1
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department for Epizootiology, Clinical Diagnostic, Pathology and DDD, Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
2
|
Raza MH, Ayub MA, Zubair M, Hussain A, Saleem S, Azam MT, Hussain M, Memon AG, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Mostafa EM, Al Jbawi E. Comparative Study of Essential Oils Extracted From Foeniculum vulgare Miller Seeds Using Hydrodistillation, Steam Distillation, and Superheated Steam Distillation. Food Sci Nutr 2024; 12:10535-10549. [PMID: 39723073 PMCID: PMC11667025 DOI: 10.1002/fsn3.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024] Open
Abstract
Foeniculum vulgare Miller is a highly valued aromatic and nutritious plant. The unique compositions of its essential oil make it more valuable in the flavor, fragrance, and medicinal industries. However, the potential of superheated steam distillation for obtaining essential oils from its seeds has not been explored in detail. This study assessed the composition, yield, antimicrobial, and antioxidant activities of essential oils distilled from F. vulgare seeds using traditional hydrodistillation, steam distillation, and superheated steam distillation. Superheated steam distillation resulted in the maximum quantity of essential oil (5.24%) compared to steam (3.47%) and hydrodistillation (2.47%). Trans-anethole, fenchone, estragole, and limonene were the main identified by GC-MS analysis in the essential oils, and these compounds were abundant in the essential oil produced by superheated steam distillation. Essential oil distilled by superheated steam distillation presented the highest antibacterial activity against Staphylococcus aureus, Pastrulla multocida, Bacillus subtilis, and Escherichia coli. The highest antifungal activity against Aspergillus niger, Fusarium solani, Aspergillus flavus, and Alternaria alternate was also demonstrated by the same essential oil. These findings demonstrated the potential of superheated steam distillation as a highly effective and efficient technique for distilling high-quality essential oils from Foeniculum vulgare Miller seeds. It is suitable for various applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Muhammad Haseeb Raza
- Department of ChemistryUniversity of SahiwalSahiwalPakistan
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Functional Organic MoleculesShanghai Institute of Organic Chemistry, Chinese Academy of ScienceShanghaiChina
| | | | - Muhammad Zubair
- Department of Chemistry, Faculty of ScienceUniversity of GujratGujratPakistan
| | - Amjad Hussain
- Department of ChemistryUniversity of OkaraOkaraPakistan
| | - Samreen Saleem
- Department of Nutrition and Lifestyle MedicineHealth Services Academy IslamabadIslamabadPakistan
| | - Muhammad Tauseef Azam
- Institute of Food and Nutritional SciencesPMAS‐Arid Agriculture UniversityRawalpindiPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Anjuman Gul Memon
- Department of Biochemistry, College of MedicineQassim UniversityBuraydahSaudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakaka, AljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityAd Diriyah, RiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | | |
Collapse
|
3
|
Zhang Y, Liu J, Pan Y, Shi K, Mai P, Li X, Shen S. Progress on the prevention of poultry Salmonella with natural medicines. Poult Sci 2024; 104:104603. [PMID: 39631274 DOI: 10.1016/j.psj.2024.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Salmonella infection is an acute and systemic disease of poultry, primarily affecting young birds. The mortality rate of chicken within one week of age can reach up to 40 %. Surviving individuals may become carriers of the bacteria, leading to latent infections that can result in bacterial residues in meat and egg products, posing serious threats to human food safety and health. Antibiotic therapy is one of the most conventional treatments for Salmonella infections in birds. However, the current abuse of antibiotics has accelerated the mutation of pathogenic bacteria to generate antibiotic-resistant strains. Thus, the effectiveness of treatment with antibiotics alone is gradually diminishing. To address this threat, researchers have explored the use of natural products to enhance the immune system of poultry for preventing Salmonella infections. This study aims to provide a comprehensive review, systematically summarizing recent research progress of the application of natural medicines on poultry Salmonella infection.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Jianglan Liu
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Yinan Pan
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Kai Shi
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Ping Mai
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Xiaokai Li
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Shasha Shen
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China.
| |
Collapse
|
4
|
Hassanzadeh M, Mirzaie S, Pirmahalle FR, Yahyaraeyat R, Razmyar J. Effects of Thyme (Thymus vulgaris) Essential Oil on Bacterial Growth and Expression of Some Virulence Genes in Salmonella enterica Serovar Enteritidis. Vet Med Sci 2024; 10:e70088. [PMID: 39474775 PMCID: PMC11522824 DOI: 10.1002/vms3.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The investigation on natural antimicrobial compounds against zoonotic pathogens has gained more attention due to the public health concerns regarding the emergence of antimicrobial resistance. OBJECTIVES The current study aimed to assess the effects of thyme essential oil at sub-minimal inhibitory concentrations (sub-MICs) on bacterial growth and expression of some virulence genes in Salmonella enteritidis. METHODS The bacterial growth rate and the expression of four virulence genes in S. enteritidis during 18-72 h of exposure to the essential oil at 25%-75% MIC were evaluated via colony counting and real-time polymerase chain reaction (PCR), respectively. RESULTS Sub-inhibitory concentrations of thyme essential oil significantly reduced the growth rate compared to the control. Expression of all tested virulence genes was also reduced by the essential oil in a significant dose- and time-dependent manner. As an example, decreased down-regulation of hilA, spv, sefA and invA as 1.7-, 4.14-, 2.92- and 1.04-fold in 25% MIC and 6.42-, 7.81-, 4.4- and 3.75-fold in 75% MIC was observed, respectively, after 24 h of incubation. Likewise, levels of transcription for hilA, spv, sefA and invA were reduced 4.75-, 6.95-, 3.75- and 2.98-fold after 18 h and 9.54-, 8.81-, 5.65- and 4.77-fold, respectively, after 72 h in 75% MIC compared to the control. CONCLUSIONS According to our data, aside from the growth inhibitory effect of thyme essential oil, the results of current study highlight the potential of thyme for reducing the transcriptional level of virulence genes and therefore the pathogenicity of S. enteritidis.
Collapse
Affiliation(s)
- Mohammad Hassanzadeh
- Department of Avian DiseasesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sara Mirzaie
- Department of AnimalPoultry and AquaticsInstitute of AgricultureIranian Research Organization for Science and Technology (IROST)TehranIran
| | | | - Ramak Yahyaraeyat
- Department of PathobiologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Jamshid Razmyar
- Department of Avian DiseasesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
5
|
Aljuwayd M, Olson EG, Abbasi AZ, Rothrock MJ, Ricke SC, Kwon YM. Potential Involvement of Reactive Oxygen Species in the Bactericidal Activity of Eugenol against Salmonella Typhimurium. Pathogens 2024; 13:899. [PMID: 39452770 PMCID: PMC11510353 DOI: 10.3390/pathogens13100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
There is an increasing need to develop alternative antimicrobials to replace currently used antibiotics. Phytochemicals, such as essential oils, have garnered significant attention in recent years as potential antimicrobials. However, the mechanisms underlying their bactericidal activities are not yet fully understood. In this study, we investigated the bactericidal activity of eugenol oil against Salmonella enterica serovar Typhimurium (S. Typhimurium) to elucidate its mechanism of action. We hypothesized that eugenol exerts its bactericidal effects through the production of reactive oxygen species (ROS), which ultimately leads to cell death. The result of this study demonstrated that the bactericidal activity of eugenol against S. Typhimurium was significantly (p < 0.05) mitigated by thiourea (ROS scavenger) or iron chelator 2,2'-dipyridyl, supporting the hypothesis. This finding contributes to a better understanding of the killing mechanism by eugenol oil.
Collapse
Affiliation(s)
- Mohammed Aljuwayd
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (M.A.); (A.Z.A.); (Y.M.K.)
- College of Medical Applied Sciences, The Northern Border University, Arar 91431, Saudi Arabia
| | - Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Asim Zahoor Abbasi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (M.A.); (A.Z.A.); (Y.M.K.)
| | - Michael J. Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605, USA;
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (M.A.); (A.Z.A.); (Y.M.K.)
- Department of Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Shaverdi M, Rafiee Z, Razmjoue D, Oryan A, Ghaedi M, Abidi H. Antibacterial, antioxidant, and anti-giardia properties of the essential oil, hydroalcoholic extract, and green synthesis of the silver nanoparticles of Salvia mirzayanii plant. Sci Rep 2024; 14:22866. [PMID: 39354097 PMCID: PMC11445440 DOI: 10.1038/s41598-024-74039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In this study, an environmentally-friendly, simple, and low-cost approach was developed for the production of silver nanoparticles (Ag NPs) accelerated by Salvia mirzayanii plant. The identification process involved ultraviolet-visible (UV-Vis) spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The UV-Vis spectrum exhibited a peak at 450 nm which is a characteristic surface plasmon resonance of Ag NPs. The XRD and EDS analyses confirmed the crystalline nature and the presence of silver element, while the SEM analysis displayed the production of almost spherical nanoparticles. The FTIR spectrum exhibited that the Ag NPs were functionalized with biomolecules found in the extract, which are involved in the production and stabilization of the NPs. The antibacterial activity of the essential oil, the hydroalcoholic extract and Ag NPs was examined against antibiotic-resistant bacteria, Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). The anti-Giardia activity was tested on Giardia lamblia cysts at different time intervals. The results exhibited that the MIC values for essential oil, hydroalcoholic extract and Ag NPs against S. aureus were 1.65 µL/mL, 75 mg/mL, and 0.125 mg/mL respectively. The MBC was attained 6.25 µL/mL, 300 mg/mL, and 0.25 mg/mL, for essential oil, hydroalcoholic extract and Ag NPs, respectively. The MIC values for essential oil, hydroalcoholic extract and NPs against E. coli were 3.12 µL/mL, 150 mg/mL, and 0.06 mg/mL, respectively. The MBC was determined to be 50 µL/mL, 300 mg/mL, and 0.25 mg/mL for essential oil, hydroalcoholic extract and Ag NPs, respectively. In addition, the antioxidant activity was determined using the ferric reducing antioxidant power (FRAP) test. The results indicated that the essential oil of this plant exhibited the highest antibacterial and anti-giardial properties, whereas its extract demonstrated the strongest antioxidant properties.
Collapse
Affiliation(s)
- Miaad Shaverdi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Islamic Republic of Iran
| | - Zahra Rafiee
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Islamic Republic of Iran.
