1
|
Li H, Sheng W, Adade SYSS, Nunekpeku X, Chen Q. Investigation of heat-induced pork batter quality detection and change mechanisms using Raman spectroscopy coupled with deep learning algorithms. Food Chem 2024; 461:140798. [PMID: 39173265 DOI: 10.1016/j.foodchem.2024.140798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Pork batter quality significantly affects its product. Herein, this study explored the use of Raman spectroscopy combined with deep learning algorithms for rapidly detecting pork batter quality and revealing the mechanisms of quality changes during heating. Results showed that heating increased β-sheet content (from 26.38 to 41.42%) and exposed hidden hydrophobic groups, which formed aggregates through chemical bonds. Dominant hydrophobic interactions further cross-linked these aggregates, establishing a more homogeneous and denser network at 80 °C. Subsequently, convolutional neural networks (CNN), long short-term memory neural networks (LSTM), and CNN-LSTM were comparatively used to predict gel strength and whiteness in batters based on the Raman spectrum. Thereinto, CNN-LSTM provided the optimal results for gel strength (Rp = 0.9515, RPD = 3.1513) and whiteness (Rp = 0.9383, RPD = 3.0152). Therefore, this study demonstrated the potential of Raman spectroscopy combined with deep learning algorithms as non-destructive tools for predicting pork batter quality and elucidating quality change mechanisms.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Xorlali Nunekpeku
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
2
|
Zhang M, Wei T, Mai Q, Hayat K, Hou Y, Xia S, Cui H, Yu J. Microwave-induced heterogeneity in protein conformation and water mobility interferes with the distribution pattern and migration pathway of sodium ion in myofibrillar protein gel. Food Chem 2024; 460:140503. [PMID: 39053279 DOI: 10.1016/j.foodchem.2024.140503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The aim of this study was to investigate the distribution pattern and migration pathway of sodium ion in the myofibrillar protein (MP) gel matrix during microwave heating. The results showed that the content of sodium ions in the outer layer of MP gel increased by 47.85% compared with that in the inner layer. In the inner layer of protein gel, the non-covalent disulfide bonds (mainly ε(γ-Glu)-Lys) increased (P < 0.05), which contributed to the formation of a better rigid structure of the protein. The free water content was significantly higher than that of the inner layer (P < 0.05), which was related to the higher mobility of sodium ions. The results of microstructure analysis showed that the outer layer of the MP gel formed a more porous network than the inner layer. This work is expected to give some insights into the development of promising salt-reduced meat products by microwave heating.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Tianyi Wei
- Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, 6 Yongan Road, Foshan, Guangdong, 528311, PR China
| | - Qianting Mai
- Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, 6 Yongan Road, Foshan, Guangdong, 528311, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, United States
| | - Yaqi Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
3
|
Yao W, Zhao Z, Zhang J, Kong B, Sun F, Liu Q, Cao C. Revealing the deterioration mechanism in gelling properties of pork myofibrillar protein gel induced by high-temperature treatments: Perspective on the protein aggregation and conformation. Meat Sci 2024; 217:109595. [PMID: 39004037 DOI: 10.1016/j.meatsci.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The purpose of the present study was to investigate the mechanism of gel deterioration of myofibrillar proteins (MP) gels induced by high-temperature treatments based on the protein aggregation and conformation. The results showed that the gel strength and water holding capacity of MP obviously increased and then decreased as the temperature increased, reaching the maximum value at 80 °C (P < 0.05). The microstructure analysis revealed that appropriate temperature (80 °C) contributed to the formation of a more homogeneous, denser, and smoother three-dimensional mesh structure when compared other treatment temperatures, whereas excessive temperature (95 °C) resulted in the formation of heterogeneous and large protein aggregates of MP, decreasing the continuity of gel networks. This was verified by the rheological properties of MP gels. The particle size (D4,3 and D3,2) of MP obviously increased with larger clusters at excessive temperature, and the surface hydrophobicity of MP decreased (P < 0.05), which has been linked to the formation of soluble or insoluble protein aggregates. Tertiary structure and secondary structure results revealed that the proteins had a tendency to be more stretched under higher temperature treatments, which resulted in a decrease in covalent interactions and non-covalent interactions, fostering the over-aggregation of MP. Therefore, our present study indicated that the degradation of MP gels treated at high temperatures was explained by protein aggregation and conformational changes in MP.
Collapse
Affiliation(s)
- Wenjing Yao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Yu Y, Jiang X, Lu X, Cai R, Shan Y, Tang M, Wang Q, Song Y, Gao F. Effect of microwave treatment and water-bath heating treatment on the performance of glutenin from Tiger nut seed meal: Insights into changes in structural characteristics, functional properties, and in vitro gastrointestinal digestibility. Food Chem X 2024; 23:101741. [PMID: 39253015 PMCID: PMC11381614 DOI: 10.1016/j.fochx.2024.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
In this study, the structural characteristics, functional properties, and in vitro gastrointestinal digestibility of glutenin from Tiger nut seed meal (TNSMG) treated by microwave (140-700 W, 20-60 s) and water-bath heating (40-100 °C, 10-30 min) were investigated. Analysis of the surface hydrophobicity, intrinsic fluorescence spectroscopy and Fourier transform infrared spectroscopy indicated that both microwave and water-bath heating treatments caused structure changes of TNSMG. The results showed an increase in the exposure of sulfhydryl groups and the content of β-sheet, coupled with a decrease in the content of α-helix and β-turn. These structural changes contributed to the improved solubility, foamability, emulsification properties, and digestibility of TNSMG under proper thermal treatment conditions. TNSMG exhibited the best solubility (68.48%) and foamability (85.56%) after water-bath heating treatment for 20 min at 80 °C. Furthermore, TNSMG showed the best emulsification property (9.61 m2/g) and digestibility (78.58%) when treated by microwave treatment at 560 W for 40 s.
Collapse
Affiliation(s)
- Yali Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xinyu Jiang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaoyu Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Rongcan Cai
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yuer Shan
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Minglong Tang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Quan Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Ye Song
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, Jilin, China
| | - Feng Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| |
Collapse
|
5
|
Zhao H, He X, Lv Y, Xu Y, Yi S, Li J, Li X. Thermal aggregation behavior of silver carp myofibrillar protein at low salt content: Effect of oat β-glucan combined with ultrasound-assisted heating. Food Chem 2024; 455:139903. [PMID: 38824733 DOI: 10.1016/j.foodchem.2024.139903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The effects of oat β-glucan (OG) combined with ultrasound-assisted treatment on thermal aggregation behavior of silver carp myofibrillar protein (MP) under low salt concentration were investigated. The particle size and turbidity of MP were increased to higher levels by OG participation or ultrasound treatment during the two-stage heating. Both OG and ultrasonic treatment promoted the unfolding of MP structure, evidenced by the gradual decrease of α-helix content and fluorescence intensity, as well as the increase of β-sheet content, surface hydrophobicity and sulfhydryl content. Compared to solely OG or ultrasonic treatment, the combination of OG and ultrasound further promoted the unfolding of MP and more sulfhydryl groups were exposed in the pre-heating stage, which was conducive to strengthen the chemical forces between MP molecules. Additionally, AFM analysis revealed that the apparent morphology of the OG combined with ultrasonic treated group exhibited a smoother surface and a more uniform distribution of aggregates.
