application. Food Res Int 2023; 173:113416. [PMID: 37803754 DOI: 10.1016/j.foodres.2023.113416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
A novel stable PVA/HPMC/roselle anthocyanin (RAE) indicator film co-pigmented with oxalic acid (OA) was prepared, its properties, application effects and stability enhancement mechanism were investigated correspondingly. The structural characterization revealed that more stable network was formed due to the co-pigmentation facilitated generation of molecular interactions. Meanwhile, the co-pigmentation improved film mechanical and hydrophobic properties compared to both PVA/HPMC/RAE newly prepared (PHRN) or stored (PHRS) film, expressing as higher tensile strength values (12.25% and 14.44% higher than PHRN and PHRS), lower water solubility (7.22% and 10.09% lower than PHRN and PHRS) and water vapor permeability values (33.20% and 21.05% lower than PHRN and PHRS) of PVA/HPMC/RAE/OA newly prepared (PHON) or stored (PHOS) film. Compared with the PHRS film, the PHOS film still presented more distinguishable color variations when being applied to monitor shrimp freshness, owing to the stabilization behaviors of co-pigmentation in anthocyanin conformation. Hence, the co-pigmentation was an effective strategy to enhance film stability, physical and pH-responsive properties after long term storage, leading to better film monitoring effects when applied in real-time freshness monitoring.
Collapse
Affiliation(s)
- Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Gaoshang Li
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaoxian Chin
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Zhisheng Pei
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China.
| |
Collapse
|
18
|
Chen Q, Zhang P, You N, Xu Y, Zhang Y, Luan P, Lin B, Wang Z, Zhang L. Preparation and characterization of corn starch-based antimicrobial indicator films containing purple corncob anthocyanin and tangerine peel essential oil for monitoring pork freshness. Int J Biol Macromol 2023; 251:126320. [PMID: 37579905 DOI: 10.1016/j.ijbiomac.2023.126320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
A novel antibacterial indicator film was prepared by mixing corn starch with tangerine peel essential oil (TEO) Pickering emulsion emulsified by ultrasonic and esterified modified starch (UDSt), and then incorporated with purple corncob anthocyanin (PCA), which was used to monitor the freshness of pork. The results showed that the UDSt can effectively stabilize the TEO emulsion. PCA showed obvious color changes at different pH. With the increase of pH, the color of film changed from red to yellow, and its response to volatile ammonia changed from pink to cyan, showing better response ability. The loading of TEO conferred the film excellent bacteriostatic ability against E. coli and S. aureus. The film also had good ability of light blocking and free radical scavenging. In the process of pork deterioration, the antibacterial indicator film changed from pink to yellow, which was closely related to pork quality and had a good linear indicator correlation. The addition of TEO reduced the release of PCA in the antibacterial indicator film and helped to maintain the functional properties of the film. This type of antibacterial indicator film had considerable application potential in indicating food freshness.
Collapse
Affiliation(s)
- QiJie Chen
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China.
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - Na You
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - YiNing Xu
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - YaZeng Zhang
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - PengCheng Luan
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - BenPing Lin
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - ZhengMin Wang
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| |
Collapse
|
19
|
Liu Y, Tong F, Xu Y, Hu Y, Liu W, Yang Z, Yu Z, Xiong G, Zhou Y, Xiao Y. Development of antioxidant and smart NH 3 -sensing packaging film by incorporating bilirubin into κ-carrageenan matrix. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7030-7039. [PMID: 37337853 DOI: 10.1002/jsfa.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Active and smart food packaging based on natural polymers and pH-sensitive dyes as indicators has attracted widespread attention. In the present study, an antioxidant and amine-response color indicator film was developed by incorporating bilirubin (BIL) into the κ-carrageenan (Carr) matrix. RESULTS It was found that the introduction of BIL had no effect on the crystal/chemical structure, water sensitivity and mechanical performance of the Carr-based films. However, the barrier properties to light and the thermal stability were significantly improved after the addition BIL. The Carr/BIL composite films exhibited excellent 1,1-diphenyl-2-picryl-hydrazyl (i.e. DPPH)/2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (i.e. ABTS) free radical scavenging abilities and color responsiveness to different concentrations of ammonia. The application assay reflected that the Carr/BIL0.0075 film was effective in delaying the oxidative deterioration of shrimp during storage and realizing the color response of its freshness through the change of b* value. CONCLUSION Active and smart packaging films were successfully prepared by incorporating different contents of BIL into the Carr matrix. The present study helps to further encourage the design and development of a multi-functional packaging material. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Fei Tong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Zan Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Guoyuan Xiong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| |
Collapse
|
20
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
21
|
Wu Y, Yu X, Ding W, Remón J, Xin M, Sun T, Wang TTY, Yu LL, Wang J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int J Biol Macromol 2023; 249:125922. [PMID: 37482166 DOI: 10.1016/j.ijbiomac.2023.125922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.
