1
|
Tang X, Ferraz Júnior ADN, Karu K, Campos LC, Kim M. Atmospheric pressure dielectric barrier discharge plasma for in-situ water treatment using a bubbling reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122574. [PMID: 39321675 DOI: 10.1016/j.jenvman.2024.122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Non-thermal plasma has been an emerging technology for water treatment for decades. In this study, we have designed and fabricated a bubbling plasma batch reactor using an atmospheric pressure dielectric barrier discharge with a hydrophobic porous membrane. The reactor performance is assessed for purifying synthetic contaminated water samples containing chemical contaminant sulfamethoxazole (SMX), a widely used antibiotic, and biological contaminant E. coli K12. The SMX decontamination tests indicate that the degradation process is not first-order and the reaction rate dwindle with increasing initial concentration. The yield at 50% removal achieves its highest value of 8.12 g/kWh for 50 mg/L SMX sample. For inactivation of E. coli K12 tests, the inactivation process is also not first-order, and the pathogen is completely inactivated for 102 CFU/mL and 104 CFU/mL cases after 10 min and 45 min of plasma treatment, respectively. For the 108 CFU/mL sample, a 5-log reduction is achieved after 60 min of treatment. The developed plasma reactor can achieve fast deployment in point of use, low cost for manufacturing, and simple for maintenance. Moreover, it can be used for in-situ water purification in future long duration crewed space missions as well as tackling with water pollution issues on our planet.
Collapse
Affiliation(s)
- Xin Tang
- Department of Aeronautics and Astronautics Engineering, University of Southampton, SO16 7QF, United Kingdom.
| | - Antônio D N Ferraz Júnior
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, Department of Chemistry, University College London, London, WC1E 6BT, United Kingdom
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Minkwan Kim
- Department of Aeronautics and Astronautics Engineering, University of Southampton, SO16 7QF, United Kingdom
| |
Collapse
|
2
|
Akaber S, Ramezan Y, Reza Khani M. Effect of post-harvest cold plasma treatment on physicochemical properties and inactivation of Penicillium digitatum in Persian lime fruit. Food Chem 2024; 437:137616. [PMID: 37866339 DOI: 10.1016/j.foodchem.2023.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Cold atmospheric plasma (CAP) treatment is used in this study to inactivate Penicillium digitatum in lime fruit at post-harvest. Limes were inoculated manually withP. digitatum spore (106 CFU/fruit) and then were treated with CAP at 30, 60, 90, and 120 s and compared with untreated samples. The results showed that increasing the exposure time of CAP reduced spores to less than 7 CFU/fruit in 120 s on the lime peel. In the treated samples, antioxidant activity had an upward trend. In addition, phenolic compounds, vitamin C, density, soluble solid content (SSC), color, and pH of the lime juice were increased (P < 0.05). Compared to the control sample, no significant changes were observed in the juice yield percentage, texture, acidity, chlorophyll, and carotenoid (P > 0.05). The best exposure for CAP treatment was 60 s since it increased phenolic compounds, antioxidant activity, and vitamin C content in the lime juice.
Collapse
Affiliation(s)
- Sana Akaber
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Reza Khani
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, 1983963113, Iran
| |
Collapse
|
3
|
Ramezan Y, Kamkari A, Lashkari A, Moradi D, Tabrizi AN. A review on mechanisms and impacts of cold plasma treatment as a non-thermal technology on food pigments. Food Sci Nutr 2024; 12:1502-1527. [PMID: 38455202 PMCID: PMC10916563 DOI: 10.1002/fsn3.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Food characteristics like appearance and color, which are delicate parameters during food processing, are important determinants of product acceptance because of the growing trend toward more diverse and healthier diets worldwide, as well as the increase in population and its effects on food consumption. Cold plasma (CP), as a novel technology, has marked a new trend in agriculture and food processing due to the various advantages of meeting both the physicochemical and nutritional characteristics of food products with minimal changes in physical, chemical, nutritional, and sensorial properties. CP processing has a positive impact on food quality, including the preservation of natural food pigments. This article describes the influence of CP on natural food pigments and color changes in vegetables and fruits. Attributes of natural pigments, such as carotenoids, chlorophyll, anthocyanin, betalain, and myoglobin, are presented. In addition, the characteristics and mechanisms of CP processes were studied, and the effect of CP on mentioned pigments was investigated in recent literature, showing that the use of CP technology led to better preservation of pigments, improving their preservation and extraction yield. While certain modest and undesirable changes in color are documented, overall, the exposure of most food items to CP resulted in minor loss and even beneficial influence on color. More study is needed since not all elements of CP treatment are currently understood. The negative and positive effects of CP on natural food pigments in various products are discussed in this review.
Collapse
Affiliation(s)
- Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Amir Kamkari
- Department of Food Engineering, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Armita Lashkari
- Department of Food Science and TechnologyIslamic Azad University, Tehran North BranchTehranIran
| | - Donya Moradi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abbas Najafi Tabrizi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
4
|
Khalaj A, Ahmadi E, Mirzaei S, Ghaemizadeh F. Potential use of cold plasma treatment for disinfection and quality preservation of grape inoculated with Botrytis cinerea. Food Sci Nutr 2024; 12:1818-1833. [PMID: 38455198 PMCID: PMC10916599 DOI: 10.1002/fsn3.3876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024] Open
Abstract
Gray mold caused by Botrytis cinerea is a serious disease of grape (Vitis vinifera) during storage. The aim of this study is to evaluate the effect of atmosphere cold plasma (a novel and nonthermal technology) on inactivation of B. cinerea and preservation of chemical, physical, and mechanical characteristics of grape inoculated with B. cinerea. Herein, different time of cold plasma (0, 10, 20, and 40 s) was firstly considered to be the main factors, besides different storage time (1, 2, 3, 4, and 5 weeks) at 4°C. According to the results, plasma treatment exhibited inhibitory effect on gray mold percentage and microbial load of B. cinerea (log CFU g-1) during postharvest storage. So, in the last week, the gray mold percentage and microbial load in the control were 100% and 3.6 log CFU g-1, and in 40-s plasma were 4.5% and 2.53 log CFU g-1, respectively. Although the minimum infection and microbial load were observed in 40-s plasma, better postharvest quality preservation was observed in short-time cold plasma treatment (≤20 s). Forty-second plasma caused fruit tissue destruction and negatively decreased mechanical indices (Emod: 0.0028, Fmax = 1.78, and W = 3.18) and weight loss (91.9) in comparison with ≤20-s plasma, in which mechanical indices (Emod =0.0077, Fmax = 3.6, and W = 10.06) and weight loss (1/1) were higher. The long-time cold plasma treatment (40 s) had also maximum effects on color changes (10) and surface temperature (2.8°C). Although the highest TSS and TA were observed in 40-s Plasma, but different time of plasma treatments had no effect on pH. Altogether, these results indicate that the short-time cold plasma treatment can inactivate B. cinerea on grape berries and preserve crop quality properties.
