1
|
Geniş B, Öztürk H, Özden Tuncer B, Tuncer Y. Safety assessment of enterocin-producing Enterococcus strains isolated from sheep and goat colostrum. BMC Microbiol 2024; 24:391. [PMID: 39375633 PMCID: PMC11457484 DOI: 10.1186/s12866-024-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND This study investigates the safety evaluation of enterocin-producing 11 E. mundtii and two E. faecium strains previously isolated from small livestock colostrums. Enterococcus species do not possess Generally Recognized as Safe (GRAS) status. Hence, it is critical to scrutinize enterococci's antibiotic resistance, virulence characteristics, and biogenic amine production capabilities in order to assess their safety before using them as starter or adjunct cultures. RESULTS Enterococcus strains showed susceptibility to medically significant antibiotics. Multiple-drug resistance (MDR) was found in only E. faecium HC121.4, and its multiple antibiotic resistance (MAR) index was detected to be 0.22. The tetL and aph(3')-IIIa were the most commonly found antibiotic resistance genes in the strains. However, E. mundtii strains HC56.3, HC73.1, HC147.1, and E. faecium strain HC121.4 were detected to lack any of the antibiotic resistance genes examined in this study. Only E. mundtii HC166.3 showed hemolytic activity, while none of the strains engage in gelatinase activity. The strains were identified to have virulence factor genes with a low rate. None of the virulence factor genes could be detected in E. mundtii HC26.1, HC56.3, HC73.1, HC165.3, HC166.8, and E. faecium HC121.4. The E. mundtii HC73.2 strain displayed the highest presence of virulence factor genes, namely gelE, efaAfs, cpd, and ccf. Similarly, the E. mundtii HC112.1 strain showed a significant presence of genes efaAfm, ccf, and acm. There was no decarboxylation of histidine, ornithine, or lysine seen in any of the strains. Nevertheless, E. faecium HC121.4 and HC161.1 strains could decarboxylate tyrosine, but E. mundtii HC26.1, HC56.3, HC73.1, HC73.2, HC112.1, HC147.1, HC155.2, HC165.3, HC166.3, HC166.5, and HC166.8 strains only showed a limited capacity for tyrosine decarboxylation. None of the strains possessed the hdc, odc, or ldc genes, but all of them had the tdc gene. CONCLUSION The E. mundtii HC56.3 and HC73.1 strains were deemed appropriate for utilization in food production. Using the remaining 11 strains as live cultures in food production activities could pose a possible risk to consumer health.
Collapse
Affiliation(s)
- Burak Geniş
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye
| | - Hüseyin Öztürk
- Department of Food Technology, Manavgat Vocational School, Akdeniz University, Antalya, 07600, Türkiye
| | - Banu Özden Tuncer
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye
| | - Yasin Tuncer
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye.
| |
Collapse
|
2
|
Lejri R, Ellafi A, Valero Tebar J, Chaieb M, Mekki A, Džunková M, Ben Younes S. Phenotypic characterization for bioremediation suitability of isolates from Southern Tunisian tannery effluent. Microbiol Res 2024; 285:127771. [PMID: 38788351 DOI: 10.1016/j.micres.2024.127771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Effluents from the leather tanning industry contain diverse pollutants, including hazardous heavy metals, posing threats to public health and the surrounding environment. Indigenous bacterial isolates can represent an eco-friendly approach for tannery wastewater treatment; however, phenotypic characterization is necessary to determine whether these strains are suitable for bioremediation. In the present study, we analyzed seven new Enterococcus faecium strains and two new Bacillus subtillis strains isolated from effluents from the Southern Tunisian Tannery (ESTT). We evaluated phenotypic features beneficial for bioremediation, including biofilm formation, hydrophobicity, and exoenzyme activities. Additionally, we examined characteristics naturally occurring in environmental bacteria but less desirable in strains selected for bioremediation, such as antibiotic resistances and pathogenicity indicators. The observed phenotypes were then compared with whole-genome analysis. We observed biofilm production in two slime-producing bacteria, B. licheniformis RLT6, and E. faecium RLT8. Hydrophobicity of E. faecium strains RLT1, RLT5, RLT8, and RLT9, as well as B. licheniformis RLT6 correlated positively with increasing ESTT concentration. Exoenzyme activities were detected in E. faecium strains RLT2, RLT4, and RLT7, as well as B. licheniformis RLT6. As anticipated, all strains exhibited common resistances to antibiotics and hemolysis, which are widespread in nature and do not hinder their application for bioremediation. Importantly, none of the strains exhibited the pathogenic hypermucoviscosity phenotype. To the best of our knowledge, this is the first report consolidating all these phenotypic characteristics concurrently, providing a complete overview of strains suitability for bioremediation. IMPORTANCE: The study evaluates the bioremediation potential of seven Enterococcus faecium strains and two Bacillus subtillis strains isolated from the effluents from the Southern Tunisian tannery (ESTT), which pose threats to public health and environmental integrity. The analysis primarily examines the phenotypic traits crucial to bioremediation, including biofilm formation, hydrophobicity, and exoenzyme activities, as well as characteristics naturally occurring in environmental bacteria related to heavy metal resistance, such as antibiotic resistances. Several strains were found to have high bioremediation potential and exhibit only antibiotic resistances commonly found in nature, ensuring their application for bioremediation remains uncompromised. The results of the exhaustive phenotypic analysis are contrasted with the whole genome sequences of the nine strains, underscoring the appropriateness of these bacterial strains for eco-friendly interventions in tannery wastewater treatment.
Collapse
Affiliation(s)
- Rokaia Lejri
- Faculty of Sciences of Gafsa, Gafsa University, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisia; Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of Sciences of Sfax, Sfax University, Tunisia
| | - Ali Ellafi
- Faculty of Sciences of Gafsa, Gafsa University, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisia; Laboratory of Analysis, treatment and valorization of environment pollutants and products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Juan Valero Tebar
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46980, Spain
| | - Mohamed Chaieb
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of Sciences of Sfax, Sfax University, Tunisia
| | - Ali Mekki
- Faculty of Sciences of Gafsa, Gafsa University, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisia; Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Mária Džunková
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46980, Spain.
| | - Sonia Ben Younes
- Faculty of Sciences of Gafsa, Gafsa University, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisia; Laboratory of Population health, environmental aggressors and alternative therapies (LR24ES10), Faculty of Medicine of Tunis.
| |
Collapse
|
3
|
Ertekin Ö, Kaban G, Kaya M. Genotypic diversity and antagonistic activities of enterococci isolated from pastırma. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:983-989. [PMID: 38487290 PMCID: PMC10933240 DOI: 10.1007/s13197-023-05895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/30/2022] [Accepted: 11/06/2023] [Indexed: 03/17/2024]
Abstract
The biodiversity of enterococci from pastırma (a traditional Turkish dry-cured meat product) by genotypic identification and the antagonistic activities of strains were investigated. Pastırma samples taken from 20 different small-scale factories were subjected to microbiological and physicochemical analysis. A hundred enterococci isolates were identified by 16S rRNA gene sequence analysis. To determine antagonistic activity of strains, Listeria monocytogenes and Staphylococcus aureus were used. The lactic acid bacteria and Micrococcus/Staphylococcus counts were ≥ 6 log cfu/g in 55% of the samples and 75% of the samples, respectively. Enterobacteriaceae was generally below the detectable level (< 2 log cfu/g). The enterococci count was higher than 6 log cfu/g in 30-35% of the samples, depending on the medium used. The enterococci isolates (100 isolates) were identified as E. faecium (80 strains), E. faecalis (19 strains) and E. hirae (1 strain) in genotypic identification. The nine E. faecium strains showed antagonistic activity against L. monocytogenes in the well diffusion test. In contrast, in the same antagonistic activity test, all of the strains had no antagonistic activity against S. aureus. Further studies could be planned to characterize E. faecium strains that show antagonistic activity against L. monocytogenes.