Collapse
Affiliation(s)
- Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Xueling Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, PR China.
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain
| | - Mengmeng Xin
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China.
| |
Collapse
|
22
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
23
|
Yu D, Cheng S, Li Y, Su W, Tan M. Recent advances on natural colorants-based intelligent colorimetric food freshness indicators: fabrication, multifunctional applications and optimization strategies. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 37655606 DOI: 10.1080/10408398.2023.2252904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.
Collapse
Affiliation(s)
- Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
24
|
Yang B, Yang L, Huang WL, Zhou QZ, He J, Zhao X. Application experience and research progress of different emerging technologies in plastic surgery. World J Clin Cases 2023; 11:4258-4266. [PMID: 37449226 PMCID: PMC10336992 DOI: 10.12998/wjcc.v11.i18.4258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/26/2023] Open
Abstract
In the diagnosis and treatment of plastic surgery, there are structural processing problems, such as positioning, moving, and reconstructing complex three-dimensional structures. Doctors operate according to their own experience, and the inability to accurately locate these structures is an important problem in plastic surgery. Emerging digital technologies such as virtual reality, augmented reality, and three-dimensional printing are widely used in the medical field, particularly in plastic surgery. This article reviews the development of these three technical concepts, introduces the technical elements and specific applications required in plastic surgery, summarizes the application status of the three technologies in plastic surgery, and summarizes prospects for future development.
Collapse
Affiliation(s)
- Bin Yang
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| | - Ling Yang
- Radiology Department, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, Yunnan Province, China
| | - Wen-Li Huang
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| | - Qing-Zhu Zhou
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| | - Jia He
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| | - Xian Zhao
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| |
Collapse
|
25
|
Koshovyi O, Heinämäki J, Raal A, Laidmäe I, Topelius NS, Komisarenko M, Komissarenko A. PHARMACEUTICAL 3D-PRINTING OF NANOEMULSIFIED EUCALYPT EXTRACTS AND THEIR ANTIMICROBIAL ACTIVITY. Eur J Pharm Sci 2023:106487. [PMID: 37277046 DOI: 10.1016/j.ejps.2023.106487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Overcoming the health threatening consequences of staphylococcal infections and their negative socio-economic effects have become a priority in the medical, pharmaceutical, food and many other sectors globally. Staphylococcal infections are a big challenge for a global health care, since they are difficult to be diagnosed and treated. Therefore, the development of new medicinal products of plant-origin is timely and important, because bacteria have a limited ability to develop resistance to such products. In the present study, a modified eucalypt (Eucalyptus viminalis L.) extract was prepared and further enhanced by using different excipients (surface active agents) to obtain a water-miscible 3D-printable extract (nanoemulsified aqueous eucalypt extract). Phytochemical and antibacterial studies of the eucalypt leaves extracts were conducted as a preliminary investigation for 3D-printing experiments of the extracts. The nanoemulsified aqueous eucalypt extract was mixed with polyethylene oxide (PEO) to form a gel applicable for semi-solid extrusion (SSE) 3D printing. The key process parameters in a 3D-printing process were identified and verified. The printing quality of the 3D-lattice type eucalypt extract preparations was very good, demonstrating the feasibility of using an aqueous gel in SSE 3D printing also exhibiting compatibility of the carrier polymer (PEO) with the plant extract. The SSE 3D-printed eucalypt extract preparations presented a rapid dissolution in water within 10-15 minutes, suggesting the applicability of these preparations e.g., in oral immediate-release applications.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; The National University of Pharmacy, 53 Pushkinska st, 61002 Kharkiv, Ukraine.
