1
|
Dušková M, Dorotíková K, Bartáková K, Králová M, Šedo O, Kameník J. The microbial contaminants of plant-based meat analogues from the retail market. Int J Food Microbiol 2024; 425:110869. [PMID: 39151231 DOI: 10.1016/j.ijfoodmicro.2024.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The aim of the study was to analyse the key microbial contaminants of plant-based meat analogues (PBMA) from retail. A total of 43 samples of PBMAs (12 frozen/31 chilled) in the "ready-to-cook" category, such as hamburgers, meatballs or breaded imitation steaks were purchased in retail stores in the Czech Republic in summer (n = 21) and autumn 2022 (n = 22). The detected indicator bacteria (total viable count, lactic acid bacteria, Enterobacteriaceae, yeasts, moulds) had relatively low values in the analysed PBMA samples and only rarely reached levels of 7 log CFU/g. E. coli, STEC and coagulase-positive staphylococci were not detected by isolation from plates in any of analysed samples. Mannitol positive Bacillus spp. were isolated from almost half of the analysed samples of the PBMA. B. cereus sensu lato was isolated from 3 samples by isolation from plates, and after enrichment in 35 samples (81 %). Clostridium perfringens could not be detected by isolation from plates, nevertheless after multiplication, it was detected in 21 % of samples. Analyses of PBMA samples revealed considerable variability in microbial quality. The presence of spore-forming bacteria with the potential to cause foodborne diseases is alarming. However, to evaluate the risks, further research focused on the possibilities of growth under different conditions of culinary treatment and preservation is needed.
Collapse
Affiliation(s)
- Marta Dušková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Kateřina Dorotíková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Klára Bartáková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Michaela Králová
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Josef Kameník
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
2
|
Todorov SK, Tomasikova F, Hansen M, Shetty R, Jansen CL, Jacobsen C, Hobley TJ, Lametsch R, Bang-Berthelsen CH. Using pre-fermented sugar beet pulp as a growth medium to produce Pleurotus ostreatus mycelium for meat alternatives. Int J Food Microbiol 2024; 425:110872. [PMID: 39163813 DOI: 10.1016/j.ijfoodmicro.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
This study aimed to determine the compatibility of pre-fermented sugar beet pulp to support the growth of Pleurotus ostreatus mycelium in submerged fermentation. The goal was to create a meat alternative based on mycelial-fermented pulp. It was further explored whether pre-fermentation with lactic acid bacteria (LAB) on the pulp increased meat-like properties, such as aroma, springiness, and hardness, in the final product. Three strains were selected from a high throughput screening of 105 plant-derived LAB based on their acidification and metabolite production in the pulp. Two homofermentative strains (Lactococcus lactis) and one heterofermentative strain (Levilactobacillus brevis) were selected based on their low ethanol production, high lactic acid production, and overall acidification of the pulp. Mycelium of P. ostreatus was grown in submerged fermentations on the pre-fermented pulp, and the biomass was removed by centrifugation. The fungal strain consumed all available sugars and acids and released arabinose to the media. Volatiles were detected using GC-MS, and a large increase in concentrations of hexanal, 1-octen-3-ol, and 2-octenal was measured. Concentration of 1-octen-3-ol was lower in the pre-fermented samples vs. the non-pre-fermented. LC-MS amino acid analysis showed the presence of all essential amino acids on day 0 and 7 of fermentation. The highest concentration of amino acids was for glutamic acid/glutamine and aspartic acid/asparagine. A decrease in all amino acids after 7 days of fungal fermentation was measured for all fermentations. The decrease was more significant for pre-fermented samples. This was also confirmed through a total protein determination, except for samples pre-fermented with Lactococcus lactis strain NFICC142 which increased in total protein content after fungal fermentation. The protein digestibility increased after fungal fermentation, and the highest increase was seen for non-pre-fermented samples. The springiness of the fermented product indicated similarities to meat alternatives, while the hardness was much lower than other meat alternatives. The results indicate that dried sugar beet pulp can be used for submerged cultivation of P. ostreatus, but that pre-fermentation does not improve the physical or nutritional properties of the end product significantly, except for an increased protein content for NFICC142 pre-fermented media. This is the first known attempt to use LAB and P. ostreatus in mixed fermentation to produce fungal mycelium, as well as the first attempt at using SBP in a liquid fermentation for mycelial production of P. ostreatus.
Collapse
Affiliation(s)
| | - Frantiska Tomasikova
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Mikkel Hansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Radhakrishna Shetty
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Celia L Jansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Timothy John Hobley
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | | |
Collapse
|
3
|
Liao J, Guo Z, Shen J, Lin X, Wang Y, Yuan W, Turchiuli C, Li Y, Zhang Y, Lin J, Zheng H, Miao S, Lei H, Wu S. The effect of pH shifting on the calcium-fortified milk analogue with chickpea protein. Food Chem 2024; 460:140623. [PMID: 39096798 DOI: 10.1016/j.foodchem.2024.140623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Milk alternative attracts more attention due to nutrition benefits, but the low solubility and the calcium deficiency of plant protein hinder the development of milk alternatives. Therefore, pH shifting was optimized to improve chickpea protein solubility and calcium fortification while ensuring good digestibility. The results showed that pH shifting reduced the particle size from 2197.67 ± 178.2 nm to 80.2 ± 2 nm, and increased the net ζ potential from -0.48 ± 0.24 to -21.27 ± 0.65 due to the unfolding of secondary protein structure, by which chickpea protein bring better solution stability. Additionally, the whiteness of the solution with chickpea protein increased. The calcium addition kept the solution stable with small particle size despite a slight increase. The microstructure of chickpea protein during digestion was well disrupted even with fortifying calcium. This study provides proof of the positive effect of pH shifting on chickpea protein stability and calcium fortification.
Collapse
Affiliation(s)
- Junrong Liao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiahai Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoqing Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wanqing Yuan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Christelle Turchiuli
- Universite Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Yuwei Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yijing Zhang
- Faculty of Humanities and Social Sciences, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Jie Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hua Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China,; Universite Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France,.
| |
Collapse
|
4
|
Li S, Mao X, Diao X, Yang K, Shan K, Li C. Effects of sodium tripolyphosphate on the quality and digestion properties of PSE pork. Food Chem 2024; 460:140558. [PMID: 39067389 DOI: 10.1016/j.foodchem.2024.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to examine the impact of sodium tripolyphosphate (STPP) on the quality and digestive characteristics of PSE pork. The results showed a notable decrease in cooking loss of PSE pork from 29.11% to 25.67% with increasing STPP concentration (P < 0.05). Additionally, the gastric digestibility of PSE pork decreased significantly from 52.01% to 45.81% (P < 0.05). The particle size of digesta decreased significantly after gastrointestinal digestion (P < 0.05). These changes were primarily due to the enhanced cross-linking of proteins through ionic interactions, hydrogen bonds and hydrophobic interactions, and resulted in the embedding of hydrophobic groups and endogenous fluorophores. Furthermore, denser network was formed. These findings give a new insight into considering the impact of STPP on meat nutrition when used to enhance texture and water holding capacity.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinrui Mao
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinyue Diao
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kun Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
5
|
Gultekin Subasi B, Bilgin AB, Günal-Köroğlu D, Saricaoglu B, Haque S, Esatbeyoglu T, Capanoglu E. Effect of sonoprocessing on the quality of plant-based analog foods: Compatibility to sustainable development goals, drawbacks and limitations. ULTRASONICS SONOCHEMISTRY 2024; 110:107033. [PMID: 39255592 DOI: 10.1016/j.ultsonch.2024.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Sonoprocessing (US), as one of the most well-known and widely used green processing techniques, has tremendous benefits to be used in the food industry. The urgent call for global sustainable food production encourages the usage of such techniques more often and effectively. Using ultrasound as a hurdle technology synergistically with other green methods is crucial to improving the efficiency of the protein shift as well as the number of plant-based analog foods (PBAFs) against conventional products. It was revealed that the US has a significant impact when used as an assistant tool with other green technologies rather than being used alone. It increases the protein extraction efficiencies from plant biomasses, improves the techno-functional properties of food compounds, and makes them more applicable for industrial-scale alternative food production in the circular economy. The US aligns well with the objectives outlined in the UN's Sustainable Development Goals (SDGs), and Planetary Boundaries (PBs) framework, demonstrating promising outcomes in life cycle assessment. However, several challenges such as uncontrolled complex matrix effect, free radical formation, uncontrolled microbial growth/germination or off-flavor formation, removal of aromatic compounds, and Maillard reaction, are revealed in an increased number of studies, all of which need to be considered. In addition to a variety of advantages, this review also discusses the drawbacks and limitations of US focusing on PBAF production.