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Islamic Republic of Iran
| | - Hassan Abidi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj, Iran
| |
Collapse
|
7
|
Hedayati S, Tarahi M, Iraji A, Hashempur MH. Recent developments in the encapsulation of lavender essential oil. Adv Colloid Interface Sci 2024; 331:103229. [PMID: 38878587 DOI: 10.1016/j.cis.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
The unregulated and extensive application of synthetic compounds, such as preservatives, pesticides, and drugs, poses serious concerns to the environment, food security, and global health. Essential oils (EOs) are valid alternatives to these synthetic chemicals due to their therapeutic, antioxidant, and antimicrobial activities. Lavender essential oil (LEO) can be potentially applied in food, cosmetic, textile, agricultural, and pharmaceutical industries. However, its bioactivity can be compromised by its poor stability and solubility, which severely restrict its industrial applications. Encapsulation techniques can improve the functionality of LEO and preserve its bioactivity during storage. This review reports recent advances in the encapsulation of LEO by different methods, such as liposomes, emulsification, spray drying, complex coacervation, inclusion complexation, and electrospinning. It also outlines the effects of different processing conditions and carriers on the stability, physicochemical properties, and release behavior of encapsulated LEO. Moreover, this review focuses on the applications of encapsulated LEO in different food and non-food products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Khan MAS, Islam Z, Barua C, Sarkar MMH, Ahmed MF, Rahman SR. Phenotypic characterization and genomic analysis of a Salmonella phage L223 for biocontrol of Salmonella spp. in poultry. Sci Rep 2024; 14:15347. [PMID: 38961138 PMCID: PMC11222505 DOI: 10.1038/s41598-024-64999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.
Collapse
Affiliation(s)
| | - Zahidul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Chayan Barua
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Md Murshed Hasan Sarkar
- Genomics Research Laboratory, Bangladesh Council of Scientific and Industrial Research, BCSIR, Dhaka, 1205, Bangladesh
| | - Md Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | |
Collapse
|
9
|
dos Santos EDJB, Bezerra FWF, da Silva LRR, da Silva MP, Ferreira OO, da Silva Martins LH, de Jesus Chaves-Neto AM, de Santana Botelho A, Kumar R, Bargali P, do Socorro de Souza Vilhena K, de Aguiar Andrade EH, de Oliveira MS. Exploring the Potential of Myrcia Genus Essential Oils: A Review of Biological Activities and Recent Advances. Molecules 2024; 29:2720. [PMID: 38930786 PMCID: PMC11206906 DOI: 10.3390/molecules29122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The present study provides a comprehensive analysis of the chemical composition of essential oils from species of the Myrcia genus and their applications. The compiled results highlight the chemical diversity and biological activities of these oils, emphasizing their potential importance for various therapeutic and industrial applications. The findings reveal that Myrcia essential oils present a variety of bioactive compounds, such as monoterpenes and sesquiterpenes, which demonstrate antimicrobial activities against a range of microorganisms, including Gram-positive and Gram-negative bacteria, as well as yeasts. Furthermore, this study highlights the phytotoxic activity of these oils, indicating their potential for weed control. The results also point to the insecticidal potential of Myrcia essential oils against a range of pests, showing their viability as an alternative to synthetic pesticides. Additionally, species of the genus Myrcia have demonstrated promising hypoglycemic effects, suggesting their potential in diabetes treatment. This comprehensive synthesis represents a significant advancement in understanding Myrcia essential oils, highlighting their chemical diversity and wide range of biological activities. However, the need for further research is emphasized to fully explore the therapeutic and industrial potential of these oils, including the identification of new compounds, understanding of their mechanisms of action, and evaluation of safety and efficacy in different contexts.
Collapse
Affiliation(s)
- Eliza de Jesus Barros dos Santos
- Graduate Program in Biological Sciences, Concentration Area—Tropical Botany, Federal Rural University of the Amazon and Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (E.d.J.B.d.S.); (L.R.R.d.S.); (E.H.d.A.A.)
| | - Fernanda Wariss Figueiredo Bezerra
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (F.W.F.B.); (L.H.d.S.M.)
| | - Luiz Renan Ramos da Silva
- Graduate Program in Biological Sciences, Concentration Area—Tropical Botany, Federal Rural University of the Amazon and Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (E.d.J.B.d.S.); (L.R.R.d.S.); (E.H.d.A.A.)
| | - Marcilene Paiva da Silva
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Oberdan Oliveira Ferreira
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Luiza Helena da Silva Martins
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (F.W.F.B.); (L.H.d.S.M.)
| | - Antônio Maia de Jesus Chaves-Neto
- Laboratory of Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, C. P. 479, Belém 66075-110, PA, Brazil;
| | - Anderson de Santana Botelho
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Ravendra Kumar
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India; (R.K.); (P.B.)
| | - Pooja Bargali
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India; (R.K.); (P.B.)
| | - Karyme do Socorro de Souza Vilhena
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Eloisa Helena de Aguiar Andrade
- Graduate Program in Biological Sciences, Concentration Area—Tropical Botany, Federal Rural University of the Amazon and Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (E.d.J.B.d.S.); (L.R.R.d.S.); (E.H.d.A.A.)
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Mozaniel Santana de Oliveira
- Graduate Program in Biological Sciences, Concentration Area—Tropical Botany, Federal Rural University of the Amazon and Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (E.d.J.B.d.S.); (L.R.R.d.S.); (E.H.d.A.A.)
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| |
Collapse
|
10
|
Girard C, Chabrillat T, Kerros S, Fravalo P, Thibodeau A. Essential oils mix effect on chicks ileal and caecal microbiota modulation: a metagenomics sequencing approach. Front Vet Sci 2024; 11:1350151. [PMID: 38638639 PMCID: PMC11025455 DOI: 10.3389/fvets.2024.1350151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Microbiota plays a pivotal role in promoting the health and wellbeing of poultry. Essential oils (EOs) serve as an alternative solution for modulating poultry microbiota. This study aimed to investigate, using amplicon sequencing, the effect of a complex and well-defined combination of EOs feed supplement on both ileal and caecal broiler microbiota, within the context of Salmonella and Campylobacter intestinal colonization. Material and methods For this experiment, 150-day-old Ross chicks were randomly allocated to two groups: T+ (feed supplementation with EO mix 500 g/t) and T- (non-supplemented). At day 7, 30 birds from each group were orally inoculated with 106 CFU/bird of a Salmonella enteritidis and transferred to the second room, forming the following groups: TS+ (30 challenged birds receiving infeed EO mix at 500g/t) and TS- (30 challenged birds receiving a non-supplemented control feed). At day 14, the remaining birds in the first room were orally inoculated with 103 CFU/bird of two strains of Campylobacter jejuni, resulting in the formation of groups T+C+ and T-C+. Birds were sacrificed at day 7, D10, D14, D17, and D21. Ileal and caecal microbiota samples were analyzed using Illumina MiSeq sequencing. At D7 and D14, ileal alpha diversity was higher for treated birds (p <0.05). Results and discussion No significant differences between groups were observed in caecal alpha diversity (p>0.05). The ileal beta diversity exhibited differences between groups at D7 (p < 0.008), D10 (p = 0.029), D14 (p = 0.001) and D17 (p = 0.018), but not at D21 (p = 0.54). For all time points, the analysis indicated that 6 biomarkers were negatively impacted, while 10 biomarkers were positively impacted. Sellimonas and Weissella returned the lowest (negative) and highest (positive) coefficient, respectively. At each time point, treatments influenced caecal microbiota beta diversity (p < 0.001); 31 genera were associated with T+: 10 Ruminoccocaceae genera were alternatively more abundant and less abundant from D7, 7 Lachnospiraceae genera were alternatively more and less abundant from D10, 6 Oscillospiraceae genera were variable depending on the date and 4 Enterobacteriaceae differed from D7. During all the experiment, Campylobacter decreased in treated birds (p < 0.05). This study showed that EO mix modulates ileal and caecal microbiota composition both before and during challenge conditions, increasing alpha diversity, especially in ileum during the early stages of chick life.
Collapse
Affiliation(s)
| | | | | | - Philippe Fravalo
- Faculty of Veterinary Medicine, Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alexandre Thibodeau
- Faculty of Veterinary Medicine, Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
11
|
Liu B, Chang Z, Li Z, Liu R, Liu X. Prediction of key amino acids of Salmonella phage endolysin LysST-3 and detection of its mutants' activity. Arch Microbiol 2024; 206:151. [PMID: 38467842 DOI: 10.1007/s00203-024-03915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Salmonella Typhimurium, a zoonotic pathogen, causes systemic and localized infection. The emergence of drug-resistant S. Typhimurium has increased; treating bacterial infections remains challenging. Phage endolysins derived from phages have a broader spectrum of bacteriolysis and better bacteriolytic activity than phages, and are less likely to induce drug resistance than antibiotics. LysST-3, the endolysin of Salmonella phage ST-3, was chosen in our study for its high lytic activity, broad cleavage spectrum, excellent bioactivity, and moderate safety profile. LysST-3 is a promising antimicrobial agent for inhibiting the development of drug resistance in Salmonella. The aim of this study is to investigate the molecular characteristics of LysST-3 through the prediction of key amino acid sites of LysST-3 and detection of its mutants' activity. We investigated its lytic effect on Salmonella and identified its key amino acid sites of interaction with substrate. LysST-3 may be a Ca2+, Mg2+ - dependent metalloenzyme. Its concave structure of the bottom "gripper" was found to be an important part of its amino acid active site. We identified its key sites (29P, 30T, 86D, 88 L, and 89 V) for substrate binding and activity using amino acid-targeted mutagenesis. Alterations in these sites did not affect protein secondary structure, but led to a significant reduction in the cleavage activity of the mutant proteins. Our study provides a basis for phage endolysin modification to target drug-resistant bacteria. Identifying the key amino acid site of the endolysin LysST-3 provides theoretical support for the functional modification of the endolysin and the development of subsequent effective therapeutic solutions.
