1
|
Chang Z, Gu C, Wang M, Chen J, Zhou J, Yue M, Zhang C, Liu F, Feng Z. Structural characterization of noni (Morinda citrifolia L.) pectin and its inhibitory activity on pancreatic lipase. Int J Biol Macromol 2024:137521. [PMID: 39537048 DOI: 10.1016/j.ijbiomac.2024.137521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to investigate the physicochemical properties and biological activities of noni pectin (NP) extracted using various solvents, three fractions of noni pectin were obtained using traditional chemical and deep eutectic solvents. NPs are composed of various ratios of galacturonic acid, arabinose, rhamnose, xylose, glucose, and galactose with different yields, molecular weights, esterification degrees (DE), and microstructures. Among the fractions, noni pectin extracted with Betaine-citric acid (BNP) exhibited higher molecular weight, degree for esterification and pancreatic lipase (PL) inhibitory activity than the other fractions. Enzyme kinetic analysis indicated that BNP inhibited PL via a noncompetitive mechanism. BNP significantly altered the secondary structure of PL and quenched PL fluorescence, suggesting a static quenching mechanism. Isothermal titration calorimetry (ITC) further demonstrated that the binding of BNP to PL was spontaneous and driven by enthalpy, primarily mediated by hydrogen bonding and van der Waals forces. Molecular docking simulations also confirmed strong noncovalent interactions (hydrogen bonding and van der Waals forces) between BNP and PL. This study validated the high efficiency of the deep eutectic solvent-extracted noni pectin fraction in pancreatic lipase inhibition.
Collapse
Affiliation(s)
- Ziqing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Chunhe Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, Wanning 571533, Hainan, China
| | - Mengrui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junxia Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junping Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Mingzhe Yue
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China.
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, Wanning 571533, Hainan, China.
| |
Collapse
|
2
|
Qin Z, Chang YL, Yang ZC, Fan W, Chen ZM, Gu LB, Qin Z, Liu HM, Zhu XL, Ma YX. Microwaving plus enzymatic pretreatment of safflower seeds increases the phenolic content and oxidative stability of extracted oil. Food Chem 2024; 464:141831. [PMID: 39509885 DOI: 10.1016/j.foodchem.2024.141831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
In this paper, microwave-assisted (MW-AE), enzyme-assisted (Ene-AE) and microwaving plus enzymatic treatment (MW + Ene-AE) were used to explored their effects on the polyphenols in safflower seeds and safflower seed oil (SSO). The results showed that the introduction of MW-AE treatment prior to Ene-AE enhanced enzyme accessibility, resulting in MW + Ene-AE achieving the highest efficiency for polyphenol extraction from seeds, with a 67 % improvement compared to the control sample. Different treatments significantly altered the composition of polyphenols in the seeds, with a noticeable conversion of polyphenol glycosides to aglycones observed in Ene-AE and MW + Ene-AE. Characterization of SSO revealed that these aglycones migrated more readily into the oil compared to glycosides. The highest TPC in SSO (1143.56 ± 52.43 μg/g) was achieved with MW + Ene-AE, which was 7.75 times higher than that of the untreated sample (130.62 ± 2.38 μg/g). In summary, MW + Ene-AE is an effective method for polyphenol extraction and increasing the TPC of SSO.
Collapse
Affiliation(s)
- Zhi Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yun-Long Chang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zi-Cheng Yang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wei Fan
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zi-Meng Chen
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Ling-Biao Gu
- School of Biological and Food Engineering, Henan Key Laboratory of Subcritical High-Efficiency Extraction, Anyang Institute of Technology, Anyang 455000, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Xin-Liang Zhu
- Henan Subcritical Extraction Technology Research Institute Co., Ltd, Anyang 455000, China
| | - Yu-Xiang Ma
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Wei X, Xu K, Qin W, Lv S, Guo M. Hawthorn (Crataegus pinnatifida) berries ripeness induced pectin diversity: A comparative study in physicochemical properties, structure, function and fresh-keeping potential. Food Chem 2024; 455:139703. [PMID: 38823132 DOI: 10.1016/j.foodchem.2024.139703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
The effect of hawthorn berries ripeness on the physicochemical, structural and functional properties of hawthorn pectin (HP) and its potential in sweet cherry preservation were investigated. With the advanced ripeness of hawthorn berries, the galacturonic acid (GalA) content decreased from 59.70 mol% to 52.16 mol%, the molecular weight (Mw) reduced from 368.6 kDa to 284.3 kDa, the microstructure exhibited variable appearance from thick lamella towards porous cross-linked fragment, emulsifying activity and emulsions stability, antioxidant activities, α-amylase and pancreatic lipid inhibitory capacities significantly increased. The heated emulsion stored for 30 d presented higher creaming index and more ordered oil droplets compared to the unheated emulsion. With the extended berries ripeness, the firmness of HP gels remarkably decreased from 225.69 g to 73.39 g, while the springiness increased from 0.78 to 1.16, HP exhibited a superior inhibitory effect in water loss, browning, softening, and bacterial infection in sweet cherries preservation.
Collapse
Affiliation(s)
- Xueyan Wei
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Kang Xu
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Weishuai Qin
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, China
| | - Shuo Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Mengmeng Guo
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
4
|
Suman DK, Pal K, Mohanty B, Erva RR. Novel nutraceutical delivery system utilizing a bigel formulated with sesame oil, kokum butter, and pectin. Food Sci Biotechnol 2024; 33:3067-3082. [PMID: 39220304 PMCID: PMC11364833 DOI: 10.1007/s10068-024-01559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 09/04/2024] Open
Abstract
This study delineates biobased foods. Curcumin (CRU) delivery modules were studied using pectin gel, Sesame oil (SO), and Kokum butter (KB) oleogel (OG). SB1, the control, has 10% OG. The pectin gel between 10 and 50% oleogel were emulsified by 2.5% tween 80. Surface, physical, chemical, and physiochemical properties of prepared bigels were examined. Microscopic studies show biphasic feature. With OG content, FTIR shows hydrogen bonding increasing and decreasing. XRD confirmed gel amorphousness. Stress relaxation indicated 10% control bigel had considerably less strength. Bigel impedance factors increased considerably with OG content, according to impedance profiles. The moisture study found that replacing hydro phase with OG phase in formulations reduced moisture content from 10 to 50%. Less CRU released from 20 to 50% bigel matrices than 10% during in vitro studies. Acidic pH hindered polymer relaxation, altering release behaviour. Overall, the bigels were studied and shown to regulate oral CRU administration. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01559-3.
Collapse
Affiliation(s)
- Dheerendra Kumar Suman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Odisha India
| | - Rajeswara Reddy Erva
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh India
| |
Collapse
|
5
|
Nan Z, Chen L, Li G, Li H, Li Y, Ma J, Ding J, Yang J. A method for the quantitative analysis of Lycium barbarum polysaccharides (LBPs) using Fourier-transform infrared spectroscopy (FTIR): From theoretical computation to experimental application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125204. [PMID: 39342715 DOI: 10.1016/j.saa.2024.125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Lycium barbarum polysaccharides (LBPs) is one of the most important active substances in Lycium barbarum (LB). It is a challenge to quantitatively determine the content due to their complex structures and lack of suitable reference standard in practice. In this study, a quantitative analysis method of LBPs in LB was established based on Fourier-transform infrared spectroscopy (FTIR). The stretching vibration of CO on the pyranose ring of saccharide at 921 cm-1 was selected as the characteristic absorption band by theoretical calculation, which can't be impacted by the preparation methods and interfered by the component monosaccharides. The molecular weight CRM of dextran (Mw 63.3 kDa) served as the reference standard. The introducing internal standard (KSCN) can obtain a good precision (RSD = 1.10 %) and effectively compensate for the analysis errors caused by the environment, quality loss and uneven distribution during the tablet pressing processes. The methodological verification suggested that the method had good accuracy according to the recovery rate (96.61 %-105.45 %) and the blank recovery (92.39 %-99.37 %), respectively. The LOD and LOQ of CRMD were 0.10 mg and 0.32 mg, respectively. The polysaccharide content of LB from 24 different regions (0.50-2.54 %) and 10 batches of LB extracts (7.09-10.56 %) determined by the developed method less than the ones using phenol-sulfuric acid assay (1.95 %-4.83 % for LB and 9.83-15.53 % for extracts, respectively). The established method based on FTIR could be served as a supplement to phenol-sulfuric acid assay and a rapid quantitative assay for polysaccharides products. In additional, this study provided a new idea for the quantitative analysis of plant polysaccharides.