Collapse
Affiliation(s)
- Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Aysenur Betul Bilgin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye; Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
6
|
Zhao Z, Zhao D, Su L, Ding M, Zhang M, He H, Li C. Encapsulation and release of salidroside in myofibrillar protein‑sodium alginate gel: Effects of different M/G ratios of sodium alginate. Int J Biol Macromol 2024; 282:136811. [PMID: 39461650 DOI: 10.1016/j.ijbiomac.2024.136811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Myofibrillar protein‑sodium alginate (MP-SA) gels play a pivotal role in the development of functional food gels. Salidroside (SAL) is promising component but suffers from low bioavailability, necessitating effective delivery systems. This study introduces M/G ratio factor into classical theoretical MP-based gel models, and use for the SAL delivery. The findings indicate that SA significantly enhances gel properties and functions. Scanning electron microscopy, liquid chromatography, and low-field nuclear magnetic resonance confirmed that the addition of SA improved microstructure, water retention, and thus reduced SAL loss during processing. Digestion simulations revealed the influence of SA type on SAL release kinetics. Molecular docking showed that SA with lower M/G ratio binds more readily to MP, a key determinant of gel performance. These insights provide a novel theoretical basis for MP-SA gels and offer a new perspective on the delivery of bioactive compounds in functional foods.
Collapse
Affiliation(s)
- Zerun Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liuyu Su
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengzhen Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Miao Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui He
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
Gong Y, Feng M, Sun J. Effect of different thermal processing methods and thermal core temperatures on the protein structure and in vitro digestive characteristics of beef. Food Chem 2024; 464:141751. [PMID: 39481305 DOI: 10.1016/j.foodchem.2024.141751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
This study aimed to investigate the effect of different thermal processing treatments on the protein digestion characteristics of beef. The beef samples were subjected to different cooking methods, namely steaming, boiling, and roasting, and different core temperatures (75 °C, 80 °C, 85 °C, and 90 °C), and were subjected to in vitro gastrointestinal digestion simulation. All the thermal processing treatments increased the protein digestibility; the samples that were steamed at 85 °C (S85), boiled at 80 °C (B80), and roasted at 80 °C (R80) showed the biggest gains. The S85 released more peptide species after gastrointestinal digestion, according to peptididomic studies. These differences were closely related to protein structure. Thermal processing treatments resulted in a higher degree of proteolysis and looser protein conformation, as evidenced by decreased intrinsic fluorescence and electrophoretic band intensity, increased surface hydrophobicity, and the change in protein secondary structure from α-helix to β-sheet and random coil. Based on the results, S85 was identified as the optimal thermal processing treatment for enhancing the digestibility of beef protein. The results provide valuable insights into the nutritional qualities and digestion of heat-processed beef protein.
Collapse
Affiliation(s)
- Yao Gong
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meiqin Feng
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210038, PR China
| | - Jian Sun
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Wu X, Liu H, Han J, Zhou Z, Chen J, Liu X. Introducing Bacillus natto and Propionibacterium shermanii into soymilk fermentation: A promising strategy for quality improvement and bioactive peptide production during in vitro digestion. Food Chem 2024; 455:139585. [PMID: 38850988 DOI: 10.1016/j.foodchem.2024.139585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
Herein, the texture properties, polyphenol contents, and in vitro protein digestion characteristics of soymilk single- or co-fermented by non-typical milk fermenter Bacillus natto (B. natto), Propionibacterium freudenreichii subsp. shermanii (P. shermanii), and traditional milk fermenter were evaluated. Co-fermenting procedure containing B. natto or P. shermanii could raise the amounts of gallic acid, caffeic acid, and GABA when compared to the unfermented soymilk. Co-fermented soymilk has higher in vitro protein digestibility and nutritional protein quality. Through peptidomic analysis, the co-work of P. shermanii and Lactobacillus plantarum (L. plantarum) may release the highest relative percentage of bioactive peptides, while the intervention of B. natto and Streptococcus thermophilus (S. thermophilus) resulted in more differentiated peptides. The multi-functional bioactive peptides were mainly released from glycine-rich protein, β-conglycinin alpha subunit 1, and ACB domain-containing protein. These findings indicated the potential usage of B. natto/S. thermophilus or P. shermanii/L. plantarum in bio-enhanced soymilk fermentation.
Collapse
Affiliation(s)
- Xiaohui Wu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Honghong Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junqing Han
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhitong Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Estévez M, Arjona A, Sánchez-Terrón G, Molina-Infante J, Martínez R. Ultra-processed vegan foods: Healthy alternatives to animal-source foods or avoidable junk? J Food Sci 2024. [PMID: 39379336 DOI: 10.1111/1750-3841.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Animal-source foods (ASFs), namely, meat, milk, eggs, and derived products, are crucial components of a well-balanced diet owing to their contribution with multiple essential nutrients. The benefits of the consumption of ASFs in terms of hedonic responses, emotional well-being, and mood are also widely documented. However, an increasing share of consumers decide to exclude ASFs from their diets. Some of these vegan consumers are inclined to consume so-called "meat" and/or "dairy analogs," which are produced from plant materials (soy, wheat, and oat, among others). In order to simulate appearance, texture, and flavor of ASFs, these industrial vegan foods are designed using an intricate formulation and industrial processing, which justifies their identification as ultraprocessed foods (UPFs). While the introduction of these processed vegan products is becoming popular in developed countries, the consequences of the sustained intake of these products on human health are mostly ignored. Contrarily to common belief, which emphasizes their role as "healthy" alternatives to ASFs, these plant-based UPFs may enclose certain threats, which are reviewed in the present paper. The remarkable differences between vegan UPFs and the genuine ASFs (meat/dairy products) from sensory, nutritional, hedonic, or health perspectives precludes the designation of the former as analogs of the latter. Understanding the basis of these differences would contribute to (i) providing consumers with grounds to make reasoned decisions to consume meat/dairy products and/or the vegan alternatives and (ii) providing food companies with strategies to produce more appealing, nutritive, and healthy industrially processed vegan products.
Collapse
Affiliation(s)
- Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, Cáceres, Spain
| | - A Arjona
- Family and Community Medicine, Servicio Extremeño de Salud (SES), Cáceres, Spain
| | - G Sánchez-Terrón
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, Cáceres, Spain
| | - J Molina-Infante
- Gastroenterology and Hepatology Unit. Hospital Universitario de Cáceres, Servicio Extremeño de Salud (SES), Cáceres, Spain
| | - R Martínez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
10
|
Zhang X, Zhang Z, Shen A, Zhang T, Jiang L, El-Seedi H, Zhang G, Sui X. Legumes as an alternative protein source in plant-based foods: Applications, challenges, and strategies. Curr Res Food Sci 2024; 9:100876. [PMID: 39435454 PMCID: PMC11491897 DOI: 10.1016/j.crfs.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Since animal proteins may pose a threat to the global environment and human health, the development of alternative proteins has become an inevitable trend in the future. Legumes are considered to be one of the most promising sources of sustainable alternative animal proteins. Legume proteins are considered to exhibit excellent processing properties, including emulsification, gelation, and foaming, which have led to their widespread use in the food industry. Moreover, legume proteins are not only taken as substitutes for meat proteins, they also play an essential role in novel plant-based foods (meat, dairy, fermented food, and fat). However, there are few comprehensive overview studies on the application of legume proteins in plant-based foods. Therefore, this review provides a general overview of the main sources, functional properties, and applications in plant-based foods of legume proteins. In addition, challenges to the application of legume proteins in plant-based foods and specific strategies to address these challenges are presented. The review may provide some references for the further application of legume proteins in novel plant-based foods.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaonan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ao Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hesham El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden
| | - Guohua Zhang
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Chen X, Fan R, Wang X, Zhang L, Wang C, Hou Z, Li C, Liu L, He J. In vitro digestion and functional properties of bovine β-casein: A comparison between adults and infants. Food Res Int 2024; 194:114914. [PMID: 39232534 DOI: 10.1016/j.foodres.2024.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Gastrointestinal digestibility behavior, structural and functional characteristics of bovine β-casein (β-CN) were studied in vitro under infant and adult conditions. This direct comparison helps reveal the effects of different physiological stages on the digestive behavior of β-CN. Not only was the degree of hydrolysis (DH) of β-CN analyzed, but also the changes in its digestive morphology, microstructure, and secondary structure during digestion were explored in depth. Meanwhile, we focused on the physicochemical properties of β-CN digesta, including solubility, emulsifying and foaming properties, as well as their functional properties, such as antimicrobial and antioxidant activities. Key results showed that β-CN underwent more extensive hydrolysis in the adult digestion model, with approximately twice the DH compared to the infant model. The adult model exhibited faster digestion kinetics, less protein flocculation, and a more loosened secondary structure, indicating a more efficient digestion process. Notably, the digesta from the adult model displayed significantly improved solubility and emulsifying properties, and also enhanced antioxidant capacities, with significantly better inhibition of two common pathogenic bacteria than the infant model, and an average increase in the diameter of the inhibition zone of approximately 2 mm. These findings underscore the differential digestive behavior and functional potential of β-CN across physiological stages. This comprehensive assessment approach contributes to a more comprehensive insight into the digestive behavior of β-CN. Therefore, we conclude that producing products from unmodified β-CN may be more suitable for the adult population, and that the digesta in the adult model exhibit higher functional properties.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Rui Fan
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Xinyu Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Lina Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Zhanqun Hou
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Chun Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Libo Liu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China.
