1
|
Li X, You Y, Wu L, Yang J, Chen H, Zheng J, Zhang F. Rheological properties, multiscale structure, and in vitro digestibility of a maize starch-konjac glucomannan-bamboo leaf flavonoid complex modified by dynamic high-pressure microfluidization. Food Chem 2024; 457:139966. [PMID: 38908253 DOI: 10.1016/j.foodchem.2024.139966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
The effects of dynamic high-pressure microfluidization (DHPM) treatment on the rheological properties, multiscale structure and in vitro digestibility of complex of maize starch (MS), konjac glucomannan (KGM), and bamboo leaf flavonoids (BLFs) were investigated. Compared with MS, the MS-KGM-BLF complex exhibited reduced viscosity and crystallinity, along with increased lamellar thickness to 10.26 nm. MS-KGM-BLF complex had lower viscosity after DHPM treatment. The highest ordered structure and crystallinity were observed at 50 MPa, with the α value increasing from 3.40 to 3.59 and the d value decreasing from 10.26 to 9.81 nm. However, higher DHPM pressures resulted in a decrease in the α value and an increase in the d value. The highest gelatinization enthalpy and resistant starch content were achieved at 100 MPa DHPM, while the fractal structure shifted from surface fractal to mass fractal at 150 MPa. This study presents an innovative method for enhancing the properties of MS.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuming You
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 400715, China
| | - Liangru Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Jinlai Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Hourong Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Wang L, Li G, Zhu L, Gao Y, Wei Y, Sun Y, Xu Y. Preparation and characterization of carboxymethylated Anemarrhena asphodeloides polysaccharide and its effect on the gelatinization of wheat starch. Int J Biol Macromol 2024; 277:134419. [PMID: 39097060 DOI: 10.1016/j.ijbiomac.2024.134419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/01/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
In this study, a carboxymethylated Anemarrhena asphodeloides polysaccharide (CM-AARP) with an molecular weight (Mw) of 7.8 × 104 Da was obtained. CM-AARP was composed of four monosaccharides including d-mannose, d-glucose, d-galactose, and l-arabinose. Nuclear magnetic resonance (NMR) spectra revealed that the skeleton of CM-AARP was identical to that of AARP. Compared with AARP, CM-AARP had a superior inhibition effect on the gelatinization of wheat starch (WS) under the same condition. The addition of CM-AARP and AARP at 12 % enhanced the gelatinization temperature (60.47 ± 1.30 °C) of WS to 73.88 ± 0.49 °C and 69.75 ± 0.52 °C, respectively. CM-AARP could maintain the crystal structure of WS during gelatinization, the relative crystallinity with the 12 % CM-AARP addition was determined as 29.18 % ± 1.49 %, exceeding that of pure WS at 21.96 % ± 0.66 %. Moreover, CM-AARP influenced the rheological behavior of the gelatinized WS by reducing the viscosity and improving the fluidity. The results suggested that CM-AARP played an essential role in starch gelatinization and was a potential stabilizer in the starch-based food industry.
Collapse
Affiliation(s)
- Libo Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Guoqiang Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ling Zhu
- Heilongjiang Province academy of Agricultural Sciences institute of Food Processing, Harbin 150086, China
| | - Yinzhao Gao
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yanhui Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yu Sun
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yaqin Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Ling B, Shao L, Jiang H, Wu S. Wide pH, Adaptable High Internal Phase Pickering Emulsion Stabilized by a Crude Polysaccharide from Thesium chinense Turcz. Molecules 2024; 29:4312. [PMID: 39339307 PMCID: PMC11434410 DOI: 10.3390/molecules29184312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The ultrasound-assisted extraction conditions of Thesium chinense Turcz. crude polysaccharide (TTP) were optimized, and a TTP sample with a yield of 11.9% was obtained. TTP demonstrated the ability to stabilize high-internal-phase oil-in-water emulsions with an oil phase volume reaching up to 80%. Additionally, the emulsions stabilized by TTP were examined across different pH levels, ionic strengths, and temperatures. The results indicated that the emulsions stabilized by TTP exhibited stability over a wide pH range of 1-11. The emulsion remained stable under ionic strengths of 0-500 mM and temperatures of 4-55 °C. The microstructure of the emulsions was observed using confocal laser scanning microscopy, and the stabilization mechanism of the emulsion was hypothesized. Soluble polysaccharides formed a network structure in the continuous phase, and the insoluble polysaccharides dispersed in the continuous phase, acting as a bridge structure, which worked together to prevent oil droplet aggregation. This research was significant for developing a new food-grade emulsifier with a wide pH range of applicability.
Collapse
Affiliation(s)
- Borong Ling
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lijun Shao
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huicong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Lin ZM, Wen JX, Lin DQ, Liu K, Chen YL, Miao S, Cao MJ, Sun LC. Physicochemical and Rheological Properties of Degraded Konjac Gum by Abalone ( Haliotis discus hannai) Viscera Enzyme. Foods 2024; 13:2158. [PMID: 38998663 PMCID: PMC11241667 DOI: 10.3390/foods13132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
In the present study, a new degraded konjac glucomannan (DKGM) was prepared using a crude enzyme from abalone (Haliotis discus hannai) viscera, and its physicochemical properties were investigated. After enzymatic hydrolysis, the viscosity of KGM obviously decreased from 15,500 mPa·s to 398 mPa·s. The rheological properties analysis of KGM and DKGMs revealed that they were pseudoplastic fluids, and pseudoplasticity, viscoelasticity, melting temperature, and gelling temperature significantly decreased after enzymatic hydrolysis, especially for KGM-180 and KGM-240. In addition, the molecular weight of KGM decreased from 1.80 × 106 Da, to 0.45 × 106 Da and the polydispersity index increased from 1.17 to 1.83 after 240 min of degradation time. Compared with natural KGM, the smaller particle size distribution of DKGM further suggests enzyme hydrolysis reduces the aggregation of molecular chains with low molecular weight. FT-IR and FESEM analyses showed that the fragmented KMG chain did not affect the structural characteristics of molecular monomers; however, the dense three-dimensional network microstructure formed by intermolecular interaction changed to fragment microstructure after enzyme hydrolysis. These results revealed that the viscosity and rheological properties of KGM could be controlled and effectively changed using crude enzymes from abalone viscera. This work provides theoretical guidance for the promising application of DKGM in the food industry.