Collapse
Affiliation(s)
- Zhuan Nan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Lulu Chen
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Guangxia Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
| | - Yanping Li
- Ningxia Wuxing Science and Technology Co. Ltd., Yinchuan 750002, China
| | - Jianlong Ma
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China; Ningxia Research Center for Natural Medicine Engineering and Technology, Yinchuan 750021, China
| | - Jianbao Ding
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; Ningxia Wuxing Science and Technology Co. Ltd., Yinchuan 750002, China; Zhejiang Skyherb Biotechnology Inc., Huzhou 313000, China.
| | - Jin Yang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; Ningxia Research Center for Natural Medicine Engineering and Technology, Yinchuan 750021, China.
| |
Collapse
|
6
|
Abdul Sattar OD, Khalid RM, Yusoff SFM. Eco-friendly natural rubber-based hydrogel loaded with nano-fertilizer as soil conditioner and improved plant growth. Int J Biol Macromol 2024; 280:135555. [PMID: 39276881 DOI: 10.1016/j.ijbiomac.2024.135555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
This study addresses the dual challenge of agricultural cost and waste management by harnessing agrarian waste to produce nano-fertilizers (NF) to enhance crop yield while mitigating environmental impacts. Recognizing the limitations of traditional hydrogels' non-biodegradability and their inability to sustain root zone moisture and nutrient levels, we developed an LNR/AAc/pectin hydrogel. This innovative hydrogel offers a viable solution that provides a consistent NF supply and improves water retention efficiently. Additionally, we utilized Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and thermogravimetric analysis (TGA) to analyze the hydrogel's structure, stability, and form. Transmission electron microscopy (TEM) and X-ray fluorescence spectroscopy (XRF) were employed to ascertain the NF concentration. The optimization of the hydrogel's swelling and NF release was conducted through a 5-level, 2-factor Response Surface Methodology (RSM), focusing on the effects of the AAc: LNR ratio and pectin weight while maintaining constant concentrations of potassium persulfate (KPS) and MBA. Results revealed a high correlation between predicted and experimental values, with determination coefficients (R2) of 0.9982 for swelling and 0.9979 for NF release. Furthermore, the hydrogel exhibited a 96.30 % biodegradation rate after 120 days of soil burial. Our findings demonstrate the hydrogels' potential to significantly impact farming and gardening by ensuring a sustainable supply of nutrients to enhance soil moisture retention.
Collapse
Affiliation(s)
- Omar D Abdul Sattar
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Department of Chemistry, College of Sciences, University of Diyala, Iraq
| | - Rozida Mohd Khalid
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Centre (PORCE), Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Siti Fairus M Yusoff
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Centre (PORCE), Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
7
|
Hoang LTTT, Phan HVT, Nguyen NN, Dang TT, Tran TN, Nguyen VK, Dao MT. Utilization of dragon fruit ( Hylocereus undatus) peel-derived biochar for the adsorptive removal of tetracycline from aqueous solution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2313-2324. [PMID: 39154231 DOI: 10.1080/15226514.2024.2389471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The peel of Hylocereus undatus was employed in the preparation of biochar and firstly applied for tetracycline removal from aqueous solution. Based on different characterization techniques, the material was found to possess a variety of surface functional groups on a porous structure and a pH point of zero charge (pHpzc) of 9.3. Adsorption of tetracycline (TC) was conducted under varying conditions, revealing significant effects of carbonization temperature, solution pH, adsorbent dose, ionic strength, contact time and initial concentration of TC on the biochar adsorption capacity. Kinetic data on TC adsorption were best described using the Elovich kinetic model, with an initial adsorption rate of 167.3 mg g-1 min-1. Isotherm data on adsorption of the desired biochar showed the best fit with the Temkin isotherm model, followed by the Langmuir model, displaying maximum adsorption capacity at 12.4 mg g-1. The electrostatic interactions between the charged biochar surfaces and certain fractions of TC were proposed as the major mechanism, together with H-bonding, pore-filling effect and π-π interaction. This study demonstrates great potential of H. undatus peel as a starting material to prepare an effective and reusable adsorbent in the removal of TC.
Collapse
Affiliation(s)
- Le-Thuy-Thuy-Trang Hoang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Ngoc-Nhi Nguyen
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Thanh-Truc Dang
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Thanh-Nha Tran
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Minh-Trung Dao
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| |
Collapse
|
8
|
Dambuza A, Rungqu P, Oyedeji AO, Miya GM, Kuria SK, Hosu SY, Oyedeji OO. Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels. Molecules 2024; 29:3878. [PMID: 39202957 PMCID: PMC11357295 DOI: 10.3390/molecules29163878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Pectin is a natural polymer that is found in the cell walls of higher plants. This study presents a comprehensive analysis of pectin extracted from lemon in two different geographic regions (Peddie and Fort Beaufort) in two consecutive years (2023 and 2024) named PP 2023, PP 2024, FBP 2023, and FBP 2024. The dried lemon peels were ground into a powder, sifted to obtain particles of 500 μm, and then subjected to pectin extraction using a conventional method involving mixing lemon peel powder with distilled water, adjusting the pH level to 2.0 with HCl, heating the mixture at 70 °C for 45 min, filtering the acidic extract, and precipitating pectin with ethanol. The yield of these pectin samples was statistically significant, as FBP 2024 had a maximum yield of 12.2 ± 0.02%, PP 2024 had a maximum yield of 13.0 ± 0.02%, FBP 2023 had a maximum yield of 12.2 ± 0.03%, and PP 2023 had a maximum yield of 13.1 ± 0.03%, The variation in yield could be due to the differences in the growing conditions, such as the climate and soil, which could have affected the pectin content in the lemons. The physicochemical characterization of all samples proved that our pectin samples could be used in the pharmaceutical and food industries, with anhydrouronic acid content which was greater than 65%, as suggested by the FAO. The scanning electron microscope analysis of all extracted pectin was rough and jagged, while the commercial pectin displayed a smooth surface morphology with a consistent size. FTIR confirmed the functional groups which were present in our samples. Thermogravimetric analysis was employed to investigate the thermal behavior of the extracted pectin in comparison with commercial pectin. It was found that the extracted pectin had three-step degradation while the commercial pectin had four-step degradation. Additionally, pectin samples have been shown to have antioxidants, as the IC50 of PP 2024, PP 2023, FBP 2023, FBP 2024, and Commercial P was 1062.5 ± 20.0, 1201.3 ± 22.0, 1304.6 ± 19.0, 1382.6 ± 29.9, and 1019.4 ± 17.1 mg/L, respectively. These findings indicate that lemon pectin has promising characteristics as a biopolymer for use in biomedical applications.
Collapse
Affiliation(s)
- Anathi Dambuza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| | - Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Gugulethu M Miya
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Simon K Kuria
- Department of Biological and Environmental Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Sunday Yiseyon Hosu
- Department of Business Management and Economics, Faculty of Economics and Financial Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| |
Collapse
|
9
|
Castro ML, Azevedo-Silva J, Valente D, Machado A, Ribeiro T, Ferreira JP, Pintado M, Ramos OL, Borges S, Baptista-Silva S. Elevating Skincare Science: Grape Seed Extract Encapsulation for Dermatological Care. Molecules 2024; 29:3717. [PMID: 39202797 PMCID: PMC11357433 DOI: 10.3390/molecules29163717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
The skin is the largest organ in the human body and serves multiple functions such as barrier protection and thermoregulation. The maintenance of its integrity and healthy structure is of paramount importance. Accordingly, technological advances in cosmetic sciences have been directed towards optimizing these factors. Plant-derived ingredients have been explored for their bioactivity profiles and sustainable sources. Grape by-products contain a group of bioactive molecules that display important biological activities. Nonetheless, many of these molecules (e.g., phenolic compounds) are unstable and susceptible to degradation. So, their encapsulation using nano/microsystems (i.e., microdispersions) has been explored as a promising solution. In this work, two grape seed extracts were obtained, one from a single grape variety (GSE-Ov) and another from a mix of five grape varieties (GSE-Sv). These extracts were analysed for their antioxidant and antimicrobial activities, as well as their chemical composition and molecular structure. The extract that showed the most promising properties was GSE-Ov with a DPPH IC50 of 0.079 mg mL-1. This extract was encapsulated in soy lecithin microdispersions coated with pectin, with an encapsulation efficiency of 88.8%. They showed an in vitro release of polyphenols of 59.4% during 24 h. The particles displayed a zeta potential of -20.3 mV and an average diameter of 13.6 µm. Microdispersions proved to be safe under 5 and 2.5 mg mL-1 in HaCaT and HDF cell models, respectively. Additionally, they demonstrated anti-inflammatory activity against IL-1α when tested at 2 mg mL-1. This work enabled the valorisation of a by-product from the wine industry by using natural extracts in skincare products.