Collapse
Affiliation(s)
- Özlem Ertekin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Munzur University, 62000 Tunceli, Turkey
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Turkey
| | - Mükerrem Kaya
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
4
|
Sakoui S, Derdak R, Pop OL, Vodnar DC, Jouga F, Teleky BE, Addoum B, Simon E, Suharoschi R, Soukri A, El Khalfi B. Exploring Technological, Safety and Probiotic Properties of Enterococcus Strains: Impact on Rheological Parameters in Fermented Milk. Foods 2024; 13:586. [PMID: 38397563 PMCID: PMC10887579 DOI: 10.3390/foods13040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Enterococci, known for their resilience, are commonly found in food, the environment, and the gastrointestinal tracts of humans and animals. In recent research, six strains of enterococcus were isolated from bat guano. These include Enterococcus mundtii SRBG1, Enterococcus gallinarum SRBG3, Enterococcus faecium SRBG2, Enterococcus casseliflavus EC1, and Enterococcus devriesei CAU 1344. Identification was done using 16S DNA analysis. Each strain underwent evaluation for its technological properties (such as tolerances to various NaCl concentrations and temperatures, as well as amylolytic, β-galactosidase, lipolytic, and proteolytic activities, and EPS production) and selected probiotic properties (including safety profile, resistance to 0.3 percent bile salts and gastric juice with a pH of 2.5, lysozyme tolerance, and antibacterial and antibiofilm activities against four foodborne pathogens). The results were analyzed using Principal Component Analysis. This analysis revealed that E. mundtii SRBG1 and E. gallinarum SRBG3, followed by E. faecium SRBG2, were most closely associated with a broad range of technological characteristics and were subsequently used for fermenting skimmed milk. The rheological properties of the samples indicated a shear-thinning or non-Newtonian behavior. Furthermore, during storage of the fermented milk at 4 °C over periods of 1, 7, 14, and 21 days, there were no significant changes in bacterial count (at around 7 log10 CFU/mL) and pH when fermented with the three evaluated strains.
Collapse
Affiliation(s)
- Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
| | - Reda Derdak
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
- Department of Biology, Faculty of Sciences El Jadida, Chouaïb Doukkali University, B.P 20, El Jadida 24000, Morocco
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania
| | - Fatimazahra Jouga
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
| | - Bernadette-Emőke Teleky
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
| | - Boutaina Addoum
- Biology and Medical Research Unit, Centre National de l’Energie, des Sciences et des Techniques Nucléaires, Rabat 10001, Morocco;
| | - Elemér Simon
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
| |
Collapse
|
5
|
El-Razik KAA, Ibrahim ES, Arafa AA, Hedia RH, Younes AM, Hasanain MH. Molecular characterization of tetracycline and vancomycin-resistant Enterococcus faecium isolates from healthy dogs in Egypt: a public health threat. BMC Genomics 2023; 24:610. [PMID: 37828442 PMCID: PMC10568815 DOI: 10.1186/s12864-023-09708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) are among the most common causative pathogens for nosocomial infections worldwide. Moreover, strains of VRE have been isolated from several domestic livestock in Egypt. METHODS This study examined if healthy dogs are a potential source of VRE infection by isolating and characterizing Enterococcus faecium strains from stool samples on a morphological basis and biochemical activities. Subsequently, it was confirmed by genotypic characterization using polymerase chain reaction (PCR), followed by the detection of antibiotic resistance genes, virulence determinants, and genes contributing to enterocin production by PCR. Furthermore, the phylogenetic relationships among vanB and tetL genes were analyzed. RESULTS All ten fecal samples were identified as E. faecium and confirmed by PCR. In addition, 90% of the isolates tested were positive for the virulence genes gelE and esp, and all the isolates tested were positive for the antibiotic resistance genes tetL and vanB. Only three of the five enterocin genes examined were detected. Ent As-48, bacteriocin 31, and Ent L50 were identified in 100%, 80%, and 60% of the samples, respectively. CONCLUSION Dogs should be regarded as a reservoir of E. faecium that carries vancomycin resistance and virulence determinants that may affect public health in Egypt, considering a "One Health" task force approach to restrict their spread.
Collapse
Affiliation(s)
- Khaled A Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Eman S Ibrahim
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Amany A Arafa
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Riham H Hedia
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Abdelgayed M Younes
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mahmoud H Hasanain
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
6
|
Elidrissi A, Ezzaky Y, Boussif K, Achemchem F. Isolation and characterization of bioprotective lactic acid bacteria from Moroccan fish and seafood. Braz J Microbiol 2023; 54:2117-2127. [PMID: 37531004 PMCID: PMC10484840 DOI: 10.1007/s42770-023-01077-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The microbiota of aquatic animals is heavily influenced by their environment, offering a potential source for biotechnologically relevant microorganisms. In this investigation, bacterial strains from fish and fish products were investigated to determine their antimicrobial effects against fish and food pathogens. Twelve strains, including five Lactococcus, two Enterococcus hirae, two Enterococcus mundtii, and three Latilactobacillus sakei were selected as producing bacteriocin-like substances with antimicrobial properties that were active against a broad spectrum of bacteria, such as Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas aeruginosa. Selected strains were identified via 16S rRNA sequencing. Most strains exhibited sensitivity to eight types of antibiotics (erythromycin, tetracycline, chloramphenicol, vancomycin, fosfomycin, gentamicin, ampicillin, and netilmicin), lacked hemolysin and gelatinase virulence factors, and did not produce histamine. These findings suggest that marine fish may be a promising source of lactic acid bacteria strains with antimicrobial potential for use as biopreservatives in the food industry.
Collapse
Affiliation(s)
- Ahmed Elidrissi
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, BP 33/S, 80150, Agadir, Morocco
| | - Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, BP 33/S, 80150, Agadir, Morocco
| | - Kaoutar Boussif
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, BP 33/S, 80150, Agadir, Morocco
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, BP 33/S, 80150, Agadir, Morocco.
| |
Collapse
|
7
|
Öztürk H, Geniş B, Özden Tuncer B, Tuncer Y. Bacteriocin production and technological properties of Enterococcus mundtii and Enterococcus faecium strains isolated from sheep and goat colostrum. Vet Res Commun 2023; 47:1321-1345. [PMID: 36738399 DOI: 10.1007/s11259-023-10080-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Enterococci are lactic acid bacteria (LAB) that play a role in the aroma formation, maturation, and sensory development of fermented foods such as meat and dairy products. They also contribute to the improvement of the extended shelf life of fermented foods by producing bacteriocin. The aim of this study was to isolate bacteriocin-producing LAB from sheep and goat colostrum, to characterize the bacteriocin-producing strains, and determine the technological properties of the strains. A total of 13 bacteriocin-producing LAB was isolated and identified as 11 Enterococcus mundtii and two Enterococcus faecium. The strains were found to be genetically different from each other by phylogenetic analysis of 16S rRNA gene sequences and random amplified polymorphic-DNA (RAPD-PCR). It has been determined that bacteriocins show activity in a wide pH range and are resistant to heat, lose their activity with proteolytic enzymes and α-amylase, but are resistant to detergents. While the presence of the munKS gene was detected in all of the strains, it was determined that E. faecium HC121.4, HC161.1, E. mundtii HC147.1, HC166.5, and HC166.8 strains contained multiple enterocin genes. Trisin-SDS-PAGE analysis revealed two active protein bands of approximately 5.1 and 5.5 kDa in E. faecium HC121.4 and one active protein band with a weight of approximately 4.96 kDa in other strains. E. mundtii strains and E. faecium HC161.1 were identified as mundticin KS producers, and E. faecium HC121.4 was defined as an enterocin A and B producer. Except for E. mundtii HC166.8, acid production of strains was found to be slow at 6 h and moderate at 24 h. None of them showed extracellular proteolytic and lipolytic activities. It was found that the strains had esterase, esterase lipase, leucine arylamidase, acid phosphatase, and naphthol-AS-Bl-phosphohydrolase activities, while protease activities were low and peptidase activities were high. In conclusion, bacteriocin producer 13 Enterococcus strains isolated from sheep and goat colostrum were found to have the potential to be included in starter culture combinations.
