1
|
Scarponi P, Caminiti V, Bravi M, Izzo FC, Cavinato C. Coupling anaerobic co-digestion of winery waste and waste activated sludge with a microalgae process: Optimization of a semi-continuous system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:300-309. [PMID: 38086294 DOI: 10.1016/j.wasman.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/12/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
Wine production represents one of the most important agro-industrial sectors in Italy. Wine lees are the most significant waste in the winery industry and have high disposal and storage costs and few applications within the circular economy. In this study, anaerobic digestion and a microalgae coupled process was studied in order to treat wine lees and waste activated sludge produced within the same facility, with the aim of producing energy and valuable microalgae biomass that could be processed to recover biofuel or biostimulant. Chlorella vulgaris was cultivated on liquid digestate in a semi-continuous system without biomass recirculation. The best growth and phytoremediation performance were achieved applying a hydraulic retention time (HRT) of 20 days with a stable dry weight, lipid and protein storage of 1.85 ± 0.02 g l-1, 33.48 ± 7.54 % and 57.85 ± 10.14 % respectively. Lipid characterization highlighted the potential use in high quality biodiesel production, according to EN14214 (<12 % v/v linolenic acid). The microalgae reactor's liquid output showed high removal of ammonia (95.72 ± 2.10 %), but low organic soluble matter reduction. Further semi-continuous process optimization was carried out by increasing the time between digestate feeding and biomass recovery at HRT 10. These operative changes avoided biomass wash-out and provided a stable phytoremediation of the digestate with 84.58 ± 4.02 % ammonia removal, 33.01 ± 1.44 % sCOD removal, 38.06 ± 2.65 % of polyphenols removal.
Collapse
Affiliation(s)
- P Scarponi
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| | - V Caminiti
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, viale dell'Università, 16, 35020 Legnaro, Italy
| | - M Bravi
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana, 18, 00184 Roma, Italy
| | - F C Izzo
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - C Cavinato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| |
Collapse
|
2
|
Hamrouni R, Regus F, Claeys-Bruno M, Farnet Da Silva AM, Orsière T, Laffont-Schwob I, Boudenne JL, Dupuy N. Statistical Experimental Design as a New Approach to Optimize a Solid-State Fermentation Substrate for the Production of Spores and Bioactive Compounds from Trichoderma asperellum. J Fungi (Basel) 2023; 9:1123. [PMID: 37998928 PMCID: PMC10672489 DOI: 10.3390/jof9111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Managing organic agricultural wastes is a challenge in today's modern agriculture, where the production of different agricultural goods leads to the generation of large amounts of waste, for example, olive pomace and vine shoot in Mediterranean Europe. The discovery of a cost-effective and environment-friendly way to valorize such types of waste in Mediterranean Europe is encouraged by the European Union regulation. As an opportunity, organic agricultural waste could be used as culture media for solid-state fermentation (SSF) for fungal strains. This methodology represents a great opportunity to produce secondary metabolites like 6-pentyl-alpha-pyrone (6-PP), a lactone compound with antifungal properties against phytopathogens, produced by Trichoderma spp. Therefore, to reach adequate yields of 6-PP, lytic enzymes, and spores, optimization using specific agricultural cheap local wastes from Southeastern France is in order. The present study was designed to show the applicability of an experimental admixture design to find the optimal formulation that favors the production of 6-PP. To conclude, the optimized formulation of 6-PP production by Trichoderma under SSF contains 18% wheat bran, 23% potato flakes, 20% olive pomace, 14% olive oil, 24% oatmeal, and 40% vine shoots.