Collapse
Affiliation(s)
- Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
| | - Zhankun Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
- Binzhou Institute of Technology, Building 9, Zhonghai Hotel, West of Huanghe 8th Road, Bincheng District, Binzhou, 256600, China.
| |
Collapse
|
12
|
Djerrad Z, Terfi S, Brakchi L. Variability in Chemical Composition and Biochemical Activities of Mentha x piperita L. Essential Oil, in Response to Mycorrhizal Symbiosis and Heavy Metal Stress. Chem Biodivers 2024; 21:e202301980. [PMID: 38285970 DOI: 10.1002/cbdv.202301980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
The present paper highlights the effect of Pb/Cd-stress and/or mycorrhizal colonization by Glomus Intraradices on yield, chemical composition, cytotoxicity and antimicrobial activity of Mentha x piperita L. essential oil. Our findings showed that mycorrhizal colonization could be used to improve the essential oil yield of M. x piperita, either in non-stressed or Pb/Cd-stressed plants. GC-MS analysis revealed three chemotypes: linalool/pulegone (32.6/30.8 %) chemotype in essential oils of non-mycorrhizal Pb-stressed plants, menthone/menthyl acetate (30.3/25.1 %) chemotype in essential oils of non-mycorrhizal Cd-stressed plants and menthol (44.6 %) chemotype in essential oils of non-mycorrhizal non-stressed plants, mycorrhizal non-stressed plants and mycorrhizal Pb/Cd-stressed plants. The cytotoxicity of M. x piperita essential oil, evaluated by brine shrimp lethality bioassay, was increased in presence of Pb/Cd-stress (from 379.58 to 72.84 μm/mL) and decreased in mycorrhizal plants (from 379.58 to 482.32 μm/mL). The antimicrobial activity of M. x piperita essential oil, evaluated by disc diffusion method and determination of Minimum Inhibitory Concentration against ten microorganisms, was enhanced by the mycorrhizal colonization and deceased by the Pb/Cd-stress. In conclusion, the inoculation of medicinal plants with mycorrhizal fungi is a real avenue for alleviating abiotic stress and/or increasing the quantity and quality of secondary metabolites in terms of biological activities.
Collapse
Affiliation(s)
- Zineb Djerrad
- Department of Ecology and Environment, Laboratory of Vegetal Ecology and Environment, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology (USTHB), El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| | - Souhila Terfi
- Department of Chemistry, Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology (USTHB), El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| | - Lila Brakchi
- Department of Ecology and Environment, Laboratory of Vegetal Ecology and Environment, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology (USTHB), El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
13
|
Meroni G, Laterza G, Tsikopoulos A, Tsikopoulos K, Vitalini S, Scaglia B, Iriti M, Bonizzi L, Martino PA, Soggiu A. Antibacterial Potential of Essential Oils and Silver Nanoparticles against Multidrug-Resistant Staphylococcus pseudintermedius Isolates. Pathogens 2024; 13:156. [PMID: 38392894 PMCID: PMC10893185 DOI: 10.3390/pathogens13020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Staphylococcus pseudintermedius is an emergent zoonotic agent associated with multidrug resistance (MDR). This work aimed to describe the antibacterial activity of four essential oils (EOs) and silver nanoparticles (AgNPs) against 15 S. pseudintermedius strains isolated from pyoderma. The four EOs, namely Rosmarinus officinalis (RO), Juniperus communis (GI), Citrus sinensis (AR), and Abies alba (AB), and AgNPs were used alone and in combination to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). All strains were MDR and methicillin-resistant. Among the antibiotic cohort, only rifampicin, doxycycline, and amikacin were effective. EOs' chemical analysis revealed 124 compounds belonging to various chemical classes. Of them, 35 were found in AR, 75 in AB, 77 in GI, and 57 in RO. The monoterpenic fraction prevailed over the sesquiterpenic in all EOs. When EOs were tested alone, AB showed the lowest MIC followed by GI, AR, and RO (with values ranging from 1:128 to 1:2048). MBC increased in the following order: AB, AR, GI, and RO (with values ranging from 1:512 to 1:2048). MIC and MBC values for AgNPs were 10.74 mg/L ± 4.23 and 261.05 mg/L ± 172.74. In conclusion, EOs and AgNPs could limit the use of antibiotics or improve the efficacy of conventional therapies.
Collapse
Affiliation(s)
- Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (G.L.); (S.V.); (M.I.); (L.B.); (P.A.M.); (A.S.)
| | - Giulia Laterza
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (G.L.); (S.V.); (M.I.); (L.B.); (P.A.M.); (A.S.)
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Alexios Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (K.T.)
| | - Konstantinos Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (K.T.)
| | - Sara Vitalini
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (G.L.); (S.V.); (M.I.); (L.B.); (P.A.M.); (A.S.)
| | - Barbara Scaglia
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Marcello Iriti
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (G.L.); (S.V.); (M.I.); (L.B.); (P.A.M.); (A.S.)
| | - Luigi Bonizzi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (G.L.); (S.V.); (M.I.); (L.B.); (P.A.M.); (A.S.)
| | - Piera Anna Martino
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (G.L.); (S.V.); (M.I.); (L.B.); (P.A.M.); (A.S.)
| | - Alessio Soggiu
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy; (G.L.); (S.V.); (M.I.); (L.B.); (P.A.M.); (A.S.)
| |
Collapse
|
14
|
Lupia C, Castagna F, Bava R, Naturale MD, Zicarelli L, Marrelli M, Statti G, Tilocca B, Roncada P, Britti D, Palma E. Use of Essential Oils to Counteract the Phenomena of Antimicrobial Resistance in Livestock Species. Antibiotics (Basel) 2024; 13:163. [PMID: 38391549 PMCID: PMC10885947 DOI: 10.3390/antibiotics13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance is an increasingly widespread phenomenon that is of particular concern because of the possible consequences in the years to come. The dynamics leading to the resistance of microbial strains are diverse, but certainly include the incorrect use of veterinary drugs both in terms of dosage and timing of administration. Moreover, the drug is often administered in the absence of a diagnosis. Many active ingredients in pharmaceutical formulations are, therefore, losing their efficacy. In this situation, it is imperative to seek alternative treatment solutions. Essential oils are mixtures of compounds with different pharmacological properties. They have been shown to possess the antibacterial, anti-parasitic, antiviral, and regulatory properties of numerous metabolic processes. The abundance of molecules they contain makes it difficult for treated microbial species to develop pharmacological resistance. Given their natural origin, they are environmentally friendly and show little or no toxicity to higher animals. There are several published studies on the use of essential oils as antimicrobials, but the present literature has not been adequately summarized in a manuscript. This review aims to shed light on the results achieved by the scientific community regarding the use of essential oils to treat the main agents of bacterial infection of veterinary interest in livestock. The Google Scholar, PubMed, SciELO, and SCOPUS databases were used for the search and selection of studies. The manuscript aims to lay the foundations for a new strategy of veterinary drug use that is more environmentally friendly and less prone to the emergence of drug resistance phenomena.
Collapse
Affiliation(s)
- Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Fabio Castagna
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy
| | - Ludovica Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Oliveira KC, Franciscato LMSS, Mendes SS, Barizon FMA, Gonçalves DD, Barbosa LN, Faria MGI, Valle JS, Casalvara RFA, Gonçalves JE, Gazim ZC, Ruiz SP. Essential Oil from the Leaves, Fruits and Twigs of Schinus terebinthifolius: Chemical Composition, Antioxidant and Antibacterial Potential. Molecules 2024; 29:469. [PMID: 38257382 PMCID: PMC10819699 DOI: 10.3390/molecules29020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Schinus terebinthifolius Raddi, popularly known as "Pink pepper", is a plant native to Brazil. The objective of this work was to analyze the chemical composition and the antioxidant and antibacterial potential of essential oils (EOs) from the leaves, fruits and twigs of S. terebinthifolius, aiming for their application in food safety. EOs were obtained by hydrodistillation and the chemical composition was determined by gas chromatography coupled to mass spectrometry. Phenolic compounds were quantified and antioxidant activity was evaluated using three different methods. The antibacterial activity was determined by the broth microdilution method against foodborne bacteria. In the chemical analysis, 22 compounds were identified in the leaves, 13 compounds in the fruits and 37 compounds in the twigs, revealing the presence of the main compounds germacrene D (12.04%, 15.78%, 20,41%), caryophyllene (15.97%, 3.12%, 11.73%), α-pinene (11.6%, 17.16%, 2.99%), β-pinene (5.68%, 43.34%, 5.60%) and γ-gurjunene (16,85%, 3,15%) respectively. EOs showed better antioxidant potential using the β-carotene/linoleic acid method with 40.74, 61.52 and 63.65% oxidation inhibition for leaves, fruits and twigs, respectively. The EO from the leaves showed greater antibacterial potential against Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 0.62 mg mL-1, a value lower than the MIC of sodium nitrite (5.00 mg mL-1), the antimicrobial standard synthetic. The activities of pink pepper EOs suggest their potential as a biopreservative in foods.
Collapse
Affiliation(s)
- Kátia C. Oliveira
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Lidaiane M. S. S. Franciscato
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Suelen S. Mendes
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Francielly M. A. Barizon
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Daniela D. Gonçalves
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
- Graduate Program in Medicinal Plants and Herbal Medicines in Basic Health Care, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil
| | - Lidiane N. Barbosa
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
- Graduate Program in Medicinal Plants and Herbal Medicines in Basic Health Care, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil
| | - Maria G. I. Faria
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Juliana S. Valle
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Rhaira F. A. Casalvara
- Graduate Program in Clean Technologies, Cesumar Institute of Science, Technology and Innovation, Cesumar University (UniCesumar), Maringá 87050-390, PR, Brazil; (R.F.A.C.); (J.E.G.)
| | - José E. Gonçalves
- Graduate Program in Clean Technologies, Cesumar Institute of Science, Technology and Innovation, Cesumar University (UniCesumar), Maringá 87050-390, PR, Brazil; (R.F.A.C.); (J.E.G.)
| | - Zilda C. Gazim
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Suelen P. Ruiz
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| |
Collapse
|
16
|
Wang W, Niu B, Liu R, Chen H, Fang X, Wu W, Wang G, Gao H, Mu H. Development of bio-based PLA/cellulose antibacterial packaging and its application for the storage of shiitake mushroom. Food Chem 2023; 429:136905. [PMID: 37487388 DOI: 10.1016/j.foodchem.2023.136905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
This study presents the extraction of cellulose from water bamboo byproducts to prepare polylactic acid (PLA)/cellulose antibacterial packaging material. The cellulose was modified using a silane coupling agent, which improved the interfacial compatibility between cellulose and PLA. Upon coating the PLA onto the modified cellulose sheet, the water contact angle of the composite material increased from 11.42° to 132.12° and the water absorption rate decreased from 182.52% to 55.71%, which improved the water resistance performance of the material. The addition of cinnamaldehyde in the PLA layer imparted antibacterial activity to the PLA/cellulose packaging material. This packaging material effectively inhibited the mycelial growth and spore germination of Aspergillus niger and Trichoderma harzianum isolated from shiitake mushroom. Additionally, the study investigated the effects of the composite on the postharvest quality of shiitake mushroom. Overall, the packaging material contributed to shiitake mushroom storage and can be applied to other perishable food products.