Collapse
Affiliation(s)
- Hüseyin Öztürk
- Department of Food Technology, Manavgat Vocational School, Akdeniz University, 07600, Antalya, Turkey
| | - Burak Geniş
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Banu Özden Tuncer
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Yasin Tuncer
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey.
| |
Collapse
|
8
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
9
|
Linezolid-Resistant Enterococcus spp. Isolates from Foods of Animal Origin-The Genetic Basis of Acquired Resistance. Foods 2022; 11:foods11070975. [PMID: 35407062 PMCID: PMC8998034 DOI: 10.3390/foods11070975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Enterococci are important opportunistic pathogens with the capacity to acquire and spread antibiotic resistance. At present, linezolid-resistant enterococci (LRE) pose a great challenge. Linezolid is considered as a last resort antibiotic in the treatment of enterococcal infections, so it is important to monitor the occurrence of LRE in various environments. The aim of this study was to define the genetic mechanisms of linezolid resistance in enterococci (E. faecalis, E. faecium, E. hirae, E. casseliflavus) isolated from foods of animal origin (n = 104). Linezolid resistance (LR) was shown by 26.9% of isolates. All of them displayed linezolid MICs of 8–32 µg/mL, and 96.4% of them were multidrug multidrug-resistant. The most common acquired linezolid resistance gene in LR isolates was poxtA (64%), followed by optrA (28%) and cfr (12%). According to the authors’ knowledge, this research is the first to indicate the presence of the cfr gene among isolates from food. In 28.6% of the isolates, the point mutation G2576T in the V domain of the 23S rRNA was responsible for linezolid resistance. All isolates harbored the wild-type rplC, rplD and rplV genes. The obtained results indicate that linezolid resistance among enterococci in animal-derived food may result from various genetic mechanisms. The most worrying is that this resistance is encoded on mobile genetic elements, so there is a risk of its rapid transmission, even despite the lack of selective pressure resulting from the use of antibiotics.
Collapse
|
10
|
Akpınar Kankaya D, Tuncer Y. Detection of Virulence Factors, Biofilm Formation and Biogenic Amine Production in
Vancomycin‐Resistant
Lactic Acid Bacteria (
VRLAB
) Isolated From Foods of Animal Origin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Technology, Gelendost Vocational School Isparta University of Applied Sciences Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
11
|
Bacteriocin-like inhibitory substances production by Enterococcus faecium 135 in co-culture with Ligilactobacillus salivarius and Limosilactobacillus reuteri. Braz J Microbiol 2022; 53:131-141. [PMID: 34988936 PMCID: PMC8882487 DOI: 10.1007/s42770-021-00661-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023] Open
Abstract
The use of lactic acid bacteria (LAB) and probiotic cultures in the breeding of animals such as poultry and swine are quite common. It is known that those strains can produce bacteriocins when grown in pure culture. However, the production of bacteriocin using co-culture of microorganisms has not been much studied so far. The present study contributes with innovation in this area by embracing the production of bacteriocin-like inhibitory substances (BLIS) by a newly isolated strain of Enterococcus faecium 135. Additionally, the co-cultivation of this strain with Ligilactobacillus salivarius and Limosilactobacillus reuteri was also investigated. The antimicrobial activity of the produced BLIS was evaluated against Listeria monocytogenes, Listeria innocua, Salmonella enterica, and Salmonella enterica serovar Typhimurium using two methods: turbidimetric and agar diffusion. In addition, the presence of enterocin genes was also evaluated. The BLIS produced showed a bacteriostatic effect against the bio-indicator strains, and the highest antimicrobial activities expressed by arbitrary units per mL (AU/mL) were obtained against L. monocytogenes in monoculture (12,800 AU/mL), followed by the co-culture of E. faecium with Limosilactobacillus reuteri (400 AU/mL). After concentration with ammonium sulfate, the antimicrobial activity raised to 25,600 AU/mL. Assays to determine the proteinaceous nature of the BLIS showed susceptibility to trypsin and antimicrobial activity until 90 °C. Finally, analysis of the presence of structural genes of enterocins revealed that four enterocin genes were present in E. faecium 135. These results suggest that BLIS produced by E. faecium 135 has potential to be a bacteriocin and, after purification, could potentially be used as an antimicrobial agent in animal breeding.
Collapse
|
12
|
Sosa FM, Parada RB, Marguet ER, Vallejo M. Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Enterococcus spp. Strains Isolated from Patagonian Marine Invertebrates. Curr Microbiol 2021; 79:16. [PMID: 34905107 DOI: 10.1007/s00284-021-02712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
This work's objective was to determine the antagonist activity of 11 Enterococcus spp. using industrial food wastes as a culture medium. The strains were isolated from invertebrates collected on the Argentinian Patagonia coast and selected by their high antibacterial activity. Phenotypic and genotypic techniques allowed identifying five E. hirae strains, five E. faecium strains, and one E. mundtii strain. The cell-free supernatants displayed inhibitory activity against most of the Gram-positive bacteria tested and Vibrio anguilarum. PCR amplification techniques detected the encoding genes of enterocin P in ten strains, mundtiicin KS in seven strains, enterocin B in six strains, hiracin JM79 in five strains, and enterocin A in three strains. The strains did not show gelatinase or hemolytic activities and were sensitive to gentamicin, kanamycin, streptomycin, tylosine, tetracycline, chloramphenicol and vancomycin. Cheese whey and hot trub derived from beer brewing were used alone or in combination to assay enterocin production. In all cases, the highest inhibitory activities were achieved when mixtures of both byproducts were used as growth medium. The results suggest that the selected strains can produce high levels of enterocins in a low-cost media composed of a mix of cheese whey and hot trub without additional supplementation with carbon or nitrogen sources.
Collapse
Affiliation(s)
- Franco M Sosa
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Romina B Parada
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Emilio R Marguet
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina
| | - Marisol Vallejo
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.
| |
Collapse
|
13
|
Yuksekdag Z, Ahlatcı NS, Hajikhani R, Darilmaz DO, Beyatli Y. Safety and metabolic characteristics of 17 Enterococcus faecium isolates. Arch Microbiol 2021; 203:5683-5694. [PMID: 34468805 DOI: 10.1007/s00203-021-02536-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
In the present study, metabolic characteristics, such as lactic acid, hydrogen peroxide, exopolysaccharide (EPS) production, and antimicrobial activities, of 17 Enterococcus faecium isolates from white cheese samples were assessed. In E. faecium isolates, the amount of lactic acid obtained between in MRS medium 0.61-1.22% and in skim milk 0.75-1.08%, and the amount of H2O2 was found between 0.57 and 3.17 µg mL-1. In MRS and skim milk, the amount of EPS production was 59-185 mg L-1, 155-255 mg L-1 for isolates, respectively. The antimicrobial activities of E. faecium isolates on eight different pathogenic bacteria were also performed by an agar well diffusion method. The highest inhibition zones 8.60 mm were observed with culture supernatants of RI-71 isolate against Escherichia coli ATCC 35218. The safety of the E. faecium isolates was assessed by determining gelatinase activity, hemolytic activity, the resistance to ten different antibiotics, biofilm forming, and virulence genes (van A, van B, gelE, cylA, cylB, esp, agg, and asa1, efaAfm, cob, ccf, hyl). The isolates did not show gelatinase activity, β-hemolysis, and biofilm formation. All E. faecium isolates were susceptible to vancomycin, penicillin-G, tetracycline, ampicillin, and chloramphenicol. The efaAfm gene was detected most frequently (94%) followed by cob (82%), van B (59%), and ccf (53%). For enterococci to be recommended as co-starter or probiotic adjunct cultures, it is necessary to determine whether they have virulence genes and resistance to antibiotics.