Collapse
Affiliation(s)
- Rayhane Hamrouni
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| | - Flor Regus
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
- IRD, LPED, UMR 151, Aix Marseille University, 13331 Marseille, France;
| | - Magalie Claeys-Bruno
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| | - Anne-Marie Farnet Da Silva
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| | - Thierry Orsière
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| | | | | | - Nathalie Dupuy
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| |
Collapse
|
3
|
Piwowarek K, Lipińska E, Kieliszek M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl Microbiol Biotechnol 2023; 107:2169-2208. [PMID: 36929188 PMCID: PMC10033485 DOI: 10.1007/s00253-023-12458-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
4
|
Phytochemicals Recovery from Grape Pomace: Extraction Improvement and Chemometric Study. Foods 2023; 12:foods12050959. [PMID: 36900476 PMCID: PMC10001001 DOI: 10.3390/foods12050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
In the last 20 years, an increased interest has been shown in the application of different types and combinations of enzymes to obtain phenolic extracts from grape pomace in order to maximize its valorization. Within this framework, the present study aims at improving the recovery of phenolic compounds from Merlot and Garganega pomace and at contributing to the scientific background of enzyme-assisted extraction. Five commercial cellulolytic enzymes were tested in different conditions. Phenolic compound extraction yields were analyzed via a Design of Experiments (DoE) methodology and a second extraction step with acetone was sequentially added. According to DoE, 2% w/w enzyme/substrate ratio was more effective than 1%, allowing a higher total phenol recovery, while the effect of incubation time (2 or 4 h) variation was more enzyme-dependent. Extracts were characterized via spectrophotometric and HPLC-DAD analyses. The results proved that enzymatic and acetone Merlot and Garganega pomace extracts were complex mixtures of compounds. The use of different cellulolytic enzymes led to different extract compositions, as demonstrated using PCA models. The enzyme effects were observed both in water enzymatic and in the subsequent acetone extracts, probably due to their specific grape cell wall degradation and leading to the recovery of different molecule arrays.
Collapse
|
5
|
Abstract
The increase in waste volume and greenhouse gas emissions and decrease in raw-material reserves are some of the serious problems that our planet is facing. The measures needed to address these issues cannot be implemented under the prevailing linear economy model; hence, the circular economy model has been introduced. The successful implementation of circularity, whose basic principles include waste reduction, reuse, and recycling, requires a change in the behaviour of all the parties involved and is expected to lead to industrial–urban symbiosis schemes. The present paper looks at the current state and future prospects of the circular economy in Cyprus, based on the evidence drawn from an EU-funded project entitled “a digital Solid Waste reuse plAtform for BalkaN” (Project Acronym: SWAN). The project’s main objective was the design and development of a digital solid waste reuse platform involving four countries: Greece, Albania, Bulgaria, and Cyprus. Using the data collected, in the context of this project, from a sample of Cypriot industries, we looked into the familiarisation of the respondents with the basic concepts of circularity and their willingness to participate in symbiotic value chains. Moreover, we examined the composition of the waste streams produced by those industries and proposed potential waste reuse business models and subsequent symbiotic clusters.
Collapse
|
6
|
López-Pérez JA, Sánchez-Moreno S. Soil response to root-knot nematode management with wine vinasse in a solarised horticultural soil under glasshouse conditions. NEMATOLOGY 2021. [DOI: 10.1163/15685411-bja10140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The increasing interest in agroecological practices and the current consideration of agrarian soils as a sustainable resource are driving the development of new strategies to manage soil parasites and diseases. The application of organic matter from different sources to reduce plant parasites contributes to circular economy by applying by-products as soil organic amendments that reduce wastes. Wine vinasse (WV) is a by-product generated to obtain alcohol from wine by physical methods in distilleries. The aim of this study was to determine the potential of WV and its combination with animal manure (WV+M) as soil biodisinfestation products. For this, it was compared with a plastic-covered control to distinguish the biodisinfestation from solarisation effect. The crops tested consisted of a tomato-Swiss chard rotation under glasshouse conditions. Their effects on Meloidogyne incognita, soil fertility, nematode community and crop yield were assessed. The results obtained after two seasons showed a reduction of M. incognita galling in the root system of both crops. The immediate effect after the treatment application was a reduction in the abundance of nematodes and changes in the nematode-based indices that affected all plots, including the control, most likely related to the tillage effect for the treatments application and the plastic cover. Soil fertility was improved by the application of WV (NO3−, Bioav. P) and WV+M (C, Ntotal, K), which reduced herbivore nematode metabolic footprints and enhanced bacterivore footprints. Our results indicate that the combination WV+M was effective reducing M. incognita infection, and improved crop yield. Use of by-products such as WV is a helpful tool for managing horticultural soils.