Collapse
Affiliation(s)
- Honglei Zhao
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Xueli He
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Yanan Lv
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Yongxia Xu
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| |
Collapse
|
6
|
Liang X, Zhao Z, Zhang J, Kong B, Li X, Cao C, Zhang H, Liu Q, Shen L. Effect of microwave vacuum drying time on the quality profiles, microstructures and in vitro digestibility of pork chip snacks. Meat Sci 2024; 216:109555. [PMID: 38850886 DOI: 10.1016/j.meatsci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
In present study, the quality profiles, microstructures and in vitro digestibility of pork chip snacks (PCS) prepared by microwave vacuum drying (MVD) under different drying times (20, 21, 22, 23, and 24 min) were investigated. The results revealed significant decreases in the moisture content and L*-value of PCS, while the protein/ash contents, a*-value, and b*-value of PCS markedly increased with prolonged MVD time (P < 0.05). Additionally, as MVD time extended from 20 to 24 min, the textural characteristics of PCS, particularly brittleness and crunchiness, initially increased and then gradually decreased (P < 0.05). Scanning electron microscopy (SEM) images showed that a moderate MVD time (22 min) resulted in the formation of larger pores in PCS, enhancing brittleness and crunchiness. However, excessive MVD time (24 min) led to the melting of these pores, subsequently reducing the brittleness and crunchiness of PCS. Furthermore, in vitro protein digestibility of PCS gradually decreased with increasing MVD time, primarily attributed to increased protein aggregation, as indicated by changes in sulfhydryl contents. In summary, our findings highlight that PCS subjected to 22 min of MVD exhibited the highest overall acceptability. This study provides a novel strategy for the application of MVD in the processing of meat snacks.
Collapse
Affiliation(s)
- Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Liuyang Shen
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Xiong Z, Liu J, Tian Y, Wang Z, Wang X, Shi T, Jin W, Yuan L, Gao R. Structural and aggregation changes of silver carp myosin induced with alcohols: Effects of ethanol, 1,2-propanediol, and glycerol. Food Chem 2024; 452:139542. [PMID: 38728898 DOI: 10.1016/j.foodchem.2024.139542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
This study investigated the effects of ethanol, 1,2-propanediol, and glycerol on the structure and aggregation behavior of silver carp (Hypophthalmichthys molitrix) myosin. All alcohols induced extensive alteration in the tertiary structure of myosin. Both ethanol and 1,2-propanediol further promoted an increase in the content of β-sheets in myosin and induced myosin aggregation. While glycerol had almost no impact on the secondary structure of myosin. Molecular dynamics simulations revealed that increasing the concentration of ethanol and 1,2-propanediol affected the overall structural changes in the myosin heavy chain (MHC), while glycerol exerted a more pronounced effect on the MHC tail when compared to the MHC head. Disruption of the hydration layers induced by ethanol and 1,2-propanediol contributed to local structural changes in myosin. Glycerol at a concentration of 20% induced the formation of a larger hydration layer around the MHC tail, which facilitated the stabilization of the protein structure.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jiaxin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ying Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Zhiyu Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinyue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
8
|
Mo Y, Zhang X, Zhang L, Guo X, Lin Y, Ren J, Ding Y. Cryoprotective effects and mechanisms of soybean oligosaccharides on the grass carp (Ctenopharyngodon idellus) surimi during frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6518-6530. [PMID: 38517154 DOI: 10.1002/jsfa.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Conventional cryoprotectant mixtures (sucrose and sorbitol) impart excessive sweetness and calories to surimi. Therefore, there is a need to explore alternative cryoprotectants with low sweetness and low-calorie content. The cryoprotective effects and possible mechanisms of soybean oligosaccharides (SBOS) on the frozen stability of grass carp (Ctenopharyngodon idellus) surimi were investigated during 120 days of frozen storage in a comparison with commercial cryoprotectants (4% sucrose and 4% sorbitol, w/w). RESULTS SBOS at 6-8% (w/w) and commercial cryoprotectants could restrain water mobility and reduce thawing loss of frozen surimi by increasing non-freezable water content. SBOS could maintain the structural stability of proteins by preventing sulfhydryl groups from being rapidly oxidized to disulfide bonds, retarding the reduction of the solubility, Ca2+-ATPase activity and α-helix content of myofibrillar proteins (MP), as well as hindering the increasing surface hydrophobicity of MP of surimi during 120 days of frozen storage. The introduction of SBOS increased the gel strength and water-holding capacity of frozen-stored surimi. Compared with commercial cryoprotectants, 8% SBOS was more effective in stabilizing protein structure, whereas it was slightly less effective with respect to ice-forming inhibition. CONCLUSION The results obtained in the present study suggest that 8% SBOS could be potentially developed as a new cryoprotectant for surimi as a result of its ice-forming inhibition abilities and protein structure stability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yijie Mo
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Xia Zhang
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Lingzhi Zhang
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Xiao Guo
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yanxin Lin
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Jing Ren
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yuqin Ding
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
9
|
Tan J, Cao H, Wang X, Li S, Song H, Huang K, Zhang Y, Lu J, Guan X. Insight into the mechanism of the aggregation behavior of wheat protein modulated by l-lysine under microwave irradiation. J Food Sci 2024; 89:4298-4311. [PMID: 38957101 DOI: 10.1111/1750-3841.17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
This study explored the mechanism of l-lysine intervention in wheat gluten protein (WG) gel formation under a microwave (MW) field. The results showed that the MW treatment had higher ζ-potential values at the same heating rate. After adding l-lysine, the solution conductivity and dielectric loss were significantly increased. Moreover, the WG gel strength enhanced 4.40% under the MW treatment. The Fourier spectra showed that the α-helix content was decreased 13.78% with the addition of lysine. The ultraviolet absorption spectra and fluorescence spectra indicated that MW irradiation impacted the interactions between WG molecules more effectively than the water bath heating, promoting the denaturation and unfolding of the protein structure. In addition, scanning electron microscopy analysis showed that the incorporation of lysine promoted an ordered network structure formation of the protein, which enhanced the gel properties. This indicated that the zwitterion of l-lysine played a regulatory role in the aggregation of proteins in the MW field.
Collapse
Affiliation(s)
- Jing Tan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Jun Lu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
10
|
Xie D, Tang Y, Dong G. Various factors affecting the gel properties of surimi: A review. J Texture Stud 2024; 55:e12847. [PMID: 38924099 DOI: 10.1111/jtxs.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
As an important aquatic prepared food, surimi products are favored by consumers due to their unique viscoelastic properties and high nutritional value. Gel properties are the main indicators to measure the quality of surimi products. The gelation of surimi mainly involves intramolecular (conformational change) and intermolecular (chemical force) changes. Factors such as processing treatments, raw fish species and exogenous additives affect surimi protein structure, chemical forces and endogenous enzyme activities, which further affect the gel properties of surimi products. This review focuses on the mechanism of surimi heat-induced gel, mainly including protein chain expansion and aggregation through various chemical forces to form a three-dimensional network structure. In addition, the mechanism and application of different factors on the gel properties of surimi were also discussed, providing a reference for the selection of fish species, the control of heating conditions in the gel process of surimi products, the selection of additives and other measures to improve the gel performance.