Collapse
Affiliation(s)
- Zehranur Yuksekdag
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey.
| | - Nur Seda Ahlatcı
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| | - Rasta Hajikhani
- Nikan Alley, 10 Sohrevardi Shomali Ave., Ostad Motahhari, 1567714413, Tehran, Iran
| | - Derya Onal Darilmaz
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Yavuz Beyatli
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| |
Collapse
|
14
|
Oruc O, Ceti̇n O, Onal Darilmaz D, Yüsekdag ZN. Determination of the biosafety of potential probiotic Enterococcus faecalis and Enterococcus faecium strains isolated from traditional white cheeses. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Özkan ER, Demirci T, Akın N. In vitro assessment of probiotic and virulence potential of Enterococcus faecium strains derived from artisanal goatskin casing Tulum cheeses produced in central Taurus Mountains of Turkey. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Junges da Costa R, Pereira da Silva A, Nobre da Fonseca R, de Oliveira Hübner S, Nalério ES, de Lima Marques J, Soares Vitola HR, Padilha da Silva W, Duval EH, Fiorentini ÂM. Characterization of Enterococcus faecium EO1 isolated from mutton and activity of bacteriocin-like substances in the control of Listeria monocytogenes in fresh mutton sausage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Dinçer E, Kıvanç M. In vitro evaluation of probiotic potential of Enterococcus faecium strains isolated from Turkish pastırma. Arch Microbiol 2021; 203:2831-2841. [PMID: 33743024 DOI: 10.1007/s00203-021-02273-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/20/2020] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
This study is aimed at evaluating the probiotic potential of three Enterococcus faecium strains (called 29-P2, 168-P6 and 277-S3) isolated from 'pastırma', a Turkish traditional dry-cured meat product. For this, key probiotic properties and some functional characteristics of strains were tested in vitro. Antimicrobial activity of 3 E. faecium strains was evaluated against 18 indicator microorganisms consisting of 13 foodborne pathogens and 5 lactic acid bacteria and all strains were found as the producer of antimicrobial substance. Especially one strain 168-P6 showed a remarkable activity spectrum and inhibited all of the used foodborne pathogen indicators. Antimicrobial compounds produced by strains were identified by determining the effect of enzyme, pH and temperature on antimicrobial activity. All strains exhibited tolerance to acidic conditions and a simulated gastric environment. Also, strains exhibited high adhesion capacity. The safety of the strains was assessed by determining hemolytic activity and the resistance to 14 different antibiotics. None of the three strains exhibited hemolytic activity, also strains were found reliable in terms of clinically relevant antibiotics, only one strain 29-P2 was found resistant to vancomycin. In addition, metabolic activities of strains including lactic acid, hydrogen peroxide, exopolysaccharide production and proteolytic activity were determined and amounts of all metabolic products were found low. When evaluated all data obtained, it is believed that the strains have enviable characteristics as a probiotic candidate.
Collapse
Affiliation(s)
- Emine Dinçer
- Faculty of Health Science, Department of Nutrition and Dietetics, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Merih Kıvanç
- Faculty of Sciences, Department of Biology, Eskisehir Teknik University, 26470, Eskisehir, Turkey
| |
Collapse
|
18
|
Gomez JS, Parada RB, Vallejo M, Marguet ER, Bellomio A, Perotti N, de Carvalho KG. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes in ground beef. Arch Microbiol 2021; 203:1427-1437. [PMID: 33388790 DOI: 10.1007/s00203-020-02118-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 07/13/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Lactic acid bacteria can be considered as natural biopreservative and good biotechnological alternative to food safety. In this study, the antilisterial compounds produced by Enterococcus isolates from the Patagonian environment and their effectiveness for the control of Listeria monocytogenes in a food model were studied. Enterococcus isolates whose cell-free supernatant presented activity against Listeria monocytogenes were identified and evaluated for their virulence factors. The activity of the antimicrobial compounds produced by Enterococcus sp. against Listeria monocytogenes Scott A in meat gravy and ground beef during refrigerated storage was tested. The results indicated that ten Enterococcus isolates presented activity against Listeria monocytogenes and none of the selected strains presented virulence factors. L. monocytogenes in the food models containing the antilisterial compounds produced by Enterococcus sp. has decreased over the days, indicating that these compounds and cultures are an alternative to control the growth of L. monocytogenes in foods.
Collapse
Affiliation(s)
- Johana S Gomez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Romina B Parada
- Laboratorio de Biotecnología Bacteriana, Fac. de Cs. Naturales y Cs. de la Salud - UNPSJB, Sede Trelew, Chubut, Argentina
| | - Marisol Vallejo
- Laboratorio de Biotecnología Bacteriana, Fac. de Cs. Naturales y Cs. de la Salud - UNPSJB, Sede Trelew, Chubut, Argentina
| | - Emilio R Marguet
- Laboratorio de Biotecnología Bacteriana, Fac. de Cs. Naturales y Cs. de la Salud - UNPSJB, Sede Trelew, Chubut, Argentina
| | - Augusto Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia - Universidad Nacional de Tucumán, Batalla de Chacabuco, 461, San Miguel de Tucuman, Tucumán, 4000, Argentina
| | - Nora Perotti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Kátia G de Carvalho
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina.
| |
Collapse
|
19
|
Xiong K, Han F, Wang Z, Du M, Chen Y, Tang Y, Wang Z. Screening of dominant strains in red sour soup from Miao nationality and the optimization of inoculating fermentation conditions. Food Sci Nutr 2021; 9:261-271. [PMID: 33473290 PMCID: PMC7802559 DOI: 10.1002/fsn3.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/03/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Red sour soup is a traditional fermented product in southwest China. Currently, the existing production process mainly adopts the method of natural fermentation, with long fermentation cycles and poor stability between batches. Rapid establishment of dominant strains can accelerate the formation of lactic acid, which can inhibit the growth of miscellaneous bacteria. It is also helpful for the inhibition of nitrite accumulation, shortening of fermentation. In this study, the dominant strain H9, with lactic acid-producing ability, was isolated from the natural fermented red sour soup, and was identified as Lactobacillus buchneri, based on the 16s rRNA sequence analysis and biochemical identification. Then, the optimization of fermentation conditions was performed using L. buchneri H9 strain as external bacteria. The optimized fermentation conditions were temperature of 22°C, starch dosage of 11.24 g/L, and initial inoculation of 3.5 × 108 cfu/L. The concentration of lactic acid reached 8.029 g/L after 8 days of inoculating fermentation, which exceeded 6.221 g/L for 20 days of natural fermentation. Compared with natural fermentation, the peak of nitrite during inoculating fermentation appeared earlier and the peak height was lower. While the nitrite content in inoculating fermentation decreased to safety threshold more quickly. The volatile flavor compounds analysis showed that 41 types of volatile compounds were detected in the inoculating fermentation product, while 45 in the natural fermentation product. Over 88% compounds were overlapped, which means similar flavor between two fermentation products. These results provide a sufficient scientific basis for the industrialized production of inoculating fermentation of red sour soup.
Collapse
Affiliation(s)
- Kexin Xiong
- National Engineering Research Center of SeafoodCollege of Food ScienceDalian Polytechnic UniversityDalianChina
| | - Fei Han
- National Engineering Research Center of SeafoodCollege of Food ScienceDalian Polytechnic UniversityDalianChina
| | - Zehan Wang
- National Engineering Research Center of SeafoodCollege of Food ScienceDalian Polytechnic UniversityDalianChina
| | - Ming Du
- National Engineering Research Center of SeafoodCollege of Food ScienceDalian Polytechnic UniversityDalianChina
| | - Yan Chen
- National Engineering Research Center of SeafoodCollege of Food ScienceDalian Polytechnic UniversityDalianChina
| | - Yang Tang
- National Engineering Research Center of SeafoodCollege of Food ScienceDalian Polytechnic UniversityDalianChina
| | - Zhenyu Wang
- National Engineering Research Center of SeafoodCollege of Food ScienceDalian Polytechnic UniversityDalianChina
| |
Collapse
|
20
|
El Jeni R, Ghedira K, El Bour M, Abdelhak S, Benkahla A, Bouhaouala-Zahar B. High-quality genome sequence assembly of R.A73 Enterococcus faecium isolated from freshwater fish mucus. BMC Microbiol 2020; 20:322. [PMID: 33096980 PMCID: PMC7584074 DOI: 10.1186/s12866-020-01980-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Whole-genome sequencing using high throughput technologies has revolutionized and speeded up the scientific investigation of bacterial genetics, biochemistry, and molecular biology. Lactic acid bacteria (LABs) have been extensively used in fermentation and more recently as probiotics in food products that promote health. Genome sequencing and functional genomics investigations of LABs varieties provide rapid and important information about their diversity and their evolution, revealing a significant molecular basis. This study investigated the whole genome sequences of the Enterococcus faecium strain (HG937697), isolated from the mucus of freshwater fish in Tunisian dams. Genomic DNA was extracted using the Quick-GDNA kit and sequenced using the Illumina HiSeq2500 system. Sequences quality assessment was performed using FastQC software. The complete genome annotation was carried out with the Rapid Annotation using Subsystem Technology (RAST) web server then NCBI PGAAP. RESULTS The Enterococcus faecium R.A73 assembled in 28 contigs consisting of 2,935,283 bps. The genome annotation revealed 2884 genes in total including 2834 coding sequences and 50 RNAs containing 3 rRNAs (one rRNA 16 s, one rRNA 23 s and one rRNA 5 s) and 47 tRNAs. Twenty-two genes implicated in bacteriocin production are identified within the Enterococcus faecium R.A73 strain. CONCLUSION Data obtained provide insights to further investigate the effective strategy for testing this Enterococcus faecium R.A73 strain in the industrial manufacturing process. Studying their metabolism with bioinformatics tools represents the future challenge and contribution to improving the utilization of the multi-purpose bacteria in food.