| |
Collapse
|
12
|
Lee S, Jo K, Choi YS, Jung S. Tracking bioactive peptides and their origin proteins during the in vitro digestion of meat and meat products. Food Chem 2024; 454:139845. [PMID: 38820629 DOI: 10.1016/j.foodchem.2024.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Existing reviews address bioactive peptides of meat proteins; however, comprehensive reviews summarizing the released sequences and their corresponding parent meat proteins in the digesta are limited. This review explores the bioactive peptides released during the in vitro gastrointestinal (GI) digestion of meat, connecting with parent proteins. The primary bioactivities of meat-derived peptides include angiotensin-converting enzyme (ACE) and dipeptidyl peptidase (DPP)-IV inhibition and antioxidant effects. Myofibrillar, sarcoplasmic, and stromal proteins play a significant role in peptide release during digestion. The release of bioactive peptides varies according to the parent protein and cryptides had short chains, non-toxicity, and great bioavailability and GI absorption scores. Moreover, the structural stability and bioactivities of peptides can be influenced by the digestive properties and amino acid composition of parent proteins. Investigating the properties and origins of bioactive peptides provides insights for enhancing the nutritional quality of meat and understanding its potential health benefits.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
13
|
Wang X, Fan B, Li Y, Fei C, Xiong Y, Li L, Liu Y, Tong L, Huang Y, Wang F. Effect of Germination on the Digestion of Legume Proteins. Foods 2024; 13:2655. [PMID: 39272421 PMCID: PMC11394037 DOI: 10.3390/foods13172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
As one of the main sources of plant protein, it is important to improve the protein digestibility of legumes. Faced with population growth and increasing environmental pressures, it is essential to find a green approach. Germination meets this requirement, and in the process of natural growth, some enzymes are activated to make dynamic changes in the protein itself; at the same time, other substances (especially anti-nutrient factors) can also be degraded by enzymes or their properties (water solubility, etc.), thereby reducing the binding with protein, and finally improving the protein digestibility of beans under the combined influence of these factors The whole process is low-carbon, environmentally friendly and safe. Therefore, this paper summarizes this process to provide a reference for the subsequent development of soybean functional food, especially the germination of soybean functional food.
Collapse
Affiliation(s)
- Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
14
|
Partanen M, Luhio P, Gómez-Gallego C, Kolehmainen M. The role of fiber in modulating plant protein-induced metabolic responses. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39154210 DOI: 10.1080/10408398.2024.2392149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The rising consumption of plant protein foods and the emergence of meat alternatives have prompted interest in the health benefits of such products, which contain fiber in addition to protein. This review investigates the effect of fiber on plant-based protein metabolism and evaluates its contribution to gut-derived health impacts. Plant proteins, which often come with added fiber, can have varying health outcomes. Factors such as processing and the presence of fiber and starch influence the digestibility of plant proteins, potentially leading to increased proteolytic fermentation in the gut and the production of harmful metabolites. However, fermentable fiber can counteract this effect by serving as a primary substrate for gut microbes, decreasing proteolytic activity. The increased amount of fiber, rather than the protein source itself, plays a significant role in the observed health benefits of plant-based diets in human studies. Differences between extrinsic and intrinsic fiber in the food matrix further impact protein fermentation and digestibility. Thus, in novel protein products without naturally occurring fiber, the health impact may differ from conventional plant protein sources. The influence of various fibers on plant-based protein metabolism throughout the gastrointestinal tract is not fully understood, necessitating further research.
Collapse
Affiliation(s)
- Moona Partanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Petri Luhio
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Cao Y, Sun M, Huang T, Zhu Z, Huang M. Effects of heat sterilization on protein physicochemical properties and release of metabolites of braised chicken after in vitro digestion. Food Chem 2024; 445:138670. [PMID: 38422866 DOI: 10.1016/j.foodchem.2024.138670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Heat sterilization enhances the safety and shelf-life of braised chicken, but its impact on protein digestibility and the release of metabolites remains unclear. Here, braised chicken was sterilized at 80 °C (LS), 100 °C (MS), and 121 °C (HS) for 30 min. Protein digestibility was assessed by in vitro digestion, whereas the release of metabolites was analysed by UPLC-QTOF-MS spectroscopy. Results revealed that LS had higher gastrointestinal digestibility (88.86 %) than MS (81.79 %) and HS (78.13 %). Increased carbonyl content, turbidity, particle size, and hydrophobicity, along with decreased sulfhydryl content and solubility, indicated rising protein oxidation aggregation with higher sterilization temperatures, explaining reduced digestibility. 96 metabolites were identified. Compared to the control group, LS exhibited a statistically significant variation in the biosynthesis of unsaturated fatty acids, MS displayed a significant difference in purine metabolism, and HS showed a significant difference in primary bile acid biosynthesis. Thus, LS is a promising sterilization method.
Collapse
Affiliation(s)
- Yaqi Cao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingzhu Sun
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianran Huang
- Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co. Ltd., Nanjing, Jiangsu 211200, PR China
| | - Zongshuai Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, No.90 Hua Lan Street, Xinxiang 453003, PR China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Xie Y, Cai L, Zhou G, Li C. Comparison of nutritional profile between plant-based meat analogues and real meat: A review focusing on ingredients, nutrient contents, bioavailability, and health impacts. Food Res Int 2024; 187:114460. [PMID: 38763688 DOI: 10.1016/j.foodres.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
In order to fully understand the nutritional heterogeneity of plant-based meat analogues and real meat, this review summarized their similarities and differences in terms of ingredients, nutrient contents, bioavailability and health impacts. Plant-based meat analogues have some similarities to real meat. However, plant-based meat analogues are lower in protein, cholesterol and VB12 but higher in dietary fiber, carbohydrates, sugar, salt and various food additives than real meat. Moreover, some nutrients in plant-based meat analogues, such as protein and iron, are less bioavailable. There is insufficient evidence that plant-based meat analogues are healthier, which may be related to the specific attributes of these products such as formulation and degree of processing. As things stand, it is necessary to provide comprehensive nutrition information on plant-based meat products so that consumers can make informed choices based on their nutritional needs.
Collapse
Affiliation(s)
- Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Azizi R, Baggio A, Capuano E, Pellegrini N. Protein transition: focus on protein quality in sustainable alternative sources. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38907600 DOI: 10.1080/10408398.2024.2365339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The current consumption trends, combined with the expected demographic growth in the coming years, call for a protein transition, i.e., the partial substitution of animal protein-rich foods with foods rich in proteins produced in a more sustainable way. Here, we have discussed some of the most common and promising protein sources alternative to animal proteins, namely: legumes, insects, and microorganisms (including microalgae and fungi). The primary objective was to assess their nutritional quality through the collection of digestible indispensable amino acid score (DIAAS) values available in the scientific literature. Protein digestibility corrected amino acid score (PDCAAS) values have been used where DIAAS values were not available. The ecological impact of each protein source, its nutritional quality and the potential applications in traditional foods or novel food concepts like meat analogues are also discussed. The data collected show that DIAAS values for animal proteins are higher than all the other protein sources. Soybean proteins, mycoproteins and proteins of some insects present relatively high DIAAS (or PDCAAS) values and must be considered proteins of good quality. This review also highlights the lack of DIAAS values for many potentially promising protein sources and the variability induced by the way the proteins are processed.