Collapse
Affiliation(s)
- Dongfei Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Shenzhen Kenuo Medical Laboratory, Shenzhen, China
| | - Gua Dong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Gawat M, Boland M, Chen J, Singh J, Kaur L. Effects of microwave processing in comparison to sous vide cooking on meat quality, protein structural changes, and in vitro digestibility. Food Chem 2024; 434:137442. [PMID: 37713757 DOI: 10.1016/j.foodchem.2023.137442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
This study investigated the effect of industrial microwave (MW) processing, and sous vide (SV) on goat and lamb biceps femoris, where samples were cooked to the same tenderness. The cooked meat quality and ultrastructure were analyzed along with determining the protein surface hydrophobicity, particle size distribution, secondary structure, and protein digestibility. MW-processing resulted in higher cooking loss and more ultrastructural damage than SV and also induced higher myofibrillar protein surface hydrophobicity. Both processes caused a significant increase (p < 0.05) in the β-sheet and an increase in the random coils with a reduction (p < 0.05) in α-helix and β-turns. Both processes led to different protein hydrolysis patterns (observed through SDS-PAGE), but overall free amino N release after digestion was not significantly different among them. The results suggest that MW and SV modify meat protein structure differently, but with the same meat tenderness level, these processes can lead to similar overall protein digestibility.
Collapse
Affiliation(s)
- Mariero Gawat
- School of Food and Advanced Technology, Massey University, 4442 Palmerston North, New Zealand; Riddet Institute, Massey University, 4442 Palmerston North, New Zealand
| | - Mike Boland
- Riddet Institute, Massey University, 4442 Palmerston North, New Zealand
| | - Jim Chen
- School of Food and Advanced Technology, Massey University, 4442 Palmerston North, New Zealand
| | - Jaspreet Singh
- School of Food and Advanced Technology, Massey University, 4442 Palmerston North, New Zealand; Riddet Institute, Massey University, 4442 Palmerston North, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, 4442 Palmerston North, New Zealand; Riddet Institute, Massey University, 4442 Palmerston North, New Zealand.
| |
Collapse
|
12
|
Chen H, Zou Y, Zhou A, Liu X, Benjakul S. Elucidating the molecular mechanism of water migration in myosin gels of Nemipterus virgatus during low pressure coupled with heat treatment. Int J Biol Macromol 2023; 253:126815. [PMID: 37690646 DOI: 10.1016/j.ijbiomac.2023.126815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The relationship between myosin denaturation, aggregation and water migration in Nemipterus virgatus myosin gels with different treatment processes under optimal low pressure coupled with heat treatment was investigated to clarify the molecular mechanism of water migration. With the different treatment processes, the proportion of bound water of the myosin gels increased significantly (P < 0.05). Denaturation of myosin S1 sub-fragments and α-helical unfolding during different treatment processes led to an increase in β-sheets content. These promote increased exposure of Try residues and hydrophobic groups of myosin, formation of clathrate hydrates, and reduced mobility of bound water. Furthermore, hydrophobic interactions and disulfide bonds caused the head-head and head-hinge to coalesce into a 3D honeycomb network with greater fractal dimension, less lacunarity, smaller water hole diameter and more water holes. This increased the capillary pressure experienced by the bound water, causing immobile water to migrate towards the bound water. The present study may be necessary to improve the mechanism of water migration in protein gel systems and to promote the industrial application of high pressure processing technology in surimi-based foods.
Collapse
Affiliation(s)
- Haiqiang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China
| | - Yiqian Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Aimei Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojuan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
13
|
Wang T, Han D, Zhao L, Huang F, Yang P, Zhang C. Binding of Selected Aroma Compounds to Myofibrillar Protein, Sarcoplasmic Protein, and Collagen during Thermal Treatment: Role of Conformational Changes and Degradation of Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17860-17873. [PMID: 37883668 DOI: 10.1021/acs.jafc.3c02618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
To investigate the effects of conformational changes and thermal degradation of myofibrillar protein (MP), sarcoplasmic protein (SP), and collagen (CO) on the binding ability for aroma compounds during heating. Using SDS-PAGE, HPLC, and LC-MS/MS, a consistent rise in the total concentration of peptides and free amino acids formed by the thermal degradation of proteins was observed. The surface hydrophobicity, total sulfhydryl content, particle size, and secondary structure content of proteins changed significantly over time. Furthermore, the aroma binding ability of proteins was determined by gas chromatography-mass spectrometry. The results revealed an increase in binding ability during 5 or 10 min of heating due to protein unfolding and the accumulation of degradation products. However, the binding ability decreased due to protein aggregation with prolonged heating. Notably, all proteins exhibited strong affinity toward (E)-2-octenal, (E,E)-2,4-decadienal, 2-methyl-3-furanthiol, and dimethyl trisulfide. The binding ability of MP and SP was similar but differed significantly from that of CO, which had lower binding ability for hexanal, (E)-2-octenal, (E,E)-2,4-decadienal, and dimethyl trisulfide compared to MP and SP.
Collapse
Affiliation(s)
- Tianze Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Laiyu Zhao
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Huang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Yihai Kitchen (Tianjing) Investment Co., Ltd., Tianjin 300461, China
| |
Collapse
|
14
|
Zhang L, Zhang J, Wen P, Xu J, Xu H, Cui G, Wang J. Effect of High-Intensity Ultrasound Pretreatment on the Properties of the Transglutaminase (TGase)-Induced β-Conglycinin (7S) Gel. Foods 2023; 12:foods12102037. [PMID: 37238854 DOI: 10.3390/foods12102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we investigated the effects of different high-intensity ultrasound (HIU) pretreatment times (0-60 min) on the structure of β-conglycinin (7S) and the structural and functional properties of 7S gels induced by transglutaminase (TGase). Analysis of 7S conformation revealed that 30 min HIU pretreatment significantly induced the unfolding of the 7S structure, with the smallest particle size (97.59 nm), the highest surface hydrophobicity (51.42), and the lowering and raising of the content of the α-helix and β-sheet, respectively. Gel solubility showed that HIU facilitated the formation of ε-(γ-glutamyl)lysine isopeptide bonds, which maintain the stability and integrity of the gel network. The SEM revealed that the three-dimensional network structure of the gel at 30 min exhibited filamentous and homogeneous properties. Among them, the gel strength and water-holding capacity were approximately 1.54 and 1.23 times higher than those of the untreated 7S gels, respectively. The 7S gel obtained the highest thermal denaturation temperature (89.39 °C), G', and G″, and the lowest tan δ. Correlation analysis demonstrated that the gel functional properties were negatively correlated with particle size and the α-helix, while positively with Ho and β-sheet. By contrast, gels without sonication or with excessive pretreatment showed a large pore size and inhomogeneous gel network, and poor properties. These results will provide a theoretical basis for the optimization of HIU pretreatment conditions during TGase-induced 7S gel formation, to improve gelling properties.