Collapse
Affiliation(s)
- Zhao-Ming Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
| | - Jia-Xin Wen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
| | - Duan-Quan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Kang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| |
Collapse
|
5
|
Xiong M, Chen B, Chen Y, Li S, Fang Z, Wang L, Wang C, Chen H. Effects of soluble dietary fiber from pomegranate peel on the physicochemical properties and in-vitro digestibility of sweet potato starch. Int J Biol Macromol 2024; 273:133041. [PMID: 38857720 DOI: 10.1016/j.ijbiomac.2024.133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
The effects of soluble dietary fiber (SDF) from pomegranate peel obtained through enzyme (E-SDF) and alkali (A-SDF) extractions on the structural, physicochemical properties, and in vitro digestibility of sweet potato starch (SPS) were investigated. The expansion degree of SPS granules, pasting viscosity, gel strength and hardness were decreased after adding E-SDF. The setback was accelerated in the presence of A-SDF but E-SDF delayed this effect during the cooling of the starch paste. However, the addition of A-SDF significantly reduced the breakdown of SPS and improved the freeze-thaw stability of starch gels, even at low concentrations (0.1 %), while E-SDF showed the opposite result. The structural characterization of SDF-SPS mixtures showed that A-SDF can help SPS form an enhanced microstructure compared with E-SDF, while polar groups such as hydroxyl group in E-SDF may bind to leached amylose through hydrogen bonding, leading to a decrease in SPS viscoelasticity. In addition, the results of in vitro digestion analysis indicated that A-SDF and E-SDF could decreased the digestibility of SPS and increased the content of resistant starch, especially when 0.5 % E-SDF was added. This study provides a new perspective on the application of SDF from pomegranate peel in improving starch-based foods processing and nutritional characteristics.
Collapse
Affiliation(s)
- Min Xiong
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Bin Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yanli Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Lina Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| |
Collapse
|
6
|
Wu X, Zhang Q, Zhang J, Zhang B, Wu X, Yan X. Effect of Cyperus esculentus polysaccharide on Cyperus esculentus starch: Pasting, rheology and in vitro digestibility. Food Chem X 2024; 22:101511. [PMID: 38911913 PMCID: PMC11190478 DOI: 10.1016/j.fochx.2024.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
This study investigated the effects of varying amounts of added Cyperus esculentus polysaccharide (CEP) on the physicochemical and structural properties, as well as in vitro digestibility, of homologous Cyperus esculentus starch (CES). Compared to CES, the CES-CEP complexes showed reduced peak viscosity and breakdown value, and improved thermal paste stability of starch. Rheological properties showed that adding CEP reduced the consistency coefficient and pseudoelasticity of the complexes, thus increasing their resistance to shear thinning. FTIR analysis suggested the absence of covalent binding between CES and CEP. SEM showed a more homogeneous and dense gel structure, particularly in the CES-1.0%CEP sample. During in vitro digestion, the content of resistant starch in the complexes increased after CEP was added. Analysis of the interaction forces showed that the CES-CEP complexes had stronger hydrogen bonding and electrostatic interaction. This study offers valuable insights into the potential applications of CEP in starch-based foods.
Collapse
|
7
|
Ma M, Gu Z, Cheng L, Li Z, Li C, Hong Y. Effect of hydrocolloids on starch digestion: A review. Food Chem 2024; 444:138636. [PMID: 38310781 DOI: 10.1016/j.foodchem.2024.138636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Rapidly digestible starch can increase postprandial blood sugar rapidly, which can be overcome by hydrocolloids. The paper aims to review the effect of hydrocolloids on starch digestion. Hydrocolloids used to reduce starch digestibility are mostly polysaccharides like xanthan gum, pectin, β-glucan, and konjac glucomannan. Their effectiveness is related to their source and structure, mixing mode of hydrocolloid/starch, physical treatment, and starch processing. The mechanisms of hydrocolloid action include increased system viscosity, inhibition of enzymatic activity, and reduced starch accessibility to enzymes. Reduced starch accessibility to enzymes involves physical barrier and structural orderliness. In the future, physical treatments and intensity used for stabilizing hydrocolloid/starch complex, risks associated with different doses of hydrocolloids, and the development of related clinical trials should be focused on. Besides, investigating the effect of hydrocolloids on starch should be conducted in the context of practical commercial applications rather than limited to the laboratory level.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
8
|
Chang R, Wang Z, Fu L, Chen C, Xu K, Ma A, Tian Y. Recrystallized resistant starch by encapsulation with konjac glucomannan: Structural changes, digestibility, and its effect on glucose response and short-term satiety in mice. Food Chem 2024; 442:138379. [PMID: 38241990 DOI: 10.1016/j.foodchem.2024.138379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
The effects of the structure and digestibility of konjac glucomannan (KGM)-recrystallized resistant starch complex (KRS3) on the glycemic response and short-term satiety in mice were investigated. KRS3 samples were prepared by recrystallized debranched starch (RS3) at 50 °C, and then combined with KGM. The RS3 and KRS3 samples displayed an A-type pattern and maintained peak temperature values above 110 °C. With an increase in KGM, the swelling power and apparent viscosity of KRS3 increased. The results of in vitro and in vivo digestion revealed that KRS3 with a resistant starch content ranging from 69.4 % to 78.8 % could effectively maintain postprandial blood glucose levels. KRS3, particularly with 0.5 % KGM, slowed gastric emptying of mice from 82.7 % to 36.6 % and intestinal propulsion rate from 60.9 % to 35.3 %, resulting in strong satiety. RS3 combined with KGM could serve as a new approach to develop RS3 based foods with low glycemic responses and high-satiety.
Collapse
Affiliation(s)
- Ranran Chang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zihang Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lili Fu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Chuanjing Chen
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Kunjie Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Aiguo Ma
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Xia P, Zheng Y, Sun L, Chen W, Shang L, Li J, Hou T, Li B. Regulation of glycose and lipid metabolism and application based on the colloidal nutrition science properties of konjac glucomannan: A comprehensive review. Carbohydr Polym 2024; 331:121849. [PMID: 38388033 DOI: 10.1016/j.carbpol.2024.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
The physicochemical properties of dietary fiber in the gastrointestinal tract, such as hydration properties, adsorption properties, rheological properties, have an important influence on the physiological process of host digestion and absorption, leading to the differences in satiety and glucose and lipid metabolisms. Based on the diversified physicochemical properties of konjac glucomannan (KGM), it is meaningful to review the relationship of structural characteristics, physicochemical properties and glycose and lipid metabolism. Firstly, this paper bypassed the category of intestinal microbes, and explained the potential of dietary fiber in regulating glucose and lipid metabolism during nutrient digestion and absorption from the perspective of colloidal nutrition. Secondly, the modification methods of KGM to regulate its physicochemical properties were discussed and the relationship between KGM's molecular structure types and glycose and lipid metabolism were summarized. Finally, based on the characteristics of KGM, the application of KGM in the main material and ingredients of fat reduction food was reviewed. We hope this work could provide theoretical basis for the study of dietary fiber colloid nutrition science.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxin Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
10
|
Xu N, Yu P, Zhang H, Ji X, Wu P, Zhang L, Wang X. Effects of Laminaria japonica polysaccharide and coumaric acid on pasting, rheological, retrogradation and structural properties of corn starch. Int J Biol Macromol 2024; 263:130343. [PMID: 38401582 DOI: 10.1016/j.ijbiomac.2024.130343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The aim of this study was to investigate the effects of Laminaria japonica polysaccharide (LJP) and coumaric acid (CA) on pasting, rheological, retrogradation and structural properties of corn starch (CS). Rapid viscosity analysis (RVA) revealed that LJP significantly increased the peak viscosity, trough viscosity, final viscosity, and setback viscosity of CS gel (p < 0.05) in a concentration-dependent manner. The addition of LJP and CA simultaneously caused the pasting of CS to need a greater temperature (from 75.53 °C to 78.75 °C), suggesting that LJP and CA made CS pasting more difficult. Dynamic viscoelasticity measurements found that all gels exhibited typical characteristics of weak gel. When compared to CS gel, 4 % LJP increased the viscosity and fluidity of gel and the simultaneous addition of LJP and CA reduced the elasticity. The steady shear results showed that the all gels were pseudoplastic fluids with shear-thinning behavior. In the meanwhile, the addition of LJP and CA enhanced the pseudoplasticity of CS-LJP-CA gel and improved its shear thinning. Furthermore, thermodynamic results showed that 8 % LJP promoted the retrogradation of CS gel and 2.0 % CA delayed the retrogradation of CS gel. Notably, on the 7th day of retrogradation, 2.0 % CA significantly decreased the retrogradation rate of CS-LJP by 19.31 % as compared to CS + 8 % LJP. Microstructure observation revealed that LJP made the honeycomb network structure of CS gel partially collapsed, and the surface of CS-LJP gel developed venation. Nevertheless, the structure of CS-LJP gel was clearly enhanced by adding CA. FT-IR spectra demonstrated that the addition of LJP or CA to CS did not result in the formation of a new distinctive peak in the system, suggesting the absence of a new group. Moreover, LF-NMR findings showed that LJP and CA strengthened the gel structure of CS and enhanced its capacity to retain water. This study not only provided a new insight into using LJP and CA to regulate the gel properties of CS, but also provided scientific strategy for developing starchy foods.