Collapse
Affiliation(s)
- Ali Khalaj
- Department of Biosystems Engineering, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| | - Ebrahim Ahmadi
- Department of Biosystems Engineering, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| | - Sohiela Mirzaei
- Department of Plant Protection, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| | - Fahiemeh Ghaemizadeh
- Department of Horticultural Science, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| |
Collapse
|
5
|
Özdemir E, Başaran P, Kartal S, Akan T. Cold plasma application to fresh green leafy vegetables: Impact on microbiology and product quality. Compr Rev Food Sci Food Saf 2023; 22:4484-4515. [PMID: 37661766 DOI: 10.1111/1541-4337.13231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Fresh green leafy vegetables (FGLVs) are consumed either garden-fresh or by going through very few simple processing steps. For this reason, foodborne diseases that come with the consumption of fresh products in many countries have prioritized the development of new and reliable technologies to reduce food-related epidemics. Cold plasma (CP) is considered one of the sustainable and green processing approaches that inactivate target microorganisms without causing a significant temperature increase during processing. This review presents an overview of recent developments regarding the commercialization potential of CP-treated FGLVs, focusing on specific areas such as microbial inactivation and the influence of CP on product quality. The effect of CP differs according to the power of the plasma, frequency, gas flow rate, application time, ionizing gases composition, the distance between the electrodes and pressure, as well as the characteristics of the product. As well as microbial decontamination, CP offers significant potential for increasing the shelf life of perishable and short-shelf-life products. In addition, organizations actively involved in CP research and development and patent applications (2016-2022) have also been analyzed.
Collapse
Affiliation(s)
- Emel Özdemir
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Pervin Başaran
- Department of Food Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Sehban Kartal
- Department of Physics, Istanbul University, Istanbul, Turkey
| | - Tamer Akan
- Department of Physics, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
6
|
Zhang J, Du Q, Yang Y, Zhang J, Han R, Wang J. Research Progress and Future Trends of Low Temperature Plasma Application in Food Industry: A Review. Molecules 2023; 28:4714. [PMID: 37375267 PMCID: PMC10301579 DOI: 10.3390/molecules28124714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Food nutrition, function, sensory quality and safety became major concerns to the food industry. As a novel technology application in food industry, low temperature plasma was commonly used in the sterilization of heat sensitive materials and is now widely used. This review provides a detailed study of the latest advancements and applications of plasma technology in the food industry, especially the sterilization field; influencing factors and the latest research progress in recent years are outlined and upgraded. It explores the parameters that influence its efficiency and effectiveness in the sterilization process. Further research trends include optimizing plasma parameters for different food types, investigating the effects on nutritional quality and sensory attributes, understanding microbial inactivation mechanisms, and developing efficient and scalable plasma-based sterilization systems. Additionally, there is growing interest in assessing the overall quality and safety of processed foods and evaluating the environmental sustainability of plasma technology. The present paper highlights recent developments and provides new perspectives for the application of low temperature plasma in various areas, especially sterilization field of the food industry. Low temperature plasma holds great promise for the food industry's sterilization needs. Further research and technological advancements are required to fully harness its potential and ensure safe implementation across various food sectors.
Collapse
Affiliation(s)
- Jiacheng Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China (J.Z.)
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China (J.Z.)
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China (J.Z.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jing Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China (J.Z.)
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China (J.Z.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China (J.Z.)
| |
Collapse
|
7
|
Cold plasma as a pre-treatment for processing improvement in food: A review. Food Res Int 2023; 167:112663. [PMID: 37087253 DOI: 10.1016/j.foodres.2023.112663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Thermal processes can be very damaging to the nutritional and sensory quality of foods. Non-thermal technologies have been applied to reduce the impact of heat on food, reducing processing time and increasing its efficiency. Among many non-thermal technologies, cold plasma is an emerging technology with several potential applications in food processing. This technique can be used to preserve and sanitize food products, and act as a pre-treatment for drying, extraction, cooking, curing, and hydrogenation of foods. Furthermore, the reacting plasma species formed during the plasma application can change positively the sensory and nutritional aspects of foods. The aim of this review is to analyze the main findings on the application of cold plasma as a pre-treatment technology to improve food processing. In its current maturity stage, the cold plasma technology is suitable for reducing drying time, increasing extraction efficiency, as well as curing meats. This technology can convert unsaturated into saturated fats, without forming trans isomers, which can be an alternative to healthier foods. Although many advantages come from cold plasma applications, this technology still has several challenges, such as the scaling up, especially in increasing productivity and treating foods with large formats. Optimization and control of the effects of plasma on nutritional and sensory quality are still under investigation. Further improvement of the technology will come with a higher knowledge of the effects of plasma on the different chemical groups present in foods, and with the development of bigger or more powerful plasma systems.
Collapse
|
8
|
Roshanak S, Maleki M, Sani MA, Tavassoli M, Pirkhezranian Z, Shahidi F. The impact of cold plasma innovative technology on quality and safety of refrigerated hamburger: Analysis of microbial safety and physicochemical properties. Int J Food Microbiol 2023; 388:110066. [PMID: 36610235 DOI: 10.1016/j.ijfoodmicro.2022.110066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Atmospheric cold plasma (ACP) is an innovative non-thermal decontamination technology that is considered a great alternative to conventional preservation methods. Most importantly, improving microbial safety along with maintaining the sensory and quality properties of the treated foods, especially for perishable products. Hence, this study aimed to investigate the antimicrobial effects of novel dielectric barrier discharge (DBD) and Jet cold plasma systems and their impact on the physicochemical, color, and sensory properties of refrigerated hamburger samples. In the current study, hamburger samples were inoculated with Staphylococcus aureus, Escherichia coli, Molds and Yeasts microbial suspension (~106 CFU/mL), and then were treated with argon (Ar), helium (He), nitrogen (N), and atmosphere (Atm) gases at different times (s) (0, 30, 60, 90, 180, 360). Similarly, uninoculated samples were considered for total viable count (TVC) testing. The results exhibited that plasma system type, gas type, and treatment time had a significant antimicrobial effect with a microbial reduction ranging from 0.01 to 2 log CFU/g and 0.04-1.5 log CFU/g for DBD and Jet plasma systems, respectively. Also, a treatment time longer than 90 s for DBD and 180 s for jet resulted in a significant reduction in microbial count. The ability of atmospheric cold plasma to inactivate tested foodborne pathogenic bacteria (E. coli and S. aureus) was stronger than other gases because the concentration of O3 and NO gases in atmospheric plasma is higher than other used plasma gases. Surface color measurements (L*, a* and b*) of samples in both methods (DBD and Jet) were not significantly affected. Moreover, samples treated with various plasma gases have indicated insignificant oxidation changes (Thiobarbituric acid assay). These outcomes can assist to reduce microbial contamination and oxidation of hamburgers as a high-consumption and perishable product using ACP technology. Owing to the non-thermal nature of ACP, samples treated with ACP have exhibited no or least effects on the physical, chemical, and sensory features of various food products. As a result, cold plasma innovative technology can be proposed and used as an efficient preservative method to increase the shelf life of food products.