Collapse
Affiliation(s)
- Rezvan Azizi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Anna Baggio
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
18
|
Austin G, Ferguson JJA, Eslick S, Oldmeadow C, Wood LG, Garg ML. Bone mineral density and body composition in Australians following plant-based diets vs. regular meat diets. Front Nutr 2024; 11:1411003. [PMID: 38974811 PMCID: PMC11224549 DOI: 10.3389/fnut.2024.1411003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Background and aims Bone mineral density (BMD) and body composition play an important role in maintaining metabolic health and physical functioning. Plant-based diets (PBDs) are known to be lower in protein and calcium, which can impact BMD and body composition. This study aimed to investigate the relationship between various PBDs compared to regular meat diet and whole-body BMD, body composition, and weight status. Methods A cross-sectional study was conducted with adults (n = 240) aged 30-75 years, who habitually followed dietary patterns: vegan, lacto-vegetarian, pesco-vegetarian, semi-vegetarian, or regular meat eater (48 per group). Parameters were measured using dual-energy x-ray absorptiometry (DXA), and multivariable regression analyses were used to adjust for lifestyle confounders, socioeconomic factors, and BMI. Results After adjustments, whole-body BMD and body composition were not significantly different between those following PBDs and regular meat diets, except for lacto-ovo vegetarians, who had significantly lower lean mass by -1.46 kg (CI: -2.78, -0.13). Moreover, lacto-ovo vegetarians had a significantly lower T-score by -0.41 SD (CI: -0.81, -0.01) compared to regular meat eaters. Waist circumference was significantly lower in individuals adhering to a PBD compared to a regular meat diet: vegans by -4.67 cm (CI: -8.10, -1.24), lacto-ovo vegetarians by -3.92 cm (CI: -6.60, -1.23), pesco-vegetarians by -3.24 cm (CI: -6.09, -0.39), and semi-vegetarians by -5.18 cm (CI: -7.79, -2.57). There were no significant differences in lean mass (%), fat mass (% and total), android/gynoid measures, body weight, or BMI across dietary patterns. All dietary patterns met the recommended dietary intake for calcium and protein, and 25-hydroxy-vitamin D status was comparable across groups. Conclusions This cross-sectional study found that adhering to a PBD characterized by varying degrees of dairy and meat restriction is not associated with meaningful changes in BMD or body composition, provided that the dietary patterns are planned appropriately with adequate levels of calcium and protein.
Collapse
Affiliation(s)
- Grace Austin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessica J. A. Ferguson
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Health Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Shaun Eslick
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW, Australia
| | - Christopher Oldmeadow
- Clinical Research Design, Information Technology, and Statistical Support Unit, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Lisa G. Wood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Manohar L. Garg
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
19
|
Ariz I, Ansorena D, Astiasaran I. In vitro digestion of beef and vegan burgers cooked by microwave technology: Effects on protein and lipid fractions. Food Res Int 2024; 186:114376. [PMID: 38729723 DOI: 10.1016/j.foodres.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Commercial beef burgers and vegan analogues were purchased and, after a microwave treatment, they were submitted to an in vitro digestion (INFOGEST). Vegan cooked burgers showed similar protein content (16-17 %) but lower amounts of total peptides than beef burgers. The protein digestibility was higher in beef burgers. Peptide amounts increased during in vitro digestion, reaching similar amounts in both types of products in the micellar phase (bioaccessible fraction). The fat content in cooked vegan burgers was significantly lower than in beef burgers (16.7 and 21.2 %, respectively), with a higher amount of PUFAs and being the lipolysis activity, measure by FFA, less intense both after cooking and after the gastrointestinal process. Both types of cooked samples showed high carbonyl amounts (34.18 and 25.51 nmol/mg protein in beef and vegan samples, respectively), that decreased during in vitro digestion. On the contrary, lipid oxidation increased during gastrointestinal digestion, particularly in vegan samples. The antioxidant capacity (ABTS and DPPH) showed higher values for vegan products in cooked samples, but significantly decreased during digestion, reaching similar values for both types of products.
Collapse
Affiliation(s)
- I Ariz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - D Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - I Astiasaran
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
20
|
Su L, Zhao Z, Xia J, Xia J, Nian Y, Shan K, Zhao D, He H, Li C. Protecting meat color: The interplay of betanin red and myoglobin through antioxidation and coloration. Food Chem 2024; 442:138410. [PMID: 38219566 DOI: 10.1016/j.foodchem.2024.138410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Myoglobin (Mb) responsible for meat color is easily oxidized resulting in meat discoloration. Here, betanin red (BR), as a natural pigment and antioxidant, was chosen for enhancing redness and inhibiting oxidation. Multiple spectroscopies, isothermal titration calorimetry and molecular docking demonstrated that BR changed the microenvironment of heme group and amino acid residues of Mb, inhibited the oxidation of oxymyoglobin. The main interaction force was hydrogen bond and one variable binding site provided a continuous protective barrier to realize antioxidation. The combination of antioxidation with the inherent red color of BR offered dual color protection effect on processed beef with the addition amount of 0.2 % BR. BR treatment enhanced the redness by 25.59 ∼ 53.24 % and the sensory acceptance by 4.89 ∼ 14.24 %, and decreased the lipid oxidation by 0.58 ∼ 15.92 %. This study paves a theoretical basis for the application of BR and its structural analogues in meat color protection and other quality improvement.
Collapse
Affiliation(s)
- Liuyu Su
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zerun Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiulin Xia
- Suzhou Weizhixiang Food Co., LTD., Suzhou, Jiangsu, China
| | - Jing Xia
- Suzhou Weizhixiang Food Co., LTD., Suzhou, Jiangsu, China
| | - Yingqun Nian
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui He
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Abstract
Owing to environmental, ethical, health, and safety concerns, there has been considerable interest in replacing traditional animal-sourced foods like meat, seafood, egg, and dairy products with next-generation plant-based analogs that accurately mimic their properties. Numerous plant-based foods have already been successfully introduced to the market, but there are still several challenges that must be overcome before they are adopted by more consumers. In this article, we review the current status of the science behind the development of next-generation plant-based foods and highlight areas where further research is needed to improve their quality, increase their variety, and reduce their cost, including improving ingredient performance, developing innovative processing methods, establishing structure-function relationships, and improving nutritional profiles.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
22
|
Gräfenhahn M, Beyrer M. Plant-Based Meat Analogues in the Human Diet: What Are the Hazards? Foods 2024; 13:1541. [PMID: 38790841 PMCID: PMC11121679 DOI: 10.3390/foods13101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Research regarding meat analogues is mostly based on formulation and process development. Information concerning their safety, shelf life, and long-term nutritional and health effects is limited. This article reviews the existing literature and analyzes potential hazards introduced or modified throughout the processing chain of plant-based meat analogues via extrusion processing, encompassing nutritional, microbiological, chemical, and allergen aspects. It was found that the nutritional value of plant-based raw materials and proteins extracted thereof increases along the processing chain. However, the nutritional value of plant-based meat analogues is lower than that of e.g., animal-based products. Consequently, higher quantities of these products might be needed to achieve a nutritional profile similar to e.g., meat. This could lead to an increased ingestion of undigestible proteins and dietary fiber. Although dietary fibers are known to have many positive health benefits, they present a hazard since their consumption at high concentrations might lead to gastrointestinal reactions. Even though there is plenty of ongoing research on this topic, it is still not clear how the sole absorption of metabolites derived from plant-based products compared with animal-based products ultimately affects human health. Allergens were identified as a hazard since plant-based proteins can induce an allergic reaction, are known to have cross-reactivities with other allergens and cannot be eliminated during the processing of meat analogues. Microbiological hazards, especially the occurrence of spore- and non-spore-forming bacteria, do not represent a particular case if requirements and regulations are met. Lastly, it was concluded that there are still many unknown variables and open questions regarding potential hazards possibly present in meat analogues, including processing-related compounds such as n-nitrosamines, acrylamide, and heterocyclic aromatic amino acids.
Collapse
Affiliation(s)
- Maria Gräfenhahn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO VS), 1950 Sion, Switzerland
| | | |
Collapse
|
23
|
Cao X, Zhao F, Lin Z, Sun X, Zeng X, Liu H, Li Y, Yuan Z, Su Y, Wang C, Zhou G. In vitro digestion mimicking conditions in adults and elderly reveals digestive characteristics of pork from different cooking ways. Food Res Int 2024; 183:114204. [PMID: 38760136 DOI: 10.1016/j.foodres.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
This study aimed to investigate the impact of three cooking ways (sous vide (SV), frying (FR) and roasting (RO)) on pork protein digestion characteristics under conditions simulating healthy adult (control, C) and elderly individuals with achlorhydria (EA). Changes in degree of hydrolysis (DH), SDS-PAGE profiles, zeta potential, particle size and secondary structure during digestion were evaluated. Our results revealed the EA condition markedly affected the protein digestion process of pork with different cooking ways. The DH values of SV (25.62%), FR (21.38%) and RO (19.40%) under the EA condition were significantly lower than those of under the control condition (38.32%, 33.00% and 30.86%, respectively). Moreover, differences were also observed among three cooking ways under the EA condition. For a given cooking way, the differences between control and EA conditions gradually diminished from the gastric to the intestinal phase. Under a certain digestion condition, SV maintained the highest degree of digestion throughout the process, particularly under the EA condition. Therefore, we conclude that pork cooked by sous vide is more recommendable for the elderly considering protein digestibility.