Collapse
Affiliation(s)
- Maria Leonor Castro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Valente
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Adriana Machado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
- Associação CECOLAB, Laboratório Colaborativo para a Economia Circular, Centro Empresarial, Rua Nossa Senhora da Conceição, 2, Oliveira do Hospital, 3405-155 Coimbra, Portugal
| | - Tânia Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
| | - João Paulo Ferreira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
| | - Oscar L. Ramos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
| | - Sandra Borges
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
| | - Sara Baptista-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.L.C.); (J.A.-S.); (D.V.); (A.M.); (T.R.); (J.P.F.); (M.P.); (O.L.R.); (S.B.)
| |
Collapse
|
10
|
Xian M, Bi J, Xie Y, Jin X. Modulating pectin structure and enhancing texture of frozen yellow peaches: The impact of low-temperature blanching. Int J Biol Macromol 2024; 271:132618. [PMID: 38795880 DOI: 10.1016/j.ijbiomac.2024.132618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
High-temperature blanching (HTB) is the primary process that causes texture softening in frozen yellow peaches. The implementation of low-temperature blanching reduced pectin methyl esterification, increased pectin cross-linking, and mitigated pectin depolymerization during the subsequent HTB, leading to the superior texture of frozen yellow peaches with enhanced water holding capacity, higher fracture stress, and initial modulus. However, adding 2 % calcium lactate (w/v) during low-temperature blanching did not further improve the texture of frozen yellow peaches. Instead, it softened the texture by reducing Na2CO3-soluble pectin (NSP) and increasing water-soluble pectin (WSP) content. This study provided a theoretical basis for applying low-temperature blanching to improve the texture of frozen yellow peaches.
Collapse
Affiliation(s)
- Meilin Xian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Yitong Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
11
|
Prabsangob N, Hangsalad S, Harnsilawat T. Effect of Organic Acid-Aided Extraction on Characteristics and Functional Properties of Pectin from Cannabis sativa L. Molecules 2024; 29:2511. [PMID: 38893387 PMCID: PMC11173500 DOI: 10.3390/molecules29112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The extraction of cannabinoids from the inflorescence and leaves of Cannabis sativa L. is gaining interest from researchers, in addition to addressing the under-utilization of the by-products in the stems and roots of the trees. The present study investigated the recovery of pectin from the left-over parts of hemp tress using an eco-friendly method with the aid of organic acids. Different cannabis cultivars-Chalotte's Angels (CHA) and Hang-Krarog (HKR)-were used as plant materials. The stems of both cannabis cultivars contained more pectin than the roots, and tartaric acid-aided extraction provided higher yields than from citric acid. Extracting the acid solution affected some characteristics, thereby differentiating the functional properties of the derived pectin. Extraction using tartaric acid provided pectin with a higher galacturonic acid content, whereas pectin with a higher methylation degree could be prepared using citric acid. The pectin samples extracted from the stems of CHA (P-CHA) and HKR (P-HKR) had low methoxyl pectin. P-CHA had better free radical scavenging capability, whereas P-HKR showed more potent reducibility. Considering the functional properties, P-CHA showed greater emulsion formability and foaming activity, whereas P-HKR possessed a better thickening effect. The present work suggests the feasible utilization of P-CHA and P-HKR as food additives with bioactivity.
Collapse
Affiliation(s)
- Nopparat Prabsangob
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | | | | |
Collapse
|
12
|
Cano-Gonzalez CN, Contreras-Esquivel JC, Rodríguez-Herrera R, Aguirre-Loredo RY, Soriano-Melgar LDAA. Transformation of agricultural wastes into functional oligosaccharides using enzymes and emerging technologies. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38693046 DOI: 10.1002/pca.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pectin-oligosaccharides (POS) serve diverse purposes as a food ingredient, antimicrobial and biostimulant in plants, and their functionality is linked to the degree of esterification. Grape and broccoli wastes emerge as environmentally friendly alternatives to obtaining pectin, serving as a sustainable source to producing POS. For example, microwaves have proven to be an effective and sustainable method to extract polysaccharides from plant matrices. OBJECTIVE This work aims to use grape and broccoli wastes as alternative sources for obtaining pectin by microwave-assisted extraction and biotransformation into POS, which possess biological properties. MATERIAL AND METHODS The extraction conditions were identified at a power of 400 W, 300 s for the extraction of pectin from grape pomace and broccoli waste. Biotransformation of pectins into POS, using commercial enzyme preparations (Viscozyme L and Pectinase). Characterisation was carried out by Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. RESULTS Physicochemical analysis indicated grape pomace and broccoli waste pectins had galacturonic acid content of 63.81 ± 1.67 and 40.83 ± 2.85 mg 100 mg-1, low degree of esterification of 34.89% and 16.22%, respectively. Biotransformation of pectins into POS resulted in a 20% hydrolysis rate. The main enzymatic activity was polygalacturonase for the degradation of the main structure of the pectin. CONCLUSION Production of POS from agro-industrial wastes by emerging technologies, such as the combined use of microwave-assisted extraction and enzymatic processes, represents an alternative method for the generation of bioactive compounds with distinctive properties suitable for different applications of interest.
Collapse
Affiliation(s)
- Carlos N Cano-Gonzalez
- Procesos de Polimerizacion, Centro de Investigación en Química Aplicada, Saltillo, Coahuila de Zaragoza, Mexico
| | | | - Raúl Rodríguez-Herrera
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila de Zaragoza, Mexico
| | - Rocio Yaneli Aguirre-Loredo
- Procesos de Polimerizacion, Centro de Investigación en Química Aplicada, Saltillo, Coahuila de Zaragoza, Mexico
- Investigadoras e Investigadores por México, CONAHCyT, Av. Insurgentes sur, Mexico City, 03940, Mexico
| | - Lluvia de Abril Alexandra Soriano-Melgar
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila de Zaragoza, Mexico
- Investigadoras e Investigadores por México, CONAHCyT, Av. Insurgentes sur, Mexico City, 03940, Mexico
| |
Collapse
|
13
|
Szulc K, Galus S. Structural and Rheological Characterization of Vegetable Crispbread Enriched with Legume Purée. Molecules 2024; 29:1880. [PMID: 38675700 PMCID: PMC11053922 DOI: 10.3390/molecules29081880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Crispbread is gaining popularity as a healthy snack or bread substitute. This is a lightweight dry type of flat food that stays fresh for a very long time due to its lack of water and usually contains different types of grain flour, including gluten-containing wheat or rye flour. The incorporation of legume purée into crispbread represents an innovative approach to enhancing the nutritional profile and taste of the product. The rheological properties of various legume purées (chickpea, white bean, black bean, and red bean) mixed with citrus pectin were examined, revealing significant differences in fluid behavior and viscosity. Crispbread formulations were analyzed for water content and activity, color, structure, FT-IR spectra, water vapor adsorption isotherms, and sensory evaluation. The results showed the possibility of obtaining crispbread based on the purée of legumes and citrus pectin. Crispbread enriched with red bean purée exhibited low water activity (0.156) and water content (3.16%), along with a continuous porous structure, and received the highest sensory evaluation score among the products. These findings can be treated as a basis for the development of other innovative recipes and combinations using legumes.
Collapse
Affiliation(s)
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
14
|
Kang YR, Chang YH. Structural and flow rheological properties of pumpkin pectic polysaccharide extracted by citric acid. Int J Biol Macromol 2024; 265:130748. [PMID: 38467216 DOI: 10.1016/j.ijbiomac.2024.130748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The present study aimed to investigate the structural and physicochemical characteristics of acid-extracted pumpkin pectic polysaccharide (AcPP) and to evaluate their flow rheological properties. AcPP was extracted from pumpkin pulp using the citric acid extraction method. The physicochemical and structural properties were analyzed by chemical methods and instrumental analyses. The obtained results showed that AcPP consisted predominantly of GalA (85.99 %) and small amounts of Rha, Gal, and Ara, with the ratio of HG/RG-I being 81.39/16.75. In addition, AcPP had medium DE (45.34 %) and contained four macromolecular populations with different Mw of 106.03 (main), 10.15, 4.99, and 2.90 kDa. The NMR analysis further confirmed that AcPP contained a linear backbone consisting of α-1,4-linked GalA residues, some of which were partially methyl-esterified. Furthermore, AcPP was amorphous in nature and had favorable thermal stability. The effects of extrinsic factors on the flow rheological properties of AcPP were evaluated. In particular, the high concentrations of CaCl2 (8 mM) and MgCl2 (10 mM) were effective in enhancing the viscosity and non-Newtonian shear-thinning behavior of the AcPP solution. This study elucidates the unique molecular structure of AcPP and suggests the potential of AcPP as a rheology modifier in low-viscous and mineral-reinforced beverages.