Collapse
Affiliation(s)
- Weitao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guannan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Honglei Mu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
17
|
Rubio Ortega A, Guinoiseau E, Poli JP, Quilichini Y, de Rocca Serra D, del Carmen Travieso Novelles M, Espinosa Castaño I, Pino Pérez O, Berti L, Lorenzi V. The Primary Mode of Action of Lippia graveolens Essential Oil on Salmonella enterica subsp. Enterica Serovar Typhimurium. Microorganisms 2023; 11:2943. [PMID: 38138087 PMCID: PMC10745793 DOI: 10.3390/microorganisms11122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Essential oils are known to exhibit diverse antimicrobial properties, showing their value as a natural resource. Our work aimed to investigate the primary mode of action of Cuban Lippia graveolens (Kunth) essential oil (EO) against Salmonella enterica subsp. enterica serovar Typhimurium (S. enterica ser. Typhimurium). We assessed cell integrity through various assays, including time-kill bacteriolysis, loss of cell material with absorption at 260 and 280 nm, total protein leakage, and transmission electron microscopy (TEM). The impact of L. graveolens EO on membrane depolarization was monitored and levels of intracellular and extracellular ATP were measured by fluorescence intensity. The minimum inhibitory and bactericidal concentrations (MIC and MBC) of L. graveolens EO were 0.4 and 0.8 mg/mL, respectively. This EO exhibited notable bactericidal effects on treated cells within 15 min without lysis or leakage of cellular material. TEM showed distinct alterations in cellular ultrastructure, including membrane shrinkage and cytoplasmic content redistribution. We also observed disruption of the membrane potential along with reduced intracellular and extracellular ATP concentrations. These findings show that L. graveolens EO induces the death of S. enterica ser. Typhimurium, important information that can be used to combat this foodborne disease-causing agent.
Collapse
Affiliation(s)
- Annie Rubio Ortega
- Laboratory of Chemical Ecology, Agricultural Pest Group, National Center for Animal and Plant Health, San José de las Lajas 32700, Mayabeque, Cuba; (A.R.O.); (M.d.C.T.N.); (O.P.P.)
| | - Elodie Guinoiseau
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Jean-Pierre Poli
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Yann Quilichini
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Dominique de Rocca Serra
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Maria del Carmen Travieso Novelles
- Laboratory of Chemical Ecology, Agricultural Pest Group, National Center for Animal and Plant Health, San José de las Lajas 32700, Mayabeque, Cuba; (A.R.O.); (M.d.C.T.N.); (O.P.P.)
| | - Ivette Espinosa Castaño
- Laboratory of Bacteriology, Microbiology Group, National Center for Animal and Plant Health, San José de las Lajas 32700, Mayabeque, Cuba;
| | - Oriela Pino Pérez
- Laboratory of Chemical Ecology, Agricultural Pest Group, National Center for Animal and Plant Health, San José de las Lajas 32700, Mayabeque, Cuba; (A.R.O.); (M.d.C.T.N.); (O.P.P.)
| | - Liliane Berti
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| | - Vannina Lorenzi
- Projet Ressources Naturelles, UMR CNRS 6134 SPE, Université de Corse, BP 52, 20250 Corte, France; (J.-P.P.); (Y.Q.); (D.d.R.S.); (L.B.); (V.L.)
| |
Collapse
|
18
|
Vepštaitė-Monstavičė I, Ravoitytė B, Būdienė J, Valys A, Lukša J, Servienė E. Essential Oils of Mentha arvensis and Cinnamomum cassia Exhibit Distinct Antibacterial Activity at Different Temperatures In Vitro and on Chicken Skin. Foods 2023; 12:3938. [PMID: 37959057 PMCID: PMC10647671 DOI: 10.3390/foods12213938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The bacterial contamination of meat is a global concern, especially for the risk of Salmonella infection that can lead to health issues. Artificial antibacterial compounds used to preserve fresh meat can have negative health effects. We investigated the potential of natural essential oils (EOs), namely Mentha arvensis (mint) and Cinnamomum cassia (cinnamon) EOs, to prevent contamination of the food pathogen, Salmonella enterica subsp. enterica serotype Typhimurium, in vitro and on chicken skin. The gas chromatography-mass spectrometry (GC-MS) technique was used to determine the compositions of mint EO (MEO) and cinnamon EO (CEO); the most abundant compound in MEO was menthol (68.61%), and the most abundant compound was cinnamaldehyde (83.32%) in CEO. The antibacterial activity of MEO and CEO were examined in vapor and direct contact with S. typhimurium at temperatures of 4 °C, 25 °C, and 37 °C. The minimal inhibitory concentration at 37 °C for MEO and CEO reached 20.83 µL/mL, and the minimal bactericidal concentration of CEO was the same, while for MEO, it was two-fold higher. We report that in most tested conditions in experiments performed in vitro and on chicken skin, CEO exhibits a stronger antibacterial effect than MEO. In the vapor phase, MEO was more effective against S. typhimurium than CEO at 4 °C. In direct contact, the growth of S. typhimurium was inhibited more efficiently by MEO than CEO at small concentrations and a longer exposure time at 37 °C. The exploration of CEO and MEO employment for the inhibition of Salmonella bacteria at different temperatures and conditions expands the possibilities of developing more environment- and consumer-friendly antibacterial protection for raw meat.
Collapse
Affiliation(s)
| | - Bazilė Ravoitytė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Jurga Būdienė
- Laboratory of Chemical and Behavioural Ecology, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Algirdas Valys
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Juliana Lukša
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (I.V.-M.); (A.V.); (J.L.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| |
Collapse
|
19
|
Luna-Solorza JM, Ayala-Zavala JF, Cruz-Valenzuela MR, González-Aguilar GA, Bernal-Mercado AT, Gutierrez-Pacheco MM, Silva-Espinoza BA. Oregano Essential Oil versus Conventional Disinfectants against Salmonella Typhimurium and Escherichia coli O157:H7 Biofilms and Damage to Stainless-Steel Surfaces. Pathogens 2023; 12:1245. [PMID: 37887761 PMCID: PMC10609779 DOI: 10.3390/pathogens12101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
This study compared the effect of oregano essential oil versus sodium hypochlorite, hydrogen peroxide, and benzalkonium chloride against the viability of adhered Salmonella Typhimurium and Escherichia coli O157:H7 on 304 stainless steel. Oregano essential oil was effective in disrupting the biofilms of both bacteria at concentrations ranging from 0.15 to 0.52 mg mL-1. In addition, damage to stainless-steel surfaces following disinfection treatments was assessed by weight loss analysis and via visual inspection using light microscopy. Compared to the other treatments, oregano oil caused the least damage to stainless steel (~0.001% weight loss), whereas sodium hypochlorite caused the most severe damage (0.00817% weight loss) when applied at 0.5 mg mL-1. Moreover, oregano oil also had an apparent protective impact on the stainless steel as weight losses were less than for the control surfaces (distilled water only). On the other hand, sodium hypochlorite caused the most severe damage to stainless steel (0.00817% weight loss). In conclusion, oregano oil eliminated monoculture biofilms of two important foodborne pathogens on 304 stainless-steel surfaces, while at the same time minimizing damage to the surfaces compared with conventional disinfectant treatments.
Collapse
Affiliation(s)
- Jesus M. Luna-Solorza
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| | - M. Reynaldo Cruz-Valenzuela
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| | - Ariadna T. Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora. Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico;
| | - M. Melissa Gutierrez-Pacheco
- Ciencias de la Salud, Universidad Estatal de Sonora, Campus San Luis Rio Colorado, Carretera San Luis Rio Colorado-Sonoyta Km 6.5. Col. Industrial CP, San Luis Río Colorado 83430, Sonora, Mexico;
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| |
Collapse
|
20
|
Nair DVT, Manjankattil S, Peichel C, Martin W, Donoghue AM, Venkitanarayanan K, Kollanoor Johny A. Effect of plant-derived antimicrobials, eugenol, carvacrol, and β-resorcylic acid against Salmonella on organic chicken wings and carcasses. Poult Sci 2023; 102:102886. [PMID: 37517363 PMCID: PMC10400966 DOI: 10.1016/j.psj.2023.102886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Organic poultry constitutes a sizeable segment of the American organic commodities market. However, processors have limited strategies that are safe, effective, and approved for improving the microbiological safety of products. In this study, the efficacy of 3 plant-derived antimicrobials (PDAs), eugenol (EG), carvacrol (CR), and β-resorcylic acid (BR) was evaluated against Salmonella on organic chicken wings and carcasses. Wings inoculated with Salmonella (6 log10 CFU/wing) were treated with or without the treatments (BR [0.5%, 1% w/v], EG [0.5%, 1% v/v], CR [0.5%, 1% v/v], chlorine [CL; 200 ppm v/v], or peracetic acid [PA; 200 ppm v/v]) applied for 2 min at 54°C (scalding study) or 30 min at 4°C (chilling study). Homogenates and treatment water were evaluated for surviving Salmonella. Six wings or carcasses per treatment were analyzed in each study. All treatments, except CL and 0.5% BR in the scalding study, yielded significant reductions of Salmonella on wings compared to the positive control (PC-Salmonella inoculated samples not treated with antimicrobials). To follow, carcasses inoculated with Salmonella (higher inoculum [106 CFU/carcass] or lower inoculum [104 CFU/carcass]) and immersed in antimicrobials (CR 1% [v/v] and industry controls [CL {200 ppm}, or PA [200 ppm]) for 30 min at 4°C were stored until analysis. For the higher inoculum study, 1% CR resulted in a 3.9 log10 CFU/g reduction of Salmonella on the carcass on d 0 compared to PC (P < 0.05); however, CL yielded no reduction. On d 3, CR and PA resulted in 0.9 and 1.2 log10 CFU/g reduction of Salmonella, respectively (P < 0.05). For the lower inoculum study, consistent Salmonella reductions were obtained with CR and PA (1.4-2.1 log10 CFU/g) on d 0 and 7. High reductions of Salmonella in processing water were obtained in all studies. CR effectively controls Salmonella on wings and carcasses and in processing water immediately after application. Follow-up studies on the organoleptic characteristics of PDA-treated chicken carcasses are necessary.