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Ivo Laidmäe
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | | | - Mykola Komisarenko
- The National University of Pharmacy, 53 Pushkinska st, 61002 Kharkiv, Ukraine.
| | - Andrey Komissarenko
- The National University of Pharmacy, 53 Pushkinska st, 61002 Kharkiv, Ukraine.
| |
Collapse
|
26
|
Zhang J, Zhang J, Huang X, Arslan M, Shi J, Li Z, Gong Y, Holmes M, Zou X. Fabrication and characterization of polyvinyl alcohol/sodium alginate/zein/ chitosan bilayer film for dynamic visualization of pork quality. Int J Biol Macromol 2023:125065. [PMID: 37245755 DOI: 10.1016/j.ijbiomac.2023.125065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
The development of real-time and convenient meat freshness indication technology is crucial to ensure food safety. A novel antibacterial visualized intelligent film was designed based on polyvinyl alcohol (PA), sodium alginate (SA), zein (ZN), chitosan (CS), alizarin (AL) and vanillin (VA) using layer-by-layer assembly (LBL) method for real-time and in situ monitoring of pork freshness. The fabricated film had various advantageous properties, including an excellent hydrophobicity with a water contact angle (WCA) of 91.59°, improved color stability, excellent water barrier properties and increased mechanical performance (TS = 42.86 MPa). The fabricated film also demonstrated effective antibacterial properties with a bacteriostatic circle diameter of 13.6 mm for Escherichia coli. Moreover, the film can perceive and visualize the antibacterial effect through color changes, enabling dynamic visual monitoring of the antibacterial effect. A good correlation (R2 = 0.9188) between the color changes (ΔE) and total viable count (TVC) of pork was documented. Conclusively, fabricated multifunctional film improves the accuracy and versatility of freshness indication and had great potential for food preservation and freshness monitoring. The outcomes of this research provides a new perspective for the design and development of multifunctional intelligent films.
Collapse
Affiliation(s)
- Jianing Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Muhammad Arslan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, United Kingdom
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
27
|
Liu W, Chen L, McClements DJ, Peng X, Jin Z. Recent trends of 3D printing based on starch-hydrocolloid in food, biomedicine and environment. Crit Rev Food Sci Nutr 2023; 64:8948-8962. [PMID: 37129300 DOI: 10.1080/10408398.2023.2205524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
People are exploring the potential application of 3D printing in food, biomedicine and environment, but it is urgent to find suitable bio-ink. Bio-ink compounded with starch and hydrocolloid can not only improve the rheology, structure and printability of starch-based edible bio-ink, but also endow it with other functional characteristics, so that it can be applied to food, biomedicine and even the environment, and meet the strategic needs of national health, green and sustainable development. In this paper, hydrocolloids are reviewed as potential means to regulate the physicochemical properties of starch, which endows it with good printability and presents excellent printing products. The specific applications of the bio-ink in the fields of food, biomedicine and environment in hypoglycemic, lipid-lowering, swallowable food, delivery, intelligent materials, and bio-sensor are also discussed. Then, the challenges and future development trends of realizing large-scale application are prospected. Proper physicochemical properties of starch-hydrocolloid are positively correlated with printability. The presentation of excellent printability has realized the application in different fields, not only satisfies most people, but also create benefits for some specific people. This review is expected to provide some theoretical guidance for the further development of 3D printing technology and its large-scale application.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
29
|
Rong L, Chen X, Shen M, Yang J, Qi X, Li Y, Xie J. The application of 3D printing technology on starch-based product: A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
30
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
31
|