Collapse
Affiliation(s)
- Yu-Ra Kang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
15
|
Hamid S, Oukil NF, Moussa H, Mahdjoub MM, Djihad N, Berrabah I, Bouhenna MM, Chebrouk F, Hentabli M. Enhancing basil essential oil microencapsulation using pectin/casein biopolymers: Optimization through D-optimal design, controlled release modeling, and characterization. Int J Biol Macromol 2024; 265:130948. [PMID: 38503374 DOI: 10.1016/j.ijbiomac.2024.130948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
A D-optimal design was employed to optimize the microencapsulation (MEC) of basil essential oil (BEO) within a biopolymer matrix using the complex coacervation technique. BEO microcapsules (BEO-MCs) obtained under the optimal conditions exhibited high yield and efficiency with 80.45 ± 0.01 % and 93.10 ± 0.18 %, respectively. The successful MEC of BEO with an average particle size of 4.81 ± 2.86 μm was confirmed by ATR-FTIR, X-RD, and SEM analyses. Furthermore, the thermal stability of BEO-MCs was assessed using TGA-DSC analysis, which provided valuable insights into the MC's thermal stability. Furthermore, the proposed model, with a high R2 value (0.99) and low RMSE (1.56 %), was the most suitable one among the tested models for the controlled release kinetics of the optimal BEO-MCs under simulated gastrointestinal conditions. The successful optimization of BEO MEC using biopolymers through the D-optimal design could be a promising avenue for food and pharmaceutical industries, providing new strategies for the development of effective products.
Collapse
Affiliation(s)
- Sarah Hamid
- Laboratoire de Biotechnologie Végétale et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Naima Fadloun Oukil
- Laboratoire de Biotechnologie Végétale et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Hamza Moussa
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Malik Mohamed Mahdjoub
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Nadjet Djihad
- Laboratoire de Biotechnologie Végétale et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Ismail Berrabah
- Laboratoire des Matériaux Polymères Avancés (LMPA), Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mustapha Mounir Bouhenna
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP384, Bou-Ismail, Tipaza 42004, Algeria
| | - Farid Chebrouk
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP384, Bou-Ismail, Tipaza 42004, Algeria
| | - Mohamed Hentabli
- Laboratoire de Biomatériaux et Phénomènes de Transport (LBMPT), Université Yahia Fares de Médéa, Médéa 26000, Algeria
| |
Collapse
|
16
|
Vieira DRR, da Silva VR, Spier MR. Extraction of high methoxyl pectin from unripe waste Ponkan mandarine (Citrus reticulata Blanco cv. Ponkan) with an eco-friendly solvent. Int J Biol Macromol 2024; 258:128663. [PMID: 38092102 DOI: 10.1016/j.ijbiomac.2023.128663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The aqueous batch extraction of pectin from unripe Ponkan mandarin was evaluated for potential application in the food industry. A small central composite design with 4 variables (temperature, volume to mass ratio, pH, and mean particle size) and 3 levels was applied for pectin extraction optimization. Also, the kinetic of the pectin yield extraction was investigated at temperatures 70-90 °C, stirring rate of 100-700 rpm, ultrasound pretreatment system, and modeling using four mathematical models. The pectin extraction process was evaluated by yield of pectin and esterification degree. FTIR, TGA, and DTA were performed to evaluate the quality of pectin obtained. The small central composite design demonstrated that temperature and volume to mass ratio were significant variables, and the highest yield of pectin extraction was 11.62 % obtained at temperature and volume to molar ratio of 81.9 °C and 33.9 v/w %, respectively. Besides, the esterification degree showed higher than 70 % for all extraction conditions, suggesting high methoxyl pectin. The kinetics showed the stirring rate and the ultrasound pretreatment did not cause any significant alteration, while high temperatures proved to be beneficial to the rate and the yield of the pectin extraction. The best fit was provided by Fick's law, suggesting the extraction process is limited by internal mass transfer. FTIR showed the functional groups expected for pectin, and TGA and DTA indicated that the pectin obtained is proper for most food products, as only above 200 °C the pectin should degrade.
Collapse
Affiliation(s)
- Daniel Ravazzani Ribeiro Vieira
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil.
| | - Vitor Renan da Silva
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil
| | - Michele Rigon Spier
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
17
|
Wu Y, Chen H, Wang B, Xu J, Li J, Ying G, Chen K. Extraction of Ampelopsis japonica polysaccharides using p-toluenesulfonic acid assisted n-butanol three-phase partitioning: Physicochemical, rheological characterization and antioxidant activity. Int J Biol Macromol 2024; 254:127699. [PMID: 37913878 DOI: 10.1016/j.ijbiomac.2023.127699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Polysaccharides as the biopolymers are showing various structural and modulatory functions. Effective separation of carbohydrate structures is essential to understanding their function. In this study, we choose an efficient organic acid in combination with recyclable organic solvent three-phase partitioning technology for the simultaneous extraction of polysaccharides from Ampelopsis japonica (AJPs) to ensure the integrity of linear and branched polysaccharide. The monosaccharide composition, glycosidic linkage information, structural and physicochemical analyses and associations with antioxidant activities were extensively analyzed. Synergistic extraction was compared with the conventional hot water extraction method and the results showed that AJPs-HNP exhibited better elastic properties and excellent antioxidant activity. Correlation analysis confirmed that the antioxidant activity of AJPs was significantly correlated with relative molecular weight, uronic acid content and terminal glycoside linkage molar ratios. The collaborative processing has significantly improved the utilization potential of AJPs and provides a sound theoretical foundation for the effective extraction and separation of polysaccharides. Overall, this work provides systematic and comprehensive scientific information on the physicochemical, rheological and antioxidant properties of AJPs, revealing their potential as natural antioxidants in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yan Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| | - Guangdong Ying
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| |
Collapse
|
18
|
Lin X, Liu Y, Wang R, Dai J, Wang L, Zhang J. Extraction of pectins from renewable grapefruit (Citrus paradisi) peels using deep eutectic solvents and analysis of their structural and physicochemical properties. Int J Biol Macromol 2024; 254:127785. [PMID: 37931867 DOI: 10.1016/j.ijbiomac.2023.127785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
This study presents an innovative attempt to extract high-quality pectins from grapefruit (Citrus paradisi) peels by using deep eutectic solvents (DESs) as extraction agents. The maximum yield of betaine-citric acid (BC)-extracted pectin (BC-P) reached 36.47 % under the optimum process conditions: an L/S ratio of 25 mL/g, a pH of 2.0, and a temperature of 85 °C for 120 min. The yield of BC-P was significantly higher than HCl-extracted pectin (HCl-P, 8.76 %) under a pH of 2.0. In addition, the structural, physicochemical, and emulsifying properties of the purified pectins (BC-P and HCl-P) and commercial pectin (CP) were comparatively analyzed. Results showed that BC-P exhibited higher RG-I value, more arabinan side-chains, bigger Mw and Mn value than HCl-P. Moreover, the viscosity, G' and G'' of BC-P were significantly higher than those of HCl-P and CP. More importantly, BC-P demonstrated better emulsifying activity and stability compared to HCl-P and CP. When the concentration of BC-P was increased to 1.50 %, a stable emulsion containing a 50 % soybean oil fraction could be obtained. Our results confirmed that DESs can be considered as high-effective agents for pectin extraction. Pectins extracted from grapefruit peels can be as a promising natural emulsifiers that can be used in the food industry.
Collapse
Affiliation(s)
- Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yuezhe Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jincheng Dai
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
19
|
Hosseini H, Pasban Noghabi V, Saberian H, Jafari SM. The influence of different gums compared with surfactants as encapsulating stabilizers on the thermal, storage, and low-pH stability of chlorophyllin. Food Chem X 2023; 20:101020. [PMID: 38144797 PMCID: PMC10740045 DOI: 10.1016/j.fochx.2023.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
Sodium copper chlorophyllin (SCC), with a higher stability and water solubility than chlorophyll, has limited applications in acidic products due to precipitation. We investigated the effect of pectin (PE), carboxymethyl cellulose (CMC), xanthan gum (XG), carrageenan gum (CG), gellan gum (GG), tragacanth gum (TG), gum Arabic (GA), and polysorbate 80 (PS80) on SCC stability in acidic model solutions (pH = 3.5). These stabilizers led to a significant reduction in particle size and zeta-potential compared to control sample. GA (33.3:1), PE (8:1), CMC (4:1), XG (1.33:1), and PS80 (0.67:1) stabilized SCC in acidic systems for 28 days. The FTIR analysis showed that mainly electrostatic and hydrogen bonds between SCC and stabilizers led to a substantial decline in particle size, improving SCC distribution and stability within acidic environment. Thus, XG and CMC could be effectively used for SCC stabilization under acidic solutions where applying PS80 surfactant is a health concern.