Collapse
Affiliation(s)
- Lan Zhang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Jixin Zhang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Pingping Wen
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Jingguo Xu
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Huiqing Xu
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Guiyou Cui
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Jun Wang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
15
|
Fang T, Han M, Wang Y, Xiang X, Chen L, Yang H, Kang Z, Huang F, Fan X, Han M, Xu X, Zhou G, Ullah N, Feng X. Effects of heating rates on the self-assembly behavior and gelling properties of beef myosin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2473-2482. [PMID: 36658470 DOI: 10.1002/jsfa.12456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Myosin is the most important component of myofibrillar protein, with excellent gelling properties. To date, heating treatment remains the mainstream method for forming gel in meat products, and it has the most extensive application in the field of meat industry. However, at present, there are few reports on the effects of heating rates on myosin self-assembly and aggregation behavior during heating treatment. RESULTS The present study aimed to investigate the effects of different heating rates (1, 2, 3 and 5 °C min-1 ) on the self-assembly behavior, physicochemical, structural and gelling properties of myosin. At the lowest heating rate of 1 °C min-1 , the myosin gel had a dense microstructure, the highest elastic modulus (G') and water holding capacity compared to higher heating rates (2, 3 and 5 °C min-1 ). At higher temperatures (40, 45 °C), the surface hydrophobicity, turbidity, particle size distribution and self-assembly behavior of myosin in pre-gelling solutions showed that myosin had sufficient time to denature, underwent full structure unfolding before aggregation at the heating rate of 1°C min-1 , and formed regular and homogeneous spherical aggregates. Therefore, the myosin gel also had a better three-dimensional network. CONCLUSION The heating rates had an important effect on the quality of myosin gels, and had theoretical implications for improving the quality of meat gel products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian Fang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xi'an, China
| | - Mengfan Han
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xi'an, China
| | - Yue Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xi'an, China
| | - Xiaomei Xiang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xi'an, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xi'an, China
| | - Huijuan Yang
- College of Standardization, China Jiliang University, Zhejiang, China
| | - Zhuangli Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xi'an, China
| | - Minyi Han
- Lab of Meat Processing and Quality Control of EDU, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing, China
| | - Niamat Ullah
- Department of Human Nutrition, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xi'an, China
| |
Collapse
|
16
|
Zhao B, Zhang Y, Sun B, Wang S, Zang M, Wang H, Wu Q. Insights into the trace Sr 2+ impact on the gel properties and spatial structure of mutton myofibrillar proteins. Food Res Int 2023; 164:112298. [PMID: 36737899 DOI: 10.1016/j.foodres.2022.112298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Myofibrillar proteins (MPs) and the quality of meat strongly depend on the properties of MP gels, which in turn depend on several parameters that include the thermal history and the concentration of metal ions. Strontium element (Sr) widely exists in mineral water and is found as strontium ions (Sr2+), which is an essential trace element for humans. This study investigated the effects of trace Sr2+ on the structure-function relationship of mutton MPs, as well as their gels with water. Trace concentrations of Sr2+ were found to significantly alter the conformation of the MPs. An increase in Sr2+ concentration was associated with a reduction in the tightness and strength of the gel and a significant increase in its water-holding capacity As compared to the untreated control sample, the solubility, particle size, and the magnitude of the Zeta potential of the gels increased by 13.03 %, 12.62 %, and 19.73 %, respectively, whereas the water retention capacity and the gel strength increased by 23.13 % and 21.90 %, at a Sr2+ concentration of 5.0 mg/L. Molecular docking predicted an increase in ionic bonds and disulfide bonds because Sr2+ had a strong interaction with hydrophilic amino acids and acidic amino acids. The analysis of molecular forces further verified the significant facilitation of interactions between MP molecules with the induction of Sr2+. As compare to the untreated control group, the ionic and disulfide bonds increased by 141.17 % and 66.94 %, when treated with 5.0 mg/L Sr2+. These changes were likely due to the enhancement of protein-protein interactions caused by Sr2+, which could induce MP molecules to properly unfold and aggregate in gel formation. The results could provide a basis for improving the texture and the quality of meat and meat products.
Collapse
Affiliation(s)
- Bing Zhao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100068, China; China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100068, China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100068, China.
| | - Shouwei Wang
- China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China.
| | - Mingwu Zang
- China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China
| | - Hui Wang
- China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China
| | - Qianrong Wu
- China Meat Research Centre, Beijing 100068, China; Beijing Academy of Food Sciences, Beijing 100068, China
| |
Collapse
|
17
|
Zhang T, Wang J, Feng J, Liu Y, Suo R, Ma Q, Sun J. Effects of ultrasonic-microwave combination treatment on the physicochemical, structure and gel properties of myofibrillar protein in Penaeus vannamei (Litopenaeus vannamei) surimi. ULTRASONICS SONOCHEMISTRY 2022; 90:106218. [PMID: 36356497 PMCID: PMC9650070 DOI: 10.1016/j.ultsonch.2022.106218] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to evaluate the effects of single ultrasound (360 W, 20 min), single microwave (10 W/g, 120 s) and ultrasonic-microwave combination treatment on shrimp surimi gel properties. The structure and physicochemical properties of myofibrillar protein (MP) were also determined. Low-field nuclear magnetic resonance showed that the fluidity of water molecules and the moisture content decreased, the stability and water holding capacity (WHC) increased after single ultrasound, single microwave and ultrasonic-microwave combination treatment. Compared with the traditional water bath treatment, ultrasound and microwave treatment reduced the total sulfhydryl content and promoted the formation of intermolecular disulfide bonds and hydrophobic interactions, which improved the compactness of the network structure of shrimp surimi gel. Moreover, Fourier transform infrared spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that these treatments not only inhibited the degradation of MP, but also decreased the α-helix content and increased the β-sheet content. The three treatments also significantly reduced the particle size and decreased the solubility of MP. Overall, the effect of ultrasonic-microwave combination treatment was superior to that of either single treatment.