Collapse
Affiliation(s)
- Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Maleki
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zana Pirkhezranian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
9
|
Subrahmanyam K, Gul K, Sehrawat R, Allai FM. Impact of in-package cold plasma treatment on the physicochemical properties and shelf life of button mushrooms (Agaricus bisporus). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Application of intense pulsed light – plasma – ultraviolet combined system on granular and powdered foods for microbial inactivation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Ding Y, Mo W, Deng Z, Kimatu BM, Gao J, Fang D. Storage Quality Variation of Mushrooms ( Flammulina velutipes) after Cold Plasma Treatment. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010070. [PMID: 36676018 PMCID: PMC9864181 DOI: 10.3390/life13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Flammulina velutipes is susceptible to mechanical damage, water loss, microbial growth, and other factors that lead to postharvest deterioration, thereby shortening the storage period. The purpose of this study was to analyze the effects of cold plasma treatment on the physicochemical properties and antioxidant capacity of F. velutipes during storage at 4 °C for 21 days. Compared to the control group, cold plasma cold sterilization (CPCS) treatment (150 Hz, 95 kV for 150 s) effectively inhibited the growth and multiplication of microorganisms on the surface of F. velutipes, with no significant effect on the fresh weight change and the superoxide anion generation rate, but with a higher postharvest 1,1-dephenyl-2-picrylhydrzyl (DPPH) clearance rate. Moreover, CPCS increased antioxidant enzyme activities, delayed both malondialdehyde (MDA) accumulation and vitamin C loss, inhibited the browning reaction and polyphenol oxidases (PPO) activity and protected F. velutipes cell membrane from disruption. In general, CPCS not only achieved bacteriostatic effects on F. velutipes during storage, but also reduced cell damage from free radical oxidation, resulting in better postharvest quality and longer shelf life.
Collapse
Affiliation(s)
- Yuxuan Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixian Mo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zilong Deng
- State Key Laboratory Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Benard Muinde Kimatu
- Department of Dairy and Food Science and Technology, Egerton University, Egerton 20115, Kenya
| | - Juan Gao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| |
Collapse
|
12
|
Kazemzadeh P, Khorram S, Mahmoudzadeh M, Ehsani A. Effect of atmospheric cold plasma (ACP) on chlorine adapted Salmonella enterica on spring onion. Lett Appl Microbiol 2022; 75:1307-1318. [PMID: 35930630 DOI: 10.1111/lam.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
One of the main drawbacks of chlorine disinfectants is the emergence of chlorine adapted (CA) or resistant microbial cells. This research aimed to investigate the effect of chlorine adaptation on resistance of Salmonella enterica upon atmospheric cold plasma (ACP) application at different voltages (6, 8, and 11 kV) and times (5, 10, and 15 min). Due to higher conversion efficiency and reduced dielectric barrier discharge (DBD) power consumption, this method was used for cold plasma generation in this study. A higher lethality effect was observed from a higher voltage and longest times (11 kV-15 min) on CA S. enterica than non-CA (p<0.05). Still, it induced higher percentages of injured cells in CA (58.77%) than non-CA (0.61%) (p<0.05). The highest ACP effect on the inactivation of the indigenous natural flora of onion leaves was observed at the lowest voltage (p<0.05). More than 3 log CFU/g reduction (p<0.05) was observed at 6 kV after 5 and 10 min. ACP reduced CA and non-CA S. enterica cells on onion leaf surface to a lower extent than pure treated cells in broth media. Nevertheless similar to broth media, a high percentage of injury (61.03%) was induced on CA cells at higher voltage (11 kV-10 min) compared to non-CA (2.15%) (p<0.05). Biofilm results revealed ACP application (6 kV-5 min) reduced average ODs in CA and non-CA cells (p<0.05). Chlorine adaptation and ACP treatment influenced the antibiotic resistance pattern according to applied voltage, time, and antibiotic type. The finding showed despite highest lethality of high voltages and long times (11 kV-15 min), given the high percentages of injured cells, lower voltages may offer acceptable inactivation of pathogenic bacteria with lower injury induction. In conclusion, ACP has the potential ability to eliminate CA cells of S. enterica, which is predominant in fresh-cut vegetable outbreaks.
Collapse
Affiliation(s)
- Parisa Kazemzadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sirous Khorram
- Physics Faculty, University of Tabriz, 51666-, 16471, Tabriz, Iran.,Research Institute for Applied Physics and Astronomy, Applied and Industrial Plasma Lab., University of Tabriz, 51666-, 16471, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Mendoza IC, Luna EO, Pozo MD, Vásquez MV, Montoya DC, Moran GC, Romero LG, Yépez X, Salazar R, Romero-Peña M, León JC. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. Lebensm Wiss Technol 2022; 165:113714. [PMID: 35783661 PMCID: PMC9239846 DOI: 10.1016/j.lwt.2022.113714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/22/2022]
Abstract
Pandemic COVID-19 warned the importance of preparing the immune system to prevent diseases. Therefore, consuming fresh fruits and vegetables is essential for a healthy and balanced diet due to their diverse compositions of vitamins, minerals, fiber, and bioactive compounds. However, these fresh products grew close to manure and irrigation water and are harvested with equipment or by hand, representing a high risk of microbial, physical, and chemical contamination. The handling of fruits and vegetables exposed them to various wet surfaces of equipment and utensils, an ideal environment for biofilm formation and a potential risk for microbial contamination and foodborne illnesses. In this sense, this review presents an overview of the main problems associated with microbial contamination and the several chemicals, physical, and biological disinfection methods concerning their ability to avoid food contamination. This work has discussed using chemical products such as chlorine compounds, peroxyacetic acid, and quaternary ammonium compounds. Moreover, newer techniques including ozone, electrolyzed water, ultraviolet light, ultrasound, high hydrostatic pressure, cold plasma technology, and microbial surfactants have also been illustrated here. Finally, future trends in disinfection with a sustainable approach such as combined methods were also described. Therefore, the fruit and vegetable industries can be informed about their main microbial risks to establish optimal and efficient procedures to ensure food safety.