Collapse
Affiliation(s)
- Ning Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China
| | - Pei Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China
| | - Hui Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China
| | - Xiaoyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China
| | - Penghao Wu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, People's Republic of China
| | - Lei Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, People's Republic of China.
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100038, People's Republic of China.
| |
Collapse
|
11
|
Yousefi A, Ako K, Jekle M. Incorporation of Lepidium perfoliatum seed gum into wheat starch affects its physicochemical, viscoelastic, pasting and freeze-thaw syneresis properties. Int J Biol Macromol 2024; 259:129344. [PMID: 38218282 DOI: 10.1016/j.ijbiomac.2024.129344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
This study aimed to investigate the influence of incorporating Lepidium perfoliatum seed gum (LPSG) into wheat starch (WS) at various mixing ratios on its FTIR, DSC, steady and dynamic rheological properties, pasting attributes, syneresis, and particle size distributions characteristics. The interaction between WS and LPSG was purely based on hydrogen-bonding. It was found that the onset (To) and peak (Tp) temperatures of the LPSG-rich mixtures increased by 10 % and 8 %, respectively, while the enthalpy (ΔH) decreased by 70 % compared to WS. A higher LPSG ratio led to a decrease in the frequency dependence of storage modulus (G'), as well as an increase in the pseudoplasticity of the mixtures. The in-shear structural recovery test showed that the rate of recovery (R, %) increased with an increasing LPSG ratio. The pasting results demonstrated that the 9/1 ratio had the highest final viscosity and the lowest relative breakdown. Applying 1 to 5 freeze-thaw cycles resulted in a 50 % to 70 % decrease in syneresis for the 9/1 mixing ratio in comparison to WS, respectively. The incorporation of LPSG into WS resulted in higher static and dynamic magnitudes of yield stress, as well as an increase in particle size when compared to WS.
Collapse
Affiliation(s)
- Alireza Yousefi
- Department of Plant-based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Komla Ako
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France
| | - Mario Jekle
- Department of Plant-based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
12
|
Kishore A, Patil RJ, Singh A, Pati K. Jicama (Pachyrhizus spp.) a nonconventional starch: A review on isolation, composition, structure, properties, modifications and its application. Int J Biol Macromol 2024; 258:129095. [PMID: 38158067 DOI: 10.1016/j.ijbiomac.2023.129095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Starch attracts food industries due to their availability in nature, cheapness, biodegradability and possibilities of endless applications. The starch properties and their modification affect food quality. Compared to other cereals, tuber and root starches, more systematic information is needed on the jicama starches (JS). This review article summarizes the isolation, composition, morphology, rheological, thermal and digestibility properties of JS. The modifications and its current and potential applications are also discussed. The chemical composition and structure of JS are different from other starches, influencing its properties. JS has been modified by physical and chemical methods to improve the properties of starch. However, there are very few studies on the modification of JS as compared with other commercial starch although it has been used in food formulation as a stabilizer and to improve the texture of food products. It is also applied as an edible coating to preserve the quality of food products and use as a raw material for making edible and bioplastic packaging. However, large-scale utilization of JS is unexplored compared to commercial starches. Therefore, this review would provide useful information and suggestions for more research on Jicama starch and its industrial applications.
Collapse
Affiliation(s)
- Anand Kishore
- National Institute of Food Technology Entrepreneurship and Management, Kundli Sonepat, India.
| | - Rohan Jitendra Patil
- National Institute of Food Technology Entrepreneurship and Management, Kundli Sonepat, India
| | - Anupama Singh
- National Institute of Food Technology Entrepreneurship and Management, Kundli Sonepat, India.
| | - Kalidas Pati
- Regional Center, ICAR - Central Tuber Crops Research Institute, Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Cheng Y, Su C, Wei S, Zhao J, Wei F, Liu X, Wang H, Wu X, Feng C, Meng J, Cao J, Yun S, Xu L, Geng X, Chang M. The Effects of Naematelia aurantialba on the Pasting and Rheological Properties of Starch and the Research and Development of Soft Candy. Foods 2024; 13:247. [PMID: 38254548 PMCID: PMC10814479 DOI: 10.3390/foods13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
To study the effects of Naematelia aurantialba (NA) on the rheological and gelatinization properties of starch, the processing methods of NA were diversified. In this study, the gelatinization and rheological properties of corn starch (CS) and edible cassava starch (ECS) were investigated by adding NA with different mass fractions. Starch soft candy was prepared using NA, CS, and ECS as the main raw materials. Rheological studies showed that both CS-NA and ECS-NA exhibited elastic modulus (G') > viscosity modulus (G″), implying elastic behavior. G' was such that CS+1%NA > CS+5%NA > CS+3%NA > CS > CS+2%NA > CS+4%NA > ECS+4%NA > ECS+3%NA > ECS+5%NA > ECS+2%NA > ECS+1%NA > ECS. The gelatinization implied showed that after adding NA, the pasting temperature of CS-NA and ECS-NA increased by 1.33 °C and decreased by 2.46 °C, while their breakdown values decreased by 442.35 cP and 866.98 cP, respectively. Through a single-factor test and orthogonal test, the best formula of starch soft candy was as follows: 0.4 f of NA, 10 g of white granulated sugar, a mass ratio of ECS to CS of 20:1 (g:g), 0.12 g of citric acid, 1 g of red date power, and 16 mL of water. The soft candy was stable when stored for two days. This study offers a new direction for the research and development of NA starch foods.