Collapse
Affiliation(s)
- Tong Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jiaqi Feng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| |
Collapse
|
18
|
Liu X, Suo R, Wang H, Liu Y, Ma Q, Mu J, Wang J, Wang W. Differential proteomic analysis using a tandem-mass-tag-based strategy to identify proteins associated with the quality indicators of Penaeus vannamei after high-pressure treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
20
|
Deng X, Huang H, Huang S, Yang M, Wu J, Ci Z, He Y, Wu Z, Han L, Zhang D. Insight into the incredible effects of microwave heating: Driving changes in the structure, properties and functions of macromolecular nutrients in novel food. Front Nutr 2022; 9:941527. [PMID: 36313079 PMCID: PMC9607893 DOI: 10.3389/fnut.2022.941527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Microwave heating technology performs the characteristics of fast heating, high efficiency, green energy saving and easy control, which makes it deeply penetrate into the food industry and home cooking. It has the potential to alter the appearance and flavor of food, enhance nutrient absorption, and speed up the transformation of active components, which provides an opportunity for the development of innovation foods. However, the change of food driven by microwave heating are very complex, which often occurs beyond people's cognition and blocks the development of new food. It is thus necessary to explore the transformation mechanism and influence factors from the perspectives of microwave technology and food nutrient diversity. This manuscript focuses on the nutritional macromolecules in food, such as starch, lipid and protein, and systematically analyzes the change rule of structure, properties and function under microwave heating. Then, the flavor, health benefits, potential safety risks and bidirectional allergenicity associated with microwave heating are fully discussed. In addition, the development of new functional foods for health needs and future market based on microwave technology is also prospected. It aims to break the scientific fog of microwave technology and provide theoretical support for food science to understand the change law, control the change process and use the change results.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jing Wu
- Xinqi Microwave Co., Ltd., Guiyang, China
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China,Zhenfeng Wu
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Li Han
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Dingkun Zhang
| |
Collapse
|
21
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
22
|
Food protein aggregation and its application. Food Res Int 2022; 160:111725. [DOI: 10.1016/j.foodres.2022.111725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
|
23
|
Jiao X, Chen W, Fan D. Behind the Veil: A multidisciplinary discussion on protein–microwave interactions. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kuang Z, Luginsland J, Thomas RJ, Dennis PB, Kelley-Loughnane N, Roach WP, Naik RR. Molecular dynamics simulations explore effects of electric field orientations on spike proteins of SARS-CoV-2 virions. Sci Rep 2022; 12:12986. [PMID: 35906467 PMCID: PMC9334739 DOI: 10.1038/s41598-022-17009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its current worldwide spread have caused a pandemic of acute respiratory disease COVID-19. The virus can result in mild to severe, and even to fatal respiratory illness in humans, threatening human health and public safety. The spike (S) protein on the surface of viral membrane is responsible for viral entry into host cells. The discovery of methods to inactivate the entry of SARS-CoV-2 through disruption of the S protein binding to its cognate receptor on the host cell is an active research area. To explore other prevention strategies against the quick spread of the virus and its mutants, non-equilibrium molecular dynamics simulations have been employed to explore the possibility of manipulating the structure–activity of the SARS-CoV-2 spike glycoprotein by applying electric fields (EFs) in both the protein axial directions and in the direction perpendicular to the protein axis. We have found out the application of EFs perpendicular to the protein axis is most effective in denaturing the HR2 domain which plays critical role in viral-host membrane fusion. This finding suggests that varying irradiation angles may be an important consideration in developing EF based non-invasive technologies to inactivate the virus.
Collapse
Affiliation(s)
- Zhifeng Kuang
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Dayton, OH, 45433, USA.
| | - John Luginsland
- Work Performed With Confluent Sciences, LLC, Albuquerque, NM, 87111, USA
| | - Robert J Thomas
- 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Patrick B Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Dayton, OH, 45433, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Dayton, OH, 45433, USA
| | - William P Roach
- Air Force Office of Scientific Research, Arlington, VA, 22203, USA
| | - Rajesh R Naik
- 711Th Human Performance Wing, Air Force Research Laboratory, WPAFB, Dayton, OH, 45433, USA.
| |
Collapse
|
25
|
Zhou A, Chen H, Zou Y, Liu X, Benjakul S. Insight into the mechanism of optimal low-level pressure coupled with heat treatment to improve the gel properties of Nemipterus virgatus surimi combined with water migration. Food Res Int 2022; 157:111230. [DOI: 10.1016/j.foodres.2022.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
|
26
|
Li S, Li M, Cao H, Guan X, Zhang Y, Huang K, Zhang Y. The intervening effect of l-Lysine on the gel properties of wheat gluten under microwave irradiation. Food Chem X 2022; 14:100299. [PMID: 35399583 PMCID: PMC8991317 DOI: 10.1016/j.fochx.2022.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
To improve the quality of wheat gluten (WG) gels, the effect of l-Lysine on gelatin formation of WG under microwave (MW) irradiation was studied. The strength of WG gels treated by MW heating increased significantly (P < 0.05) in the alternating electromagnetic fields with zwitterionic l-Lysine. l-Lysine enhanced the surface hydrophobicity of WG under MW irradiation indicating that the dielectric buffering of l-Lysine changed the conformation of WG. The second structure of WG by Fourier transformed infrared spectroscopy showed that the α-helix content of WG decreased, while the β-sheet content. Furthermore, compared to the non-l-Lysine addition group, the ultraviolet absorption and fluorescence intensity of the WG increased. Scanning electron microscopy presented denser porous network microstructure of WG gels by MW treatment with adding l-Lysine. These results elucidate the regulation effect of l-Lysine on WG gelation in the MW field.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Mengyao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, PR China
| |
Collapse
|
27
|
Xu Y, Lv Y, Yin Y, Zhao H, Yi S, Li X, Li J. Impacts of yeast β‐glucan on thermal aggregation and flavour adsorption capacity of Spanish mackerel myosin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Yanan Lv
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Yiming Yin
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Honglei Zhao
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Shumin Yi
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| |
Collapse
|
28
|
Taha A, Casanova F, Šimonis P, Stankevič V, Gomaa MAE, Stirkė A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022; 11:foods11111556. [PMID: 35681305 PMCID: PMC9180040 DOI: 10.3390/foods11111556] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins' structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions.
Collapse
Affiliation(s)
- Ahmed Taha
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (F.C.); (A.S.)
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Voitech Stankevič
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
- Correspondence: (F.C.); (A.S.)
| |
Collapse
|
29
|
Cong H, Lyu H, Liang W, Zhang Z, Chen X. Changes in Myosin from Silver Carp (Hypophthalmichthys molitrix) under Microwave-Assisted Water Bath Heating on a Multiscale. Foods 2022; 11:foods11081071. [PMID: 35454658 PMCID: PMC9030768 DOI: 10.3390/foods11081071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 01/23/2023] Open
Abstract
To further prove the advantages of microwave-assisted water bath heating (MWH) in low-value fish processing, the effects of different heating methods (two heating stage method, high temperature section respectively using MWH1, MWH2, MWH3, WH—water heating, MH—microwave heating) on secondary and tertiary myosin structures, SDS-PAGE, surface morphology, scanning electron microscopy (SEM), and particle size distribution were compared and analyzed. The findings revealed that MH and MWH aided in the production of gel formations by promoting myosin aggregation. Myosin from silver carps demonstrated enhanced sulfhydryl group and surface hydrophobicity after MWH treatment, as well as a dense network structure. The distribution of micropores becomes more uniform when the microwave time is increased. Actually, the total effect of microwave time on myosin is not substantially different. The correlation between particle size distribution and protein aggregation was also studied, in terms of time savings, the MWH of short microwave action is preferable since it not only promotes myosin aggregation but also avoids the drawbacks of a rapid warming rate. These discoveries give a theoretical foundation for understanding silver carp myosin under microwave modification, which is critical in the food industry.