Collapse
Affiliation(s)
- Hamed Hosseini
- Food Additives Research Department, Food Science and Technology Research Institute, Iranian Academic Centre for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Vahid Pasban Noghabi
- Department of Food Science and Technology, ACECR Kashmar Higher Education Institute, Kashmar, Iran
| | - Hamed Saberian
- Department of Agro-industrial Waste Processing, Academic Center for Education, Culture and Research (ACECR), IUT Branch, Isfahan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
20
|
Rentería-Ortega M, Colín-Alvarez MDL, Gaona-Sánchez VA, Chalapud MC, García-Hernández AB, León-Espinosa EB, Valdespino-León M, Serrano-Villa FS, Calderón-Domínguez G. Characterization and Applications of the Pectin Extracted from the Peel of Passiflora tripartita var. mollissima. MEMBRANES 2023; 13:797. [PMID: 37755219 PMCID: PMC10536577 DOI: 10.3390/membranes13090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
The inadequate management of organic waste and excessive use of plastic containers cause damage to the environment; therefore, different studies have been carried out to obtain new biomaterials from agricultural subproducts. The objective of this work was to evaluate the feasibility of using the pectin extracted from the peel of Passiflora tripartita var. mollissima (PT), characterizing its type and viability for the production of edible biodegradable films. In addition, films of two thicknesses (23.45 ± 3.02 µm and 53.34 ± 2.28 µm) were prepared. The results indicated that PT is an excellent raw material for the extraction of pectin, with high yields (23.02 ± 0.02%), high galacturonic acid content (65.43 ± 2.241%), neutral sugars (ribose, xylose, glucose) and a high degree of esterification (76.93 ± 1.65%), classifying it as a high-methoxy pectin. Regarding the films, they were malleable and flexible, with a water vapor permeability from 2.57 × 10-10 ± 0.046 to 0.13 × 10-10 ± 0.029 g/s mPa according to thickness, being similar to other Passiflora varieties of edible films. The pectin extraction yield from PT makes this fruit a promising material for pectin production and its chemical composition a valuable additive for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Minerva Rentería-Ortega
- Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico; (M.R.-O.); (M.d.L.C.-A.); (E.B.L.-E.)
| | - María de Lourdes Colín-Alvarez
- Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico; (M.R.-O.); (M.d.L.C.-A.); (E.B.L.-E.)
| | - Víctor Alfonso Gaona-Sánchez
- Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico; (M.R.-O.); (M.d.L.C.-A.); (E.B.L.-E.)
| | - Mayra C. Chalapud
- Planta Piloto de Ingeniería Química–PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Alitzel Belém García-Hernández
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Lerma de Villada 52005, Mexico;
| | - Erika Berenice León-Espinosa
- Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico; (M.R.-O.); (M.d.L.C.-A.); (E.B.L.-E.)
| | - Mariana Valdespino-León
- Tecnológico Nacional de México/IT Superior de Cintalapa, Carretera Panamericana Km 995, Cintalapa 30400, Mexico;
| | - Fatima Sarahi Serrano-Villa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería Bioquímica, Ciudad de México 07738, Mexico;
| | - Georgina Calderón-Domínguez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería Bioquímica, Ciudad de México 07738, Mexico;
| |
Collapse
|
21
|
Dima ȘO, Constantinescu-Aruxandei D, Tritean N, Ghiurea M, Capră L, Nicolae CA, Faraon V, Neamțu C, Oancea F. Spectroscopic Analyses Highlight Plant Biostimulant Effects of Baker's Yeast Vinasse and Selenium on Cabbage through Foliar Fertilization. PLANTS (BASEL, SWITZERLAND) 2023; 12:3016. [PMID: 37631226 PMCID: PMC10458166 DOI: 10.3390/plants12163016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin-Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits.
Collapse
Affiliation(s)
- Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biology, University of Bucharest, Splaiul Independenței nr. 91-95, Sector 5, 050095 Bucharest, Romania
| | - Marius Ghiurea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Luiza Capră
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Cristian-Andi Nicolae
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Victor Faraon
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Constantin Neamțu
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Florin Oancea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști nr. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
22
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
23
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
24
|
Variation in structural and in vitro starch digestion of pulse cotyledon cells imposed by temperature-pressure-moisture combinations. Food Chem X 2023; 18:100625. [PMID: 36926311 PMCID: PMC10010977 DOI: 10.1016/j.fochx.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Starch digestibility in whole pulses is affected by food structural characteristics, which in turn can be modulated by processing methods. In present study, high-pressure steam (HPS) and hydrothermal treatment (HT) with different moisture content were applied to clarify the mechanisms of processing variables affecting in vitro starch digestibility in pulse cells. Based on thermal and X-ray results, the relative crystallinity of cells decreased after HPS and HT treatments. However, HPS-treated cells under higher (>50%) moisture content showed insignificant discrepancies in crystallinity than HT samples. Starch digestion in HPS-treated cells increased with higher moisture content but was still lower than in HT samples. Results of FITC-dextran diffusion and methyl esterification of cell walls indicated that cells with higher wall permeability exhibited relatively higher starch digestibility. This study suggests that the enzyme susceptibility to starch in cells is dominantly influenced by cell wall structure, which could be optimized through processing variables.
Collapse
|
25
|
Zheng C, Huang Y, Liang X, Shen B, Zhang G, Fei P. Novel Pickering emulsion gels stabilized solely by phenylalanine amidated pectin: Characterization, stability and curcumin bioaccessibility. Int J Biol Macromol 2023; 244:125483. [PMID: 37343609 DOI: 10.1016/j.ijbiomac.2023.125483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Pickering emulsion gels represent a novel class of non-toxic and biocompatible emulsions, offering extensive applications in the pharmaceutical and food additive sectors. This study delineates the synthesis of Pickering emulsion gels utilizing native and amidated pectin samples. Phenylalanine amidated pectin (AP) was procured via an ultra-low temperature enzyme method, while the control group (LP) adhered to an identical procedure without papain catalysis. Experimental outcomes revealed that the AP Pickering emulsion gel manifested superior stability compared to pectin emulsion samples (PE and LP). The Pickering emulsion gel from 5 % amidated pectin (5AP) retained stability throughout a 14-day emulsion stability assessment. Furthermore, all emulsion samples were evaluated for their capacity to deliver and sustain curcumin within an in vitro digestion simulation. Rheological properties and oil droplet size results indicated that the 5AP Pickering emulsion gel exhibited optimal cream index and emulsion stability, effectively inhibiting premature water-oil stratification within the emulsion and augmenting curcumin bioaccessibility. Within the in vitro digestion simulation, the 5AP Pickering emulsion gel demonstrated the highest curcumin bioaccessibility, measured at 17.96 %.
Collapse
Affiliation(s)
- Chenmin Zheng
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yufan Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Xiaojing Liang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Bihua Shen
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Peng Fei
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
26
|
Dhal S, Pal A, Gramza-Michalowska A, Kim D, Mohanty B, Sagiri SS, Pal K. Formulation and Characterization of Emulgel-Based Jelly Candy: A Preliminary Study on Nutraceutical Delivery. Gels 2023; 9:466. [PMID: 37367137 DOI: 10.3390/gels9060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The development of consumer-friendly nutraceutical dosage forms is highly important for greater acceptance. In this work, such dosage forms were prepared based on structured emulsions (emulgels), where the olive oil phase was filled within the pectin-based jelly candy. The emulgel-based candies were designed as bi-modal carriers, where oil-soluble curcumin and water-soluble riboflavin were incorporated as the model nutraceuticals. Initially, emulsions were prepared by homogenizing varied concentrations (10% to 30% (w/w)) of olive oil in a 5% (w/w) pectin solution that contained sucrose and citric acid. Herein, pectin acted as a structuring agent-cum-stabilizer. Physico-chemical properties of the developed formulations were thoroughly analyzed. These studies revealed that olive oil interferes with the formation of polymer networks of pectin and the crystallization properties of sugar in candies. This was confirmed by performing FTIR spectroscopy and DSC studies. In vitro disintegration studies showed an insignificant difference in the disintegration behavior of candies, although olive oil concentration was varied. Riboflavin and curcumin were then incorporated into the jelly candy formulations to analyze whether the developed formulations could deliver both hydrophilic and hydrophobic nutraceutical agents. We found that the developed jelly candy formulations were capable of delivering both types of nutraceutical agents. The outcome of the present study may open new directions for designing and developing oral nutraceutical dosage forms.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Anupam Pal
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Anna Gramza-Michalowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, Seoul 25354, Republic of Korea
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Sai S Sagiri
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
27
|
Qi T, Ren J, Li X, An Q, Zhang N, Jia X, Pan S, Fan G, Zhang Z, Wu K. Structural characteristics and gel properties of pectin from citrus physiological premature fruit drop. Carbohydr Polym 2023; 309:120682. [PMID: 36906363 DOI: 10.1016/j.carbpol.2023.120682] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
This study is the first to extract and characterize pectin from citrus physiological premature fruit drop. The extraction yield of pectin reached 4.4 % by acid hydrolysis method. The degree of methoxy-esterification (DM) of citrus physiological premature fruit drop pectin (CPDP) was 15.27 %, indicating it was low-methoxylated pectin (LMP). The monosaccharide composition and molar mass test results showed CPDP was a highly branched macromolecular polysaccharide (β: 0.02, Mw: 2.006 × 105 g/mol) with rich rhamnogalacturonan I domain (50.40 %) and long arabinose and galactose side chain (32.02 %). Based on the fact that CPDP is LMP, Ca2+ was used to induce CPDP to form gels. Textural and rheological tests showed that the gel strength and storage modulus of CPDP were higher than commercial citrus pectin (CP) used in this paper due to the lower DM and rich neutral sugar side chains of CPDP. Scanning electron microscope (SEM) results showed CPDP had stable gel network structure.