Collapse
Affiliation(s)
- Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Cuixin Su
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Shijie Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Jing Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Fen Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Xiaolong Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Hanbing Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Xiaoyue Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.S.); (S.W.); (J.Z.); (F.W.); (X.L.); (H.W.); (X.W.); (C.F.); (J.M.); (J.C.); (S.Y.); (L.X.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Mingchang Chang
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| |
Collapse
|
14
|
Xu L, Ren J, Wang X, Bai Z, Chai S, Wang X. Effects of sugar beet pectin on the pasting, rheological, thermal, and microstructural properties of wheat starch. Int J Biol Macromol 2023; 253:127328. [PMID: 37820921 DOI: 10.1016/j.ijbiomac.2023.127328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The effects of addition of sugar beet pectin (SBP) on the pasting, rheological, thermal, and microstructural properties of wheat starch (WS) were investigated. Results revealed that SBP addition significantly increased the peak viscosity, trough viscosity, breakdown value, final viscosity, and setback value of WS, whereas decreased the pasting temperature. SBP raised the swelling power (from 13.44 to 21.32 g/g) and endothermic enthalpy (ΔH, from 8.17 to 8.98 J/g), but decreased the transparency (from 9.70 % to 1.37 %). Regarding rheological properties, WS-SBP mixtures exhibited a pseudo-plastic behavior, and SBP enhanced the viscoelasticity, but decreased the deformability. Particle size distribution analysis confirmed that SBP promoted the swelling of WS granules. Fourier-transform infrared spectroscopy results suggested that the interactions between SBP and WS did not involve covalent bonding, and the formation of ordered structure was inhibited by SBP addition. Additionally, scanning electron microscopy observation found that the gel network of WS-SBP mixtures became more irregular, pore size gradually decreased, and the wall became thinner as the SBP concentration increased. These results indicated that SBP is a promising non-starch polysaccharide that can enhance the processing properties of WS.
Collapse
Affiliation(s)
- Lei Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China.
| | - Jinyun Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Zhaoliang Bai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Shihao Chai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xiaole Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| |
Collapse
|
15
|
Xia R, Fu M, Wang Z, Cheng W, Wu D, Tang X, Yang P. Effects of frozen storage on the quality characteristics of frozen whole buckwheat extruded noodles. Food Chem 2023; 429:136856. [PMID: 37459711 DOI: 10.1016/j.foodchem.2023.136856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/24/2023]
Abstract
The effects of frozen storage (-18 °C, 180 days) on the quality of frozen whole buckwheat extruded noodles (FWBEN) were investigated. The water content of FWBEN decreased, while the reheating time, water absorption, and dry consumption rate increased with prolonged storage time. Cooking loss increased from 3.20% to 4.31%. Texture analysis indicated that the hardness initially increased, then decreased. Microstructure results showed that the starch gel structure was damaged to a certain extent after storage for a longer period of time, whereas the porous structure became non-uniform with the appearance of cracks. The relative crystallinity gradually increased, and the freezable water content decreased with prolonged storage. These results demonstrated that FWBEN quality was affected by starch retrogradation and ice recrystallization. In general, FWBEN quality was relatively stable during 180 days of frozen storage at -18 °C.
Collapse
Affiliation(s)
- Ruhui Xia
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Meixia Fu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Peiqiang Yang
- Suzhou Niumag Analytical Instrument Corporation, Suzhou 215151, China
| |
Collapse
|
16
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
17
|
Xiao W, Shen M, Li J, Li Y, Qi X, Rong L, Liu W, Xie J. Preparation and characterization of curcumin-loaded debranched starch/Mesona chinensis polysaccharide microcapsules: Loading levels and in vitro release. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Xu H, Hao Z, Gao J, Zhou Q, Li W, Liao X, Zheng M, Zhou Y, Yu Z, Song C, Xiao Y. Complexation between rice starch and cellulose nanocrystal from black tea residues: Gelatinization properties and digestibility in vitro. Int J Biol Macromol 2023; 234:123695. [PMID: 36801275 DOI: 10.1016/j.ijbiomac.2023.123695] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
In this work, cellulose nanocrystal (CNC) was extracted from black tea waste and its effects on the physicochemical properties of rice starch were explored. It was revealed that CNC improved the viscosity of starch during pasting and inhibited its short-term retrogradation. The addition of CNC changed the gelatinization enthalpy and improved the shear resistance, viscoelasticity, and short-range ordering of starch paste, which meant that CNC made the starch paste system more stable. The interaction of CNC with starch was analyzed using quantum chemistry methods, and it was demonstrated that the hydrogen bonds were formed between starch molecules and the hydroxyl groups of CNC. In addition, the digestibility of starch gels containing CNC was significantly decreased because CNC could dissociate and act as an inhibitor of amylase. This study further expanded the understanding of the interactions between CNC and starch during processing, which could provide a reference for the application of CNC in starch-based foods and the development of functional foods with a low glycemic index.
Collapse
Affiliation(s)
- Huajian Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangxin Liao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Huzhou city Linghu Xinwang Chemical Co. Ltd., China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Characterization and in vitro digestion of rice starch/konjac glucomannan complex prepared by screw extrusion and its impact on gut microbiota. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Wang Y, Guo J, Wang C, Li Y, Bai Z, Luo D, Hu Y, Chen S. Effects of konjac glucomannan and freezing on thermal properties, rheology, digestibility and microstructure of starch isolated from wheat dough. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
21
|
Wang Y, Liu J, Liu Y. The Effect of Different Ratios of Starch and Freeze-Thaw Treatment on the Properties of Konjac Glucomannan Gels. Gels 2023; 9:gels9020072. [PMID: 36826242 PMCID: PMC9956990 DOI: 10.3390/gels9020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The composite gels of konjac glucomannan (KGM) and corn starch (CS) were prepared and treated by the freeze-thaw method. For KGM-CS gels, as the starch ratio rose from 0 to 100%, storage modulus (G') decreased by 97.7% (from 3875.69 Pa to 87.72 Pa), degradation temperature decreased from 313.32 °C to 293.95 °C, and crystallinity decreased by 16.7%. For F-KGM-CS gels, G' decreased by 99.0% (from 20,568.10 Pa to 204.09 Pa), degradation temperature increased from 289.68 °C to 298.07 °C, and crystallinity decreased by 17.1% with more starch content. The peak in infrared spectroscopy shifted to a higher wavenumber with more starch and to a lower wavenumber by freezing the corresponding composite gels. The detected retrogradation of the composite gels appeared for KGM-CS with 80% starch and F-KGM-CS with 40% starch. The endothermic enthalpy of free water rose by 10.6% and 10.1% with the increase in starch for KGM-CS and F-KGM-CS, respectively. The results of moisture distribution found that bound water migrated to free water and the water-binding capacity reduced with more starch. The results demonstrated that the molecular interaction in composite gels was weakened by starch and strengthened by freezing.