Collapse
Affiliation(s)
- Jose A. López-Pérez
- Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), CIAPA de Marchamalo, Guadalajara, Spain
| | - Sara Sánchez-Moreno
- Department of the Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA_CSIC), Crta Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
7
|
Gómez-Brandón M, Martínez-Cordeiro H, Domínguez J. Changes in the nutrient dynamics and microbiological properties of grape marc in a continuous-feeding vermicomposting system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:1-10. [PMID: 34455333 DOI: 10.1016/j.wasman.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Finding strategies to reuse and treat organic wastes is of utmost need. Biological processes offer the possibility to transform them into safer end products with benefits for both agriculture and the environment. Moreover, it represents an ecologically-sound and economically attractive alternative to landfill disposal and incineration. In this work, we evaluated the feasibility of vermicomposting to treat and process grape marc, the main solid by-product of the wine industry. The long-term changes in grape marc derived from both white and red winemaking processes were assessed throughout the process of vermicomposting from a physico-chemical and microbiological perspective. New layers of fresh marc were added sequentially in the presence and absence of earthworms (Eisenia andrei) forming an age gradient during a 42-week period. An optimal moisture level of 70% was maintained over the course of the process. The pH fell within weak-alkaline levels through the layerś profile and the electrical conductivity was between 200 and 300 µS cm-1, providing optimum conditions for earthworm growth. The mass loss caused by earthworm activity led to an increased content of macro- and micronutrients at the end of the trial. An overall decrease in microbial biomass and its activity, indicative of a stabilised material, was also recorded with depth of layer. Altogether, this points to vermicomposting as a suitable management system for processing grape marc with a dual purpose, that is fertilizer production and environment protection. This is especially relevant in the current attempts to reach a fully circular economy.
Collapse
Affiliation(s)
| | | | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidad de Vigo, Vigo 36310, Spain
| |
Collapse
|
8
|
Abstract
Fermentation is a well-known natural process that has been used by humanity for thousands of years, with the fundamental purpose of making alcoholic beverages such as wine, and also other non-alcoholic products. From a strictly biochemical point of view, fermentation is a process of central metabolism in which an organism converts a carbohydrate, such as starch or sugar, into an alcohol or an acid. The fermentation process turns grape juice (must) into wine. This is a complex chemical reaction whereby the yeast interacts with the sugars (glucose and fructose) in the must to create ethanol and carbon dioxide. Fermentation processes to produce wines are traditionally carried out with Saccharomyces cerevisiae strains, the most common and commercially available yeast, and some lactic acid bacteria. They are well-known for their fermentative behavior and technological characteristics, which allow obtaining products of uniform and standard quality. However, fermentation is influenced by other factors as well. The initial sugar content of the must and the fermentation temperature are also crucial to preserve volatile aromatics in the wine and retain fruity characters. Finally, once fermentation is completed, and most of the yeast dies, wine evolution continues until the production of the final product.
Collapse
|
9
|
Ncube A, Fiorentino G, Colella M, Ulgiati S. Upgrading wineries to biorefineries within a Circular Economy perspective: An Italian case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145809. [PMID: 33631583 DOI: 10.1016/j.scitotenv.2021.145809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 05/21/2023]
Abstract
In the challenge of transforming waste into useful products that can be re-used in a circular perspective, Italian wine industry can represent a suitable model for the application of the bioeconomy principles, including the valorisation of the agricultural and food waste. In the present study, a comprehensive environmental assessment of the traditional production of wine was performed and the potentiality of a biorefinery system, based on winery waste and aimed at recovering useful bio-based products, such as grapeseed oil and calcium tartrate, was examined through Life Cycle Assessment (LCA). The wine company "I Borboni", producing Asprinio wine in the Campania Region (Italy), was proposed as a case study. The hotspots of the linear production system were identified and the bottling phase, in particular the production of packaging glass, resulted to contribute to the generation of impacts at 63%, on average, versus 14.3% of the agricultural phase and 22.7% of the vinification phase. The LCA results indicated human carcinogenic toxicity, freshwater eutrophication and fossil resource scarcity impact categories as the most affected ones, with normalized impacts amounting to 9.22E-03, 3.89E-04 and 2.64E-04, respectively. Two side production chains (grapeseed oil and tartrate production) were included and circular patterns were designed and introduced in the traditional production chain with the aim of valorising the winery residues and improving the overall environmental performance. By implementing the circular approach, environmental impacts in the global warming, freshwater eutrophication and mineral resource scarcity impact categories, in particular, resulted three times lower than in the linear system. The results achieved demonstrated that closing the loops in the wine industry, through the reuse of bio-based residues alternatively to fossil-based inputs within the production process, and integrating the traditional production system with new side production chains led to an upgrade of the wineries to biorefineries, towards more sustainable production patterns.