Collapse
Affiliation(s)
- Rim El Jeni
- Laboratory of Microbiology and Pathology of Aquatic Organisms, Institut National des Sciences et Technologies de la Mer (INSTM), Tunis, Tunisia
- Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Kais Ghedira
- Bioinformatics and Biostatistics Laboratory (LR16IPT09), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Monia El Bour
- Laboratory of Microbiology and Pathology of Aquatic Organisms, Institut National des Sciences et Technologies de la Mer (INSTM), Tunis, Tunisia
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory LR16IPT05, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Alia Benkahla
- Bioinformatics and Biostatistics Laboratory (LR16IPT09), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis, Tunis, Tunisia
- Medical School of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| |
Collapse
|
21
|
Assessment of safety aspect and probiotic potential of autochthonous Enterococcus faecium strains isolated from spontaneous fermented sausage. Biotechnol Lett 2020; 42:1513-1525. [PMID: 32222865 DOI: 10.1007/s10529-020-02874-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/23/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The objectives of this research project were isolation, identification, and evaluation of the safety aspect and probiotics properties of 21 Enterococcus faecium strains isolated from sausages originated from southeastern Serbia. RESULTS Analyzed E. faecium isolates showed tolerance to simulated gastrointestinal conditions. All the examined isolates grew well on media with 0.1% and 0.2% of phenol. None of the tested isolates were histamine-producers, while the synthesis of tyramine was observed for E. faecium sk8-1 and sk8-17. Full resistance to antibiotics was not observed for any examined isolate of E. faecium (penicillin, amoxicillin, and ofloxacin showed the effect on all tested isolates). An inhibition zone against examined pathogens was exhibited by all strains, with the largest inhibition zone against Pseudomonas spp., Proteus spp. and E. coli (12-30 mm/MIC values ranged from 0.5 to 12 mg mL-1). CONCLUSION The results indicated that E. faecium isolates from spontaneously fermented sausage showed a potential for further investigation and possible application as probiotics.
Collapse
|
22
|
Sousa MAD, Rama GR, Volken de Souza CF, Granada CE. Acid lactic lactobacilli as a biotechnological toll to improve food quality and human health. Biotechnol Prog 2020; 36:e2937. [DOI: 10.1002/btpr.2937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Márcio A. de Sousa
- University of Taquari Valley ‐ Univates Lajeado Rio Grande do Sul Brazil
| | | | | | - Camille E. Granada
- University of Taquari Valley ‐ Univates Lajeado Rio Grande do Sul Brazil
| |
Collapse
|
23
|
Abd El-Razik KA, Ibrahim ES, Younes AM, Arafa AA, Abuelnaga ASM, Hedia RH. Enterococcus faecium isolated from healthy dogs for potential use as probiotics. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.15547/bjvm.2213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to isolate and identify enterococci obtained from fresh faecal swabs of 16 healthy dogs. Following molecular identification, all isolates were screened against the most critical virulence factors as well as enterocin (bacteriocin) determinants to confirm that the isolated enterococcus was safe to be used as host-specific probiotic. Enterococcus faecium was isolated and confirmed in 8 out of the 16 samples. Regarding the assessment of the virulence determinants, E. faecium strains were negative for tested (gelE and esp) virulence genes. Furthermore, the genome was evaluated for the incidence of five known enterocin genes by specific PCR amplification. Four strains encoding entAS-48 gene were found, while only one strain harboured the entL50A/B gene. Based on these results, five of the E. faecium isolated in this study were considered as promising probiotic candidates for dogs.
Collapse
|
24
|
Benmouna Z, Dalache F, Zadi-Karam H, Karam NE, Vuotto C. Ability of Three Lactic Acid Bacteria to Grow in Sessile Mode and to Inhibit Biofilm Formation of Pathogenic Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1282:105-114. [PMID: 32034730 DOI: 10.1007/5584_2020_495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we explored the effect of three lactic acid bacteria (LAB), i.e. Enterococcus sp CM9, Enterococcus sp CM18 and Enterococcus faecium H3, and their supernatants, on seven biofilm-forming pathogenic strains isolated from human urinary tract or nose infections. By quantitative biofilm production assay, a strong adherence ability of Enterococcus sp CM9 and Enterococcus sp CM18 was revealed while E. faecium H3 resulted to be moderately adherent. Inhibition tests demonstrated an antimicrobial activity of LAB against pathogens.The presence of cell free supernatant (CFS) of CM9 and CM18 strains significantly decreased the adhesion of S. aureus 10,850, S. epidermidis 4,296 and E. coli FSL24. The CFS of H3 strain was effective against S. epidermidis 4,296 and P. aeruginosa PA1FSL biofilms only. Biofilm formation of K. pneumoniae Kp20FSL, A. baumannii AB8FSL and ESBL+ E. coli FS101570 have not been affected by any CSF while P. aeruginosa PA1FSL biofilm increase in presence of CM9 and CM18 CFS.Confocal Laser Scanning Microscopy revealed that K. pneumoniae Kp20FSL biofilm was inhibited by Enterococcus sp CM9, when grown together.Our results suggest that the LAB strains and/or their bacteriocins can be considered as potential tools to control biofilm formation of some bacterial pathogens.
Collapse
Affiliation(s)
- Z Benmouna
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - F Dalache
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria.,Department of Biology, Faculty of Natural Sciences and Life, University of Mostaganem Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - H Zadi-Karam
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - N-E Karam
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - C Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
25
|
Missaoui J, Saidane D, Mzoughi R, Minervini F. Fermented Seeds ("Zgougou") from Aleppo Pine as a Novel Source of Potentially Probiotic Lactic Acid Bacteria. Microorganisms 2019; 7:E709. [PMID: 31861080 PMCID: PMC6958562 DOI: 10.3390/microorganisms7120709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Microorganisms inhabiting fermented foods represent the main link between the consumption of this food and human health. Although some fermented food is a reservoir of potentially probiotic microorganisms, several foods are still unexplored. This study aimed at characterizing the probiotic potential of lactic acid bacteria isolated from zgougou, a fermented matrix consisting of a watery mixture of Aleppo pine's seeds. In vitro methods were used to characterize the safety, survival ability in typical conditions of the gastrointestinal tract, and adherence capacity to surfaces, antimicrobial, and antioxidant activities. Strains belonged to the Lactobacillus plantarum group and Enterococcus faecalis showed no DNase, hemolytic, and gelatinase activities. In addition, their susceptibility to most of the tested antibiotics, satisfied some of the safety prerequisites for their potential use as probiotics. All the strains tolerated low pH, gastrointestinal enzymes, and bile salts. They displayed a good antibacterial activity and antibiofilm formation against 10 reference bacterial pathogens, especially when used as a cell-free supernatant. Furthermore, the lactic acid bacteria (LAB) strains inhibited the growth of Aspergillus flavus and Aspergillus carbonarius. Finally, they had good antioxidant activity, although depending on the strain. Overall, the results of this work highlight that zgougou represents an important reservoir of potentially probiotic LAB. Obviously, future studies should be addressed to confirm the health benefits of the LAB strains.
Collapse
Affiliation(s)
- Jihen Missaoui
- Laboratory of Analysis, Treatment and Evaluation of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir University, 5000 Monastir, Tunisia; (J.M.); (D.S.); (R.M.)
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Dalila Saidane
- Laboratory of Analysis, Treatment and Evaluation of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir University, 5000 Monastir, Tunisia; (J.M.); (D.S.); (R.M.)