Matheus JRV, de Farias PM, Satoriva JM, de Andrade CJ, Fai AEC. Cassava starch films for food packaging: Trends over the last decade and future research. Int J Biol Macromol 2023; 225:658-672. [PMID: 36395939 DOI: 10.1016/j.ijbiomac.2022.11.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Cassava starch is one of the most available and cost-effective biopolymers. This work aimed to apply a bibliometric methodology to identify the most impactful scientific data on cassava starch and its residues for food packaging in the last ten years. As a result, an increasing interest in this subject has been observed, mainly in the past five years. Among the 85 selected scientific publications, Brazil and China have been leading the research on starch-based films, accounting for 39 % of the total. The International Journal of Biological Macromolecules was the main scientific source of information. Besides cassava starch, 41.18 % of these studies added other biopolymers, 5.88 % added synthetic polymers, and 4.71 % added a combination of both. Studies analyzed suggested that different modifications in starch can improve films' mechanical and barrier properties. In addition, 52.94 % of articles evaluated the film's bioactivity. Still, only 37.65 % assessed the performance of those films as food packaging, suggesting that more studies should be conducted on assessing the potential of these alternative packages. Future research should consider scale-up methods for film production, including cost analysis, assessment life cycle, and the impact on the safety and quality of a broader range of foods.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Patrícia Marques de Farias
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Juliana Martins Satoriva
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cristiano José de Andrade
- Chemical and Food Engineering Department, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Sodium alginate/chitosan-based intelligent bilayer film with antimicrobial activity for pork preservation and freshness monitoring. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Intelligent films of marine polysaccharides and purple cauliflower extract for food packaging and spoilage monitoring. Carbohydr Polym 2023; 299:120133. [PMID: 36876771 DOI: 10.1016/j.carbpol.2022.120133] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
In this study, metalloanthocyanin-inspired, biodegradable packaging films were developed by incorporating purple cauliflower extracted (PCE) anthocyanins into alginate (AL)/carboxymethyl chitosan (CCS) hybrid polymer matrices based on complexation of metal ions with these marine polysaccharides and anthocyanins. PCE anthocyanins-incorporated AL/CCS films were further modified with fucoidan (FD) because this sulfated polysaccharide can form strong interactions with anthocyanins. Metals-involved complexation (Ca2+ and Zn2+-crosslinked films) improved the mechanical strength and water vapor permeability but reduced the swelling degree of the films. Zn2+-cross-linked films exhibited significantly higher antibacterial activity than did pristine (non-crosslinked) and Ca2+-cross-linked films. The metal ion/polysaccharide-involved complexation with anthocyanin reduced the release rate of anthocyanins, increased the storage stability and antioxidant capability, and improved the sensitivity of the colorimetric response of the indicator films for monitoring the freshness of shrimp. The anthocyanin-metal-polysaccharide complex film showed great potential as active and intelligent packaging of food products.
Collapse
|
34
|
Latest Trends in Sustainable Polymeric Food Packaging Films. Foods 2022; 12:foods12010168. [PMID: 36613384 PMCID: PMC9818434 DOI: 10.3390/foods12010168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Food packaging is the best way to protect food while it moves along the entire supply chain to the consumer. However, conventional food packaging poses some problems related to food wastage and excessive plastic production. Considering this, the aim of this work was to examine recent findings related to bio-based alternative food packaging films by means of conventional methodologies and additive manufacturing technologies, such as 3D printing (3D-P), with potential to replace conventional petroleum-based food packaging. Based on the findings, progress in the development of bio-based packaging films, biopolymer-based feedstocks for 3D-P, and innovative food packaging materials produced by this technology was identified. However, the lack of studies suggests that 3D-P has not been well-explored in this field. Nonetheless, it is probable that in the future this technology will be more widely employed in the food packaging field, which could lead to a reduction in plastic production as well as safer food consumption.