Collapse
|
22
|
Wang S, Chen S, Ding L, Zhang Y, He J, Li B. Impact of Konjac Glucomannan with Different Molecular Weight on Retrogradation Properties of Pea Starch. Gels 2022; 8:gels8100651. [PMID: 36286152 PMCID: PMC9601848 DOI: 10.3390/gels8100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
The impact of konjac glucomannan (KGM) with different molecular weight (Mw) on the retrogradation properties of pea starch, such as color, viscoelasticity, gel strength, water holding capacity (WHC), moisture distribution and crystallinity, was investigated. At the same time as the Mw of KGM decreased, the lightness, elastic modulus, gel strength, water freedom and crystallinity of pea starch showed an increasing trend, whereas the viscosity modulus and WHC showed a decreasing trend. At one day of storage, compared with single pea starch, KGM with low Mw made gel strength increase from 40 g to 45 g, WHC decrease from 82% to 65% and crystallinity increase from 21.3% to 24.0%. Therefore, KGM with low Mw could promote retrogradation of pea starch in the short-term. At 7 days or even 14 days of storage, KGM with medium-high Mw had smaller indices than those of pure pea starch, including the lightness, storage modulus, gel strength, water freedom and crystallinity. This indicated that KGM with medium-high Mw could inhibit the long-term retrogradation of starch. The larger the Mw of KGM, the more noticeable the inhibition effect.
Collapse
Affiliation(s)
- Shishuai Wang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
- Correspondence: ; Tel.: +86-027-84791393
| | - Shuo Chen
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Lidong Ding
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Ying Zhang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Jiaxin He
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Luo Y, Li Y, Li L, Xie X. Physical modification of maize starch by gelatinizations and cold storage. Int J Biol Macromol 2022; 217:291-302. [PMID: 35835304 DOI: 10.1016/j.ijbiomac.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/07/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
The effects of gelatinization at three selected temperatures (DSC characteristic peaks temperature: TO, TP, and TC) and subsequent cold storage (CS) treatment on structural characteristics, pasting, and rheological properties of maize starch (MS) were investigated. The pasting, rheological properties of MS was changed with the increase of gelatinization temperature from TO to TC, but were not further significantly changed if the gelatinization temperature was higher than TC. Pasting and thermal properties analysis suggested that gelatinization at TC (TC treatment) significantly increased the gelatinization and pasting temperature of MS. Moreover, TC treatment decreased breakdown viscosity by 8.49 times and setback viscosity by 2.53 times. Dynamic rheological measurements revealed that the TC treatment caused the lower G' and G" of MS, and decreased the thickening coefficient by 55.17 %. These results indicated that TC treatment could enhance the thermal stability properties of MS, inhibiting the shear and short-term retrogradation, the shear-thinning behavior of MS. Interestingly, the CS treatment further inhibited the shear and short-term retrogradation and the shear-thinning behavior of MS. The leaked starch molecules aggregate to form a harder structure after gelatinization and starch molecules were further aggregated after CS treatment, these all were hypothesized to be responsible for these results.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
A structural study of the self-association of different starches in presence of bacterial cellulose fibrils. Carbohydr Polym 2022; 288:119361. [PMID: 35450626 DOI: 10.1016/j.carbpol.2022.119361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
A multi-analytical study was performed to analyse the effect of bacterial cellulose (BCF) on the self-association of starches with different amylose content (wheat, waxy-maize), assessing macrostructural properties (rheology, gel strength) and some nano and sub-nano level features (small and wide-angle X-ray scattering). Although pasting viscosities and G' were significantly increased by BCF in both starches, cellulose did not seem to promote the self-association of amylose in short-range retrogradation. A less elastic structure was reflected by a 2-3-fold increase in loss factor (G″/G') at the highest BCF concentration tested. This behavior agreed with the nano and sub-nano characterisation of the samples, which showed loss of starch lamellarity and incomplete full recovery of an ordered structure after storage at 4 °C for 24 h. The gel strength data could be explained by the contribution of BCF to the mechanical response of the sample. The information gained in this work is relevant for tuning the structure of tailored starch-cellulose composites.
Collapse
|
25
|
Wang L, Wang M, Zhou Y, Wu Y, Ouyang J. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chem 2022; 377:131990. [PMID: 34999449 DOI: 10.1016/j.foodchem.2021.131990] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023]
Abstract
The effects of ultrasound and microwave on the physicochemical properties of normal maize and potato starches were compared. The cavitation effect of ultrasound loosened the internal space and destroyed the structure of starch granules, increased the damaged starch content, which was consistent with the decrease in relative crystallinity and the number and brightness of Maltese crosses, and the increase in D(0.5) and D(4,3) values. Microwave vibrated the molecules inside the granules and generated heat to destroy the structure of starch. The content of damaged starch was significantly lower in microwave-treated starch compared with ultrasound-treated starch. Microwave treatment promoted the formation of amylose-lipid complex, with the larger peak area at 20°(2θ) than that of the ultrasound-treated starch. The type of starch and the treatment sequence showed a significant effect. The results might help understand the mechanism of ultrasound and microwave treatments influencing the structural properties of starches.
Collapse
Affiliation(s)
- Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Meng Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing 100015, China
| | - Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
26
|
Mimic Pork Rinds from Plant-Based Gel: The Influence of Sweet Potato Starch and Konjac Glucomannan. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103103. [PMID: 35630579 PMCID: PMC9143635 DOI: 10.3390/molecules27103103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of sweet potato starch (SPS) and konjac glucomannan (KGM) on the textural, color, sensory, rheological properties, and microstructures of plant-based pork rinds. Plant-based gels were prepared using mixtures of soy protein isolate (SPI), soy oil, and NaHCO3 supplemented with different SPS and KGM concentrations. The texture profile analysis (TPA) results indicated that the hardness, cohesiveness, and chewiness of the samples improved significantly after appropriate SPS and KGM addition. The results obtained via a colorimeter showed no significant differences were found in lightness (L*) between the samples and natural pork rinds after adjusting the SPS and KGM concentrations. Furthermore, the rheological results showed that adding SPS and KGM increased both the storage modulus (G’) and loss modulus (G’’), indicating a firmer gel structure. The images obtained via scanning electron microscopy (SEM) showed that the SPS and KGM contributed to the formation of a more compact gel structure. A mathematical model allowed for a more objective sensory evaluation, with the 40% SPS samples and the 0.4% KGM samples being considered the most similar to natural pork rinds, which provided a comparable texture, appearance, and mouthfeel. This study proposed a possible schematic model for the gelling mechanism of plant-based pork rinds: the three-dimensional network structures of the samples may result from the interaction between SPS, SPI, and soybean oil, while the addition of KGM and NaHCO3 enabled a more stable gel structure.