Collapse
Affiliation(s)
- Iana Cruz Mendoza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Esther Ortiz Luna
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Dreher Pozo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Mirian Villavicencio Vásquez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Diana Coello Montoya
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Galo Chuchuca Moran
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Luis Galarza Romero
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ximena Yépez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Rómulo Salazar
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Romero-Peña
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jonathan Coronel León
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
14
|
Wang Q, Pal RK, Yen HW, Naik SP, Orzeszko MK, Mazzeo A, Salvi D. Cold plasma from flexible and conformable paper-based electrodes for fresh produce sanitation: Evaluation of microbial inactivation and quality changes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Wu Q, Shen C, Li J, Wu D, Chen K. Application of indirect plasma-processed air on microbial inactivation and quality of yellow peaches during storage. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|
17
|
Inactivation of Salmonella in steamed fish cake using an in-package combined treatment of cold plasma and ultraviolet-activated zinc oxide. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
19
|
Asghar A, Rashid MH, Ahmed W, Roobab U, Inam‐ur‐Raheem M, Shahid A, Kafeel S, Akram MS, Anwar R, Aadil RM. An in‐depth review of novel cold plasma technology for fresh‐cut produce. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ammara Asghar
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Arashi Shahid
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Sadia Kafeel
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Muhammad Saad Akram
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Raheel Anwar
- Institute of Horticulture University of Agriculture Faisalabad, 38000 Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| |
Collapse
|
20
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
21
|
Katsigiannis AS, Bayliss DL, Walsh JL. Cold plasma for the disinfection of industrial food‐contact surfaces: An overview of current status and opportunities. Compr Rev Food Sci Food Saf 2022; 21:1086-1124. [DOI: 10.1111/1541-4337.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Danny L. Bayliss
- Processing & Production Research Department Campden BRI Gloucestershire UK
| | - James L. Walsh
- Department of Electrical Engineering & Electronics University of Liverpool Liverpool UK
| |
Collapse
|
22
|
Corona Discharge Power of Plasma Treatment Influence on the Physicochemical and Microbial Quality of Enoki Mushroom (Flammulina velutipes). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma treatment was widely known as an effective technology applied for contact-surface decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible to microbial contamination but it was not feasible to be decontaminated by normal water washing. It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure plasma sources widely applied in food industry. This study demonstrated the influence of corona discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, respectively. Findings of this research proved that corona discharge plasma pretreatment would be appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom during preservation.
Collapse
|
23
|
Lazra Y, Gandu B, Amar ID, Emanuel E, Cahan R. Effects of Atmospheric Plasma Corona Discharge on Agrobacterium tumefaciens Survival. Microorganisms 2021; 10:microorganisms10010032. [PMID: 35056481 PMCID: PMC8780683 DOI: 10.3390/microorganisms10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Soil-borne pathogenic microorganisms are known to cause extensive crop losses. Agrobacterium tumefaciens, a member of the Proteobacteria, causes the neoplastic crown gall disease in plants. Plant protection is mainly based on toxic chemicals that are harmful to the environment. The use of cold atmospheric-pressure plasma is an attractive method for microbial eradication. Its antimicrobial mechanism includes the formation of large quantities of reactive oxygen species (ROS). The advantages of eradicating bacteria using cold plasma are not needed for chemicals, short treatment, and environmental temperatures. This study examined the impact of plasma corona discharge exposure on A. tumefaciens viability, membrane permeability, relative cell size, and ROS formation. The results showed that 90 s of plasma exposure led to a reduction by four orders of magnitude when the initial concentration was 1 × 107 CFU/mL and in a dry environment. When the initial concentration was 1 × 106 CFU/mL, 45 s of exposure resulted in total bacterial eradication. In a liquid environment, in an initial concentration of 2.02 × 106 CFU/mL, there was no complete bacterial eradication even at the most prolonged examined exposure (90 s). The influence of plasma treatment on the membrane permeability of A. tumefaciens, and their possible recovery, were analyzed using flow cytometer analysis using propidium iodide (PI). When the plasma-treated bacteria were suspended in Luria–Bertani (LB) (rich medium), the PI-positive count of the plasma-treated bacteria after two hours was 12 ± 3.9%. At the 24th hour, this percentage was only 1.74 ± 0.6%, as the control (0.7 ± 0.1%). These results may indicate the repair of the plasma-treated bacteria that were suspended in LB. At the 24th hour, the relative cell size of the treated bacteria shifted to the right, to ~3 × 104 forward side scatter (FSC), about 0.5-fold higher than the untreated cells. Measurement of the ROS showed that the intracellular fluorescence of the 90-s plasma-treated cells led to significant fluorescence formation of 32 relative fluorescence units (RFU)/cell (9 × 104 fold, compared to the nontreated cells). This study showed that cold plasma is a useful method for A. tumefaciens eradication. The eradication mechanism involves ROS generation, membrane permeability, and changes in cell size.
Collapse
Affiliation(s)
- Yulia Lazra
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel; (Y.L.); (B.G.); (I.D.A.); (E.E.)
| | - Bharath Gandu
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel; (Y.L.); (B.G.); (I.D.A.); (E.E.)
- Department of Environmental Studies, University of Delhi, New Delhi 110007, India
| | - Irina Dubrovin Amar
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel; (Y.L.); (B.G.); (I.D.A.); (E.E.)
| | - Efrat Emanuel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel; (Y.L.); (B.G.); (I.D.A.); (E.E.)
| | - Rivka Cahan
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel; (Y.L.); (B.G.); (I.D.A.); (E.E.)
- Correspondence: ; Tel.: +972-54-774-0293
| |
Collapse
|
24
|
Approaches to Inactivating Aflatoxins-A Review and Challenges. Int J Mol Sci 2021; 22:ijms222413322. [PMID: 34948120 PMCID: PMC8704553 DOI: 10.3390/ijms222413322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
According to the World Health Organization, the contamination of crops with aflatoxins poses a significant economic burden, estimated to affect 25% of global food crops. In the event that the contaminated food is processed, aflatoxins enter the general food supply and can cause serious diseases. Aflatoxins are distributed unevenly in food or feedstock, making eradicating them both a scientific and a technological challenge. Cooking, freezing, or pressurizing have little effect on aflatoxins. While chemical methods degrade toxins on the surface of contaminated food, the destruction inside entails a slow process. Physical techniques, such as irradiation with ultraviolet photons, pulses of extensive white radiation, and gaseous plasma, are promising; yet, the exact mechanisms concerning how these techniques degrade aflatoxins require further study. Correlations between the efficiency of such degradation and the processing parameters used by various authors are presented in this review. The lack of appropriate guidance while interpreting the observed results is a huge scientific challenge.