Collapse
Affiliation(s)
- A Ncube
- International PhD Programme "Environment, Resources and Sustainable Development, Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy
| | - G Fiorentino
- ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Department for Sustainability, Division Resource Efficiency, Research Centre of Portici, P.le E. Fermi 1, Portici, 80055, Naples, Italy.
| | - M Colella
- Parthenope University of Naples, Department of Science and Technology, Centro Direzionale - Isola C4, 80143 Naples, Italy
| | - S Ulgiati
- Parthenope University of Naples, Department of Science and Technology, Centro Direzionale - Isola C4, 80143 Naples, Italy; Beijing Normal University, School of Environment, 19 Xinjiekouwai St., Haidian District, 100875 Beijing, China
| |
Collapse
|
10
|
Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management. SUSTAINABILITY 2021. [DOI: 10.3390/su13126683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The agri-food frameworks have specific characteristics (production units with small dimensions and in great number with implications in the respective markets) that call for adjusted approaches, even more so when they are considered in Mediterranean contexts (where global warming will have relevant impacts). In fact, the Mediterranean regions and countries have particular specificities (due to their climate conditions) that distinguish them from their neighbours. This is particularly true in Europe, for example, where the southern countries present socioeconomic dynamics (associated with the respective public debt) that are different from those identified in the northern regions. From this perspective, it seems pertinent to analyse the several dimensions of the agri-food systems in the Mediterranean area. To achieve these objectives, a search was carried out on 26 December 2020 on the scientific databases Web of Science Core Collection (WoS) and Scopus for the topics “agr*-food” and “Mediterranean”. These keywords were selected after a previous literature survey and to capture the agri-food contexts in Mediterranean regions. The keyword “agr*-food” was considered in this way to allow for a wider search (including “agri-food”, “agro-food”, etc.). Considering only articles (excluding proceeding papers, book chapters, and books, because in some cases it is difficult to access the entire content of the document), 100 and 117 documents were obtained from the WoS and Scopus, respectively. After removing the duplicated studies and taking into account the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach, 137 documents were surveyed through a literature review. As main insights, several dimensions embedded in the concept of agri-food were highlighted, from those related to heritage subjects to natural assets. On the other hand, the following subtopics were identified: agri-food dynamics and sustainability, agriculture and agri-food systems, agri-chains and food consumption, and food production and composition impact on agri-chains. Stressing the gaps in the scientific literature, related to the topics here addressed, there are possibilities to better explore the several dimensions and solutions offered by the new developments associated with smart agriculture and agriculture 4.0, specifically for the Mediterranean contexts and their challenges. Finally, to complement the PRISMA methodologies, an MB2MBA2 (Methodology Based on Benchmarking of Metadata, from scientific databases, and Bibliometric Assessment and Analysis) approach is suggested to carry out systematic literature reviews, based on bibliometric analysis.
Collapse
|
11
|
Silva A, Silva V, Igrejas G, Gaivão I, Aires A, Klibi N, Enes Dapkevicius MDL, Valentão P, Falco V, Poeta P. Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021; 26:molecules26082331. [PMID: 33923843 PMCID: PMC8073494 DOI: 10.3390/molecules26082331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic-resistance in bacteria has limited the ability to treat bacterial infections, besides increasing their morbidity and mortality at the global scale. The need for alternative solutions to deal with this problem is urgent and has brought about a renewed interest in natural products as sources of potential antimicrobials. The wine industry is responsible for the production of vast amounts of waste and by-products, with associated environmental problems. These residues are rich in bioactive secondary metabolites, especially phenolic compounds. Some phenolics are bacteriostatic/bactericidal against several pathogenic bacteria and may have a synergistic action towards antibiotics, mitigating or reverting bacterial resistance to these drugs. Complex phenolic mixtures, such as those present in winemaking residues (pomace, skins, stalks, leaves, and especially seeds), are even more effective as antimicrobials and could be used in combined therapy, thereby contributing to management of the antibiotic resistance crisis. This review focuses on the potentialities of winemaking by-products, their extracts, and constituents as chemotherapeutic antibacterial agents.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Isabel Gaivão
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis, Tunis 1008, Tunisia;
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Correspondence: (M.d.L.E.D.); (P.P.)
| | - Patrícia Valentão
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Virgílio Falco
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
- Correspondence: (M.d.L.E.D.); (P.P.)