Collapse
Affiliation(s)
- Xiangyue Cao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fan Zhao
- School of Chinese Medicine, School of integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziyi Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaomei Sun
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianming Zeng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haoxi Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yutong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zihang Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan Su
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chong Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
24
|
Wehrmaker AM, de Groot W, Jan van der Goot A, Keppler JK, Bosch G. In vitro digestibility and solubility of phosphorus of three plant-based meat analogues. J Anim Physiol Anim Nutr (Berl) 2024; 108 Suppl 1:24-35. [PMID: 38576126 DOI: 10.1111/jpn.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Interest in plant-based meat analogues has increased and can be expected to be applied to pet foods, which necessitates the understanding of the nutrient supply in those foods. Our primary aim was to advance our understanding of the digestive properties of sterilized plant-based meat analogues. The impact of the preparatory processing steps on the solubility of meat analogues was studied. Meat analogues were made by mixing water, salt, and wheat gluten with soy protein isolate, pea protein isolate, or faba bean concentrate. Mixed materials were processed into model meat analogues using shear cell technology. Products were canned in water or gravy and sterilized. An animal-based canned pet food was made as a reference. Products sampled at the processing steps (mixing, shearing, sterilization) were digested in vitro. Samples of digestate were taken at the gastric phase (0 and 120 min) and small intestinal phase (120, 200, 280, and 360 min) for analysis of protein hydrolysis. The extent digestion of nitrogen and dry matter was determined at the end of incubation. Total phosphorus, soluble phosphorus after acid treatment, and after acid and enzymatic treatment were determined. The degree of hydrolysis after gastric digestion was low but increased immediately in the small intestinal phase; products based on pea had the highest values (56%). Nitrogen digestibility was above 90% for all materials at each processing step, indicating that bioactive compounds were absent or inactivated in the protein isolates and concentrate. Phytate seemed to play a minor role in meat analogues, but phosphorus solubility was influenced by processing. Shearing decreased soluble phosphorus, but this effect was partly reversed by sterilization. Nutrient digestibility as well as phosphorus solubility in plant-based products was higher than or comparable with the reference pet food. These findings show that the digestive properties of the tested plant-based meat analogues do not limit the supply of amino acids and phosphorus.
Collapse
Affiliation(s)
- Ariane Maike Wehrmaker
- Saturn Petcare GmbH, Senator-Mester-Straße 1, Bremen, Germany
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | - Wouter de Groot
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | | | - Guido Bosch
- Animal Nutrition Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
25
|
Zhou T, Sheng B, Gao H, Nie X, Sun H, Xing B, Wu L, Zhao D, Wu J, Li C. Effect of fat concentration on protein digestibility of Chinese sausage. Food Res Int 2024; 177:113922. [PMID: 38225153 DOI: 10.1016/j.foodres.2023.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Chinese sausage is a popular traditional Chinese meat product, but its high-fat content makes consumers hesitant. The purpose of this study is to compare the nutritional differences of Chinese sausages with different fermentation times (0, 10, 20, 30 d) and fat content (the initial content was 11.59% and 20.14%) during digestion. The comparison of digestion degree, protein structure, and peptide composition between different sausages were studied through in vitro simulated digestion. Chinese sausages with high-fat content had higher α-helix, β-turn, and random coil, making them easier to digest. The fermentation process made this phenomenon more pronounced. The high-fat sausage fermented for 10 d showed the highest release of primary amino acids (about 9.5%), which was about 3.5% higher than the low-fat sausage under the same conditions. The results of peptidomics confirmed the relevant conclusions. After gastric digestion, the types of peptides in the digestive fluid of high-fat sausages were generally more than those in low-fat sausages, while after intestinal digestion, the opposite results were observed. The type of peptide reached its peak after fermentation for 20 d. These findings are of obvious significance for selecting the appropriate fermentation time and fat content of Chinese sausages.
Collapse
Affiliation(s)
- Tianming Zhou
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bulei Sheng
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Haotian Gao
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaonan Nie
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Haojie Sun
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Baofang Xing
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Longxia Wu
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Di Zhao
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Juqing Wu
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Chunbao Li
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
26
|
Xie Y, Cai L, Ding M, Shan K, Zhao D, Zhou G, Li C. Plant-based meat analogues enhance the gastrointestinal motility function and appetite of mice by specific volatile compounds and peptides. Food Res Int 2023; 174:113551. [PMID: 37986430 DOI: 10.1016/j.foodres.2023.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Eating behavior is critical for maintaining energy homeostasis. Previous studies have found that plant-based meat analogues increased diet intake in mice compared with animal meat under a free feeding mode, however the reasons were unclear. To explore the underlying mechanisms of plant-based meat analogues increasing diet intake, mice were fed animal or plant-based pork and beef analogue diets, respectively. Biochemical and histological analyses were performed to evaluate appetite-regulating hormones and gastrointestinal motility function. Peptiomics and GC-IMS were applied to identify key substances. We found that the intake of plant-based meat analogues significantly enhanced the gastrointestinal motility function of mice. The long-term intake (68 days) of plant-based meat analogues significantly increased the muscle layer thickness of the duodenum and jejunum of mice; the activity of gastrointestinal cells of Cajal were also promoted by upregulating the expression of c-kit related signals as compared to animal meat; plant-based meat analogues intake markedly enhanced the signal intensity of the intestinal neurotransmitter 5-hydroxytryptamine (5-HT) by upregulating the expression of 5-HT synthase and receptors but downregulating its transporter and catabolic enzyme in the intestine. Moreover, plant-based meat analogues intake significantly increased levels of appetite-stimulating factors in the peripheral or hypothalamus but reduced levels of appetite-suppressing factors compared with animal meat. Specific volatile compounds were significantly associated with appetite regulating factors. Among them, 7 substances such as linalool have a potential promoting effect on food intake. Besides, different digestive peptides in gastrointestinal tract may affect eating behavior mainly through the neuroactive ligand-receptor interaction pathway, exerting hormone-like effects or influencing endocrine cell secretion. These findings preliminarily clarified the mechanism of plant-based meat analogues promoting diet intake and provided a theoretical basis for a reasonable diet.
Collapse
Affiliation(s)
- Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengzhen Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Lv G, Wang H, Wei X, Lu M, Yang W, Aalim H, Capanoglu E, Zou X, Battino M, Zhang D. Cooking-Induced Oxidation and Structural Changes in Chicken Protein: Their Impact on In Vitro Gastrointestinal Digestion and Intestinal Flora Fermentation Characteristics. Foods 2023; 12:4322. [PMID: 38231766 DOI: 10.3390/foods12234322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Meat digestion and intestinal flora fermentation characteristics are closely related to human dietary health. The present study investigated the effect of different cooking treatments, including boiling, roasting, microwaving, stir-frying, and deep-frying, on the oxidation of chicken protein as well as its structural and digestion characteristics. The results revealed that deep-fried and roasted chicken exhibited a relatively higher degree of protein oxidation, while that of boiled chicken was the lowest (p < 0.05). Both stir-frying and deep-frying led to a greater conversion of the α-helix structure of chicken protein into a β-sheet structure and resulted in lower protein gastrointestinal digestibility (p < 0.05), whereas roasted chicken exhibited moderate digestibility. Further, the impact of residual undigested chicken protein on the intestinal flora fermentation was assessed. During the fermentation process, roasted chicken generated the highest number of new intestinal flora species (49 species), exhibiting the highest Chao 1 index (356.20) and a relatively low Simpson index (0.88). Its relative abundance of Fusobacterium was the highest (33.33%), while the total production of six short-chain fatty acids was the lowest (50.76 mM). Although stir-fried and deep-fried chicken exhibited lower digestibility, their adverse impact on intestinal flora was not greater than that of roasted chicken. Therefore, roasting is the least recommended method for the daily cooking of chicken. The present work provides practical advice for choosing cooking methods for chicken in daily life, which is useful for human dietary health.