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Evaluation of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir University, 5000 Monastir, Tunisia; (J.M.); (D.S.); (R.M.)
| | - Fabio Minervini
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
26
|
Álvarez M, Rodríguez A, Peromingo B, Núñez F, Rodríguez M. Enterococcus faecium: a promising protective culture to control growth of ochratoxigenic moulds and mycotoxin production in dry-fermented sausages. Mycotoxin Res 2019; 36:137-145. [PMID: 31712978 DOI: 10.1007/s12550-019-00376-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/21/2019] [Accepted: 10/10/2019] [Indexed: 01/06/2023]
Abstract
Moulds positively contribute to the development of typical characteristic flavour and aroma of dry-fermented sausages. However, some mould species, such as Penicillium nordicum and Penicillium verrucosum, may contaminate this product with ochratoxin A (OTA). For this reason, the control of toxigenic moulds is needed. Strategies based on the use of antifungal microorganisms present in the native microbial population in the dry-fermented sausage processing could be a promising strategy. The aim of this work was to study the effect of Enterococcus faecium strains on P. nordicum and P. verrucosum growth and OTA production in a dry-fermented sausage-based medium at conditions of temperature and water activity similar to those occurring during the ripening of these meat products. Six strains were screened to evaluate their growth capacity and antifungal activity against P. nordicum and P. verrucosum at three fixed temperatures related to the sausage ripening. The two E. faecium strains that decreased growth of both species were chosen to further evaluate their effect on growth of P. verrucosum and P. nordicum and their mycotoxin production under conditions simulating the dry-fermented sausage ripening. The presence of E. faecium SE920 significantly reduced OTA production of P. nordicum although it did not affect P. verrucosum. E. faecium SE920, isolated from dry-fermented sausages, could be a good candidate to reduce OTA production by P. nordicum in dry-fermented sausages.
Collapse
Affiliation(s)
- Micaela Álvarez
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Alicia Rodríguez
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Belén Peromingo
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Félix Núñez
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain
| | - Mar Rodríguez
- Food Hygiene and Safety, Meat and Meat Products Research Institute. Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003, Cáceres, Spain.
| |
Collapse
|
27
|
Rama GR, Kuhn D, Beux S, Maciel MJ, Volken de Souza CF. Potential applications of dairy whey for the production of lactic acid bacteria cultures. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Delcarlo SB, Parada R, Schelegueda LI, Vallejo M, Marguet ER, Campos CA. From the isolation of bacteriocinogenic LAB strains to the application for fish paste biopreservation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Vallejo M, Parada RB, Marguet ER. [Isolation of enterocin-producing Enterococcus hirae strains from the intestinal content of the Patagonian mussel (Mytilus edulis platensis)]. Rev Argent Microbiol 2019; 52:136-144. [PMID: 31320255 DOI: 10.1016/j.ram.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 05/02/2019] [Accepted: 06/01/2019] [Indexed: 01/22/2023] Open
Abstract
Two bacteriocin-producing lactic acid bacterial strains were isolated from the intestinal content of the Patagonian mussel and characterized by phenotypic and molecular tests. The isolates were identified as Enterococcus hirae and named E. hirae 463Me and 471Me. The presence of the enterocin P gene was identified in both strains by PCR techniques, while enterocin hiracin JM79 was detected only in the 471Me strain. Both strains were sensitive to clinically important antibiotics and among the virulence traits investigated by PCR amplification, only cylLl and cylLs could be detected; however, no hemolytic activity was observed in the blood agar test. Cell free supernatants were active against all Listeria and Enterococcus strains tested, Lactobacillus plantarum TwLb 5 and Vibrio anguilarum V10. Under optimal growth conditions, both strains displayed inhibitory activity against Listeria innocua ATCC 33090 after 2h of incubation. E. hirae 471Me achieved a maximum activity of 163840AU/ml after 6h of incubation, while the same value was recorded for E. hirae 463Me after 8h. In both cases, the antagonist activity reached its maximum before the growth achieved the stationary phase and remained stable up to 24h of incubation. To our knowledge, this is first report of the isolation of bacteriocinogenic E. hirae strains from the Patagonian mussel. The high inhibitory activity and the absence of virulence traits indicate that they could be applied in different biotechnological areas such as food biopreservation or probiotic formulations.
Collapse
Affiliation(s)
- Marisol Vallejo
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina
| | - Romina B Parada
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), República Argentina
| | - Emilio R Marguet
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.
| |
Collapse
|
30
|
Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci Rep 2019; 9:6643. [PMID: 31040333 PMCID: PMC6491613 DOI: 10.1038/s41598-019-43115-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Chronic wounds affect thousands of people worldwide, causing pain and discomfort to patients and represent significant economical burdens to health care systems. The treatment of chronic wounds is very difficult and complex, particularly when wounds are colonized by bacterial biofilms which are highly tolerant to antibiotics. Enterococcus faecium and Enterococcus faecalis are within the most frequent bacteria present in chronic wounds. Bacteriophages (phages) have been proposed as an efficient and alternative against antibiotic-resistant infections, as those found in chronic wounds. We have isolated and characterized two novel enterococci phages, the siphovirus vB_EfaS-Zip (Zip) and the podovirus vB_EfaP-Max (Max) to be applied during wound treatment. Both phages demonstrated lytic behavior against E. faecalis and E. faecium. Genome analysis of both phages suggests the absence of genes associated with lysogeny. A phage cocktail containing both phages was tested against biofilms formed in wound simulated conditions at a multiplicity of infection of 1.0 and a 2.5 log CFU.mL−1 reduction in the bacterial load after at 3 h of treatment was observed. Phages were also tested in epithelial cells colonized by these bacterial species and a 3 log CFU.mL−1 reduction was observed using both phages. The high efficacy of these new isolated phages against multi-species biofilms, their stability at different temperatures and pH ranges, short latent periods and non-cytotoxicity to epithelial cells suggest their therapeutic use to control infectious biofilms present in chronic wounds.
Collapse
|
31
|
Igbinosa EO, Beshiru A. Antimicrobial Resistance, Virulence Determinants, and Biofilm Formation of Enterococcus Species From Ready-to-Eat Seafood. Front Microbiol 2019; 10:728. [PMID: 31057497 PMCID: PMC6482160 DOI: 10.3389/fmicb.2019.00728] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Enterococcus species form an important population of commensal bacteria and have been reported to possess numerous virulence factors considered significantly important in exacerbating diseases caused by them. The present study was designed to characterize antibiotic-resistant and virulent enterococci from ready-to-eat (RTE) seafood. A total of 720 RTE shrimp samples comprising sauced shrimp (n = 288), boiled shrimp (n = 216), and smoked shrimp (n = 216) obtained from open markets in Delta State, Nigeria, were assessed. Standard classical methods and polymerase chain reaction (PCR) were used in identifying the Enterococcus species. Potential virulence factors (β-hemolysis, gelatinase activity, S-layer, and biofilm formation) were assessed using standard procedures. The antibiotic susceptibility profile of the identified enterococci isolates was assayed using the Kirby–Bauer disc diffusion method. PCR was further used to screen selected antibiotic resistance and virulence genes. Prevalence of Enterococcus species from shrimp varieties is as follows: sauced, 26 (9.03%); boiled, 6 (2.78%); and smoked, 27 (12.50%), with an overall prevalence of 59 (8.19%) based on the occurrence of black hallow colonies after incubation. Enterococcus species detected include E. faecalis, 17 (28.8%); E. faecium, 29 (49.2%); E. gallinarum, 6 (10.2%); E. casseliflavus, 2 (3.4%); E. hirae, 3 (5.1%); and E. durans, 2 (3.4%). Biofilm occurrence among the shrimp varieties is as follows: 19/26 (73.1%) for sauced shrimps, 5/6 (83.3%) for boiled shrimps, and 16/27 (59.3%) for smoked shrimps. The phenotypic expression of the enterococci virulence revealed the following: S-layer, 59 (100%); gelatinase production, 19 (32.2%); and β-hemolysis, 21 (35.6%). An average of 3–11 virulence genes were detected in the Enterococcus species. The resistance profile of Enterococcus species is as follows: erythromycin, 29 (49.2%); vancomycin, 22 (37.3%); and tetracycline, 27 (45.8%). The frequency of occurrence of antibiotic resistance genes from the phenotypic resistant enterococci isolates to the macrolide, glycopeptide, and tetracycline antibiotics is as follows: ermA, 13/29 (44.8%); vanA, 14/22 (63.6%); tetA, 14/27 (51.9%); tetM, 15/27 (55.6%); ermB, 4/29 (13.8%); and vanB, 5/22 (22.7%). Findings from this study reveal the antibiotic resistance of enterococci strains of such species as E. durans, E. casseliflavus, E. gallinarum, and E. hirae. This study further revealed that RTE food products are reservoirs of potential virulent enterococci with antibiotic-resistant capabilities. This provides useful data for risk assessment and indicates that these foods may present a potential public health risk to consumers.