Collapse
Affiliation(s)
- Divek V T Nair
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | | | - Claire Peichel
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Wayne Martin
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Annie M Donoghue
- Poultry Production and Product Safety Research, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
21
|
Han SG, Kwon HC, Kim DH, Hong SJ, Han SG. In Vitro Synergistic Antibacterial and Anti-Inflammatory Effects of Nisin and Lactic Acid in Yogurt against Helicobacter pylori and Human Gastric Cells. Food Sci Anim Resour 2023; 43:751-766. [PMID: 37701745 PMCID: PMC10493562 DOI: 10.5851/kosfa.2023.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Helicobacter pylori is a bacterium that naturally thrives in acidic environments and has the potential to induce various gastrointestinal disorders in humans. The antibiotic therapy utilized for treating H. pylori can lead to undesired side effects, such as dysbiosis in the gut microbiota. The objective of our study was to explore the potential antibacterial effects of nisin and lactic acid (LA) in yogurt against H. pylori. Additionally, we investigated the anti-inflammatory effects of nisin and LA in human gastric (AGS) cells infected with H. pylori. Nisin and LA combination showed the strongest inhibitory activity, with confirmed synergy at 0.375 fractional inhibitory concentration index. Also, post-fermented yogurt with incorporation of nisin exhibited antibacterial effect against H. pylori. The combination of nisin and LA resulted in a significant reduction of mRNA levels of bacterial toxins of H. pylori and pro-inflammatory cytokines in AGS cells infected with H. pylori. Furthermore, this also increased bacterial membrane damage, which led to DNA and protein leakage in H. pylori. Overall, the combination of nisin and LA shows promise as an alternative therapy for H. pylori infection. Additionally, the incorporation of nisin into foods containing LA presents a potential application. Further studies, including animal research, are needed to validate these findings and explore clinical applications.
Collapse
Affiliation(s)
- Seo Gu Han
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Hyuk Cheol Kwon
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Do Hyun Kim
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Seong Joon Hong
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Sung Gu Han
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| |
Collapse
|
22
|
Marmion M, Soro AB, Whyte P, Scannell AG. Green label marinades: A solution to salmonella and campylobacter in chicken products? Heliyon 2023; 9:e17655. [PMID: 37483745 PMCID: PMC10362192 DOI: 10.1016/j.heliyon.2023.e17655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/03/2023] [Accepted: 06/25/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The presence of meat-borne pathogens entering the home remains a concern for consumers, despite advances made in improving antimicrobial interventions and systems within the processing line. Naturally antibacterial food ingredients including citrus juice and essential oils have been proven to inhibit the proliferation of microbial growth with varying success. Aims This study aims to investigate the antimicrobial and sensory effects of mixtures of essential oils, fruit juices and herbs at established Minimum Inhibitory Concentrations (MICs) for their biopreservative effect on general microbiota of chicken and against chicken challenged with selected pathogenic/surrogate microorganisms. Materials and methods Three marinade compositions were designed for use on chicken meat; lemon juice, thyme oil and black pepper (M1), lime juice, lemongrass oil and chilli paste (M2), and olive oil, oregano oil, basil oil and garlic paste (M3). These marinades were assessed for antibacterial effects against Salmonella enterica, Campylobacter jejuni and Listeria innocua on marinaded chicken drumsticks stored in aerobic conditions at 4 °C. Consumer tasting sessions were also conducted with a small focus group using selected final marinades. Results M1 and M2 were effective at significantly reducing initial pathogen carriage from 6 Log CFU/g to 2 Log CFU/g on refrigerated chicken meat as well as increasing the shelf-life of the product during cold-storage from 2 days to 7 days. However, consumer studies indicate that the flavours these marinades impart to treated products can be strong. Conclusion These findings indicate that these designed marinades have shown excellent potential to improve food safety as well as shelf-life for the consumer, particularly in settings where food safety is often compromised such as barbecuing or in care settings. However, further recipe optimisation is required to make these marinades acceptable to consumers.
Collapse
Affiliation(s)
- Maitiú Marmion
- UCD School of Agriculture and Food Science, Ireland
- UCD Centre for Food Safety, Ireland
| | | | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Amalia G.M. Scannell
- UCD School of Agriculture and Food Science, Ireland
- UCD Institute of Food and Health, Ireland
- UCD Centre for Food Safety, Ireland
| |
Collapse
|
23
|
Martínez-Aguilar V, Peña-Juárez MG, Carrillo-Sanchez PC, López-Zamora L, Delgado-Alvarado E, Gutierrez-Castañeda EJ, Flores-Martínez NL, Herrera-May AL, Gonzalez-Calderon JA. Evaluation of the Antioxidant and Antimicrobial Potential of SiO 2 Modified with Cinnamon Essential Oil ( Cinnamomum Verum) for Its Use as a Nanofiller in Active Packaging PLA Films. Antioxidants (Basel) 2023; 12:antiox12051090. [PMID: 37237956 DOI: 10.3390/antiox12051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
One of the main causes of food spoilage is the lipid oxidation of its components, which generates the loss of nutrients and color, together with the invasion of pathogenic microorganisms. In order to minimize these effects, active packaging has played an important role in preservation in recent years. Therefore, in the present study, an active packaging film was developed using polylactic acid (PLA) and silicon dioxide (SiO2) nanoparticles (NPs) (0.1% w/w) chemically modified with cinnamon essential oil (CEO). For the modification of the NPs, two methods (M1 and M2) were tested, and their effects on the chemical, mechanical, and physical properties of the polymer matrix were evaluated. The results showed that CEO conferred to SiO2 NPs had a high percentage of 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical inhibition (>70%), cell viability (>80%), and strong inhibition to E. coli, at 45 and 11 µg/mL for M1 and M2, respectively, and thermal stability. Films were prepared with these NPs, and characterizations and evaluations on apple storage were performed for 21 days. The results show that the films with pristine SiO2 improved tensile strength (28.06 MPa), as well as Young's modulus (0.368 MPa) since PLA films only presented values of 27.06 MPa and 0.324 MPa, respectively; however, films with modified NPs decreased tensile strength values (26.22 and 25.13 MPa), but increased elongation at break (from 5.05% to 10.32-8.32%). The water solubility decreased from 15% to 6-8% for the films with NPs, as well as the contact angle, from 90.21° to 73° for the M2 film. The water vapor permeability increased for the M2 film, presenting a value of 9.50 × 10-8 g Pa-1 h-1 m-2. FTIR analysis indicated that the addition of NPs with and without CEO did not modify the molecular structure of pure PLA; however, DSC analysis indicated that the crystallinity of the films was improved. The packaging prepared with M1 (without Tween 80) showed good results at the end of storage: lower values in color difference (5.59), organic acid degradation (0.042), weight loss (24.24%), and pH (4.02), making CEO-SiO2 a good component to produce active packaging.
Collapse
Affiliation(s)
- Verónica Martínez-Aguilar
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550 Col. Lomas 2da. Sección, San Luis Potosí 78210, Mexico
| | - Mariana G Peña-Juárez
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, Sierra Leona No. 550 Col. Lomas 2da. Sección, San Luis Potosí 78210, Mexico
| | - Perla C Carrillo-Sanchez
- Maestría en Ingeniería y Tecnología de Materiales, Universidad de La Salle Bajío, Av. Universidad 602, Lomas del Campestre, León 37150, Mexico
| | - Leticia López-Zamora
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de Méxicoen Orizaba, Oriente 9 No. 852 Emiliano Zapata, Orizaba 94320, Mexico
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
- Facultad de Ciencias Quimicas, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
| | - Emmanuel J Gutierrez-Castañeda
- Cátedras CONACYT-Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550 Lomas 2da Sección, San Luis Potosí 78210, Mexico
| | - Norma L Flores-Martínez
- Ingeniería Agroindustrial, Universidad Politécnica de Guanajuato, Avenida Universidad Sur #1001 Comunidad Juan Alonso, Cortazar 38496, Mexico
| | - Agustín L Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río 94294, Mexico
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río 94294, Mexico
| | - Jose Amir Gonzalez-Calderon
- Cátedras CONACYT-Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #64, Zona Universitaria, San Luis Potosí 78290, Mexico
| |
Collapse
|
24
|
Vidaković Knežević S, Knežević S, Vranešević J, Kravić SŽ, Lakićević B, Kocić-Tanackov S, Karabasil N. Effects of Selected Essential Oils on Listeria monocytogenes in Biofilms and in a Model Food System. Foods 2023; 12:foods12101930. [PMID: 37238748 DOI: 10.3390/foods12101930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The composition of 18 essential oils was determined using gas chromatography-mass spectrometry, and their antilisterial activity was evaluated by the disk diffusion method, followed by the determination of the minimum inhibitory and minimum bactericidal concentrations. The most active essential oils were oregano, thyme, cinnamon, winter savory, and clove, with MIC values ranging from 0.09 to 1.78 µL/mL. We investigated the biofilm-forming potential of Listeria monocytogenes on polystyrene at 5 °C, 15 °C, and 37 °C in three different media. The formation of biofilm was found to be dependent on the temperature and the availability of nutrients. After treatment with selected essential oils, the reduction in biofilm biomass was in the range of 32.61% and 78.62%. Micromorphological changes in the L. monocytogenes treated by oregano and thyme essential oils were observed in the form of impaired cell integrity and cell lyses by using scanning electron microscope. Oregano and thyme essential oils (MIC and 2MIC) significantly (p < 0.05) reduced the population of L. monocytogenes in minced pork meat during storage at 4 °C. In conclusion, the obtained results indicated the good activity of some selected essential oils on L. monocytogenes, with bacteriostatic, bactericidal, and antibiofilm effects at very low concentrations.