Collapse
|
25
|
Hemmati V, Garavand F, Khorshidian N, Cacciotti I, Goudarzi M, Chaichi M, Tiwari BK. Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Pourbagher R, Abbaspour-Fard MH, Sohbatzadeh F, Rohani A. In vivo antibacterial effect of non-thermal atmospheric plasma on pseudomonas tolaasii, a causative agent of Agaricus bisporus blotch disease. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Pourbagher R, Abbaspour-Fard MH, Sohbatzadeh F, Rohani A. Inhibition of enzymes and Pseudomonas tolaasii growth on Agaricus bisporus following treatment with surface dielectric barrier discharge plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
K S Narayanan SS, Wang X, Paul J, Paley V, Weng Z, Ye L, Zhong Y. Disinfection and Electrostatic Recovery of N95 Respirators by Corona Discharge for Safe Reuse. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15351-15360. [PMID: 34570480 DOI: 10.1021/acs.est.1c02649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the COVID-19 pandemic surging, the demand for masks is challenging, especially in less-developed areas across the world. Billions of used masks are threatening the environment as a new source of plastic pollution. In this paper, corona discharge (CD) was explored as a safe and reliable method for mask reuse to alleviate the situation. CD can disinfect masks and simultaneously restore electrostatic charges to prevent filtration efficiency deterioration. Electric field, ions, and reactive species generated by CD cause DNA damage and protein denaturation to effectively disinfect N95 respirators. Log reduction of 2-3 against Escherichia coli can be easily reached within 7.5 min. Log reduction of up to 6 can be reached after three cycles of treatment with optimized parameters. CD disinfection is a broad spectrum with log reduction >1 against yeast and >2.5 against spores. N95 respirators can be recharged within 30 s of treatment and the charges can be retained at a higher level than brand-new masks for at least 5 days. The filtration efficiency of masks was maintained at ∼95% after 15 cycles of treatment. CD can provide at least 10 cycles of safe reuse with benefits of high safety, affordability, accessibility, and device scalability/portability.
Collapse
Affiliation(s)
- Sriram S K S Narayanan
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Xudong Wang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Jose Paul
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Vladislav Paley
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Zijian Weng
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
- H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Ying Zhong
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
29
|
Abarghuei FM, Etemadi M, Ramezanian A, Esehaghbeygi A, Alizargar J. An Application of Cold Atmospheric Plasma to Enhance Physiological and Biochemical Traits of Basil. PLANTS 2021; 10:plants10102088. [PMID: 34685897 PMCID: PMC8540659 DOI: 10.3390/plants10102088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the effects of dielectric barrier discharge cold atmospheric plasma on the performance of basil (Ocimum basilicum L. cv. Genovese Gigante). Evaluations were carried out on several physiological and biochemical traits, including ion leakage, water relative content, proline and protein accumulation, chlorophyll and carotenoid contents, and antioxidant activity. Before planting, basil seeds were treated by cold atmospheric plasma under voltages of 10, 15, and 20 kV for 10, 20, and 30 min. The ion leakage rate in plants was significantly affected by the interaction between plasma and radiation time. In most treatments, the application of plasma significantly reduced the ion leakage rate. The application of plasma (10 and 20 kV) for 10 min significantly increased the relative water content of basil leaves. The maximum amount of total chlorophyll and carotenoid content occurred after applying plasma for 20 min with 15 kV. Furthermore, 10 and 15 kV treatments of atmospheric cold plasma for 10 min caused a significant increase in antioxidant activity. The highest total flavonoids were obtained after applying 15 kV treatments for 20 min and 20 kV for 30 min, respectively. Cold atmospheric plasma significantly increased the activity of peroxidase as an antioxidant enzyme. Moreover, the minimum and maximum values of microbial load based on logarithm ten were reached after applying 10 kV for 30 min and in the control group, respectively. In general, the results showed that dielectric barrier discharge cold atmospheric plasma could significantly improve basil plants’ physiological and biochemical traits.
Collapse
Affiliation(s)
- Faezeh Mirazimi Abarghuei
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
- Correspondence: (M.E.); (J.A.); Tel.: +98-71-36138447 (M.E.)
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
| | - Ali Esehaghbeygi
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Correspondence: (M.E.); (J.A.); Tel.: +98-71-36138447 (M.E.)
| |
Collapse
|
30
|
Mao L, Mhaske P, Zing X, Kasapis S, Majzoobi M, Farahnaky A. Cold plasma: Microbial inactivation and effects on quality attributes of fresh and minimally processed fruits and Ready-To-Eat vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Effects of Pre-Treatment Using Plasma on the Antibacterial Activity of Mushroom Surfaces. Foods 2021; 10:foods10081888. [PMID: 34441665 PMCID: PMC8394274 DOI: 10.3390/foods10081888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Although non-thermal atmospheric pressure plasma is an efficient tool for preventing post-harvest microbial contamination, many studies have focused on the post-treatment of infected or contaminated foods. In this study, we examined the antimicrobial quality of mushrooms pre-treated with a non-thermal atmospheric pressure plasma jet (NTAPPJ) or plasma-treated water (PTW). The CFU (Colony Forming Unit) number of Escherichia coli inoculated on surfaces of mushrooms pre-treated with NTAPPJ or PTW was significantly reduced (about 60-75% for NTAPPJ and about 35-85% for PTW), and the reduction rate was proportional to the treatment time. Bacterial attachment and viability of the attached bacteria were decreased on NTAPPJ-treated mushroom surfaces. This may be caused by the increased hydrophilicity and oxidizing capacity observed on NTAPPJ-treated mushroom surfaces. In PTW-treated mushrooms, bacterial attachment was not significantly changed, but death and lipid peroxidation of the attached bacteria were significantly increased. Analysis of mushroom quality showed that loss of water content was greater in mushrooms treated with NTAPPJ compared to that in those with no treatment (control) and PTW treatment during storage. Our results suggest that pre-treatment with NTAPPJ or PTW can improve the antibacterial quality of mushroom surfaces by decreasing bacterial attachment (for NTAPPJ) and increasing bacterial lipid peroxidation (for both NTAPPJ and PTW).
Collapse
|
32
|
Warne GR, Williams PM, Pho HQ, Tran NN, Hessel V, Fisk ID. Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review. J Food Sci 2021; 86:3762-3777. [PMID: 34337748 DOI: 10.1111/1750-3841.15856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Cold plasma is formed by the nonthermal ionization of gas into free electrons, ions, reactive atomic and molecular species, and ultraviolet (UV) radiation. This cold plasma can be used to alter the surface of solid and liquid foods, and it offers multiple advantages over traditional thermal treatments, such as no thermal damage and increased output variation (due to the various input parameters gas, power, plasma type, etc.). Cold plasma appears to have limited impact on the sensory and color properties, at lower power and treatment times, but there has been a statistically significant reduction in pH for most of the cold plasma treatments reviewed (p < 0.05). Carbohydrates (cross linking and glycosylation), lipids (oxidation), and proteins (secondary structure) are more significantly impacted due to cold plasma at higher intensities and longer treatment times. Although cold plasma treatments and food matrices can vary considerably, this review has identified the literary evidence of some of the influences and impacts of the vast array of cold plasma treatment parameters on the biomolecular and organoleptic properties of these foods. Due to the rapidly evolving nature of the field, we have also identified that authors prioritize the presentation of different information when publishing from different research areas. Therefore, we have proposed a number of key physical and chemical cold plasma parameters that should be considered for inclusion in all future publications in the field.