Collapse
Affiliation(s)
- Haihua Cong
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (H.C.); (X.C.); Tel.: +86-(0)411-8476-2528 (H.C.); +86-(0)512-6588-2767 (X.C.)
| | - He Lyu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Wenwen Liang
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Huilly Pharmaceuticals Ltd., Suzhou 215000, China
| | - Ziwei Zhang
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Chen
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China
- Correspondence: (H.C.); (X.C.); Tel.: +86-(0)411-8476-2528 (H.C.); +86-(0)512-6588-2767 (X.C.)
| |
Collapse
|
30
|
Walayat N, Liu J, Nawaz A, Aadil RM, López-Pedrouso M, Lorenzo JM. Role of Food Hydrocolloids as Antioxidants along with Modern Processing Techniques on the Surimi Protein Gel Textural Properties, Developments, Limitation and Future Perspectives. Antioxidants (Basel) 2022; 11:486. [PMID: 35326135 PMCID: PMC8944868 DOI: 10.3390/antiox11030486] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022] Open
Abstract
Texture is an important parameter in determining the quality characteristics and consumer acceptability of seafood and fish protein-based products. The addition of food-based additives as antioxidants (monosaccharides, oilgosaccharides, polysaccharides and protein hydrolysates) in surimi and other seafood products has become a promising trend at an industrial scale. Improvement in gelling, textural and structural attributes of surimi gel could be attained by inhibiting the oxidative changes, protein denaturation and aggregation with these additives along with new emerging processing techniques. Moreover, the intermolecular crosslinking of surimi gel can be improved with the addition of different food hydrocolloid-based antioxidants in combination with modern processing techniques. The high-pressure processing (HPP) technique with polysaccharides can develop surimi gel with better physicochemical, antioxidative, textural attributes and increase the gel matrix than conventional processing methods. The increase in protein oxidation, denaturation, decline in water holding capacity, gel strength and viscoelastic properties of surimi gel can be substantially improved by microwave (MW) processing. The MW, ultrasonication and ultraviolet (UV) treatments can significantly increase the textural properties (hardness, gumminess and cohesiveness) and improve the antioxidative properties of surimi gel produced by different additives. This study will review potential opportunities and primary areas of future exploration for high-quality surimi gel products. Moreover, it also focuses on the influence of different antioxidants as additives and some new production strategies, such as HPP, ultrasonication, UV and MW and ohmic processing. The effects of additives in combination with different modern processing technologies on surimi gel texture are also compared.
Collapse
Affiliation(s)
- Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agricultural, Faisalabad 38000, Pakistan;
| | - María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, A Coruna, Spain
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Vinas, Ourense, Spain;
- Facultade de Ciencias, Universidade de Vigo, 32004 Rua Doutor Temes Fernandez, Ourense, Spain
| |
Collapse
|
31
|
Hu G, Ma M, Batool Z, Sheng L, Cai Z, Liu Y, Jin Y. Gel properties of heat-induced transparent hydrogels from ovalbumin by acylation modifications. Food Chem 2022; 369:130912. [PMID: 34479008 DOI: 10.1016/j.foodchem.2021.130912] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
In this paper, the effects of acylation modification on the gel behavior of ovalbumin (OVA) under heating induction have been investigated. From the obtained results, the acylated OVA hydrogels exhibited superior gelation properties than the native OVA hydrogels (NOVA-G) in terms of light transmission, gel hardness, resilience and water holding capacity. SEM revealed acylation modifications effectively promoted the formation of uniform and dense network structure of OVA hydrogels. The main intermolecular forces of the acylation-modified OVA hydrogels were hydrophobic interactions and hydrogen bonding. FTIR showed that acylation modifications caused 26.2% decrease in α-helix and 59.2% increase in β-sheet content compared to NOVA-G. Furthermore, in-vitro release experiments showed that the release rate of curcumin from acylated OVA hydrogels was significantly delayed. Moreover, the above results have shown that acylation modifications can be considered as an effective method to improve the gelation as well as drug release properties of protein hydrogels.
Collapse
Affiliation(s)
- Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Zahra Batool
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuanyuan Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
32
|
Li Q, Yi S, Wang W, Xu Y, Mi H, Li X, Li J. Different Thermal Treatment Methods and TGase Addition Affect Gel Quality and Flavour Characteristics of Decapterus maruadsi Surimi Products. Foods 2021; 11:66. [PMID: 35010193 PMCID: PMC8750094 DOI: 10.3390/foods11010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Decapterus maruadsi surimi products were prepared using the thermal treatment methods of boiling (BOI), steaming (STE), back-pressure sterilization (BAC), roasting (ROA), microwaving (MIC), and frying (FRI), respectively. The effect of glutamine transaminase (TGase) addition was also investigated. The moisture distribution, water retention, microstructure, color, fracture constant, protein secondary structure, chemical forces, and flavor components of each sample were determined. The differences in gel and favor characteristics between D. maruadsi surimi products caused by thermal treatment methods were analyzed. The results showed that BOI, STE, and FRI had the largest protein secondary structure transitions and formed dense gel structures with high fracture constant. The kinds of flavour components in BOI and STE were completer and more balanced. The high temperature treatment available at BAC and FRI (110 °C and 150 °C) accelerated the chemical reaction involved in flavor formation, which highlighted the flavor profiles dominated by furans or esters. The open thermal treatment environments of ROA, MIC, and FRI gave them a low moisture content and water loss. This allowed the MIC to underheat during the heat treatment, which formed a loose gel structure with a low fracture coefficient. The addition of TGase enhances the gel quality, most noticeably in the ROA. The aldehyde content of the FRI was enhanced in the flavor characteristic. The effect of adding TGase to enhance the quality of the gel is most evident in ROA. It also substantially increased the content of aldehydes in FRI. In conclusion, different heat treatments could change the gel characteristics of surimi products and provide different flavor profiles. The gel quality of BOI and STE was consistently better in all aspects.
Collapse
Affiliation(s)
- Qiang Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Wei Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Yongxia Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Hongbo Mi
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (Q.L.); (W.W.); (Y.X.); (H.M.); (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- National R&D Branch Center of Surimi and Surimi Products Processing, National and Local United Engineering Lab of Marine Functional Food, Jinzhou 121013, China
| |
Collapse
|
33
|
Yuan JF, Hou ZC, Wang DH, Qiu ZJ, Gong MG, Sun JR. Microwave irradiation: Effect on activities and properties of polyphenol oxidase in grape maceration stage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Tan M, Ding Z, Mei J, Xie J. Effect of cellobiose on the myofibrillar protein denaturation induced by pH changes during freeze-thaw cycles. Food Chem 2021; 373:131511. [PMID: 34763934 DOI: 10.1016/j.foodchem.2021.131511] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 11/04/2022]
Abstract
The aim of this study was to investigate myofibrillar protein (MFP) denaturation induced by pH changes during freeze-thaw (FT) cycles, and to propose an effective mitigation strategy. Owing to the selective crystallization of Na2HPO4·12H2O and the consequent pH change, a pH change of 3.32 units was observed when the MFP solution were frozen. The surface hydrophobicity, particle size and confocal laser scanning microscopy showed that the protein molecules gradually unfolded and formed larger protein aggregation as the number of FT cycles increases. Additionally, protein degradation, secondary and tertiary structure alterations suggested that the FT cycle could disrupt structural integrity. The addition of cellobiose could maximize the inhibition of pH changes (decrease of ∼0.62 unit), no Na2HPO4·12H2O crystallization was observed by X-ray diffraction. Cellobiose could minimize FT damage to myofibrillar protein, which was closest to the control. Thus, cellobiose can be used as a new and effective cryoprotectant.