Collapse
|
27
|
Chipón J, Ramírez K, Morales J, Díaz-Calderón P. Rheological and Thermal Study about the Gelatinization of Different Starches (Potato, Wheat and Waxy) in Blend with Cellulose Nanocrystals. Polymers (Basel) 2022; 14:polym14081560. [PMID: 35458308 PMCID: PMC9025455 DOI: 10.3390/polym14081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this work was to analyze the effect of CNCs on the gelatinization of different starches (potato, wheat and waxy maize) through the characterization of the rheological and thermal properties of starch–CNC blends. CNCs were blended with different starches, adding CNCs at concentrations of 0, 2, 6 and 10% w/w. Starch–CNC blends were processed by rapid visco-analysis (RVA) and cooled to 70 °C. Pasting parameters such as pasting temperature, peak, hold and breakdown viscosity were assessed. After RVA testing, starch–CNC blends were immediately analyzed by rotational and dynamic rheology at 70 °C. Gelatinization temperature and enthalpy were assessed by differential scanning calorimetry. Our results suggest that CNCs modify the starch gelatinization but that this behavior depends on the starch origin. In potato starch, CNCs promoted a less organized structure after gelatinization which would allow a higher interaction amylose–CNC. However, this behavior was not observed in wheat and waxy maize starch. Insights focusing on the role of CNC on gelatinization yielded relevant information for better understanding the structural changes that take place on starch during storage, which are closely related with starch retrogradation. This insight can be used as an input for the tailored design of novel materials oriented towards different technological applications.
Collapse
Affiliation(s)
- Josefina Chipón
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile; (J.C.); (K.R.)
| | - Kassandra Ramírez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile; (J.C.); (K.R.)
| | - José Morales
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile;
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile
| | - Paulo Díaz-Calderón
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile;
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile
- Correspondence:
| |
Collapse
|
28
|
Yazar G, Rosell CM. Fat replacers in baked products: their impact on rheological properties and final product quality. Crit Rev Food Sci Nutr 2022; 63:7653-7676. [PMID: 35285734 DOI: 10.1080/10408398.2022.2048353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many baked products, except for bread, (i.e., cakes, cookies, laminated pastries, and so on) generally contain high levels of fat in their formulas and they require different bakery fats that impart product-specific quality characteristics through their functionalities. Even though, fat is crucial for baked product quality, strategies have been developed to replace fat in their formulas as high fat intake is associated with chronic diseases such as obesity, diabetes, and cardiovascular heart diseases. Besides, the solid bakery fats contain trans- and saturated fats, and their consumption has been shown to increase total and low-density lipoprotein cholesterol levels and to constitute a risk factor for cardiovascular diseases when consumed at elevated levels. Therefore, the aim of this review was to provide a detailed summary of the functionality of lipids/fats (endogenous lipids, surfactants, shortening) in different baked products, the rheological behavior of bakery fats and their contribution to baked product quality, the impact of different types of fat replacers (carbohydrate-, protein-, lipid-based) on dough/batter rheology, and on the quality characteristics of the resulting reduced-fat baked products.
Collapse
Affiliation(s)
- Gamze Yazar
- Department of Animal, Veterinary and Food Sciences, University of Idaho, ID, USA
| | - Cristina M Rosell
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Wu W, Que F, Li X, Shi L, Deng W, Fu X, Xiong G, Sun J, Wang L, Xiong S. Effects of Enzymatic Konjac Glucomannan Hydrolysates on Textural Properties, Microstructure, and Water Distribution of Grass Carp Surimi Gels. Foods 2022; 11:foods11050750. [PMID: 35267383 PMCID: PMC8909482 DOI: 10.3390/foods11050750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
This present work investigated the influence of konjac glucomannan (KGM) enzymatic hydrolysates on the textural properties, microstructure, and water distribution of surimi gel from grass carp (Ctenopharyngodon idellus). The molecular weight (Mw) of KGM enzymatic hydrolyzed by β-dextranase degraded from 149.03 kDa to 36.84 kDa with increasing enzymatic time. In the microstructure of surimi gels, KGM enzymatic hydrolysates with higher Mw showed entangled rigid-chains, while KGM enzymatic hydrolysates with lower Mw (36.84 kDa) exhibited swelled fragments. The hardness of surimi gel with a decline in KGM Mw exhibited first increasing then decreasing trends, while the whiteness of surimi gel increased. When KGM Mw decreased, the immobile water percentage of total signals decreased from 96.7% to 93.6%, and mobile water increased from 3.03% to 6.37%. In particular, the surimi gel with the addition of K2 showed better gel strength and water distributions. KGM enzymatic hydrolysates are expected to be used as a low-calorie healthy gel enhancer in surimi processing.
Collapse
Affiliation(s)
- Wenjin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
| | - Feng Que
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430064, China
| | - Xuehong Li
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430064, China
| | - Liu Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
| | - Wei Deng
- College of Food & Biology Science and Technology, Wuhan Institute of Design and Sciences, Wuhan 430205, China; (W.D.); (X.F.)
| | - Xiaoyan Fu
- College of Food & Biology Science and Technology, Wuhan Institute of Design and Sciences, Wuhan 430205, China; (W.D.); (X.F.)
| | - Guangquan Xiong
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
| | - Jing Sun
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
- Correspondence: (L.W.); (S.X.)
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence: (L.W.); (S.X.)
| |
Collapse
|
30
|
Xiao W, Shen M, Ren Y, Wen H, Li J, Rong L, Liu W, Xie J. Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Ge Z, Wang W, Gao S, Xu M, Liu M, Wang X, Zhang L, Zong W. Effects of konjac glucomannan on the long-term retrogradation and shelf life of boiled wheat noodles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:644-652. [PMID: 34151431 DOI: 10.1002/jsfa.11393] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Starch retrogradation and moisture migration of boiled wheat noodles (BWNs) result in quality deterioration and short shelf life. The objective of this research was to investigate whether konjac glucomannan (KGM) could improve the quality of BWNs and further establish the shelf-life prediction model. RESULTS The moisture distribution, recrystallization, and thermal properties of BWNs during refrigerated or ambient temperature storage were determined. Low-field nuclear magnetic resonance data showed that KGM addition induced left-shifts of T21 and T22 values, indicating that KGM limited the mobility of bound and immobile water among noodle matrices. X-ray diffraction spectra revealed that KGM did not change the crystal patterns of BWNs but could inhibit the starch recrystallization after refrigerated storage. The Tp and ΔH values of retrograded samples notably (P < 0.05) decreased with the increase of KGM addition, suggesting the hinderance of starch retrogradation behavior by KGM. The shelf life of BWNs was predicted by accelerated storage test combined with the Arrhenius equation. The present data displayed that the predicted shelf life of vacuum-packed and sterilized BWNs with 10 g kg-1 KGM at 25 °C was 733 days, 2.4-fold that of the control group. CONCLUSION BWNs with KGM addition could inhibit starch retrogradation and improve the storage stability, consequently promoting noodle quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenzhen Ge
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Weijing Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shanshan Gao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingyue Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mengpei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaoyuan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lihua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
32
|
Li Y, Liang W, Huang W, Huang M, Feng J. Complexation between burdock holocellulose nanocrystals and corn starch: gelatinization properties, microstructure, and digestibility in vitro. Food Funct 2021; 13:548-560. [PMID: 34951438 DOI: 10.1039/d1fo03418a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Holocellulose nanocrystals (hCNCs), with hydrodynamic diameters (DZ) ranging from about 600 to 200 nm, were prepared by treating burdock insoluble dietary fiber (IDF) with enzymes and ultrasonic power. It was revealed that hCNCs improved the viscosity of corn starch (CS) during pasting and inhibited its short-term retrogradation. Besides, the crystallinity, short-range order of the double helix, viscoelastic properties, and microstructure compactness of CS gels improved remarkably in the presence of burdock hCNCs. These effects were both size- and dose-dependent, which primarily originated from the hydrogen bonding between hCNCs and amylopectin or leached amylose. In this regard, the digestion of CS gels containing hCNCs was remarkably retarded because of the reduced accessibility of digestive enzymes to the glycosidic bonds. Therefore, burdock hCNCs, prepared from natural resources using green techniques, hold potential applications in functional foods of a low glycemic index.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
33
|
Effects of Pectin on the Physicochemical Properties and Freeze-Thaw Stability of Waxy Rice Starch. Foods 2021; 10:foods10102419. [PMID: 34681468 PMCID: PMC8536014 DOI: 10.3390/foods10102419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the effects of the addition of pectin (PEC) on the physicochemical properties and freeze-thaw stability of waxy rice starch (WRS) were investigated. As PEC content increased, the pasting viscosity and pasting temperature of WRS significantly increased (p < 0.05), whereas its breakdown value and setback value decreased. Differential scanning calorimetry showed that the addition of PEC increased the gelatinization temperature of WRS, but decreased its gelatinization enthalpy. Rheological measurements indicated that the addition of PEC did not change the shear-thinning behavior of WRS-PEC blends, and the storage modulus and loss modulus were positively correlated with PEC content. Moreover, the textural parameter of WRS decreased with the increase in PEC content. Furthermore, the addition of PEC decreased the transmittance of starch paste, but enhanced the freeze-thaw stability of WRS to some extent. These results may contribute to the development of WRS-based food products.