Collapse
Affiliation(s)
- George R Warne
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, UK.,The University of Adelaide, Adelaide, South Australia, Australia
| | - Philip M Williams
- Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Hue Quoc Pho
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Ian D Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, UK.,The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Rathod NB, Kahar SP, Ranveer RC, Annapure US. Cold plasma an emerging nonthermal technology for milk and milk products: A review. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of PHM of Meat, Poultry and Fish PG Institute of Post‐Harvest Management (DBSKKV, Dapoli), Killa‐Roha Dist. Raigad MS 402 116 India
| | - Suraj Prembahadur Kahar
- Department of Food Engineering and Technology Institute of Chemical Technology (ICT) Mumbai MS 400019 India
| | - Rahul Chudaman Ranveer
- Department of PHM of Meat, Poultry and Fish PG Institute of Post‐Harvest Management (DBSKKV, Dapoli), Killa‐Roha Dist. Raigad MS 402 116 India
| | - Uday Shriramrao Annapure
- Department of Food Engineering and Technology Institute of Chemical Technology (ICT) Mumbai MS 400019 India
| |
Collapse
|
34
|
Jeon EB, Choi MS, Kim JY, Choi EH, Lim JS, Choi J, Ha KS, Kwon JY, Jeong SH, Park SY. Assessment of potential infectivity of human norovirus in the traditional Korean salted clam product "Jogaejeotgal" by floating electrode-dielectric barrier discharge plasma. Food Res Int 2021; 141:110107. [PMID: 33641974 DOI: 10.1016/j.foodres.2021.110107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 11/25/2022]
Abstract
This study investigated the antiviral effects of floating electrode-dielectric barrier discharge (FE-DBD) plasma treatment (1.1 kV, 43 kHz, N2 1.5 m/s, 5-30 min) against human norovirus (HuNoV) GII.4 in Jogaejeotgal Infectivity was assessed using real-time quantitative-PCR (RT-qPCR) following treatment of samples with propidium monoazide (PMA) and sodium lauroyl sarcosinate (Sarkosyl). This study also investigated the effects of FE-DBD plasma treatment on Jogaejeotgal quality (assessed using pH value and Hunter colors). Following inoculation, the average titers of HuNoV GII.4 in Jogaejeotgal significantly (P < 0.05) decreased with increases in the FE-DBD plasma treatment time in both the non-PMA-treated and PMA + Sarkosyl-treated samples; in the non-PMA and PMA + Sarkosyl treated Jogaejeotgal, HuNoV GII.4 titers (log10 copy number/µL) were to: 3.16 and 2.95 (5 min), 2.90 and 2.48 (10 min), 2.82 and 2.40 (15 min), 2.58 and 2.26 (20 min), 2.48 and 2.06 (25 min), and 2.23 and 1.91 (30 min), respectively. The average titers of HuNoV demonstrated significant (P < 0.05) reductions of 0.35 log10 (55.3%) in PMA + Sarkosyl-treated samples compared with the non-PMA treated samples following exposure to 5-30 min of FE-DBD plasma. Reductions of >1-log for HuNoV in PMA + Sarkosyl- treated Jogaejeotgal required treatments of FE-DBD of 5-30 min. Using the first order kinetic model (R2 = 0.95), GII.4 decimal reduction time (D-value) resulting from FE-DBD plasma was 23.75 min. The pH and Hunter colors ("L", "a", and "b") were not significantly different (P > 0.05) between the untreated and FE-DBD plasma-treated Jogaejeotgal. Based on these results, the PMA + Sarkosyl/RT-qPCR method could be assessing HuNoV viability following 5-30 min treatment of FE-DBD plasma. Furthermore, may be an optimal treatment for Jogaejeotgal without altering the food quality (color and pH).
Collapse
Affiliation(s)
- Eun Bi Jeon
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Man-Seok Choi
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Ji Yoon Kim
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Jinsung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01987, Republic of Korea
| | - Kwang Soo Ha
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Ji Young Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Sang Hyeon Jeong
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Shin Young Park
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
35
|
Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Silvetti T, Pedroni M, Brasca M, Vassallo E, Cocetta G, Ferrante A, De Noni I, Piazza L, Morandi S. Assessment of Possible Application of an Atmospheric Pressure Plasma Jet for Shelf Life Extension of Fresh-Cut Salad. Foods 2021; 10:foods10030513. [PMID: 33804422 PMCID: PMC8001164 DOI: 10.3390/foods10030513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Ready-to-eat salads are very perishable with quality losses within 6–7 days, and the extension of their shelf life is still a challenge. In this work, an atmospheric pressure plasma jet (APPJ) was applied for the surface decontamination of fresh-cut lettuce baby leaves. The APPJ antimicrobial efficiency on the natural microbiota and its impact on some physicochemical attributes of lettuce were evaluated as a function of the treatment duration (0–30 s). Then, the influence of plasma treatment on the salad shelf life was studied, following the growth of aerobic mesophilic bacteria in both untreated and plasma-treated samples during 9 days of storage at 4 °C, together with the plasma-induced changes in physicochemical parameters of lettuce leaves. The APPJ induced a fast (15 s) microbial decontamination (1.3 log10 CFU/g) of the salad surface. Exposure time and salad-plasma plume distance were the parameters that substantially affected the microbial inactivation. APPJ treatment retarded bacterial growth during the refrigerated storage, as plasma-treated samples were noticeably less contaminated than the non-treated ones in the first 3–4 days. No significant effect were observed on electrolyte leakage, pH, and dry matter content in both the set up phase and the shelf life study.
Collapse
Affiliation(s)
- Tiziana Silvetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (T.S.); (I.D.N.)
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy;
| | - Matteo Pedroni
- National Research Council, Institute for Plasma Science and Technology, Via R. Cozzi 53, 20125 Milan, Italy; (M.P.); (E.V.)
| | - Milena Brasca
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy;
- Correspondence:
| | - Espedito Vassallo
- National Research Council, Institute for Plasma Science and Technology, Via R. Cozzi 53, 20125 Milan, Italy; (M.P.); (E.V.)