Collapse
Affiliation(s)
- Tingting Qi
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education; Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhifeng Zhang
- Ningxia Huaxinda Health Technology Co., Ltd., Lingwu 751400, China
| | - Kangning Wu
- Ningxia Huaxinda Health Technology Co., Ltd., Lingwu 751400, China
| |
Collapse
|
28
|
Chen L, Yang S, Nan Z, Li Y, Ma J, Ding J, Lv Y, Yang J. Detection of dextran, maltodextrin and soluble starch in the adulterated Lycium barbarum polysaccharides (LBPs) using Fourier-transform infrared spectroscopy (FTIR) and machine learning models. Heliyon 2023; 9:e17115. [PMID: 37360083 PMCID: PMC10285174 DOI: 10.1016/j.heliyon.2023.e17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Due to the similar chemical structures and physicochemical properties, it is challenging to distinguish dextran, maltodextrin, and soluble starch from the polysaccharide products of plant origin, such as Lycium barbarum polysaccharides (LBPs). Using the first-order derivatives of Fourier-transformed infrared spectroscopy (FTIR, wave range 1800-400 cm-1), this study proposed a two-step pipeline to identify dextran, maltodextrin, and soluble starch from adulterated LBPs samples qualitatively and quantitatively. We applied principal component analysis (PCA) to reduce the dimensionality of FTIR features. For the qualitative step, a set of machine learning models, including logistic regression, support vector machine (SVM), Naïve Bayes, and partial least squares (PLS), were used to classify the adulterants. For the quantitative step, linear regression, LASSO, random forest, and PLS were used to predict the concentration of LBPs adulterants. The results showed that logistic regression and SVM are suitable for classifying adulterants, and random forests is superior for predicting adulterant concentrations. This would be the first attempt to discriminate the adulterants from the polysaccharide's product of plant origin. The proposed two-step methods can be easily extended to other applications for the quantitative and qualitative detection of samples from adulterants with similar chemical structures.
Collapse
Affiliation(s)
- Lulu Chen
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Siyue Yang
- Department of Statistical Sciences, University of Toronto, Toronto M5T 1P5, Canada
| | - Zhuan Nan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Yanping Li
- Ningxia Wuxing Science and Technology Co. Ltd, Yinchuan 750021, China
| | - Jianlong Ma
- Ningxia Research Center for Natural Medicine Engineering and Technology, Yinchuan 750021, China
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianbao Ding
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
- Ningxia Wuxing Science and Technology Co. Ltd, Yinchuan 750021, China
| | - Yi Lv
- Ningxia Food Testing and Research Institute (Key Laboratory of Quality and Safety of Wolfberry and Wine for State Administration for Market Regulation), Yinchuan 750001, China
| | - Jin Yang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
- Ningxia Research Center for Natural Medicine Engineering and Technology, Yinchuan 750021, China
| |
Collapse
|
29
|
Sun Q, Chen J, Zhao Q, He Z, Tang L, Pu Y, He B. Bio-adhesive and ROS-scavenging hydrogel microspheres for targeted ulcerative colitis therapy. Int J Pharm 2023; 639:122962. [PMID: 37068716 DOI: 10.1016/j.ijpharm.2023.122962] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Ulcerative colitis (UC) as an important type of inflammatory bowel disease is a chronic disease characterized by intestinal dyshomeostasis. The UC treatment is challenged by the insufficiency of drug delivery and retention. Herein, we fabricated an intrarectal formulation of olsalazine (Olsa)-loaded hydrogel microspheres (LDKT/Olsa) with good bio-adhesiveness and reactive oxygen species (ROS)-scavenging ability to enhance drug retention and therapeutic effect. Low methoxy pectin-dopamine conjugate/konjac glucomannan composite hydrogel microspheres (LDKT) with a size ranging from 10 to 100 μm were prepared by using Zn2+ and ROS-sensitive thioketal as crosslinkers. Upon intrarectal administration, the negatively charged and dopamine-functionalized hydrogel microspheres efficiently adhered to cationic surface of inflammatory mucosa, scavenging ROS and releasing Zn2+ and Olsa for antibacterial and anti-inflammatory effects. In the dextran sodium sulfate (DSS)-induced mouse UC model, the microspheres significantly reduced the levels of colonic ROS and pro-inflammatory cytokines, improved gut mucosal barrier integrity, and remarkably relieved colitis. Overall, the LDKT microspheres are promising carriers to deliver drugs for UC treatment.
Collapse
Affiliation(s)
- Qiqi Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jun Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
30
|
Lin J, Xiang S, Lv H, Wang T, Rao Y, Liu L, Yuan D, Wang X, Chu Y, Luo D, Song T. Antimicrobial high molecular weight pectin polysaccharides production from diverse citrus peels using a novel PL10 family pectate lyase. Int J Biol Macromol 2023; 234:123457. [PMID: 36716843 DOI: 10.1016/j.ijbiomac.2023.123457] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
The discovery of environmentally friendly enzymes that can convert inexpensive and abundant citrus peel pectin into high value-added product is a potential avenue for the citrus peel application. In this study, a novel PL10-family pectate lyase (pelA) was characterized from marine bacterium Echinicola pacifica. PelA was a Ca2+ dependent pectate lyase whose activity was highest at pH 8 and 40 °C. It was capable of degrading polygalacturonic acid (PGA) and citrus peel pectin (CPP), but not apple peel pectin. Notably, PelA hydrolyzed PGA to high molecular weight polysaccharide (average molecular weight 111.4 kDa). Moreover, PelA was also able to degrade CPP from nine distinct citrus species into polysaccharides (average molecular weight ranging from 84.7 to 539.2 kDa) that showed antimicrobial activity against Staphylococcus epidermidis (88.8 %), Bacillus subtilis (99.8 %), Staphylococcus aureus (92.1 %), Escherichia coli (100.0 %) and Klebsiella pneumoniae (86.4 %). Considering the high market value of pectin in the food industry, PelA's capacity to convert citrus pectin into high molecular weight polysaccharides lays a foundation for its applications.
Collapse
Affiliation(s)
- Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Shengwei Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Hua Lv
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Tiantian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Yulu Rao
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ling Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Dezhi Yuan
- Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
31
|
Konrade D, Gaidukovs S, Vilaplana F, Sivan P. Pectin from Fruit- and Berry-Juice Production by-Products: Determination of Physicochemical, Antioxidant and Rheological Properties. Foods 2023; 12:foods12081615. [PMID: 37107409 PMCID: PMC10137805 DOI: 10.3390/foods12081615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Plums (Prunus domestica); red currants (Ribes rubrum); black currants (Ribes nigrum); gooseberries (Ribes uva-crispa); sour cherries (Prunus cerasus); pumpkins (Cuccurbita spp.) are sources for valuable fruit- and berry-juice and cider production. This process leaves a large number of by-products (BP) in the form of pomace, which accounts for up to 80% of the raw material. This by-product represents a rich source of biologically active compounds, especially in the form of different pectic polysaccharides. The pectin extracted from commercial fruits such as citric fruits and apples has high medicinal properties, can be used as edible films and coatings, and is also useful in texture improvement and gel production in the food industry. However, many under-utilized fruits have received little attention regarding the extraction and characterization of their high/value pectin from their by-products. Moreover, the commercial extraction process involving strong acids and high temperature to obtain high-purity pectin leads to the loss of many bioactive components, and these lost components are often compensated for by the addition of synthetic antioxidants and colorants. The aim of the research is to extract pectin from juice production by-products with hot-water extraction using weak organic (0.1 N) citric acid, thus minimizing the impact on the environment. The yield of pectin (PY = 4.47-17.8% DM), galacturonic acid content (47.22-83.57 g 100-1), ash content (1.42-2.88 g 100 g-1), degree of esterification (DE = 45.16-64.06%), methoxyl content (ME = 4.27-8.13%), the total content of phenolic compounds (TPC = 2.076-4.668 µg mg-1, GAE) and the antiradical scavenging activity of the pectin samples (DPPH method (0.56-37.29%)) were determined. Free and total phenolic acids were quantified by saponification using high-pressure liquid chromatography (HPLC). The pectin contained phenolic acids-benzoic (0.25-0.92 µg mg-1), gallic (0.14-0.57 µg mg-1), coumaric (0.04 µg mg-1), and caffeic (0.03 µg mg-1). The pectin extracts from by-products showed glucose and galactose (3.89-21.72 g 100 g-1) as the main neutral sugar monosaccharides. Pectin analysis was performed using FT-IR, and the rheological properties of the pectin gels were determined. The quality of the obtained pectin from the fruit and berry by-products in terms of their high biological activity and high content of glucuronic acids indicated that the products have the potential to be used as natural ingredients in various food products and in pharmaceutical products.