Collapse
Affiliation(s)
| | | | | | - Sneẑana Ž Kravić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | | | - Nedjeljko Karabasil
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
25
|
Application of essential oils as sanitizer alternatives on the postharvest washing of fresh produce. Food Chem 2023; 407:135101. [PMID: 36481474 DOI: 10.1016/j.foodchem.2022.135101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Growers commonly wash fresh produce with chemical sanitizers during postharvest handling. However, these sanitizers can be harsh to washing systems and pose a health risk to workers. Essential oils (EOs) can be used as alternatives to chemical sanitizers in produce washing. Previous studies reveal that the EOs from thyme, oregano, cinnamon, and clove are the main EOs evaluated in the studies as potential sanitizers for the washing of produce. The use of EOs and surfactants, such as tween80 and cetylpyridinium chloride, might be used to improve the antimicrobial activity of emulsions. However, studies are still required to evaluate the potential effect of different chemical components of EOs and preparations. Also, it is recommended that researchers focus on overcoming obstacles regarding EOs application in washing systems, including the high levels of EO required to reduce bacterial growth, undesired organoleptic impact on produce, and the poor solubility of EOs in aqueous solution.
Collapse
|
26
|
Azari R, Yousefi MH, Taghipour Z, Wagemans J, Lavigne R, Hosseinzadeh S, Mazloomi SM, Vallino M, Khalatbari-Limaki S, Berizi E. Application of the lytic bacteriophage Rostam to control Salmonella enteritidis in eggs. Int J Food Microbiol 2023; 389:110097. [PMID: 36731200 DOI: 10.1016/j.ijfoodmicro.2023.110097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/16/2023]
Abstract
Foodborne Salmonella enteritidis infections place human health at risk, driven by regular outbreaks and individual cases by different contaminated food materials. This study was conducted to characterize and employ a single bacteriophage as a potential biocontrol agent. Phage Rostam was isolated, characterized and then applied as biocontrol agent against S. enteritidis in liquid whole eggs and eggshell. Rostam is a novel myovirus belonging to the Rosemountvirus genus and active against Escherichia coli and Salmonella spp. Rostam is stable in a pH range from 4 to 10, a salt concentration of 1-9 %, whereas UV radiation gradually reduces phage stability, and its 53 kb genome sequence indicates this phage does not contain known toxins or lysogeny-associated genes. Its latent period is short with a burst size of 151 PFU/cell, under standard growth conditions. Killing curves indicate that at higher multiplicities of infection (MOI), the reduction in S. enteritidis count is more pronounced. Phage Rostam (MOI 10,000) reduces S. enteritidis growth to below the detection limit at 4 °C in both liquid whole eggs and on the eggshell within 24 h. Due to its high lytic activity and stability in relevant conditions, Rostam has the potential to be an efficient biopreservative for egg and egg products.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zohreh Taghipour
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, 10135 Turin, Italy
| | - Sepideh Khalatbari-Limaki
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Meenu M, Padhan B, Patel M, Patel R, Xu B. Antibacterial activity of essential oils from different parts of plants against Salmonella and Listeria spp. Food Chem 2023; 404:134723. [DOI: 10.1016/j.foodchem.2022.134723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/03/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022]
|
28
|
Ding Y, Huang C, Zhu W, Li Z, Zhang Y, Wang J, Pan H, Li H, Wang X. Characterization of a novel Jerseyvirus phage T102 and its inhibition effect on biofilms of multidrug-resistant Salmonella. Virus Res 2023; 326:199054. [PMID: 36717022 DOI: 10.1016/j.virusres.2023.199054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Biofilm, as a complex microbial community, is a serious and major safety concern in the food industry. Interestingly, some phages could effectively disrupt biofilms. This study characterized a novel isolated Salmonella bacteriophage T102, and its ability to control and remove biofilm produced by multidrug-resistant Salmonella. Phage T102 exhibited a broad host range within the Salmonella genus, especially drug-resistant Salmonella. The genome of phage T102 was comprised of 41,941 bp with 49.7% G + C composition, and with no genes associated with antibiotic resistance or virulence factors. The structural protein profile of phage T102 was subjected to SDS-PAGE and UPLC-MS/MS analysis, among them, 34 peptides were consistent with the hypothetical protein sequences annotated in the genome of T102. The biofilm inhibition assay revealed that phage T102 inhibited the formation of 6 h biofilms by two multidrug-resistant S. Typhimurium strains by 43.17 and 32.42%, respectively. 24 h biofilms formed by S. Typhimurium decreased by 54.94 and 53.67%, respectively, after 2 h of exposure to phage T102. Microscopic observation confirmed the inhibition effect of phage T102 on biofilm formation on spiked lettuce. Overall, our results support new research into the application of bacteriophage for biofilm reduction.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenxi Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjuan Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhiwei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui Pan
- Jingzhou Institute for Food and Drug Control, Jingzhou 434000, China.
| | - Huihui Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Shyu JG, Hsu CK, Hsu KP, Yang ML, Wei LY, Ho HT, Ho CL. Chemical Composition, in Vitro Antibacterial and Antifungal Activities of Different Parts Essential Oils of Neolitsea sericea var. aurata From Taiwan. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231166290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
This study examined the chemical composition and antimicrobial activities of essential oils isolated from the leaves, twigs, and fruits of Neolitsea sericea var. aurata from Taiwan. The major compounds responsible for antimicrobial activity were isolated and identified. The leaf, twig, and fruit essential oils were obtained through hydrodistillation in a Clevenger-type apparatus and were characterized through gas chromatography (GC) with flame ionization detection (GC/FID) and GC/mass spectrometry (GC/MS). The major compounds were ( E)-β-ocimene (49.3%) and sericenine (31.6%) in the leaf oil; ( E)-β-ocimene (73.7%), α-cadinol (6.8%), and α-muurolol (4.0%) in the twig oil; and ( E)-β-ocimene (84.7%) in the fruit oil. The twig oil exhibited the strongest antibacterial and antifungal activities. We isolated α-cadinol and α-muurolol, the main components of NTO4 fraction, and used them in antimicrobial tests; the two compounds exhibited excellent antimicrobial activities. The twig essential oil contains α-cadinol and α-muurolol and exhibited excellent antimicrobial activities against food-borne pathogens; thus, they are worthy of further research and development.
Collapse
|
30
|
Application of Eugenol in Poultry to Control Salmonella Colonization and Spread. Vet Sci 2023; 10:vetsci10020151. [PMID: 36851455 PMCID: PMC9962070 DOI: 10.3390/vetsci10020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The poultry sector is an essential component of agriculture that has experienced unprecedented growth during the last few decades. It is especially true for the United States, where the average intake of chicken meat increased from 10 pounds (4.5 kg) per person in 1940 to 65.2 pounds (29.6 kg) per person in 2018, while the country produced 113 billion eggs in 2019 alone. Besides providing nutrition and contributing significantly to the economy, chicken is also a natural reservoir of Salmonella, which is responsible for salmonellosis in humans, one of the significant foodborne illnesses around the globe. The increasing use of chicken manure and antibiotics increases the spread of Salmonella and selects for multi-drug resistant strains. Various plant extracts, primarily essential oils, have been investigated for their antimicrobial activities. The multiple ways through which these plant-derived compounds exert their antimicrobial effects make the development of resistance against them unlikely. Eugenol, an aromatic oil primarily found in clove and cinnamon, has shown antimicrobial activities against various pathogenic bacteria. A few reports have also highlighted the anti-Salmonella effects of eugenol in chicken, especially in reducing the colonization by Salmonella Enteritidis and Salmonella Typhimurium, the primary Salmonella species responsible for human salmonellosis. Besides limiting Salmonella infection in chicken, the supplementation of eugenol also significantly improves intestinal health, improving overall well-being. In this review, we highlight the rising incidences of salmonellosis worldwide and the factors increasing its prevalence. We then propose the usage of eugenol as a natural feed supplement for containing Salmonella in chicken.
Collapse
|
31
|
Effects of edible chitosan coating containing Salvia rosmarinus essential oil on quality characteristics and shelf life extension of rabbit meat during chilled storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractRabbit meat is one of the most consumed meats throughout the world and is extremely susceptible to spoilage due to its high protein and moisture content. Natural preservatives with antioxidant and antibacterial properties are needed to maintain meat quality and increase its shelf life. This study examined the effect of 1% chitosan (CH), 0.2% rosemary (Salvia rosmarinus) essential oil (REO), and their combination on pH, total volatile basic nitrogen (TVB-N) and thiobarbituric acid (TBA) levels, and the microbial profile of rabbit meat stored over 12 days at 4 °C. During this time, changes in appearance, odor, and texture were also noted. The shelf lives of samples treated with only 1% CH coating, or in combination with 0.2% REO, were longer than those of untreated samples. These results showed that samples treated with both CH and REO were still acceptable until the 12th day and resulted in significantly lower meat demerit scores in these treated groups compared with untreated meat. In all groups, the pH, TVB-N, and TBA values increased over time, but these values were significantly higher (p < 0.05) in untreated samples. Microbial analysis results showed that chilled rabbit meat samples treated with combined 1% CH and 0.2% REO reduced Enterobacteriaceae, Pseudomonas, and Psychrotrophic counts. The experimental results demonstrated that using CH coating in combination with REO improved the quality of rabbit meat and could be an effective approach to reduce rabbit meat deterioration during chilled storage.
Collapse
|
32
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
33
|
Wu K, Zhang T, Chai X, Duan X, He D, Yu H, Liu X, Tao Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods 2022; 12:foods12010045. [PMID: 36613259 PMCID: PMC9818807 DOI: 10.3390/foods12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Essential oils (EOs) have good natural antioxidant and antimicrobial properties; however, their volatility, intense aroma, poor aqueous solubility, and chemical instability limit their applications in the food industry. The encapsulation of EOs in β-cyclodextrins (β-CDs) is a widely accepted strategy for enhancing EO applications. The complexation of cinnamon essential oil (CEO) with five types of β-CDs, containing different substituent groups (β-CD with primary hydroxyl, Mal-β-CD with maltosyl, CM-β-CD with carboxymethyl, HP-β-CD with hydroxypropyl, and DM-β-CD with methyl), inclusion process behaviors, volatile components, and antioxidant and antibacterial activities of the solid complexes were studied. The CEOs complexed with Mal-β-CD, CM-β-CD, and β-CD were less soluble than those complexed with DM-β-CD and HP-β-CD. Molecular docking confirmed the insertion of the cinnamaldehyde benzene ring into various β-CD cavities via hydrophobic interactions and hydrogen bonds. GC-MS analysis revealed that HP-β-CD had the greatest adaptability to cinnamaldehyde. The CEO encapsulated in β-, Mal-β-, and CM-β-CD showed lower solubility but better control-release characteristics than those encapsulated in DM- and HP-β-CD, thereby increasing their antioxidant and antibacterial activities. This study demonstrated that β-, Mal-β-, and CM-β-CD were suitable alternatives for the encapsulation of CEO to preserve its antioxidant and antibacterial activities for long-time use.