Collapse
|
35
|
Luo J, Xia G, Liu L, Ji A, Luo Q. Fabrication of Chitosan/Hydroxyethyl Cellulose/TiO 2 Incorporated Mulberry Anthocyanin 3D-Printed Bilayer Films for Quality of Litchis. Foods 2022; 11:3286. [PMID: 37431032 PMCID: PMC9601993 DOI: 10.3390/foods11203286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 07/24/2023] Open
Abstract
In this study, a bilayer antibacterial chromogenic material was prepared using chitosan (CS) and hydroxyethyl cellulose (HEC) as inner substrate, mulberry anthocyanins (MA) as a natural tracer, and titanium dioxide nanoparticles (nano-TiO2)/CS:HEC as a bacteriostatic agent for the outer layer. By investigating their apparent viscosity and suitability for 3D printing links, the optimal ratio of the substrates was determined to be CS:HEC = 3:3. Viscosity of the CH was moderate. The printing process was consistent and exhibited no breakage or clogging. The printed image was highly stable and not susceptible to collapse and diffusion. Scanning electron microscopy and infrared spectroscopy indicated that intermolecular binding between the substances exhibited good compatibility. Titanium dioxide nanoparticles (nano-TiO2) were evenly distributed in the CH and no agglomeration was observed. The inner film fill rates affected the overall performance of the chromogenic material, with strong inhibitory effects against Escherichia coli and Staphylococcus aureus at different temperatures, as well as strong color stability. The experimental results indicated that the double-layer antibacterial chromogenic material can, to a certain extent, extend the shelf life of litchi fruit and determine the extent of its freshness. Therefore, from this study, we can infer that the research and development of active materials have a certain reference value.
Collapse
Affiliation(s)
- Jinjie Luo
- Correspondence: ; Tel.: +86-023-58105722
| | | | | | | | | |
Collapse
|
36
|
Esfahani A, Mohammadi Nafchi A, Baghaei H, Nouri L. Fabrication and characterization of a smart film based on cassava starch and pomegranate peel powder for monitoring lamb meat freshness. Food Sci Nutr 2022; 10:3293-3301. [PMID: 36249982 PMCID: PMC9548365 DOI: 10.1002/fsn3.2918] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the development of pH-sensitive smart edible films using biopolymers and natural plant extracts (especially those rich in anthocyanins) has attracted much attention. Therefore, in this study, the intelligent edible film was produced and characterized using cassava starch and pomegranate peel powder (PPP) and the possibility of using production films to monitor the freshness of lamb meat. The smart films were prepared using different concentrations of PPP (2, 4, 6, and 8% w/w) and the solvent casting method. The results showed that the incorporation of PPP had a significant effect on the mechanical parameters of the starch films. With increasing the levels of PPP, the color of the films became darker and redder. Increasing the PPP levels also led to an increase in total phenol content (TPC) (from 0 to 13 mg GAE (gallic acid equivalent)/g) and antioxidant activity (from 0% to 70% DPPH (1,1-diphenyl-2-picryl hydrazyl) radical scavenging) of the produced films (p < .05). The intelligent film was used in the lamb meat packaging, and the color of the film changed from red to green during the storage period at 25°C. The amount of total volatile basic nitrogen (TVB-N) in the meat could be detected by color changes of the intelligent films. Finally, this study demonstrated that the film based on cassava starch and PPP could be used as an intelligent and pH-sensitive film to monitor the freshness of meat and meat products.
Collapse
Affiliation(s)
- Azadeh Esfahani
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Homa Baghaei
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| | - Leila Nouri
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
37
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ghasemlou M, Ariffin F, Singh Z, Al-Hassan A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Li W, Sun W, Jia L, Dong Y, Wu L, Saldaña MDA, Sun W. Poly-l-lactic acid (PLLA)/anthocyanin nanofiber color indicator film for headspace detection of low-level bacterial concentration. Int J Biol Macromol 2022; 215:123-131. [PMID: 35691434 DOI: 10.1016/j.ijbiomac.2022.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Since bacterial contamination is a significant threat to humans, early detection is essential to safeguard dietary safety and physical health. Here, a nanofiber color indicator film based on poly-l-lactic acid (PLLA) as the support and anthocyanin as the indicator material was prepared by electrostatic spinning. It was found that the PLLA/0.8CY nanofiber color indicator film was hydrophobic (the water contact angle of 102.4°) and contained uniform nanofibers with an average diameter of 750 nm. In addition, the film's humidity insensitivity, reusability, color stability, and ammonia sensitivity (the limits of detection 35.39 ppm) made the film environmentally friendly and more accurate and faster for bacterial detection. The film was able to sense 102 CFU/mL of gram-positive and negative bacteria after the model strain E. coli and L. monocytogene. Thus, the PLLA/0.8CY nanofiber color indicator film was able to perform headspace nondestructive detection of low-level bacterial contamination.