Collapse
Affiliation(s)
- Etinosa O Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.,Sustainable Development Office, University of Benin, Benin City, Nigeria
| | - Abeni Beshiru
- Applied Microbial Processes and Environmental Health Research Group, Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
32
|
Nami Y, Vaseghi Bakhshayesh R, Mohammadzadeh Jalaly H, Lotfi H, Eslami S, Hejazi MA. Probiotic Properties of Enterococcus Isolated From Artisanal Dairy Products. Front Microbiol 2019; 10:300. [PMID: 30863379 PMCID: PMC6400110 DOI: 10.3389/fmicb.2019.00300] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
The present study focused on probiotic characterization and safety evaluation of Enterococcus isolates from different artisanal dairy products. All the isolates exhibited inhibitory activity against several food spoilage bacteria and food-borne pathogens, including Shigella flexneri, Staphylococcus aureus, Listeria monocytogenes, Yersinia enterocolitica, Klebsiella pneumoniae, Escherichia coli, and Bacillus subtilis. The PCR results indicated the presence of at least one enterocin structural gene in all the tested strains. The Enterococcus isolates were further evaluated regarding their safety properties and functional features. The isolates were susceptible to vancomycin, gentamycin, and chloramphenicol. The results of PCR amplification revealed that all the tested isolates harbored none of the tested virulence genes except E. faecalis (ES9), which showed the presence of esp gene. The Enterococcus isolates showed cholesterol lowering properties. The selected isolates showed a high tolerance to low pH, and toward bile salts. They also demonstrated hydrophobicity activity, auto-aggregation, and adhesion ability to the human intestinal Caco-2 cell line. These properties may contribute the bacteria colonizing the gut. This study revealed that the Enterococcus isolates, especially E. durans ES11, ES20 and ES32, might be excellent candidates for production of functional foods to promote health benefits.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Reza Vaseghi Bakhshayesh
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Hossein Mohammadzadeh Jalaly
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Hajie Lotfi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Solat Eslami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Amin Hejazi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
33
|
Bacteriocinogenic properties and safety evaluation of Enterococcus faecium YT52 isolated from boza, a traditional cereal based fermented beverage. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01213-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Safety Aspect of Enterococcus faecium FL31 Strain and Antibacterial Mechanism of Its Hydroxylated Bacteriocin BacFL31 against Listeria monocytogenes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5308464. [PMID: 30515405 PMCID: PMC6236939 DOI: 10.1155/2018/5308464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
Abstract
In previous work we have isolated and identified a new strain called Enterococcus faecium FL31. The active compound secreted by this strain, "BacFL31", has been purified and characterized. In the present study, safety aspect, assessed by microbiological and molecular tests, demonstrated that Enterococcus faecium FL31 was susceptible to relevant antibiotics, free of hemolytic, gelatinase, DNase, and lipase activities. In addition, it did not harbor virulence and antibiotic resistance genes. Combined SYTOX Green dye and UV-absorbing experiments, along with released extracellular potassium and transmembrane electrical potential measurements, showed that pure BacFL31 at a concentration of 1×MIC (50 μg/mL) could damage cytoplasmic membrane of the pathogen Listeria monocytogenes ATCC19117. The same concentration causes the leakage of its intracellular constituents and leads to the destruction of this pathogenic microorganism. In summary, this work reflected characteristics of Enterococcus faecium FL31 strain and its bacteriocin in terms of functional and safety perspectives.
Collapse
|
35
|
Favaro L, Todorov SD. Bacteriocinogenic LAB Strains for Fermented Meat Preservation: Perspectives, Challenges, and Limitations. Probiotics Antimicrob Proteins 2018; 9:444-458. [PMID: 28921417 DOI: 10.1007/s12602-017-9330-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and "healthy" fermented meat products.
Collapse
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Svetoslav Dimitrov Todorov
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, 580, Professor Lineu Prestes, 13B, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
36
|
Partovi R, Gandomi H, Akhondzadeh Basti A. Technological properties ofLactobacillus plantarumstrains isolated from Siahmazgi cheese. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary Medicine; Amol University of Special Modern Technologies; Amol Iran
| | - Hassan Gandomi
- Department of Food Hygiene, Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | | |
Collapse
|
37
|
Avci M, Tuncer BÖ. Safety Evaluation of Enterocin Producer Enterococcus sp. Strains Isolated from Traditional Turkish Cheeses. Pol J Microbiol 2017. [DOI: 10.5604/01.3001.0010.7839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to determine the antimicrobial activity and the occurrence of bacteriocin structural genes in Enterococcus spp. isolated from different cheeses and also investigate of their some virulence factors. Enterococcus strains were isolated from 33 different cheeses. Enterococcus faecium (6 strains) and Enterococcus faecalis (5 strains) enterocin-producing strains were identified by 16S rDNA analyses. entA, entB, entP and entX structural genes were detected in some isolates. Multiple enterocin structural genes were found in 7 strains. None of the tested enterococci demonstrated β-haemolytic activity and only one strain has gelatinase activity. Six strains showed multiple antibiotic resistance patterns and in addition, vanA and several virulence genes were detected in many strains. Only E. faecalis MBE1-9 showed tyrosine decarboxylase activity and tdc gene was only detected in this strain.
Collapse
Affiliation(s)
- Mine Avci
- Süleyman Demirel University, Faculty of Engineering, Department of Food Engineering, Isparta, Turkey
| | - Banu Özden Tuncer
- Süleyman Demirel University, Faculty of Engineering, Department of Food Engineering, Isparta, Turkey
| |
Collapse
|
38
|
Correia Santos S, Fraqueza MJ, Elias M, Salvador Barreto A, Semedo-Lemsaddek T. Traditional dry smoked fermented meat sausages: Characterization of autochthonous enterococci. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Alvarez-Cisneros YM, Fernández FJ, Sainz-Espuñez T, Ponce-Alquicira E. Assessment of virulence factors, antibiotic resistance and amino-decarboxylase activity in Enterococcus faecium MXVK29 isolated from Mexican chorizo. Lett Appl Microbiol 2017; 64:171-176. [PMID: 27930817 DOI: 10.1111/lam.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/22/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Enterococcus faecium MXVK29 has the ability to produce an antimicrobial compound that belongs to Class IIa of the Klaenhammer classification, and could be used as part of a biopreservation technology through direct inoculation of the strain as a starter or protective culture. However, Enterococcus is considered as an opportunistic pathogen, hence, the purpose of this work was to study the food safety determinants of E. faecium MXVK29. The strain was sensitive to all of the antibiotics tested (penicillin, tetracycline, vancomycin, erythromycin, chloramphenicol, gentamicin, neomycin, kanamycin and netilmicin) and did not demonstrate histamine, cadaverine or putrescine formation. Furthermore, tyrosine-decarboxylase activity was detected by qualitative assays and PCR. Among the virulence factors analysed for the strain, only the genes encoding the sexual pheromone cCF10 precursor lipoprotein (ccf) and cell-wall adhesion (efaAfm ) were amplified. The presence of these genes has low impact on pathogenesis, as there are no other genes encoding for virulence factors, such as aggregation proteins. Therefore, Enterococcus faecium could be employed as part of a bioconservation method, because it does not produce risk factors for consumer's health; in addition, it could be used as part of the hurdle technology in foods. SIGNIFICANCE AND IMPACT OF THE STUDY The use of molecular techniques has allowed, in recent years, to detect pathogenicity genes present in the genome of starter cultures used in food processing and preservation. The presence of these genes is undesirable, because horizontal transfer may occur with the natural biota of consumers. For this reason, it is important to analyse the presence of pathogenicity genes in such cultures. In this work, virulence factors and antibiotic resistance of Enterococcus faecium strain MXVK29, producing an antimicrobial compound with high antilisterial activity, were analysed. The results indicate that the strain is safe to be used in food processing as starter culture.