Collapse
|
34
|
Bolouri P, Salami R, Kouhi S, Kordi M, Asgari Lajayer B, Hadian J, Astatkie T. Applications of Essential Oils and Plant Extracts in Different Industries. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248999. [PMID: 36558132 PMCID: PMC9781695 DOI: 10.3390/molecules27248999] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Essential oils (EOs) and plant extracts are sources of beneficial chemical compounds that have potential applications in medicine, food, cosmetics, and the agriculture industry. Plant medicines were the only option for preventing and treating mankind's diseases for centuries. Therefore, plant products are fundamental sources for producing natural drugs. The extraction of the EOs is the first important step in preparing these compounds. Modern extraction methods are effective in the efficient development of these compounds. Moreover, the compounds extracted from plants have natural antimicrobial activity against many spoilage and disease-causing bacteria. Also, the use of plant compounds in cosmetics and hygiene products, in addition to their high marketability, has been helpful for many beauty problems. On the other hand, the agricultural industry has recently shifted more from conventional production systems to authenticated organic production systems, as consumers prefer products without any pesticide and herbicide residues, and certified organic products command higher prices. EOs and plant extracts can be utilized as ingredients in plant antipathogens, biopesticides, and bioherbicides for the agricultural sector. Considering the need and the importance of using EOs and plant extracts in pharmaceutical and other industries, this review paper outlines the different aspects of the applications of these compounds in various sectors.
Collapse
Affiliation(s)
- Parisa Bolouri
- Department of Field Crops, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- Department of Genetic and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Robab Salami
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shaghayegh Kouhi
- Department of Horticultural Sciences, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari 4818168984, Iran
| | - Masoumeh Kordi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616422, Iran
- Correspondence: (B.A.L.); (T.A.)
| | - Javad Hadian
- Department of Agriculture, University of The Fraser Valley, Abbotsford, BC V2S 7M7, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: (B.A.L.); (T.A.)
| |
Collapse
|
35
|
Isolation and Characterization of Chi-like Salmonella Bacteriophages Infecting Two Salmonella enterica Serovars, Typhimurium and Enteritidis. Pathogens 2022; 11:pathogens11121480. [PMID: 36558814 PMCID: PMC9783114 DOI: 10.3390/pathogens11121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica Serovar Typhimurium and Salmonella enterica Serovar Enteritidis are well-known pathogens that cause foodborne diseases in humans. The emergence of antibiotic-resistant Salmonella serovars has caused serious public health problems worldwide. In this study, two lysogenic phages, STP11 and SEP13, were isolated from a wastewater treatment plant in Jeddah, KSA. Transmission electron microscopic images revealed that both phages are new members of the genus “Chivirus” within the family Siphoviridae. Both STP11 and SEP13 had a lysis time of 90 min with burst sizes of 176 and 170 PFU/cell, respectively. The two phages were thermostable (0 °C ≤ temperature < 70 °C) and pH tolerant at 3 ≤ pH < 11. STP11 showed lytic activity for approximately 42.8% (n = 6), while SEP13 showed against 35.7% (n = 5) of the tested bacterial strains. STP11 and STP13 have linear dsDNA genomes consisting of 58,890 bp and 58,893 bp nucleotide sequences with G + C contents of 57% and 56.5%, respectively. Bioinformatics analysis revealed that the genomes of phages STP11 and SEP13 contained 70 and 71 ORFs, respectively. No gene encoding tRNA was detected in their genome. Of the 70 putative ORFs of phage STP11, 27 (38.6%) were assigned to functional genes and 43 (61.4%) were annotated as hypothetical proteins. Similarly, 29 (40.8%) of the 71 putative ORFs of phage SEP13 were annotated as functional genes, whereas the remaining 42 (59.2%) were assigned as nonfunctional proteins. Phylogenetic analysis of the whole genome sequence demonstrated that the isolated phages are closely related to Chi-like Salmonella viruses.
Collapse
|
36
|
Yoon JH, Kim JY, Bae YM, Lee SY. Control of Salmonella enterica serovar Typhimurium and Listeria monocytogenes on lettuce and radish sprouts by combined treatments with thymol, acetic acid, and ultrasound. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Kiprotich SS, Aldrich CG. A review of food additives to control the proliferation and transmission of pathogenic microorganisms with emphasis on applications to raw meat-based diets for companion animals. Front Vet Sci 2022; 9:1049731. [PMID: 36439354 PMCID: PMC9686358 DOI: 10.3389/fvets.2022.1049731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2025] Open
Abstract
Raw meat-based diets (RMBDs) or sometimes described as biologically appropriate raw food (BARFs) are gaining in popularity amongst dog and cat owners. These pet guardians prefer their animals to eat minimally processed and more "natural" foods instead of highly heat-processed diets manufactured with synthetic preservatives. The market for RMBDs for dogs and cats is estimated at $33 million in the United States. This figure is likely underestimated because some pet owners feed their animals raw diets prepared at home. Despite their increasing demand, RMBDs have been plagued with numerous recalls because of contamination from foodborne pathogens like Salmonella, E. coli, or Campylobacter. Existing literature regarding mitigation strategies in RMBD's for dogs/cats are very limited. Thus, a comprehensive search for published research was conducted regarding technologies used in meat and poultry processing and raw materials tangential to this trade (e.g., meats and poultry). In this review paper, we explored multiple non-thermal processes and GRAS approved food additives that can be used as potential antimicrobials alone or in combinations to assert multiple stressors that impede microbial growth, ultimately leading to pathogen inactivation through hurdle technology. This review focuses on use of high-pressure pasteurization, organic acidulants, essential oils, and bacteriophages as possible approaches to commercially pasteurize RMBDs effectively at a relatively low cost. A summary of the different ways these technologies have been used in the past to control foodborne pathogens in meat and poultry related products and how they can be applied successfully to impede growth of enteric pathogens in commercially produced raw diets for companion animals is provided.
Collapse
Affiliation(s)
| | - Charles G. Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
38
|
Wang S, Liu Z, Zhao M, Gao C, Wang J, Li C, Dong X, Liu Z, Zhou D. Chitosan-wampee seed essential oil composite film combined with cold plasma for refrigerated storage with modified atmosphere packaging: A promising technology for quality preservation of golden pompano fillets. Int J Biol Macromol 2022; 224:1266-1275. [DOI: 10.1016/j.ijbiomac.2022.10.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
39
|
Respiratory Depression as Antibacterial Mechanism of Linalool against Pseudomonas fragi Based on Metabolomics. Int J Mol Sci 2022; 23:ijms231911586. [PMID: 36232887 PMCID: PMC9570108 DOI: 10.3390/ijms231911586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Linalool showed a broad-spectrum antibacterial effect, but few studies have elucidated the antibacterial mechanism of linalool on Pseudomonas fragi (P. fragi) to date. The present study aimed to uncover the antimicrobial activity and potential mechanism of linalool against P. fragi by determining key enzyme activities and metabolites combined with a high-throughput method and metabolomic pathway analysis. As a result, linalool had excellent inhibitory activity against P. fragi with MIC of 1.5 mL/L. In addition, the presence of linalool significantly altered the intracellular metabolic profile and a total of 346 differential metabolites were identified, of which 201 were up-regulated and 145 were down-regulated. The highlight pathways included beta-alanine metabolism, pantothenic acid and CoA metabolism, alanine, aspartate and glutamate metabolism, nicotinate and nicotinamide metabolism. Overall, linalool could cause metabolic disorders in cells, and the main metabolic pathways involved energy metabolism, amino acid metabolism and nucleic acid metabolism. In particular, the results of intracellular ATP content and related enzymatic activities (ATPase, SDH, and GOT) also highlighted that energy limitation and amino acid disturbance occurred intracellularly. Together, these findings provided new insights into the mechanism by which linalool inhibited P. fragi and theoretical guidance for its development as a natural preservative.
Collapse
|
40
|
Kumar Pandey V, Shams R, Singh R, Dar AH, Pandiselvam R, Rusu AV, Trif M. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications. Front Nutr 2022; 9:987674. [PMID: 36185660 PMCID: PMC9521177 DOI: 10.3389/fnut.2022.987674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated the use of synthetic preservatives and chemical additives in food is causing poisoning, cancer, and other degenerative disorders. New solutions for food preservation with quality maintenance are currently emerging. As a result, public concern has grown, as they desire to eat healthier products that use natural preservatives and compounds rather than synthetic ones. Clove is a highly prized spice used as a food preservative and for a variety of therapeutic reasons. Clove essential oil and its principal active component, eugenol, indicate antibacterial and antifungal action, aromaticity, and safety as promising and valuable antiseptics in the food sector. Clove essential oil and eugenol are found to have strong inhibition effects on a variety of food-source bacteria, and the mechanisms are linked to lowering migration and adhesion, as well as blocking the creation of biofilm and various virulence factors. This review emphasizes the importance of CEO (clove essential oil) in the food industry and how it can be explored with edible coatings to deliver its functional properties in food preservation.