Collapse
Affiliation(s)
- Guanhua Lv
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengpeng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minmin Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenhao Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Halah Aalim
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Xiaobo Zou
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
28
|
Shen X, Chen Y, Ojobi Omedi J, Zeng M, Xiao C, Zhou Y, Chen J. Effects of volatile organic compounds of smoke from different woods on the heterocyclic amine formation and quality changes in pork patty. Food Res Int 2023; 173:113262. [PMID: 37803575 DOI: 10.1016/j.foodres.2023.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 10/08/2023]
Abstract
This study investigated the effects of smoke derived from cypress (CY), mulberry (MU), metasequoia (ME), pine (PI), and camphor (CA) on the heterocyclic aromatic amines (HAs), flavor, and sensory attributes of smoked pork patty. The results showed that the smoke derived from the five kinds of wood and the flavor of the corresponding smoked meat were classified into three types. Moreover, the smoke of CY and PI, and the smoke of MU and ME can be classified into one category respectively, which significantly improved the flavor of the smoked meat. Both free and protein-bound HAs were detected in smoked meat, while the smoking process significantly increased the HAs content, especially free Norharman (3.26 ng/g in control meat, and 82.24 ng/g in meat smoked with CY). Correlation analysis showed that various volatile organic compounds (VOCs) and HAs were closely associated. Future research should pay attention to the VOCs in smoked meat including vanillin, Close attention should be paid to tridecane and crotonic acid, as well as tetradecane and α-Dehydro-ar-himachalene in smoke, which were consistently correlated with various HAs and may participate in HAs formation. These results may reveal how the smoking process influences the formation of HAs and which factors should be targeted to inhibit HAs in smoked meat products.
Collapse
Affiliation(s)
- Xing Shen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jacob Ojobi Omedi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Singh R, Sá AGA, Sharma S, Nadimi M, Paliwal J, House JD, Koksel F. Effects of Feed Moisture Content on the Physical and Nutritional Quality Attributes of Sunflower Meal-based High-Moisture Meat Analogues. FOOD BIOPROCESS TECH 2023; 17:1897-1913. [PMID: 38939448 PMCID: PMC11199254 DOI: 10.1007/s11947-023-03225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/06/2023] [Indexed: 06/29/2024]
Abstract
Adding value to food industry by-products, like sunflower meal (SFM), through their utilization as ingredients in new food products can improve sustainability of food systems. This research investigated extrusion cooking to produce high-moisture meat analogues (HMMAs) made from blends of soy protein isolate and expeller-pressed SFM. The effects of feed moisture content [FMC] (60, 65, and 70%, wet basis) and SFM concentration (37.5, 50, and 62.5%, total blend weight basis) on physical and protein nutritional quality attributes of HMMAs were investigated. The processing temperatures (including cooling die), screw speed and feed rate were kept constant at 60-80-115-125-50-25 °C (from feeder to the die end), 200 rpm and 0.5 kg/h (dry basis), respectively. An increase in SFM concentration and FMC significantly (p < 0.05) reduced the mechanical energy requirements for extrusion. Cutting strength and texture profile analysis of HMMAs indicated softer texture with increases in SFM and FMC. X-ray microcomputed tomography analysis revealed that the microstructure of the HMMAs at the centre and towards the surface was different and affected by SFM concentration and FMC. The in vitro-protein digestibility corrected amino acid score of the HMMAs ranged between 85 and 91% and did not show significant (p < 0.05) changes as a function of FMC or SFM concentration. HMMAs produced from 37.5% SFM at 70% FMC showed no deficiency in essential amino acids for all age categories except for infants, suggesting the high potential of SFM and soy protein blends for creating nutritious meat alternative products. Overall, this work provided valuable insights regarding the effects of soy protein replacement by SFM on the textural, microstructural and nutritional quality of HMMA applications, paving the way for value-addition to this underutilized food industry by-product.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Amanda Gomes Almeida Sá
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Shubham Sharma
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - Mohammad Nadimi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - James D. House
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Filiz Koksel
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
30
|
Han T, Wang Z, Li C, Wang T, Xiao T, Sun Y, Wang S, Wang M, Gai S, Hou B, Liu D. Raw to charred: Changes of protein oxidation and in vitro digestion characteristics of grilled lamb. Meat Sci 2023; 204:109239. [PMID: 37301100 DOI: 10.1016/j.meatsci.2023.109239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/23/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to evaluate protein oxidation and in vitro digestion characteristics of lamb that was grilled from raw to charred (0-30 min). Results showed that protein oxidation was aggravated with the time of grilling, indicated by a significant linear increase in carbonyl groups and a linear decrease in sulfhydryl groups. Proteins had the highest simulated gastric and gastrointestinal digestibility at 10-15 min of grilling. Newly formed specific peptides were continuously released during the grilling process. The identified peptides were mainly derived from creatine kinase, phosphoglycerate kinase, actin and myosin light chain. Protein oxidation was closely related to digestive characteristics, and grilling for >15 min would aggravate protein oxidation and reduce its digestibility. Therefore, at 220 °C lamb should not be grilled for longer than 15 min.
Collapse
Affiliation(s)
- Tianlong Han
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China
| | - Zixuan Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China
| | - Chunxiao Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China
| | - Tongtong Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China
| | - Tong Xiao
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China
| | - Yuxuan Sun
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China
| | - Shiyu Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China
| | - Min Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China.
| | - Shengmei Gai
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University. Chengdu, 610106, China
| | - Dengyong Liu
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province. College of Food Science and Technology, Bohai University. Jinzhou, 121013, China.
| |
Collapse
|
31
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
32
|
Zhang Z, Qin D, Kobata K, Rao J, Lu J, McClements DJ. An In Vitro Comparison of the Digestibility and Gastrointestinal Fate of Scallops and Plant-Based Scallop Analogs. Foods 2023; 12:2928. [PMID: 37569197 PMCID: PMC10418770 DOI: 10.3390/foods12152928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Concerns exist regarding the negative environmental impact and health risks associated with ocean fishing and aquaculture, such as stock depletion, pollution, biodiversity loss, and toxin presence. To address these concerns, plant-based seafood analogs are being developed. Our previous study successfully created plant-based scallop analogs using pea proteins and citrus pectin, resembling real scallops in appearance and texture. This study focuses on comparing the digestive fate of these analogs to real scallops, as it can impact their nutritional properties. Using an in vitro digestion model (INFOGEST), we simulated oral, gastric, and small intestinal conditions. The analysis revealed differences in the microstructure, physicochemical properties, and protein digestibility between the plant-based scallops and real scallops. The particle size and charge followed the following similar trends for both types of scallops: the particle size decreased from the mouth to the stomach to the small intestine; the particles were negative in the mouth, positive in the stomach, and negative in the small intestine. The protein digestibility of the plant-based scallops was considerably lower than that of real scallops. For instance, around 18.8% and 61.4% of protein was digested in the stomach and small intestine phases for the real scallop (80.2% total digestion), whereas around 8.7% and 47.7% of the protein was digested for the plant-based scallop (56.4% total digestion). The lower digestibility of the plant-based scallops may have been due to differences in the protein structure, the presence of dietary fibers (pectin), or antinutritional factors in the plant proteins. These findings are crucial for developing more sustainable next-generation plant-based seafood analogs.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
| | - Dingkui Qin
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
| | - Kanon Kobata
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
| | - Jiajia Rao
- Department of Plant Science, North Dakota State University, Fargo, ND 58102, USA;
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
33
|
Du Q, Tu M, Liu J, Ding Y, Zeng X, Pan D. Plant-based meat analogs and fat substitutes, structuring technology and protein digestion: A review. Food Res Int 2023; 170:112959. [PMID: 37316007 DOI: 10.1016/j.foodres.2023.112959] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
There is currently an increasing trend in the consumption of meat analogs and fat substitutes due to the health hazards by excessive consumption of meat. Simulating the texture and mouthfeel of meat through structured plant-derived polymers has become a popular processing method. In this review, the mechanical structuring technology of plant polymers for completely replacing real meat is mainly introduced in this review, which mainly focuses on the parameters and principles of mechanical equipment for the production of vegan meat. The difference in composition between plant meat and real meat is mainly reflected in the protein, and particular attention should be paid to the digestive characteristics of plant meat protein in the gastrointestinal tract. Therefore, the differences in the protein digestibility properties of meat analogs and real meat is discussed in this review, focusing primarily on protein digestibility and peptide/amino acid composition of mechanically structured vegan meats. In terms of fat substitutes for meat products, the types of plant polymer colloidal systems used for meat fat substitutes is comprehensively introduced, including emulsion, hydrogel and oleogel.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
34
|
Wang Y, Jian C. Novel plant-based meat alternatives: Implications and opportunities for consumer nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:241-274. [PMID: 37722774 DOI: 10.1016/bs.afnr.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Against the backdrop of the global protein transition needed to remain within planetary boundaries, there is an influx of plant-based meat alternatives that seek to approximate the texture, flavor and/or nutrient profiles of conventional animal meat. These novel plant-based meat alternatives, enabled by advances in food technology, can be fundamentally different from the whole-plant foods from which they are derived. One of the reasons is the necessity to use food additives on various occasions, since consumers' acceptance of plant-based meat products primarily depends on the organoleptic properties. Consequently, a high degree of heterogeneity in formulation and nutritional profiles exists both within and between product categories of plant-based meat alternatives with unknown effects on several aspects of human health. This is further complicated by the differences in digestibility and bioavailability between proteins from animal and plant sources, which have a profound impact on colonic fermentation, nutritional adequacy and potential health effects. On the other hand, emerging strategies provide opportunities to develop affordable, delicious and nutritious plant-based meat alternatives that align with consumer interests.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
35
|
Liu H, Zhang J, Chen Q, Hu A, Li T, Guo F, Wang Q. Preparation of Whole-Cut Plant-Based Pork Meat and Its Quality Evaluation with Animal Meat. Gels 2023; 9:461. [PMID: 37367132 DOI: 10.3390/gels9060461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Low-moisture (20~40%) and high-moisture (40~80%) textured vegetable proteins (TVPs) can be used as important components of plant-based lean meat, while plant-based fat can be characterized by the formation of gels from polysaccharides, proteins, etc. In this study, three kinds of whole-cut plant-based pork (PBP) were prepared based on the mixed gel system, which were from low-moisture TVP, high-moisture TVP, and their mixtures. The comparisons of these products with commercially available plant-based pork (C-PBP1 and C-PBP2) and animal pork meat (APM) were studied in terms of appearance, taste, and nutritional qualities. Results showed the color changes of PBPs after frying were similar to that of APM. The addition of high-moisture TVP would significantly improve hardness (3751.96~7297.21 g), springiness (0.84~0.89%), and chewiness (3162.44~6466.94 g) while also reducing the viscosity (3.89~10.56 g) of products. It was found that the use of high-moisture TVP led to a significant increase in water-holding capacity (WHC) from 150.25% to 161.01% compared with low-moisture TVP; however, oil-holding capacity (OHC) was reduced from 166.34% to 164.79%. Moreover, essential amino acids (EAAs), the essential amino acids index (EAAI), and biological value (BV) were significantly increased from 272.68 mg/g, 105.52, and 103.32 to 362.65 mg/g, 141.34, and 142.36, respectively, though in vitro protein digestibility (IVPD) reduced from 51.67% to 43.68% due to the high-moisture TVP. Thus, the high-moisture TVP could help to improve the appearance, textural properties, WHC, and nutritional qualities of PBPs compared to animal meat, which was also better than low-moisture TVP. These findings should be useful for the application of TVP and gels in plant-based pork products to improve the taste and nutritional qualities.