Collapse
Affiliation(s)
- Wenbo Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wuliang Sun
- College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Lu Jia
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yue Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lingling Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Marleny D A Saldaña
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, T6G 2P5 Edmonton, AB, Canada
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, T6G 2P5 Edmonton, AB, Canada.
| |
Collapse
|
39
|
Chen Y, McClements DJ, Peng X, Chen L, Xu Z, Meng M, Zhou X, Zhao J, Jin Z. Starch as edible ink in 3D printing for food applications: a review. Crit Rev Food Sci Nutr 2022; 64:456-471. [PMID: 35997260 DOI: 10.1080/10408398.2022.2106546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Three-dimensional (3D) printing has attracted more attention in food industry because of its potential advantages, including the ability to create customized products according to individual's sensory or nutritional requirements. However, the production of high-quality 3D printed foods requires the availability of edible bio-inks with the required physicochemical and sensory attributes. Starch, as one of the important sources of dietary energy, is widely used in food processing and is considered as one kind of versatile polymers. It is not only because starch has low prices and abundant sources, but also because desirable modified starch can be obtained by altering its physicochemical properties through physical, chemical and enzymatic methods. This article focuses on the utilization of starch as materials to create food-grade bio-inks. Initially, several kinds of commonly used 3D printers are discussed. The factors affecting the printing quality of starch-based materials and improvement methods are then reviewed, as well as areas where future researches are required. The applications of 3D printed starch-based materials in food industry are also introduced. Overall, starch appears to be one kind of useful substances for creating edible bio-inks that can be utilized within 3D food printing applications to create a wide variety of food products.
Collapse
Affiliation(s)
- Yuanhui Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan, China
| | - Xing Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Ye P, Li X, Xie YN, Wu P. Facile monitoring of meat freshness with a self-constructed photosensitization colorimetric instrument. Food Chem 2022; 385:132676. [PMID: 35294903 DOI: 10.1016/j.foodchem.2022.132676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Total volatile basic nitrogen (TVB-N) produced from the decomposition of amino acids is an important indicator for meat freshness. Various pH-sensitive colorimetric films have been incorporated as intelligent packaging for meat freshness during food transportation. However, methods and instruments capable of on-site end-point detection of meat freshness are still needed for places that provide raw meat without packaging. Herein, based on amine-induced pH change that led to decreased color output of the 3,3',5,5'-tetramethylbenzidine (TMB)-based photosensitization colorimetric assay, a simple yet convenient instrument employing colorimetric indicator paper (CIP) was constructed for facile monitoring of meat freshness. Owing to the background color provided by the photosensitizer erythrosine (2',4',5',7'-tetraiodofluorescein, TIF), the color changed from blue to pink upon amine adsorption. A bespoke cellphone App was employed for image capture and color analysis of the CIP for freshness monitoring. The analytical results of amine (released from meat during storage) by the proposed method agreed well with those by a standard Conway dish method. In addition, the whole analytical process could be completed in about 5 min. The developed instrument may be potentially useful for on-site monitoring of meat freshness.