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (G.C.); (A.F.)
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (G.C.); (A.F.)
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (T.S.); (I.D.N.)
| | - Laura Piazza
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via G. Celoria 2, 20131 Milan, Italy;
| | - Stefano Morandi
- National Research Council, Institute of Sciences of Food Production, Via G. Celoria 2, 20133 Milan, Italy;
| |
Collapse
|
37
|
Cong L, Huang M, Zhang J, Yan W. Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:424-432. [PMID: 32648588 DOI: 10.1002/jsfa.10651] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 05/27/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pesticides have been widely used to control pests on agricultural products in China, and large amounts of pesticide residues have caused a serious threat to human health. Thus, developing a high-efficiency pesticide degradation method for fresh vegetables represents a great challenge. The present study investigated the effects of dielectric barrier discharge (DBD) plasma on the degradation of malathion and chlorpyrifos in aqueous solutions and on lettuces. RESULTS DBD treatment significantly degraded malathion and chlorpyrifos in water and on lettuce. After cold plasma treatment at 80 kV for 180 s, the degradation efficiency of malathion (0.5 μg mL-1 ) and chlorpyrifos (1.0 μg mL-1 ) in aqueous solutions reached 64.6% and 62.7%, respectively. The degradation intermediates were explored by HPLC-mass spectrometry and the DBD plasma degradation pathways of malathion and chlorpyrifos were proposed. There was no significant damage to the quality of lettuces, including color and chlorophyll content, after plasma treatment. Ascorbic acid decreased significantly during long-term treatment with DBD plasma. To ensure the quality of lettuces during processing, the treatment time was shortened to 120 s. Under this condition, the degradation efficiency of malathion (0.5 mg kg-1 ) and chlorpyrifos (1.0 mg kg-1 ) on lettuces was found to be 53.1% and 51.4%. More importantly, we noted that cold plasma treatment significantly inactivated the microorganisms on lettuces. CONCLUSION The results of the present study show that cold plasma is an effective and safe method for the degradation of organic pesticide residues on fresh vegetables at the same time as retaining the original quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Laixin Cong
- National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingming Huang
- National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Yan
- National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
38
|
Investigation of decontamination effect of argon cold plasma on physicochemical and sensory properties of almond slices. Int J Food Microbiol 2020; 335:108892. [PMID: 32979616 DOI: 10.1016/j.ijfoodmicro.2020.108892] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 11/23/2022]
Abstract
Cold plasma is a novel technology for surface decontamination. Almond slices can be contaminated with different microorganisms during their production. In the current research, the atmospheric argon plasma treatment (5, 10, 15, and 20 min) was used to decontamination of almond slices surface. Microbial load, Color, peroxide value, hardness, and sensory properties of slices was comprised with untreated samples (control). Descriptive sensory evaluation about color, flavor, crispiness, crunchiness, and hardness of almond slices were performed. According to the results of the microbial tests, Total count, molds and yeasts, and Staphylococcus aureus of almond surface decreased about 2.95 log cfu/g, 1.81 log cfu/g, and 2.72 log cfu/g after 20 min of plasma treatment, respectively, provided that microbial reduction increased more by increasing the treatment time. Coupled with the color evaluation, peroxide value and sensory attributes didn't change during plasma treatment. Having said that, the hardness of slices was changed by increasing treatment time. Furthermore, Principal Component Analysis and cluster analysis were performed for sensory evaluation. In light of the consumer's point of view, firstly 10 min and secondly 15 min plasma treatment can be more desirable.
Collapse
|
39
|
Effect of Non-Thermal Atmospheric Plasma on Food-Borne Bacterial Pathogens on Ready-to Eat Foods: Morphological and Physico-Chemical Changes Occurring on the Cellular Envelopes. Foods 2020; 9:foods9121865. [PMID: 33327565 PMCID: PMC7765070 DOI: 10.3390/foods9121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022] Open
Abstract
Currently, there is a need for new technological interventions to guarantee the microbiological safety of ready-to-eat (RTE) foods. Non-thermal atmospheric plasma (NTAP) has emerged as a promising strategy for inactivating microorganisms on thermo-sensitive foods, and the elucidation of its mechanisms of action will aid the rational optimization and industrial implementation of this technology for potential applications in the food industry. In this study, the effectiveness of NTAP for inactivating strains of Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes contaminating the surface of different sliced RTE foods (“chorizo”, salami, bacon, smoked salmon, tofu and apple) was investigated. In addition, to further assess the bacterial inactivation mechanisms of NTAP, the morphological and physico-chemical damages in bacterial cells were analyzed. NTAP was effective for the surface decontamination of all products tested and, especially, of cut apple, where the microbial populations were reduced between 1.3 and 1.8 log units for the two Salmonella strains and E. coli O157: H7, respectively, after 15 min of exposure. In the rest of foods, no significant differences in the lethality obtained for the E. coli O157:H7 strain were observed, with inactivation rates of between 0.6 and 0.9 log cycles after a 15-min treatment. On the other hand, the strains from the rest of pathogenic microorganisms studied were extremely resistant on tofu, where barely 0.2–0.5 log units of inactivation were achieved after 15 min of plasma exposure. S. Enteritidis cells treated for 10 min exhibited noticeable morphological and structural changes, as observed by transmission electron microscopy, which were accompanied by a loss in membrane integrity, with an increased leakage of intracellular components and uptake of propidium iodide and marked changes in regions of their FTIR spectra indicating major alterations of the cell wall components. Overall, this indicates that loss of viability was likely caused for this microorganism by a significant damage in the cellular envelopes. However, the plasma-treated cells of L. monocytogenes did not show such obvious changes in morphology, and exhibited less marked effects on the integrity of their cytoplasmic membrane, what suggests that the death of this pathogenic microorganism upon NTAP exposure is more likely to occur as a consequence of damages in other cellular targets.
Collapse
|
40
|
Abstract
In recent years, the consumption of the fresh-cut products has been increased due to the consumers’ lifestyle and awareness. However, maintaining the quality and nutritional value of these products during storage is being difficult in comparison to whole fruits and vegetables. In actual, the procedures used in the fresh-cut industry may intensify the deterioration caused by physical damage by minimal processing. Commonly, the quality degradation, discolouration, loss of moisture, loss of firmness, microbial load increase, and loss of nutrients and flavor occur in the fresh-cut product after minimal processing. To maintain the quality and increase the shelf-life of the fresh-cut product, it is necessary to use various techniques, including physical, chemical, and nondestructive processes. In this review, first, an introduction to minimal processing and its effect on fresh-cut product quality was expressed, and then, the methods used to maintain fresh-cut product quality after minimal processing were reviewed. Finally, the effect of cold plasma on the qualitative characteristics in some fresh-cut products was investigated. The review showed that cold plasma treatments can significantly inhibit microorganisms and extend the shelf-life of fresh-cut products. In addition, no or minimal impacts were observed on physicochemical and organoleptic quality attributes of the treated fresh-cut products. Therefore, the use of cold plasma is promising for the fresh-cut industry.