Collapse
Affiliation(s)
- Daiga Konrade
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3/7, LV-1048 Riga, Latvia
| | - Sergejs Gaidukovs
- Latvia Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3/7, LV-1048 Riga, Latvia
| | - Francisco Vilaplana
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Pramod Sivan
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
32
|
Moon EC, Kang YR, Chang YH. Development of soy protein isolate/sodium carboxymethyl cellulose synbiotic microgels by double crosslinking with transglutaminase and aluminum chloride for delivery system of Lactobacillus acidophilus. Int J Biol Macromol 2023; 237:124122. [PMID: 36963536 DOI: 10.1016/j.ijbiomac.2023.124122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
This study was carried out to develop soy protein isolate (SPI)/sodium carboxymethyl cellulose (NaCMC) synbiotic microgels by applying a double-crosslinking technique using transglutaminase and different concentrations of AlCl3 (0, 6, 7, 8 %) and also by adding Lactobacillus acidophilus (L. acidophilus) and pectic oligosaccharide. Synbiotic microgels crosslinked using 8 % AlCl3 (SPI/NaCMC-Al3+8 microgels) showed the highest encapsulation efficiency (92 %). The double-crosslinked microgels exhibited a smooth surface as proved by SEM. FT-IR, XRD, and DSC analyses showed the possible interaction within matrices and demonstrated the higher thermal stability of synbiotic microgels prepared using a higher concentration of AlCl3. All in all, after exposure to simulated digestion fluid, heat treatment (72 °C, 15 s), and refrigerated storage, more cells in double-crosslinked microgels survived compared to single-crosslinked microgels. In particular, probiotic viability was highest in SPI/NaCMC-Al3+8 microgels. These results indicate that the SPI/NaCMC-Al3+8 microgels developed in this study can effectively protect L. acidophilus against the external environment.
Collapse
Affiliation(s)
- Eun Chae Moon
- Department of Food and Nutrition, Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yu-Ra Kang
- Department of Food and Nutrition, Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
33
|
Sun W, Kou XH, Wu CE, Fan GJ, Li TT, Cheng X, Xu K, Suo A, Tao Z. Low-temperature plasma modification, structural characterization and anti-diabetic activity of an apricot pectic polysaccharide. Int J Biol Macromol 2023; 240:124301. [PMID: 37004936 DOI: 10.1016/j.ijbiomac.2023.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
To fully research the anti-diabetic activity of apricot polysaccharide, low temperature plasma (LTP) was used to modify apricot polysaccharide. The modified polysaccharide was isolated and purified using column chromatography. It was found that LTP modification can significantly improve the α-glucosidase glucosidase inhibition rate of apricot polysaccharides. The isolated fraction FAPP-2D with HG domain showed excellent anti-diabetic activity in insulin resistance model in L6 cell. We found that FAPP-2D increased the ADP/ATP ratio and inhibited PKA phosphorylation, activating the LKB1-AMPK pathway. Moreover, FAPP-2D activated AMPK-PGC1α pathway, which could stimulated mitochondrial production and regulate energy metabolism, promoting GLUT4 protein transport to achieve an anti-diabetic effect. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy data showed that the LTP modification could increase the CH bond content while decreasing the C-O-C/C-O bond content, indicating that LTP destroyed the C-O-C/C-O bond, which enhanced the anti-diabetes activity of the modified apricot pectin polysaccharide. Our findings could pave the way for the molecular exploitation of apricot polysaccharides and the application of low-temperature plasma.
Collapse
Affiliation(s)
- Wenjuan Sun
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Nanjing Institute of Product Quality Inspection (Nanjing Institute of Quality Development and Advanced Technology Application), Nanjing 210019, China
| | - Xiao-Hong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Gong-Jian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ting-Ting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xin Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaiqian Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zheng Tao
- Yangzhou Inspection and Testing Center (National Quality Inspection and Testing Center for Toiletries), Yangzhou 225111, China
| |
Collapse
|
34
|
Asfaw WA, Tafa KD, Satheesh N. Optimization of citron peel pectin and glycerol concentration in the production of edible film using response surface methodology. Heliyon 2023; 9:e13724. [PMID: 36873550 PMCID: PMC9976310 DOI: 10.1016/j.heliyon.2023.e13724] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Pectin-based edible film plasticized with glycerol has been developed, and the effect of pectin and glycerol concentration was optimized using response surface methodology for better mechanical properties and transparency. The upper and lower concentration of pectin (3-5 g) and glycerol (15%-25%) concentration ranges were considered in this study based on the preliminary experiment. The responses of the edible film determined were tensile strength, elongation at break and elastic modulus and opacity. The interaction effects of glycerol and pectin concentrations on edible film properties significantly affected the film properties. Tensile strength and opacity were positively affected by pectin concentrations; however, elastic modulus and elongation at break were negatively affected. Glycerol concentration negatively affected the edible film's tensile strength and elastic modulus. The decrease in the opacity of the biofilm was observed as the pectin concentration increased; however, glycerol had not shown a significant influence on opacity. The numerical optimization provided 4 g of pectin, and 20% of glycerol showed a strong and transparent edible film. The TGA curve showed that the maximum weight loss occurred between the temperatures 250-400 °C due to the loss of polysaccharides. From FTIR analysis, observed peaks around 1037 cm-1 represented the C-O-C stretching vibrations of the saccharide found in pectin and glycerol.
Collapse
Affiliation(s)
- Worku Abera Asfaw
- Department of Food Engineering, Collage of Engineering, Wolkite university (WKU), Wolkite, Ethiopia
| | - Kenenisa Dekeba Tafa
- Department of Food Engineering, Collage of Engineering, Wolkite university (WKU), Wolkite, Ethiopia
| | - Neela Satheesh
- Faculty of Chemcial and Food Engineering, Bahir Dar Inistitute of Technology, Bahir Dar, Ethiopia
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| |
Collapse
|
35
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Yu W, Li Q. The Preparation and Potential Bioactivities of Modified Pectins: A Review. Foods 2023; 12:1016. [PMID: 36900531 PMCID: PMC10001417 DOI: 10.3390/foods12051016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Pectins are complex polysaccharides that are widely found in plant cells and have a variety of bioactivities. However, the high molecular weights (Mw) and complex structures of natural pectins mean that they are difficult for organisms to absorb and utilize, limiting their beneficial effects. The modification of pectins is considered to be an effective method for improving the structural characteristics and promoting the bioactivities of pectins, and even adding new bioactivities to natural pectins. This article reviews the modification methods, including chemical, physical, and enzymatic methods, for natural pectins from the perspective of their basic information, influencing factors, and product identification. Furthermore, the changes caused by modifications to the bioactivities of pectins are elucidated, including their anti-coagulant, anti-oxidant, anti-tumor, immunomodulatory, anti-inflammatory, hypoglycemic, and anti-bacterial activities and the ability to regulate the intestinal environment. Finally, suggestions and perspectives regarding the development of pectin modification are provided.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| |
Collapse
|
36
|
Ling B, Ramaswamy HS, Lyng JG, Gao J, Wang S. Roles of physical fields in the extraction of pectin from plant food wastes and byproducts: A systematic review. Food Res Int 2023; 164:112343. [PMID: 36737935 DOI: 10.1016/j.foodres.2022.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Pectin is a naturally occurring hydrocolloid found in the cell wall and middle lamella of many plants and has numerous functional applications in food and other related industries. The type of extraction methods used in production has a strong influence on the structural or physicochemical properties of the resultant pectin and the potential application or market value of the produced pectin. Many conventional extraction methods are well-established and commercially well adopted. However, the increased demand for pectin due to limitations of the existing methods in terms of efficiency and influence on end product quality has been renewed in developing novel techniques or procedures that help to alleviate these problems. In this review paper, a series of strategies involving the application of physical fields, such as acoustic, electromagnetic, electric and mechanical one, are reviewed for potential opportunities to improve the yield and quality attributes of pectin extracted from plant food wastes and byproducts. The extraction mechanism, processing equipment, key operating parameters as well as advantages and disadvantages of each method are systematically reviewed, and findings and conclusions on the potential applications of each method are described. Moreover, the challenges and future directions of physical field assisted extraction (PFAE) of pectin are also discussed to facilitate a better understanding of the complex mechanism in PFAE and optimizing operational parameters. This review may also provide specific theoretical information and practical applications to improve the design and scale up PFAE of pectin.