Collapse
Affiliation(s)
- Haodong Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinchuang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Anna Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Tongqing Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
36
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
37
|
Xiao X, Zou PR, Hu F, Zhu W, Wei ZJ. Updates on Plant-Based Protein Products as an Alternative to Animal Protein: Technology, Properties, and Their Health Benefits. Molecules 2023; 28:4016. [PMID: 37241757 PMCID: PMC10222455 DOI: 10.3390/molecules28104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Plant-based protein products, represented by "plant meat", are gaining more and more popularity as an alternative to animal proteins. In the present review, we aimed to update the current status of research and industrial growth of plant-based protein products, including plant-based meat, plant-based eggs, plant-based dairy products, and plant-based protein emulsion foods. Moreover, the common processing technology of plant-based protein products and its principles, as well as the emerging strategies, are given equal importance. The knowledge gap between the use of plant proteins and animal proteins is also described, such as poor functional properties, insufficient texture, low protein biomass, allergens, and off-flavors, etc. Furthermore, the nutritional and health benefits of plant-based protein products are highlighted. Lately, researchers are committed to exploring novel plant protein resources and high-quality proteins with enhanced properties through the latest scientific and technological interventions, including physical, chemical, enzyme, fermentation, germination, and protein interaction technology.
Collapse
Affiliation(s)
- Xiao Xiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Peng-Ren Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (P.-R.Z.); (F.H.)
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (P.-R.Z.); (F.H.)
| | - Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (P.-R.Z.); (F.H.)
| |
Collapse
|
38
|
Chen Y, Jing H, Xiong S, Manyande A, Du H. Comparative Study on Hydrolysis, Physicochemical and Antioxidant Properties in Simulated Digestion System between Cooked Pork and Fish Meat. Foods 2023; 12:foods12091757. [PMID: 37174296 PMCID: PMC10178021 DOI: 10.3390/foods12091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Pork and grass carp are commonly consumed animal protein sources, classified as red meat and white meat, respectively. This study aimed to better understand the differences in digestive behavior, nutrition, and functionality during digestion between these two types of meat after fat removal. The results showed that grass carp was more easily digested than pork, with a higher degree of hydrolysis, a smaller protein particle size, and a greater release of oligopeptides and amino acids (p < 0.05). During gastric digestion, all α-helix structures were destroyed, and the effect of the whole digestion process on the secondary and tertiary structure of pork protein was greater than that of grass carp. The antioxidant properties of the digestive fluids from the two types of meat showed different strengths in various assays, but the correlation analysis revealed that TCA-soluble peptides, random coil content, and particle size significantly influenced both types of meat. These findings provide new insights into the structural state and antioxidant properties of protein in meat digestion, which contribute to our understanding of the nutritional value of pork and grass carp.
Collapse
Affiliation(s)
- Yuhan Chen
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Hanzhi Jing
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
39
|
Li S, Diao X, Mao X, Liu H, Shan K, Zhao D, Zhou G, Li C. The red, firm, non-exudative and pale, soft, exudative pork have different in vitro digestive properties of protein. Meat Sci 2023; 198:109110. [PMID: 36640717 DOI: 10.1016/j.meatsci.2023.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Pale, soft and exudative (PSE) meat has worse edible quality than red, firm and non-exudative (RFN) meat, but their difference in nutritional values is still unclear. In this study, the differences in digestive properties between PSE and RFN pork were explored, and the potential mechanisms were analyzed in terms of protein conformation. The PSE pork showed significantly higher digestibility and smaller particle size compared with RFN pork (P < 0.05) after gastrointestinal digestion. Mechanistically, the lower viscosity was seen in the PSE pork digestion system. The protein structure of PSE pork was disordered with weaker hydrogen bond and ionic bond before and after heating. In addition, the protein (mainly salt-soluble protein) of PSE pork was highly oxidized. The results suggested that higher level of oxidation in PSE pork leads to the destruction of the molecular forces, resulting in the impaired protein conformation and disordered protein structure. The serial changes caused the meat proteins more accessible to digestive enzymes, thus improving the digestibility. The findings provide new insights into the evaluating the quality of PSE meat.
Collapse
Affiliation(s)
- Shanshan Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinyue Diao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinrui Mao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Shan
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
40
|
Wang S, Zhao M, Fan H, Wu J. Peptidomics Study of Plant-Based Meat Analogs as a Source of Bioactive Peptides. Foods 2023; 12:foods12051061. [PMID: 36900588 PMCID: PMC10000916 DOI: 10.3390/foods12051061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The demand for plant-based meat analogs (PBMA) is on the rise as a strategy to sustain the food protein supply while mitigating environmental change. In addition to supplying essential amino acids and energy, food proteins are known sources of bioactive peptides. Whether protein in PBMA affords similar peptide profiles and bioactivities as real meat remains largely unknown. The purpose of this study was to investigate the gastrointestinal digestion fate of beef and PBMA proteins with a special focus on their potential as precursors of bioactive peptides. Results showed that PBMA protein showed inferior digestibility than that in beef. However, PBMA hydrolysates possessed a comparable amino acid profile to that of beef. A total of 37, 2420 and 2021 peptides were identified in the gastrointestinal digests of beef, Beyond Meat and Impossible Meat, respectively. The astonishingly fewer peptides identified from beef digest is probably due to the near-full digestion of beef proteins. Almost all peptides in Impossible Meat digest were from soy, whereas 81%, 14% and 5% of peptides in Beyond Meat digest were derived from pea, rice and mung proteins, respectively. Peptides in PBMA digests were predicted to exert a wide range of regulatory roles and were shown to have ACE inhibitory, antioxidant and anti-inflammatory activities, supporting the potential of PBMA as a source of bioactive peptides.
Collapse
Affiliation(s)
- Shuguang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Correspondence: ; Tel.: +1-(780)-492-6885
| |
Collapse
|
41
|
Zhang K, Zang M, Wang S, Zhang Z, Li D, Li X. Development of meat analogs: Focus on the current status and challenges of regulatory legislation. Compr Rev Food Sci Food Saf 2023; 22:1006-1029. [PMID: 36582054 DOI: 10.1111/1541-4337.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022]
Abstract
Population growth and the rising enthusiasm for meat consumption in developing countries have increased the global demand for animal protein. The limited increase in traditional meat production, which results in high resource consumption, greenhouse gas emissions, and zoonotic diseases, has affected the sustainable supply of meat protein. The technological development and commercialization of meat analogs derived from plant and microbial proteins provide a strategy for solving the abovementioned problems. However, before these innovative foods are marketed, they should comply with regulations and standards to ensure food safety and consumer rights. This review briefly summarizes the global development status and challenges of plant- and fungi-based meat analog products. It focuses on the current status, characteristics, and disputes in the regulations and standards worldwide for plant- and fungi-based meat analogs and proposes suggestions for perfecting the regulatory system from the perspective of ensuring safety and supporting innovation. Although plant- and fungi-based meat analogs have had a history of safe usage as foods for a certain period around the world, the nomenclature and product standards are uncertain, which affects product innovation and global sales. Regulatory authorities should promptly formulate and revise regulations or standards to clarify the naming of meat analogs and product standards, especially the use of animal-derived ingredients and limits of nutrients (e.g., protein, fat, vitamins, and minerals) to continuously introduce start-up products to the market.