Collapse
Affiliation(s)
- Peiqi Ye
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Ya-Ni Xie
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Peng Wu
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
41
|
3D printing of essential oil/β-cyclodextrin/popping candy modified atmosphere packaging for strawberry preservation. Carbohydr Polym 2022; 297:120037. [DOI: 10.1016/j.carbpol.2022.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
42
|
Zhao Y, Du J, Zhou H, Zhou S, Lv Y, Cheng Y, Tao Y, Lu J, Wang H. Biodegradable intelligent film for food preservation and real-time visual detection of food freshness. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Song T, Qian S, Lan T, Wu Y, Liu J, Zhang H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022; 11:foods11152228. [PMID: 35892814 PMCID: PMC9331990 DOI: 10.3390/foods11152228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
The shortage of oil resources is currently a global problem. The use of renewable resources instead of non-renewable ones has become a hot topic of research in the eyes of scientists. In the food industry, there is a lot of interest in bio-based smart active packaging that meets the concept of sustainability and ensures safety. The packaging has antibacterial and antioxidant properties that extend the shelf life of food. Its ability to monitor the freshness of food in real time is also beneficial to consumers’ judgement of food safety. This paper summarises the main raw materials for the preparation of bio-based smart active packaging, including proteins, polysaccharides and composite materials. The current status of the preparation method of bio-based smart active packaging and its application in food preservation is summarised. The future development trend in the field of food packaging is foreseen, so as to provide a reference for the improvement of bio-based smart active packaging materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Correspondence: ; Tel.: +86-43184533321
| |
Collapse
|
44
|
|
45
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Wu Z, Li Y, Tang J, Lin D, Qin W, Loy DA, Zhang Q, Chen H, Li S. Ultrasound-assisted preparation of chitosan/nano-silica aerogel/tea polyphenol biodegradable films: Physical and functional properties. ULTRASONICS SONOCHEMISTRY 2022; 87:106052. [PMID: 35660275 PMCID: PMC9168617 DOI: 10.1016/j.ultsonch.2022.106052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, chitosan(CS), nano-silicon aerogels(nSA) and tea polyphenols(TP) were used as film-forming materials and processed with ultrasonication to form films using the tape-casting method. The effects of ultrasonication time, temperature and frequency on the properties of CS/nSA/TP film were explored via material property testing. The results of response surface showed that the maximum tensile strength of the film was 4.036 MPa at ultrasonication time(57.97 min), temperature(37.26 °C) and frequency(30 kHz). The maximum elongation at break of the film was 279.42 % at ultrasonication time(60.88 min), temperature(39.93 °C) and frequency(30 kHz). Due to cavitation and super-mixing effects, ultrasonication may make the surface of the film smoother and easier to degrade. After ultrasonication, TPs were protected by the 3D network structure composed of CS and nSA. Ultrasonication improved the antioxidant and antibacterial properties of the film. These results show that ultrasonication is an effective method to improve the properties of films.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jing Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Douglas A Loy
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
47
|
Physicochemical, antibacterial, and biodegradability properties of green Sichuan pepper (Zanthoxylum armatum DC.) essential oil incorporated starch films. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
dos Santos DM, Cardoso RM, Migliorini FL, Facure MH, Mercante LA, Mattoso LH, Correa DS. Advances in 3D printed sensors for food analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Properties and Applications of Intelligent Packaging Indicators for Food Spoilage. MEMBRANES 2022; 12:membranes12050477. [PMID: 35629803 PMCID: PMC9145781 DOI: 10.3390/membranes12050477] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
Food packaging plays a vital role in the food supply chain by acting as an additional layer to protect against food contamination, but the main function of traditional conventional packaging is only to isolate food from the outside environment, and cannot provide related information about food spoilage. Intelligent packaging can feel, inspect, and record external or internal changes in food products to provide further information about food quality. Importantly, intelligent packaging indicators will account for a significant proportion of the food industry’s production, with promising application potential. In this review, we mainly summarize and review the upcoming progress in the classification, preparation, and application of food packaging indicators. Equally, the feasibility of 3D printing in the preparation of intelligent food packaging indicators is also discussed in detail, as well as the limitations and future directions of smart food packaging. Taken together, the information supported in this paper provides new insights into monitoring food spoilage and food quality.
Collapse
|