Collapse
Affiliation(s)
- Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
35
|
Javed M, Munir S, Iqbal N, Xiong S, Liu Y. Influence of Rosmarinic Acid on Biochemical and Structural Properties of Silver Carp Myofibrillar Protein under MetHemoglobin Catalyzed Docosahexaenoic Acid Oxidative Stress. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1973635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Miral Javed
- College of Food Science and Technology, National R & D Branch Centre for Conventional Freshwater Fish Processing, Huazhong Agricultural University, Wuhan, P. R. China
| | - Sadia Munir
- College of Food Science and Technology, National R & D Branch Centre for Conventional Freshwater Fish Processing, Huazhong Agricultural University, Wuhan, P. R. China
| | - Nayyar Iqbal
- College of Food Science and Technology, National R & D Branch Centre for Conventional Freshwater Fish Processing, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology, National R & D Branch Centre for Conventional Freshwater Fish Processing, Huazhong Agricultural University, Wuhan, P. R. China
| | - Youming Liu
- College of Food Science and Technology, National R & D Branch Centre for Conventional Freshwater Fish Processing, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
36
|
Jiao X, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Redox Proteomic Analysis Reveals Microwave-Induced Oxidation Modifications of Myofibrillar Proteins from Silver Carp ( Hypophthalmichthys molitrix). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9706-9715. [PMID: 34342990 DOI: 10.1021/acs.jafc.1c03045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To provide an insight into the oxidation behavior of cysteines in myofibrillar proteins (MPs) during microwave heating (MW), a quantitative redox proteomic analysis based on the isobaric iodoacetyl tandem mass tag technology was applied in this study. MPs from silver carp muscles were subjected to MW and water bath heating (WB) with the same time-temperature profiles to eliminate the thermal differences caused by an uneven energy input. Altogether, 422 proteins were found to be differentially expressed after thermal treatments as compared to that with no heat treatment. However, MW triggered a larger number of proteins and cysteine sites for oxidation. Myosin heavy chain, myosin-binding protein C, nebulin, α-actinin-3-like, and titin were found to be highly susceptible to oxidation under microwave irradiation. Notably, MW caused such modifications at cysteine site 9 in the head of myosin, revealing the enhancement mechanism of MP gelation by excess cysteine cross-linking during microwave processing. Furthermore, Gene Ontology and functional enrichment analyses suggested that the two thermal treatments resulted in some differences in ion binding, muscle cell development, and protein-containing complex assembly. Overall, this study is the first to report the redox proteomic changes caused by MW and WB treatments, thus providing a further understanding of the microwave-induced oxidative modifications of MPs.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- Fujian Anjoy Food Share Co. Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Effect of deacetylated konjac glucomannan on heat-induced structural changes and flavor binding ability of fish myosin. Food Chem 2021; 365:130540. [PMID: 34256229 DOI: 10.1016/j.foodchem.2021.130540] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 11/20/2022]
Abstract
This work investigated the effects of deacetylated konjac glucomannan (DKGM) on heat-induced structural changes and flavor binding in bighead carp myosin. DKGM could cross-link with fish myosin to form a thermostable complex and improve the gel strength of myosin. The incorporation of DKGM increased the surface hydrophobicity and total sulfhydryl content of heat-induced myosin. Increasing DKGM concentrations resulted in a decrease in the absolute zeta potential and a continuous increase in particle size. DKGM addition significantly reduced the α-helical content of myosin with a concomitant increase in β-sheet, β-turn, and random coil content. The binding abilities of myosin to flavors were significantly enhanced by increasing amounts of DKGM, attributing to the accelerative unfolding of myosin secondary structures and the exposure of additional hydrophobic and thiol binding sites. Increased numbers of available hydroxyl groups after DKGM treatment could also cause an increase of flavor adsorption by hydrogen bonding.
Collapse
|
38
|
Du X, Zhao M, Pan N, Wang S, Xia X, Zhang D. Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (Cyprinus carpio) under the synergistic effects of pH and heating. Food Chem 2021; 362:130222. [PMID: 34090040 DOI: 10.1016/j.foodchem.2021.130222] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
The synergistic effect of pH and heating on the structure, aggregation behaviour and gel properties of myofibrillar protein (MP) in mirror carp (Cyprinus carpio) was evaluated. The surface hydrophobicity of the control at pH 5.0 (143.6 ± 0.3 μg) was significantly higher than that of other samples (P < 0.05). Under the same pH conditions, the decrease in total sulfhydryl content of all samples during the heating process demonstrated that covalent/non-covalent cross-linking occurred between proteins due to heat input. Moreover, the decrease in solubility and the increase in turbidity of all samples verified the fact of MP aggregation, and the changes in the elasticity index (EI) and macroscopic viscosity index (MVI) also indicated a decrease in MP fluidity upon heating treatment. Therefore, the aggregation of MP was affected by pH and heating, and the optimal three-dimensional network structure and gel properties could be formed at pH 6.0 and above 70 °C.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengna Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Songping Wang
- Kexin College, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
39
|
Han K, Feng X, Yang Y, Wei S, Tang X, Li S, Chen Y. Effects of camellia oil on the properties and molecular forces of myofibrillar protein gel induced by microwave heating. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Keying Han
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Sumeng Wei
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
- College of Food Science Northeast Agricultural University Harbin, Heilongjiang 150030 China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Shanshan Li
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Yumin Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| |
Collapse
|
40
|
Wang Q, Jiao X, Yan B, Meng L, Cao H, Huang J, Zhao J, Zhang H, Chen W, Fan D. Inhibitory effect of microwave heating on cathepsin l-induced degradation of myofibrillar protein gel. Food Chem 2021; 357:129745. [PMID: 33894571 DOI: 10.1016/j.foodchem.2021.129745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
This work was aimed to compare the effect of microwave (MW) heating on the cathepsin L (Cat L)-induced degradation of myofibrillar protein (MP) gels with that of water bath (WB) heating. First, Cat L from silver carp was purified and determined to be 45 kDa. The gel strength of the MW-heated MP gels were significantly higher than those of the WB-heated when Cat L was added (P < 0.05). The gel electrophoresis pattern and scanning electron microscopy analysis indicated that MW heating inhibited the Cat l-induced hydrolysis of MP gels. In addition, the number of sulfhydryl groups and surface hydrophobicity of MW-heated gels were lower than those of WB-heated gels when Cat L was added. These results indicated that MW heating could effectively weaken the degradation of Cat L on MP gels by manipulating disulfide bonds and hydrophobic amino acids, resulting in good gel properties and a compact protein network.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xidong Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linglu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongwei Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China; Fujian Anjoyfood Share Co. Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
41
|
Liu F, Huang H, Lin W, Li L, Wu Y, Yang S, Yang X, Wang Y. Effects of temperature on the denaturation and aggregation of (
Lateolabrax
japonicus
) myosin from sea bass surimi. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fangfang Liu
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
- College of Food Sciences & Technology Shanghai Ocean University Shanghai China
| | - Hui Huang
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
| | - Wanling Lin
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
- School of Life Science and Food Engineering Hanshan Normal University Chaozhou China
| | - Laihao Li
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
| | - Yanyan Wu
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
| | - Shaoling Yang
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
| | - Xianqing Yang
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
| | - Yueqi Wang
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China
| |
Collapse
|
42
|
Yang X, Han Z, Xia T, Xu Y, Wu Z. Monitoring the oxidation state evolution of unsaturated fatty acids in four microwave-treated edible oils by low-field nuclear magnetic resonance and 1H nuclear magnetic resonance. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Yang HJ, Wang HF, Tao F, Li WX, Cao GT, Yang YY, Xu XL, Zhou GH, Shen Q. Structural basis for high-pressure improvement in depolymerization of interfacial protein from RFRS meat batters in relation to their solubility. Food Res Int 2021; 139:109834. [PMID: 33509459 DOI: 10.1016/j.foodres.2020.109834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/30/2022]
Abstract
High-pressure processing (HPP) can modify the construction of interfacial proteins (IPs) to improve the properties of reduced-fat and reduced-salt (RFRS) meat batters. In this study, the relationship between the construction of IPs and their solubility at fat droplet/water interface in RFRS meat batters with HPP treatments was investigated. When 200 MPa for 2 min was applied, the IPs exhibited the highest solubility due to a high concentration of absorbed myosin with the content of random coil 65.62%, but the particle diameter was in reverse. The microscopy revealed the depolymerization of IPs occurred at low pressure, while macromolecular aggregates were produced as the cross-linking of IPs to some degree at pressure ≥ 200 MPa. This phenomenon was supported by the result of SDS-PAGE and the sulfhydryl of IPs. In conclusion, the HPP induced solubility alteration of IPs was achieved by modifying their construction through adjusting the secondary structures and regulating bond interactions.