Collapse
|
34
|
|
35
|
Yang J, Kim J, Choi YJ, Hahn J. Elastic gels based on flaxseed gum with konjac glucomannan and agar. Food Sci Biotechnol 2021; 30:1331-1338. [PMID: 34721928 PMCID: PMC8519975 DOI: 10.1007/s10068-021-00977-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
In this study, we prepared hydrocolloid gels in which flaxseed gum (FSG), konjac glucomannan (KGM), and agar (AG) were blended in different ratios for use as a viscoelastic food. The prepared hydrogels' physicochemical properties were analyzed concerning their water solubility index (WSI), swelling power (SL), frequency sweep results, and microstructures. As the FSG ratio decreased, the WSI value of the compound gel tended to increase. However, it showed a tendency to have a relatively high SP value and a low tan δ value according to a specific KGM/FSG/AG mixing ratios (8:2:1.5 and 6:4:1.5). Through microstructure analysis, the FKA821.5 sample showed a relatively small, monodispersed gel building structure, correlated with the rheological results. In conclusion, the FKA821.5 gel was determined to have good water retention capacity and high structural strength. These results are expected to increase the applicability of FSG-based gelling agents in the food industry.
Collapse
Affiliation(s)
- Jisoo Yang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Junghoon Kim
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006 Korea
| | - Young Jin Choi
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Jungwoo Hahn
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
36
|
Zheng J, Huang S, Zhao R, Wang N, Kan J, Zhang F. Effect of four viscous soluble dietary fibers on the physicochemical, structural properties, and in vitro digestibility of rice starch: A comparison study. Food Chem 2021; 362:130181. [PMID: 34082291 DOI: 10.1016/j.foodchem.2021.130181] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022]
Abstract
The effect of carboxymethyl cellulose (CMC), high-methoxyl pectin (HMP), konjac glucomannan (KGM), and xanthan gum (XG) on the physicochemical, structural properties, and digestibility of rice starch were investigated and compared. The four viscous soluble dietary fibers (VSDFs) increased the viscosity, storage modulus and loss modulus while decreased the pasting temperature and gelatinization enthalpy. Moreover, XG produced the lowest peak viscosity and dynamic modulus compared with the other VSDFs. Furthermore, the degree of short-range ordered structure of starch with KGM increased from 0.8448 to 0.8716; and the relative crystallinity of starch with XG increased by 12%. An ordered and reunited network structure was observed in SEM. In addition, VSDF inhibited the digestibility of rice starch and significantly increased the resistant starch content. This study compared the effect of four VSDFs on the physicochemical, structural and digestion properties of rice starch to fully understand and develop their application to starchy foods.
Collapse
Affiliation(s)
- Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China.
| | - Shan Huang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Ruyue Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Nan Wang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| |
Collapse
|
37
|
Fang F. Shear-induced synergistic effects of konjac glucomannan and waxy potato starch on viscosity and gel strength. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Yang W. Preparation of konjac oligoglucomannans with different molecular weights and their in vitro and in vivo antioxidant activities. Open Life Sci 2021; 15:799-807. [PMID: 33817267 PMCID: PMC7747514 DOI: 10.1515/biol-2020-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/20/2022] Open
Abstract
In this paper, konjac oligoglucomannan (KOGM) was obtained with a hydrolysis rate of 56.24% by controlling the hydrolysis conditions. KOGM was passed through a 0.2 kDa dialysis bag, a 3 kDa ultrafiltration tube, and a 5 kDa ultrafiltration tube, creating samples with molecular weights of 0.2–3 kDa (IV), 3–5 kDa (III), and >5 kDa (II), respectively. The in vitro antioxidant activities of the KOGM samples were tested by measuring their removal effects on ˙OH, O2−\documentclass[10pt]{article}\usepackage{wasysym}
\usepackage[substack]{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage[mathscr]{eucal}
\usepackage{mathrsfs}
\usepackage{pmc}
\usepackage[Euler]{upgreek}
\pagestyle{empty}
\oddsidemargin -1.0in
\begin{document}
{\text{O}}_{2}^{-}
\end{document}, and DPPH˙. The in vivo antioxidant activities of the samples were analyzed by measuring their impacts on the malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and glutathione peroxidase (GSH-PX) activity in mice. The results show that the KOGM samples in groups III and IV could effectively remove ˙OH, O2−\documentclass[10pt]{article}\usepackage{wasysym}
\usepackage[substack]{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage[mathscr]{eucal}
\usepackage{mathrsfs}
\usepackage{pmc}
\usepackage[Euler]{upgreek}
\pagestyle{empty}
\oddsidemargin -1.0in
\begin{document}
{\text{O}}_{2}^{-}
\end{document}, and DPPH˙; the KOGM samples in all three groups could enhance the SOD and GSH-PX activities and reduce the MDA content in the liver tissues of mice; finally, the antioxidant activity of KOGM is negatively correlated with the molecular weight.