Collapse
Affiliation(s)
- Kaihua Zhang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Mingwu Zang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Shouwei Wang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Zheqi Zhang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Dan Li
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Xiaoman Li
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| |
Collapse
|
42
|
Zheng L, Regenstein JM, Wang Z, Zhang H, Zhou L. Reconstituted rice protein:The raw materials, techniques and challenges. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
43
|
Wang Y, Cai W, Li L, Gao Y, Lai KH. Recent Advances in the Processing and Manufacturing of Plant-Based Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1276-1290. [PMID: 36626726 DOI: 10.1021/acs.jafc.2c07247] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant protein technology is a core area of biotechnology to ease the problem of human protein demand. Plant-based meat based on plant protein technology is a growing concern by global consumers in alleviating environmental pollution, cutting down resources consumption, and improving animal welfare. Plant-based meat simulates the texture, taste, and appearance of animal meat by using protein, lipid, carbohydrate, and other plant nutrients as the main substances. This review summarizes the main components of plant-based meat, processing technology, standard formula, market competition, and formula and texture of future research directions. According to the existing methods of plant-based meat fiber forming, the development process and characteristics of four production processes and equipment of plant-based meat spinning, extrusion, shearing, and 3D printing are emphatically expounded. The processing principles and methods of different processing technologies in plant-based meat production are summarized. The production process and equipment of plant-based meat will pay more attention to the joint production of various processes to improve the defects of plant-based meat production process.
Collapse
Affiliation(s)
- Yu Wang
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Wei Cai
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
- Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong, China
| | - Li Li
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yane Gao
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Kee-Hung Lai
- Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong, China
| |
Collapse
|
44
|
Safdar B, Zhou H, Li H, Cao J, Zhang T, Ying Z, Liu X. Prospects for Plant-Based Meat: Current Standing, Consumer Perceptions, and Shifting Trends. Foods 2022; 11:3770. [PMID: 36496577 PMCID: PMC9739557 DOI: 10.3390/foods11233770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Dietary habits have a substantial influence on both planet and individual health. High intake of animal products has significant negative effects on the environment and on human health; hence, a reduction in meat consumption is necessary. The transition towards plant-based meat (PBM) is one of the potential solutions for environmental and health issues. To achieve this goal, it is important to understand the dietary habits and demands of consumers. This review was designed with a focus on PBM alternatives, dietary shifts during the COVID-19 pandemic, the drivers of consumers' perceptions in various countries, and the measures that can promote the shift towards PBM. The PBM market is predicted to grow with rising awareness, familiarity, and knowledge in the coming years. Companies must focus on the categories of anticipated benefits to aid consumers in making the switch to a diet higher in PBM alternatives if they want to win over the target market.
Collapse
Affiliation(s)
- Bushra Safdar
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| | - Haochun Zhou
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jinnuo Cao
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| | - Tianyu Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiwei Ying
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| |
Collapse
|
45
|
Carbone JW, Pasiakos SM. The role of dietary plant and animal protein intakes on mitigating sarcopenia risk. Curr Opin Clin Nutr Metab Care 2022; 25:425-429. [PMID: 35788119 PMCID: PMC9553248 DOI: 10.1097/mco.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To highlight contemporary findings comparing the digestibility of animal and plant proteins, their stimulatory effects on muscle protein synthesis, and associations with sarcopenia. RECENT FINDINGS Animal proteins are more digestible than plant proteins, resulting in greater amino acid availability and stimulation of muscle protein synthesis. However, isolated plant proteins, plant protein blends, and modified plant proteins enriched with indispensable amino acids can elicit comparable digestion and absorption kinetics to animal proteins. More research is needed to determine whether these modified plant protein sources can effectively mitigate sarcopenia risk. SUMMARY Both animal and plant protein foods can be incorporated into a healthful eating plan that limits risk of age-related diseases, such as sarcopenia. Humans eat food rather than isolated nutrients; as such, considering the context of the overall diet and its impact on health, instead of solely focusing on individual nutrients in isolation, is important.
Collapse
Affiliation(s)
- John W. Carbone
- School of Health Sciences, Eastern Michigan University, Ypsilanti, Michigan
| | - Stefan M. Pasiakos
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
46
|
Digestibility and bioavailability of plant-based proteins intended for use in meat analogues: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Xie Y, Cai L, Huang Z, Shan K, Xu X, Zhou G, Li C. Plant-Based Meat Analogues Weaken Gastrointestinal Digestive Function and Show Less Digestibility Than Real Meat in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12442-12455. [PMID: 36070521 DOI: 10.1021/acs.jafc.2c04246] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real meat and plant-based meat analogues have different in vitro protein digestibility properties. This study aims to further explore their in vivo digestion and absorption and their effects on the gastrointestinal digestive function of mice. Compared with the real pork and beef, plant-based meat analogues significantly reduced the number of gastric parietal cells, the levels of gastrin/CCKBR, acetylcholine/AchR, Ca2+, CAMK II, PKC, and PKA, the activity of H+, K+-ATPase, and pepsin, the duodenal villus height, and the ratio of villus height to crypt depth and downregulated the expression of most nitrogen nutrient sensors. Peptidomics revealed that plant-based meat analogues released fewer peptides during in vivo digestion and increased the host- and microbial-derived peptides. Moreover, the real beef showed better absorption properties. These results suggested that plant-based meat analogues weaken gastrointestinal digestive function of mice, and their digestion and absorption performance in vivo is not as good as the real meat.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Cai
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiji Huang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Shan
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
48
|
Peptidomics insights into the interplay between the pre-digestion effect of mixed starters and the digestive pattern of sausage proteins. Food Res Int 2022; 162:111963. [DOI: 10.1016/j.foodres.2022.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
|
49
|
Mandliya S, Pratap-Singh A, Vishwakarma S, Dalbhagat CG, Mishra HN. Incorporation of Mycelium ( Pleurotus eryngii) in Pea Protein Based Low Moisture Meat Analogue: Effect on Its Physicochemical, Rehydration and Structural Properties. Foods 2022; 11:2476. [PMID: 36010476 PMCID: PMC9407581 DOI: 10.3390/foods11162476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The protein content of a plant-based ingredient is generally lower than its animal food counterpart, and research into novel alternative protein is required that can provide similar protein content, texture and appearance as meat. This work investigates a mycelium-based low moisture meat analogue (LMMA) approach, by incorporating 0 to 40% w/w mycelium (MY) into pea protein isolate (PPI) via extrusion using a twin-screw extruder at 140 °C die temperature, 40 rpm screw speed, and 10 rpm feeder speed (0.53-0.54 kg/h). Physicochemical, rehydration, and structural properties of LMMA were assessed. The MY incorporation led to a significant change in color attributes due to Maillard reaction during extrusion. Water solubility index and water absorption capacity increased significantly with MY addition, owing to its porous structure. Oil absorption capacity increased due to increased hydrophobic interactions post-extrusion. Protein solubility decreased initially (upto 20% w/w MY), and increased afterwards, while the water holding capacity (WHC) and volumetric expansion ratio (VER) of LMMA enhanced with MY addition upto 30% w/w. Conversely, WHC and VER decreased for 40% w/w which was verified with the microstructure and FTIR analysis. Overall, MY (30% w/w) in PPI produced a fibrous and porous LMMA, showing future potential with an increasingly plant-based product market and decreasing carbon footprint of food production activities.
Collapse
Affiliation(s)
- Shubham Mandliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anubhav Pratap-Singh
- Food Nutrition & Health Program, Faculty of Land & Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Siddharth Vishwakarma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
50
|
Jiang S, Xue D, Zhang M, Li Q, Liu H, Zhao D, Zhou G, Li C. Myoglobin diet affected colonic mucus layer and barrier by increasing the abundance of several beneficial gut bacteria. Food Funct 2022; 13:9060-9077. [DOI: 10.1039/d2fo01799g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study aimed to explore the in vitro digestion of myoglobin diet and its relationship with the gut microbiota and intestinal barrier at two feeding time points. In vitro study...
Collapse
|