Collapse
Affiliation(s)
- Y M Alvarez-Cisneros
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - T Sainz-Espuñez
- Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - E Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
40
|
Antimicrobial-resistant Escherichia coli and Enterococcus spp. isolated from Miranda donkey (Equus asinus): an old problem from a new source with a different approach. J Med Microbiol 2017; 66:191-202. [DOI: 10.1099/jmm.0.000423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
41
|
Toğay SÖ, Ay M, Güneşer O, Yüceer YK. Investigation of antimicrobial activity and entA and entB genes in Enterococcus faecium and Enterococcus faecalis strains isolated from naturally fermented Turkish white cheeses. Food Sci Biotechnol 2016; 25:1633-1637. [PMID: 30263455 PMCID: PMC6049231 DOI: 10.1007/s10068-016-0251-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 10/20/2022] Open
Abstract
In this research, the antagonistic effects of Enterococcus faecalis and E. faecium bacteria isolated from naturally fermented Turkish white cheeses, produced without starter culture, against Listeria monocytogenes, L. innocua, L. ivanovii, Staphylococcus aureus, and E. faecalis were evaluated. The presence of entA and entB genes was also detected in the isolates, which had antimicrobial activity. Total 71 strains of E. faecalis and 7 strains of E. faecium were tested; 20 of E. faecalis and none of E. faecium strains showed antimicrobial activity against the tested bacteria using agar spot method. Among E. faecalis strains, which had antimicrobial activity, three strains contained both entA and entB genes, two strains carried only entA gene, and five strains had only entB gene. These cheese-sourced enterococcal strains or their enterocins should be considered to be used for food preservation especially in the dairy industry.
Collapse
Affiliation(s)
- Sine Özmen Toğay
- Faculty of Agriculture, Department of Food Engineering Gorukle Campus, Uludag University, Bursa, 16059 Turkey
| | - Mustafa Ay
- Institution of Natural and Applied Science, Terzioglu Campus, Çanakkale Onsekiz Mart University, Çanakkale, 17020 Turkey
| | - Onur Güneşer
- Faculty of Engineering, Department of Food Engineering, Uşak University, Uşak, 64000 Turkey
| | - Yonca Karagül Yüceer
- Engineering Faculty, Department of Food Engineering, Terzioglu Campus, Çanakkale Onsekiz Mart University, Çanakkale, 17020 Turkey
| |
Collapse
|
42
|
Phenotypic and Genotypic Characterization of Bacteriocinogenic Enterococci Against Clostridium botulinum. Probiotics Antimicrob Proteins 2016; 9:182-188. [DOI: 10.1007/s12602-016-9240-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
|
44
|
Karimaei S, Sadeghi J, Asadian M, Esghaei M, Pourshafie MR, Talebi M. Antibacterial potential and genetic profile of Enterococcus faecium strains isolated from human normal flora. Microb Pathog 2016; 96:67-71. [DOI: 10.1016/j.micpath.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
45
|
Joghataei M, Yavarmanesh M, Dovom MRE. Safety Evaluation and Antibacterial Activity of Enterococci Isolated from Lighvan Cheese. J Food Saf 2016. [DOI: 10.1111/jfs.12289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehri Joghataei
- Department of Food science and Technology, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - Masoud Yavarmanesh
- Department of Food science and Technology, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | | |
Collapse
|
46
|
El-Ghaish S, Khalifa M, Elmahdy A. Antimicrobial Impact forLactococcus lactissubsp.lactisA15 andEnterococcus faeciumA15 Isolated from Some Traditional Egyptian Dairy Products on Some Pathogenic Bacteria. J Food Biochem 2016. [DOI: 10.1111/jfbc.12279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shady El-Ghaish
- Kafrelsheikh University, Faculty of Agriculture, Department of Dairy Sciences; B.P. 33516 Kafrelsheikh Egypt
| | - Mohamed Khalifa
- Kafrelsheikh University, Faculty of Agriculture, Department of Dairy Sciences; B.P. 33516 Kafrelsheikh Egypt
| | | |
Collapse
|
47
|
Bacteriocin-Producing Lactic Acid Bacteria Isolated from Mangrove Forests in Southern Thailand as Potential Bio-Control Agents: Purification and Characterization of Bacteriocin Produced by Lactococcus lactis subsp. lactis KT2W2L. Probiotics Antimicrob Proteins 2016; 5:264-78. [PMID: 26783072 DOI: 10.1007/s12602-013-9150-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this work was to purify and characterize the bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L previously isolated from mangrove forests in southern Thailand, in order to evaluate its potential as new food protective agent. The active peptide from the cell-free supernatant of this strain was purified in 4 steps: (1) precipitation with 70 % saturated ammonium sulfate, (2) elution on a reversed-phase cartridge using different concentrations of acetonitrile, (3) cation-exchange chromatography and (4) final purification by reversed-phase HPLC on a C8 column. The molecular mass of 3,329.5254 Da of the purified bacteriocin, determined by mass spectrometry, is nearly identical to that of peptide nisin Z. The activity of the purified bacteriocin was unaffected by pH (2.0-10.0), thermostable but was sensitive to proteolytic enzymes. The bacteriocin activity was stable after 8 weeks of storage at -20 °C and 7 weeks of storage at 4 °C, but decreased after 3 weeks of storage at 37 °C. It was stable when incubated for 1 month at 4 °C in 0-30 % NaCl. Inhibitory spectrum of this bacteriocin showed a wide range of activity against similar bacterial strains, food-spoilage and food-borne pathogens. L. lactis subsp. lactis KT2W2L was sensitive to kanamycin, penicillin and tetracycline but resistant to ampicillin, gentamicin and vancomycin. The fragment obtained after amplification of genomic DNA from L. lactis subsp. lactis KT2W2L, with specific primers for bacteriocin genes, presented 99 % homology to the nisin Z gene. PCR amplification demonstrated that L. lactis subsp. lactis KT2W2L does not harbor virulence genes cylA, cylB, efaAfs and esp. The bacteriocin and its producing strain may find application as bio-preservatives for reduction in food-spoilage and food-borne pathogens in food products.
Collapse
|
48
|
Abstract
Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.
Collapse
Affiliation(s)
| | - Sofia Forssten
- a Active Nutrition, DuPont Nutrition and Health , Kantvik , Finland
| | | | - Anna Lyra
- a Active Nutrition, DuPont Nutrition and Health , Kantvik , Finland
| | - Buffy Stahl
- c DuPont Health and Nutrition , Madison , WI , USA
| |
Collapse
|
49
|
Isolation and preliminary characterisation of bacteriocin produced by Enterococcus faecium GHB21 isolated from Algerian paste of dates “ghars”. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1165-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Jaouani I, Abbassi M, Ribeiro S, Khemiri M, Mansouri R, Messadi L, Silva C. Safety and technological properties of bacteriocinogenic enterococci isolates from Tunisia. J Appl Microbiol 2015. [DOI: 10.1111/jam.12916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- I. Jaouani
- Laboratory of Bacteriological Research; Institute of Veterinary Research of Tunisia; Tunis Tunisia
- Faculté des Sciences de Bizerte; Université de Carthage; Bizerte Tunisia
| | - M.S. Abbassi
- Laboratory of Bacteriological Research; Institute of Veterinary Research of Tunisia; Tunis Tunisia
| | - S.C. Ribeiro
- CITA-A, Centro de Investigação e Tecnologias Agrárias dos Açores; Universidade dos Açores; Angra do Heroísmo Portugal
| | - M. Khemiri
- Laboratory of Bacteriological Research; Institute of Veterinary Research of Tunisia; Tunis Tunisia
| | - R. Mansouri
- Laboratory of Bacteriological Research; Institute of Veterinary Research of Tunisia; Tunis Tunisia
| | - L. Messadi
- Department of Microbiology and Immunology; National School of Veterinary Medicine; La Manouba University; SidiThabet Tunisia
| | - C.C.G. Silva
- CITA-A, Centro de Investigação e Tecnologias Agrárias dos Açores; Universidade dos Açores; Angra do Heroísmo Portugal
| |
Collapse
|