Collapse
|
41
|
Huang YM, Chen CK, Hsu CL. Non-thermal atmospheric gas plasma for decontamination of sliced cheese and changes in quality. FOOD SCI TECHNOL INT 2020; 26:715-726. [PMID: 32423241 DOI: 10.1177/1082013220925931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The atmospheric-pressure non-thermal dielectric barrier discharge (DBD) plasma has recently emerged as an efficient decontamination method for the food safety enhancement. Thus the objective of this study was to evaluate the effectiveness of a simple DBD plasma treatment, with a relatively low-frequency power supply operating at 60 Hz, for microbial inactivation. A parametric study of operating conditions for bacterial inactivation was conducted using nutrient agar inoculated with Escherichia coli (2.28--6.28 log CFU/ml). The microbial log reduction was enhanced with increasing input power (30, 50, 70 W) and plasma exposure time (0, 1, 3, 5, 7 min). The inactivation effect was increased by decreasing inter-electrode gap (2, 1.5, 1 cm) and by reducing the initial microorganism concentration. Accordingly, a DBD plasma treatment at 50 W for 10 min could lead to complete killing of E. coli and partial inactivation of Listeria innocua on cheese (mean log reduction: 4.75 ± 0.02 and 0.72 ± 0.01, respectively). The decontamination efficacy of DBD plasma was affected by the types of microorganisms. The changes in hardness and color of cheese were unnoticeable after 10 min treatment with a power of 50 W. Overall, the results suggested that the DBD plasma can be potentially exploited to improve the food safety.
Collapse
Affiliation(s)
- Yi-Ming Huang
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung
| | - Chung-Kai Chen
- Department of Food Science, Tunghai University, Taichung
| | | |
Collapse
|
42
|
Long Y, Zhang M, Devahastin S, Cao P. Progresses in processing technologies for special foods with ultra-long shelf life. Crit Rev Food Sci Nutr 2020; 62:2355-2374. [PMID: 33938776 DOI: 10.1080/10408398.2020.1853034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Foods for special applications have recently received much attention due to rapid development of space and military industries as well as to frequent occurrence of natural and man-made disasters. Since the way such foods are processed clearly and directly affects their consumer's acceptability and shelf life, it is of interest to explore in detail how these special foods can be processed. This article presents a review on the difficulties in the processing, application and storage as well as on how to ensure the shelf life and acceptability of special foods through the use of efficient processing technologies. Emphasis is made on the use of both conventional and alternative thermal processing and irradiation technologies. Appropriate packaging technologies for each of the discussed special foods are also mentioned along with the way to overcome the problem of product quality degradation. Through comparison and analysis, it is found that foods with different attributes require different technologies and processes to achieve desirable results. Combined use of multiple technologies has also noted to be advantageous.
Collapse
Affiliation(s)
- Yanzhen Long
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand
| | - Ping Cao
- China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
43
|
Giannoglou M, Stergiou P, Dimitrakellis P, Gogolides E, Stoforos NG, Katsaros G. Effect of Cold Atmospheric Plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102502] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Ahmadnia M, Sadeghi M, Abbaszadeh R, Ghomi Marzdashti HR. Decontamination of whole strawberry via dielectric barrier discharge cold plasma and effects on quality attributes. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maryam Ahmadnia
- Department of Biosystems Engineering College of Agriculture, Isfahan University of Technology Isfahan Iran
| | - Morteza Sadeghi
- Department of Biosystems Engineering College of Agriculture, Isfahan University of Technology Isfahan Iran
| | - Rouzbeh Abbaszadeh
- Agricultural Research Institute Iranian Research Organization for Science and Technology Tehran Iran
| | - Hamid Reza Ghomi Marzdashti
- Department of Plasma Engineering Laser and Plasma Research Institute (LAPRI)Shahid Beheshti University Tehran Iran
| |
Collapse
|
45
|
|
46
|
Farias TR, Rodrigues S, Fernandes FA. Effect of dielectric barrier discharge plasma excitation frequency on the enzymatic activity, antioxidant capacity and phenolic content of apple cubes and apple juice. Food Res Int 2020; 136:109617. [DOI: 10.1016/j.foodres.2020.109617] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
|
47
|
Fan X, Wang W. Quality of fresh and fresh-cut produce impacted by nonthermal physical technologies intended to enhance microbial safety. Crit Rev Food Sci Nutr 2020; 62:362-382. [DOI: 10.1080/10408398.2020.1816892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Wenli Wang
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Cheng JH, Lv X, Pan Y, Sun DW. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Yoo JH, Baek KH, Heo YS, Yong HI, Jo C. Synergistic bactericidal effect of clove oil and encapsulated atmospheric pressure plasma against Escherichia coli O157:H7 and Staphylococcus aureus and its mechanism of action. Food Microbiol 2020; 93:103611. [PMID: 32912582 DOI: 10.1016/j.fm.2020.103611] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
We investigated the bactericidal effect of clove oil and encapsulated atmospheric pressure plasma (EAP), individually or in combination, against Escherichia coli O157:H7 and Staphylococcus aureus. The bactericidal effect of the combined treatment was also investigated in inoculated beef jerky. For both pathogens, clove oil and EAP single treatments resulted in less than 3.0-log reductions, whereas the combined treatment resulted in more than 7.5-log reductions. The disc-diffusion assay and gas chromatography-mass spectrometry showed no changes in both the clear zone diameter and chemical composition of clove oil before and after the EAP treatment. Significant changes in cell membrane permeability and cell morphology resulting from the combined treatment of clove oil and EAP were evidenced by increased in UV absorption of cell supernatants, increased cell staining with propidium iodide, and changes in cell structure revealed by transmission electron microscopy. The synergistic bactericidal effects of clove oil and EAP against both pathogens were also observed in inoculated beef jerky, but the treatments were less effective against S. aureus, presumably due to thicker peptidoglycan layer. Experiments also demonstrated that the synergistic bactericidal effects between clove oil and EAP are due to clove oil increasing the susceptibility of the bacteria to subsequent EAP treatment, and does not involve alteration of the antibacterial activity of clove oil by EAP.
Collapse
Affiliation(s)
- Ji Hyun Yoo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki Ho Baek
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye Seul Heo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| |
Collapse
|
50
|
Bußler S, Rawel HM, Schlüter OK. Impact of plasma processed air (PPA) on phenolic model systems: Suggested mechanisms and relevance for food applications. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|