Collapse
Affiliation(s)
- Bo Ling
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal H9X 3V9, Canada.
| | - James G Lyng
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jilong Gao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA.
| |
Collapse
|
37
|
Rheological characterization of low methoxyl pectin extracted from durian rind. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
38
|
Zheng C, Zou Y, Huang Y, Shen B, Fei P, Zhang G. Biosynthesis of amidated pectins with ultra-high viscosity and low gelation restriction through ultra-low temperature enzymatic method. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
39
|
Zhang MY, Cai J. Preparation of branched RG-I-rich pectin from red dragon fruit peel and the characterization of its probiotic properties. Carbohydr Polym 2023; 299:120144. [PMID: 36876774 DOI: 10.1016/j.carbpol.2022.120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
Red dragon fruit peel is a pectin-rich fruit waste that is a potential source of prebiotics and whose different sources and structures will influence its prebiotic function. Thus, we compared the effects of three extraction methods on the structure and prebiotic function of red dragon fruit pectin, the results showed that the citric acid extracted pectin produced a high Rhamnogalacturonan-I (RG-I) region (66.59 mol%) and more side-chains of Rhamnogalacturonan-I ((Ara + Gal)/Rha = 1.25), which can promote bacterial proliferation significantly. The side-chains of Rhamnogalacturonan-I may be an important factor in that pectin can promote the proliferation of B. animalis. Our results provide a theoretical basis for the prebiotic application of red dragon fruit peel.
Collapse
Affiliation(s)
- Meng-Yuan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
40
|
Hu R, Dong D, Hu J, Liu H. Improved viability of probiotics encapsulated in soybean protein isolate matrix microcapsules by coacervation and cross-linking modification. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
KE J, DENG X, ZHANG Z. Preliminary characteristics of non-starch polysaccharide from chayote (Sechium edule). FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jingxuan KE
- Nanyang Institute of Technology, China; Sichuan Agricultural University, China
| | | | | |
Collapse
|
42
|
Salazar Ripoll CS, Hincapié-Llanos GA. Evaluation of sources and methods of pectin extraction from fruit and Vegetable wastes: A Systematic Literature Review (SLR). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
43
|
Xu F, Zhang S, Waterhouse GI, Zhou T, Du Y, Sun-Waterhouse D, Wu P. Yeast fermentation of apple and grape pomaces affects subsequent aqueous pectin extraction: Composition, structure, functional and antioxidant properties of pectins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Nhi TTY, Phat DT, Truong LD, Tri Nhut P, Long HB, Quyen TN, Giang BL. Antimicrobial activities of flavedo peel extract and its feasibility in the development of bio‐based pectin coating film for fruit preservation. J Food Saf 2022. [DOI: 10.1111/jfs.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tran Thi Yen Nhi
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
- Faculty of Food Technology and Environment Nguyen Tat Thanh University Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Ha Noi Vietnam
| | - Dao Tan Phat
- Faculty of Food Technology and Environment Nguyen Tat Thanh University Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Ha Noi Vietnam
| | - Le Dang Truong
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
- Faculty of Food Technology and Environment Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Pham Tri Nhut
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
- Faculty of Food Technology and Environment Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Huynh Bao Long
- Faculty of Chemical Technology Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Tran Ngoc Quyen
- Institute of Applied Materials, Vietnam Academy of Science and Technology Ha Noi Vietnam
| | - Bach Long Giang
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
- Faculty of Food Technology and Environment Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| |
Collapse
|
45
|
The impact of the methyl esters of homogalacturonan on cellular uptake dependent hypoglycemic activity in IR-HepG2 cells. Carbohydr Polym 2022; 293:119741. [DOI: 10.1016/j.carbpol.2022.119741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
|
46
|
Alsakhawy MA, Abdelmonsif DA, Haroun M, Sabra SA. Naringin-loaded Arabic gum/pectin hydrogel as a potential wound healing material. Int J Biol Macromol 2022; 222:701-714. [PMID: 36170930 DOI: 10.1016/j.ijbiomac.2022.09.200] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Wound healing is a complicated cellular process with overlapping phases. Naringin (NAR); a flavanone glycoside, possesses numerous pharmacological effects such as anti-inflammatory, antioxidant and anti-apoptotic effects. In the current study, Arabic gum (AG)/pectin hydrogel was utilized to encapsulate NAR. Drug-loaded AG/pectin hydrogel exhibited excellent EE% of about 99.88 ± 0.096 and high DL% of about 16.64 ± 0.013. The formulated drug-loaded hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Zetasizer analyzer, besides determination of equilibrium degree of swelling (EDS%). Afterwards, wound healing potential of NAR-loaded AG/pectin hydrogel was evaluated in an in vivo animal model. Results manifested that NAR-loaded AG/pectin hydrogel was able to accelerate wound healing in terms of enhanced angiogenesis, re-epithelialization and collagen deposition. Furthermore, it significantly (P < 0.001) down-regulated the mRNA expression of inflammatory mediators (TNF-α) and apoptosis (BAX). In addition, NAR-loaded AG/pectin hydrogel was found to possess potent antioxidant activity as it enhanced the levels of SOD and GSH, besides decreasing the levels of MPO, MDA and nitrite. These data suggest that NAR-loaded AG/pectin hydrogel could be utilized in wound healing applications.
Collapse
Affiliation(s)
- Marwa A Alsakhawy
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
47
|
Peng J, Bu Z, Ren H, He Q, Yu Y, Xu Y, Wu J, Cheng L, Li L. Physicochemical, structural, and functional properties of wampee (Clausena lansium (Lour.) Skeels) fruit peel pectin extracted with different organic acids. Food Chem 2022; 386:132834. [PMID: 35509166 DOI: 10.1016/j.foodchem.2022.132834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
Effects of different extraction acids on physicochemical, structural, and functional properties of wampee fruit peel pectin (WFPP) were comparatively investigated. The hydrochloric acid extracted WFPP (HEP) exhibited the highest degrees of methylation (67.79%) and acetylation (86.29%) coupling with abundant monosaccharides and rhamnogalacturonan branches, but lowest molecular weight (5.58 × 105 Da). The results of SEM, X-ray diffraction, and Fourier transform infrared spectroscopy analyses showed that acid types had little effect on the surface morphology of WFPP. However, compared to commercial citrus pectin (CCP), several specific absorbance peaks (1539, 1019, 920 cm-1) were found in WFPPs, which corresponds to aromatic skeletal stretching, pyranose, and d-glucopyranosyl, respectively. Moreover, the rheological behavior revealed that WFPP solution was pseudoplastic fluid and affected by acid types. And the WFPPs exhibited higher emulsifying activity and emulsion stability than CCP. All these WFPPs presented well antioxidant activity and promoting probiotics ability, especially for HEP.
Collapse
Affiliation(s)
- Jian Peng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Zhibin Bu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Huiyan Ren
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Qi He
- School of Public Health, Southern Medical University, Guangzhou 510610, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lina Cheng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| |
Collapse
|
48
|
Hu W, Chen S, Hao H, Jiang H. Enhanced Photoreactivity of
MOFs
by Intercalating Interlayer Bands via Simultaneous −N=C=O and −
SCu
Modification. AIChE J 2022. [DOI: 10.1002/aic.17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei‐Fei Hu
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Shuo Chen
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Hong‐Chao Hao
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Hong Jiang
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| |
Collapse
|
49
|
Wang F, Lyu J, Xie J, Bi J. Texture formation of dehydrated yellow peach slices pretreated by osmotic dehydration with different sugars via cell wall pectin polymers modification. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Yi Hui Toy J, Wei See J, Huang D. Physicochemical and functional characterisation of pectin from margarita sweet potato leaves. Food Chem 2022; 385:132684. [DOI: 10.1016/j.foodchem.2022.132684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
|