Collapse
Affiliation(s)
- Hui-Juan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China; Synergetic Innovative Center of Food Safety and Nutrition, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hai-Feng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, PR China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China
| | - Wei-Xia Li
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China
| | - Guang-Tian Cao
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China
| | - Yun-Yun Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China
| | - Xing-Lian Xu
- Synergetic Innovative Center of Food Safety and Nutrition, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guang-Hong Zhou
- Synergetic Innovative Center of Food Safety and Nutrition, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, PR China.
| |
Collapse
|
44
|
Zhang M, Sun H, Liu Y, Wang Y, Piao C, Cai D, Wang Y, Liu J. Effect of pullulan concentration and pH on the interactions between whey protein concentrate and pullulan during gelation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:659-665. [PMID: 32696453 DOI: 10.1002/jsfa.10678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Whey protein concentrate (WPC)/pullulan (PUL) hydrogel is applied as a microencapsulation wall material to protect probiotics. However, the interactions between WPC and PUL during gelation have not been clarified. In the present study, the effects of PUL concentration and pH on the interactions between WPC and PUL during gelation were evaluated with respect to appearance, zeta-potential, sulfhydryl group amount, surface hydrophobicity and infrared spectroscopy measurements. The rheological properties of WPC/PUL gels were also determined. RESULTS The results obtained showed that a proper concentration (0.40 g mL-1 ) of PUL could improve the gel by enhancing the strength of hydrogen bonding, electrostatic interactions and exposure of hydrophobic groups, whereas too much PUL inhibited the formation of disulfide bonds. Furthermore, hydrophobic interactions, disulfide bonds and hydrogen bonds were destroyed in varying degrees under an alkaline environment. The rheological results also demonstrated a similar effect of PUL concentration and pH on the storage modulus (G') of WPC/PUL gels. CONCLUSION When the WPC/PUL gel was formed at PUL concentration of 0.40 g mL-1 and pH 7.0, the interaction between WPC and PUL could be enhanced, which is beneficial for the future application of WPC/PUL gels in the food industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minghao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yankai Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
45
|
Improved solubility and interface properties of pigskin gelatin by microwave irradiation. Int J Biol Macromol 2021; 171:1-9. [PMID: 33412193 DOI: 10.1016/j.ijbiomac.2020.12.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
In this study, the microwave irradiation as a green approach was applied to improve the properties (mainly solubility and interface properties) of pigskin gelatin. The results showed that the solubility of pigskin gelatin was improved obviously at room temperature (25 °C) due to the destruction of polymer subunits. Furthermore, the exposure of more hydrophobic groups in microwave-irradiated gelatin increased its hydrophobicity, consequently improving the amphiphilic property and the interfacial properties of gelatin. The results of interface behavior showed that the interfacial tension of microwave-irradiated gelatin was reduced obviously with the extension of irradiation time (0-30 min), which is more beneficial to adsorption of gelatin molecules at the interface, thus resulting in a significant increase of adsorption rate (AP) from 56.13% (0 min) to 91.87% (30 min). Correspondingly, the foaming and emulsifying properties of gelatin were also improved significantly (p < 0.05). This study would promote the development of food-grade foam and emulsion based on pigskin gelatin by adjusting solubility and interface properties.
Collapse
|
46
|
Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Wen Y, Xu Z, Liu Y, Corke H, Sui Z. Investigation of food microstructure and texture using atomic force microscopy: A review. Compr Rev Food Sci Food Saf 2020; 19:2357-2379. [PMID: 33336971 DOI: 10.1111/1541-4337.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
We review recent applications of atomic force microscopy (AFM) to characterize microstructural and textural properties of food materials. Based on interaction between probe and sample, AFM can image in three dimensions with nanoscale resolution especially in the vertical orientation. When the scanning probe is used as an indenter, mechanical features such as stiffness and elasticity can be analyzed. The linkage between structure and texture can thus be elucidated, providing the basis for many further future applications of AFM. Microstructure of simple systems such as polysaccharides, proteins, or lipids separately, as characterized by AFM, is discussed. Interaction of component mixtures gives rise to novel properties in complex food systems due to development of structure. AFM has been used to explore the morphological characteristics of such complexes and to investigate the effect of such characteristics on properties. Based on insights from such investigations, development of food products and manufacturing can be facilitated. Mechanical analysis is often carried out to evaluate the suitability of natural or artificial materials in food formulations. The textural properties of cellular tissues, food colloids, and biodegradable films can all be explored at nanometer scale, leading to the potential to connect texture to this fine structural level. More profound understanding of natural food materials will enable new classes of fabricated food products to be developed.
Collapse
Affiliation(s)
- Yadi Wen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Effects of radio frequency on physicochemical properties of powdered infant formula milk as compared with conventional thermal treatment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Food protein network formation and gelation induced by conductive or microwave heating: A focus on hen egg white. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Yi S, Ye B, Li J, Wang W, Li X. Physicochemical properties, protein conformation, and aggregate morphology of heated myosin from
Hypophthalmichthys molitrix
and
Nemipterus virgatus
mixtures. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shumin Yi
- College of Food Science and Technology Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou Liaoning China
| | - Beibei Ye
- College of Food Science and Technology Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou Liaoning China
| | - Jianrong Li
- College of Food Science and Technology Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou Liaoning China
| | - Wei Wang
- College of Food Science and Technology Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou Liaoning China
| | - Xuepeng Li
- College of Food Science and Technology Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou Liaoning China
| |
Collapse
|