Collapse
Affiliation(s)
- Weidong Yang
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| |
Collapse
|
39
|
Zou Y, Yuan C, Cui B, Sha H, Liu P, Lu L, Wu Z. High-Amylose Corn Starch/Konjac Glucomannan Composite Film: Reinforced by Incorporating β-Cyclodextrin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2493-2500. [PMID: 33594885 DOI: 10.1021/acs.jafc.0c06648] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glycerol-plasticized high-amylose corn starch/konjac glucomannan (HCS/KGM) composite films incorporated with various concentrations of β-cyclodextrin (β-CD) were prepared and investigated for structural, mechanical, and physical properties. The results of X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analyses, and scanning electron microscopy indicated that β-CD excluded from the polymer chains and aggregated to form crystals during film formation, which drove HCS to interact with KGM more compactly. The thickness and transparency of the films increased after β-CD was incorporated. More associations of HCS/KGM enhanced the mechanical properties and reduced the moisture content of the films. The water vapor permeability of the HCS/KGM composite film was also improved significantly with the incorporation of β-CD. The enhanced association between biopolymers in the presence of β-CD will advance the development of a degradable active composite packaging film.
Collapse
Affiliation(s)
- Yiyuan Zou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haojie Sha
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
40
|
Nishinari K, Fang Y. Molar mass effect in food and health. Food Hydrocoll 2021; 112:106110. [PMID: 32895590 PMCID: PMC7467918 DOI: 10.1016/j.foodhyd.2020.106110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
It is demanded to supply foods with good quality for all the humans. With the advent of aging society, palatable and healthy foods are required to improve the quality of life and reduce the burden of finance for medical expenditure. Food hydrocolloids can contribute to this demand by versatile functions such as thickening, gelling, stabilising, and emulsifying, controlling texture and flavour release in food processing. Molar mass effects on viscosity and diffusion in liquid foods, and on mechanical and other physical properties of solid and semi-solid foods and films are overviewed. In these functions, the molar mass is one of the key factors, and therefore, the effects of molar mass on various health problems related to noncommunicable diseases or symptoms such as cancer, hyperlipidemia, hyperglycemia, constipation, high blood pressure, knee pain, osteoporosis, cystic fibrosis and dysphagia are described. Understanding these problems only from the viewpoint of molar mass is limited since other structural characteristics, conformation, branching, blockiness in copolymers such as pectin and alginate, degree of substitution as well as the position of the substituents are sometimes the determining factor rather than the molar mass. Nevertheless, comparison of different behaviours and functions in different polymers from the viewpoint of molar mass is expected to be useful to find a common characteristics, which may be helpful to understand the mechanism in other problems.
Collapse
Affiliation(s)
- Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, PR China
- Department of Food and Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, 558-6565, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
41
|
The Influence of Konjac Glucomannan on the Physicochemical and Rheological Properties and Microstructure of Canna Starch. Foods 2021; 10:foods10020422. [PMID: 33671907 PMCID: PMC7918958 DOI: 10.3390/foods10020422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022] Open
Abstract
The addition of hydrocolloid is an effective method to improve the properties of native starch. However, few studies have investigated the effects of konjac glucomannan (KGM) on canna starch (CS). In this study, the effects of various KGM concentration on the pasting, rheological, textural, and morphological properties of CS were investigated. The addition of KGM significantly increased CS’s pasting viscosities. Incorporation of KGM in CS at a relatively high level (1.2% w/w) exerted a significant influence on the pasting properties of CS. The consistency coefficient of CS was notably increased by KGM (from 43.6 to 143.3 Pa·sn) and positively correlated positive with KGM concentration. KGM concentration at a relatively high level (1.2% w/w) increased the elasticities and cohesiveness of CS by 53.3% and 88.0%, respectively, in texture profile analysis. The polarized optical microscope images indicated that KGM played an important part in protecting the crystalline structure of CS during heating. A denser porous microstructure with a filamentous network was observed in gelatinized KGM/CS mixtures as compared with the CS control. This research advances the knowledge of interactions between KGM and CS and opens possibilities to improve rheological properties of CS and to develop its new functionalities with KGM addition.
Collapse
|
42
|
Hu L, Zhu X, Shang L, Teng Y, Li J, Li B. Inhibit the intrinsic bacteria from konjac glucomannan hydrosol for its improved viscosity stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Mei J, Huang T, Bai C, Fu Z. Influences of chitosan on freeze–thaw stability of
Arenga pinnata
starch. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiang‐Yang Mei
- Institute of Light Industry and Food Engineering Guangxi University 530004Nanning China
| | - Ting Huang
- Institute of Light Industry and Food Engineering Guangxi University 530004Nanning China
| | - Cong‐Hao Bai
- Institute of Light Industry and Food Engineering Guangxi University 530004Nanning China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering Guangxi University 530004Nanning China
| |
Collapse
|
44
|
Formation of high amylose corn starch/konjac glucomannan composite film with improved mechanical and barrier properties. Carbohydr Polym 2021; 251:117039. [DOI: 10.1016/j.carbpol.2020.117039] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
|
45
|
Gao S, Liu H, Sun L, Cao J, Yang J, Lu M, Wang M. Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Huang S, Wang N, Zhang Y, Zhang F, Zheng J. Physical, thermal and structural properties of rice starch as affected by the addition of bamboo shoot shell fibres. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Huang
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| | - Nan Wang
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| | - Yue Zhang
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| | - Fusheng Zhang
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| | - Jiong Zheng
- College of Food Science Southwest University Chongqing400715China
- National Demonstration Center for Experimental Food Science and Technology Education (Southwest University) Chongqing400715China
| |
Collapse
|
47
|
Liu Z, Wang C, Liao X, Shen Q. Measurement and comparison of multi-scale structure in heat and pressure treated corn starch granule under the same degree of gelatinization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Hu L, Wang S, Shang L, Teng Y, Li J, Li B. A novel strategy to maintain the long-term viscosity stability of konjac glucomannan hydrosol by using zinc ion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Guo J, Wang C, Liu C, Wang P. Effect of Konjac Glucomannan on Gelatinization, Retrogradation, and Gelling Properties of Frozen Wheat Starch. STARCH-STARKE 2020. [DOI: 10.1002/star.202000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinying Guo
- College of Food and Bioengineering Henan University of Science and Technology Luoyang Henan Province 471023 P. R. China
- Henan Agricultural Products Drying Equipment Engineering Technology Research Center Luoyang Henan Province 471023 P. R. China
| | - Chengyan Wang
- College of Food and Bioengineering Henan University of Science and Technology Luoyang Henan Province 471023 P. R. China
| | - Changying Liu
- Neihuang Agricultural Products Quality and Safety Inspection and Testing Center Bureau of Agriculture and Rural Affairs of Neihuang Neihuang Henan Province 456300 P. R. China
| | - Ping Wang
- College of Food and Bioengineering Henan University of Science and Technology Luoyang Henan Province 471023 P. R. China
| |
Collapse
|
50
|
Pectin and its acid hydrolysate for the modification of hydration, pasting, thermal and rheological properties of barley starch. Int J Biol Macromol 2020; 152:969-980. [DOI: 10.1016/j.ijbiomac.2019.10.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/05/2019] [Accepted: 10/22/2019] [Indexed: 01/27/2023]
|