Collapse
Affiliation(s)
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, India
- Rahul Singh
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Pulwama, India
- *Correspondence: Aamir Hussain Dar
| | - R. Pandiselvam
- Division of Physiology, Biochemistry and Post-harvest Technology, ICAR–Central Plantation Crops Research Institute, Kasaragod, India
- R. Pandiselvam
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Stuhr, Germany
| |
Collapse
|
41
|
Yang FF, Shuai MS, Guan X, Zhang M, Zhang QQ, Fu XZ, Li ZQ, Wang DP, Zhou M, Yang YY, Liu T, He B, Zhao YL. Synthesis and antibacterial activity studies in vitro of indirubin-3'-monoximes. RSC Adv 2022; 12:25068-25080. [PMID: 36199871 PMCID: PMC9438470 DOI: 10.1039/d2ra01035f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022] Open
Abstract
Multi-drug-resistant microbial pathogens are a serious global health problem. New compounds with antibacterial activity serve as good candidates for developing novel antibacterial drugs which is very urgent and important. In this work, based on the unique scaffold of indirubin, an active ingredient of traditional Chinese medicine formulation Danggui Luhui Wan, we synthesized 29 indirubin-3'-monoximes and preliminarily evaluated their antibacterial activities. The antibacterial activity results demonstrated that the synthesized indirubin-3'-monoximes 5a-5z and 5aa-5ad displayed good potency against S. aureus ATCC25923 (MIC = 0.4-25.6 μg mL-1). Among them, we found that the 5-F, 5-Cl and 7-CF3 substituted indirubin-3'-monoximes 5r, 5s and 5aa also showed better antibacterial efficiency for S. aureus (MICs up to 0.4 μg mL-1) than the prototype natural product indirubin (MIC = 32 μg mL-1). More importantly, indirubin-3'-monoxime 5aa has certain synergistic effect with levofloxacin against clinic multidrug-resistant S. aureus (fractional inhibitory concentration index: 0.375). In addition, relevant experiments including electron microscopy observations, PI staining and the leakage of extracellular potassium ions and nucleic acid (260 nm) have been performed after treating S. aureus with indirubin-3'-monoxime 5aa, and the results revealed that indirubin-3'-monoximes could increase the cell membrane permeability of S. aureus. Although indirubin-3'-monoxime 5aa showed some cytotoxicity toward SH-SY5Y cells relative to compounds 5r and 5s, the skin irritation test of male mice after shaving showed that compound 5aa at a concentration of 12.8 μg mL-1 had no toxicity to mouse skin, and it could be used as a leading compound for skin antibacterial drugs.
Collapse
Affiliation(s)
- Fen-Fen Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Ming-Shan Shuai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiang Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Mao Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Qing-Qing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiao-Zhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Zong-Qin Li
- Department of Neurology Sichuan Mianyang 404 Hospital Mianyang 621000 People's Republic of China
| | - Da-Peng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Guiyang 550025 People's Republic of China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yuan-Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yong-Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| |
Collapse
|
42
|
Controlled Release of Volatile Antimicrobial Compounds from Mesoporous Silica Nanocarriers for Active Food Packaging Applications. Int J Mol Sci 2022; 23:ijms23137032. [PMID: 35806038 PMCID: PMC9266657 DOI: 10.3390/ijms23137032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Essential oils and their active components have been extensively reported in the literature for their efficient antimicrobial, antioxidant and antifungal properties. However, the sensitivity of these volatile compounds towards heat, oxygen and light limits their usage in real food packaging applications. The encapsulation of these compounds into inorganic nanocarriers, such as nanoclays, has been shown to prolong the release and protect the compounds from harsh processing conditions. Nevertheless, these systems have limited shelf stability, and the release is of limited control. Thus, this study presents a mesoporous silica nanocarrier with a high surface area and well-ordered protective pore structure for loading large amounts of natural active compounds (up to 500 mg/g). The presented loaded nanocarriers are shelf-stable with a very slow initial release which levels out at 50% retention of the encapsulated compounds after 2 months. By the addition of simulated drip-loss from chicken, the release of the compounds is activated and gives an antimicrobial effect, which is demonstrated on the foodborne spoilage bacteria Brochothrixthermosphacta and the potentially pathogenic bacteria Escherichia coli. When the release of the active compounds is activated, a ≥4-log reduction in the growth of B. thermosphacta and a 2-log reduction of E. coli is obtained, after only one hour of incubation. During the same one-hour incubation period the dry nanocarriers gave a negligible inhibitory effect. By using the proposed nanocarrier system, which is activated by the food product itself, increased availability of the natural antimicrobial compounds is expected, with a subsequent controlled antimicrobial effect.
Collapse
|
43
|
Shen Y, Zhou J, Yang C, Chen Y, Yang Y, Zhou C, Wang L, Xia G, Yu X, Yang H. Preparation and characterization of oregano essential oil-loaded Dioscorea zingiberensis starch film with antioxidant and antibacterial activity and its application in chicken preservation. Int J Biol Macromol 2022; 212:20-30. [PMID: 35597375 DOI: 10.1016/j.ijbiomac.2022.05.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022]
Abstract
In this study, abundant starch was separated from the industrial crop Dioscorea zingiberensis C.H. Wright (DZW), and a novel bioactive packaging film loaded with oregano essential oil (OEO) was prepared and characterized. NaClO solution worked as a bleacher to prepare uniform starch powder from DZW tubers. OEO was selected from among three essential oils of Labiatae family plants for its strongest antibacterial activity. After the addition of OEO into the starch-based film, the UV-vis shielding property and antioxidant activity were enhanced. Meanwhile, the films still have a considerable performance in transparency, mechanical strength and water vapor permeability after incorporated with OEO. Furthermore, the 3% OEO-loaded starch film exhibited the strongest antibacterial activity against Bacillus subtilis, Escherichia coli and Staphylococcus aureus. It effectively lowered the total viable count of fresh chicken under 4 °C preservation conditions. These results revealed that the OEO-loaded DZW starch film can exert a positive effect on maintaining the quality and extending the shelf life of fresh meat. Therefore, readily accessible DZW tubers and oregano are very promising resources for application in degradable bioactive packaging film.
Collapse
Affiliation(s)
- Yuping Shen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jinwei Zhou
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chengyu Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yufei Chen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yaya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liwei Wang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Guohua Xia
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
44
|
Spengler G, Gajdács M, Donadu MG, Usai M, Marchetti M, Ferrari M, Mazzarello V, Zanetti S, Nagy F, Kovács R. Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus oxycedrus L. ssp. macrocarpa Aerial Parts. Microorganisms 2022; 10:758. [PMID: 35456809 PMCID: PMC9032431 DOI: 10.3390/microorganisms10040758] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
As a consequence of the worsening situation with multidrug-resistant (MDR) pathogens and a disparity in the commercialization of novel antimicrobial agents, scientists have been prompted to seek out new compounds with antimicrobial activity from a wide range of sources, including medicinal plants. In the present study, the antibacterial, antifungal, anti-virulence, and resistance-modulating properties of the essential oil from the Sardinian endemic Juniperus oxycedrus L. ssp. macrocarpa aerial parts were evaluated. The GC/MS analysis showed that the main compounds in the oil were α-pinene (56.63 ± 0.24%), limonene (14.66 ± 0.11%), and β-pinene (13.42 ± 0.09%). The essential oil showed potent antibacterial activity against Gram-positive bacteria (0.25-2 v/v%) and Salmonella spp. (4 v/v%). The strongest fungicidal activity was recorded against Candida auris sessile cells (median FICI was 0.088) but not against C. albicans biofilms (median FICI was 1). The oil showed potent efflux pump inhibitory properties in the case of Staphylococcus aureus and Escherichia coli. The therapeutic potential of Juniperus may be promising for future more extensive research and in vivo tests to develop new drugs against antibiotic and antifungal resistance.
Collapse
Affiliation(s)
- Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Utca 6, 6725 Szeged, Hungary;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary;
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Marianna Usai
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Mauro Marchetti
- Institute of Biomolecular Chemistry (CNR), Li Punti, 07100 Sassari, Italy;
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine and Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (R.K.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine and Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (R.K.)
| |
Collapse
|
45
|
Reis DR, Ambrosi A, Luccio MD. Encapsulated essential oils: a perspective in food preservation. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
46
|
High pressure processing of raw meat with essential oils-microbial survival, meat quality, and models: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
A Polyvalent Broad-Spectrum Escherichia Phage Tequatrovirus EP01 Capable of Controlling Salmonella and Escherichia coli Contamination in Foods. Viruses 2022; 14:v14020286. [PMID: 35215879 PMCID: PMC8877722 DOI: 10.3390/v14020286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Salmonella and Escherichia coli (E. coli) food contamination could lead to serious foodborne diseases. The gradual increase in the incidence of foodborne disease invokes new and efficient methods to limit food pathogenic microorganism contamination. In this study, a polyvalent broad-spectrum Escherichia phage named Tequatrovirus EP01 was isolated from pig farm sewage. It could lyse both Salmonella Enteritidis (S. Enteritidis) and E. coli and exhibited broad host range. EP01 possessed a short latent period (10 min), a large burst size (80 PFU/cell), and moderate pH stability (4–10) and appropriate thermal tolerance (30–80 °C). Electron microscopy and genome sequence revealed that EP01 belonged to T4-like viruses genus, Myoviridae family. EP01 harbored 12 CDSs associated with receptor-binding proteins and lacked virulence genes and drug resistance genes. We tested the inhibitory effect of EP01 on S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B) in liquid broth medium (LB). EP01 could significantly reduce the counts of all tested strains compared with phage-free groups. We further examined the effectiveness of EP01 in controlling bacterial contamination in two kinds of foods (meat and milk) contaminated with S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B), respectively. EP01 significantly reduced the viable counts of all the tested bacteria (2.18–6.55 log10 CFU/sample, p < 0.05). A significant reduction of 6.55 log10 CFU/cm2 (p < 0.001) in bacterial counts on the surface of meat was observed with EP01 treatment. Addition of EP01 at MOI of 1 decreased the counts of bacteria by 4.3 log10 CFU/mL (p < 0.001) in milk. Generally, the inhibitory effect exhibited more stable at 4 °C than that at 28 °C, whereas the opposite results were observed in milk. The antibacterial effects were better at MOI of 1 than that at MOI of 0.001. These results suggests that phage EP01-based method is a promising strategy of controlling Salmonella and Escherichia coli pathogens to limit microbial food contamination.
Collapse
|
48
|
He Y, Sang S, Tang H, Ou C. In vitro
mechanism of antibacterial activity of eucalyptus essential oil against specific spoilage organisms in aquatic products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidan He
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| | - Shangyuan Sang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo China
| | - Haiqing Tang
- Department of Food Science Zhejiang Pharmaceutical Colleges Ningbo China
| | - Changrong Ou
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo China
| |
Collapse
|
49
|
BARBOZA GR, ALMEIDA JMD, SILVA NCC. Use of natural substrates as an alternative for the prevention of microbial contamination in the food industry. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.05720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
TABAN BMERCANOGLU, STAVROPOULOU E, WINKELSTRÖTER LKRETLI, BEZIRTZOGLOU E. Value-added effects of using aromatic plants in foods and human therapy. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.43121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|