| |
Collapse
|
12
|
Belmiro RH, Oliveira LDC, Geraldi MV, Maróstica Junior MR, Cristianini M. Modification of coffee coproducts by-products by dynamic high pressure, acetylation and hydrolysis by cellulase: A potential functional and sustainable food ingredient. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Wine By-Products as Raw Materials for the Production of Biopolymers and of Natural Reinforcing Fillers: A Critical Review. Polymers (Basel) 2021; 13:polym13030381. [PMID: 33530517 PMCID: PMC7865623 DOI: 10.3390/polym13030381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/19/2023] Open
Abstract
The plastic industry is today facing a green revolution; however, biopolymers, produced in low amounts, expensive, and food competitive do not represent an efficient solution. The use of wine waste as second-generation feedstock for the synthesis of polymer building blocks or as reinforcing fillers could represent a solution to reduce biopolymer costs and to boost the biopolymer presence in the market. The present critical review reports the state of the art of the scientific studies concerning the use of wine by-products as substrate for the synthesis of polymer building blocks and as reinforcing fillers for polymers. The review has been mainly focused on the most used bio-based and biodegradable polymers present in the market (i.e., poly(lactic acid), poly(butylene succinate), and poly(hydroxyalkanoates)). The results present in the literature have been reviewed and elaborated in order to suggest new possibilities of development based on the chemical and physical characteristics of wine by-products.
Collapse
|
14
|
Sustainable Lipase Production by Diutina rugosa NRRL Y-95 Through a Combined Use of Agro-Industrial Residues as Feedstock. Appl Biochem Biotechnol 2020; 193:589-605. [PMID: 33043398 DOI: 10.1007/s12010-020-03431-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
The potential use of alternative culture media towards the development of a sustainable bioprocess to produce lipases by Diutina rugosa is clearly demonstrated. First, a synthetic medium containing glucose, peptone, yeast extract, oleic acid, and ammonium sulfate was proposed, with lipase activity of 143 U/L. Then, alternative culture media formulated with agro-industrial residues, such as molasses, corn steep liquor (CSL), and olive mill waste (OMW), were investigated. An experimental design was conducted, and only CSL concentration was found to have a positive effect in lipase production. The highest lipase activity (561 U/L) was produced on a mixture of molasses (5 g/L), CSL (6 g/L), OMW (0.5% v/v), 0.5 g/L of ammonium sulfate, and 3 g/L of peptone at 24 h of cultivation. Lipase production was also carried out in a 1-L bioreactor leading to a slightly higher lipase activity at 24 h of cultivation. The semi-purified enzyme exhibits an optimum temperature and pH of 40 °C and 7.0, respectively. Finally, the media cost per unit of lipase produced (UPC) was influenced by the medium components, specially by the inducer used. The lowest UPC was obtained when the agro-industrial residues were combined and used at the improved concentrations.
Collapse
|
15
|
Contreras MDM, Romero I, Moya M, Castro E. Olive-derived biomass as a renewable source of value-added products. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Iuga M, Mironeasa S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr Rev Food Sci Food Saf 2020; 19:2473-2505. [PMID: 33336974 DOI: 10.1111/1541-4337.12597] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Wine making industry generates high quantities of valuable byproducts that can be used to enhance foods in order to diminish the environmental impact and to obtain more economic benefits. Grape byproducts are rich in phenolic compounds and dietary fiber, which make them suitable to improve the nutritional value of bakery, pastry, and pasta products. The viscoelastic behavior of dough and the textural and the sensory characteristics of baked goods and pasta containing grape byproducts depend on the addition level and particle size. Thus, an optimal dose of a finer grape byproducts flour must be found in order to minimize the negative effects such as low loaf volume and undesirable sensory and textural characteristics they may have on the final product quality. In the same time, an enrichment of the nutritional and functional value of the product by increasing the fiber and antioxidant compounds contents is desired. The aim of this review was to summarize the effects of the chemical components of grape byproducts on the nutritional, functional, rheological, textural, physical, and sensory characteristics of the baked goods and pasta. Further researches about the impact of foods enriched with grape byproducts on the human health, about molecular interactions between components, and about the effects of grape pomace compounds on the shelf life of baked goods and pasta are recommended.
Collapse
Affiliation(s)
- Mădălina Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
17
|
Moldovan ML, Carpa R, Fizeșan I, Vlase L, Bogdan C, Iurian SM, Benedec D, Pop A. Phytochemical Profile and Biological Activities of Tendrils and Leaves Extracts from a Variety of Vitis vinifera L. Antioxidants (Basel) 2020; 9:antiox9050373. [PMID: 32365793 PMCID: PMC7278858 DOI: 10.3390/antiox9050373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Winery industry by-products have a great reuse potential in the pharmaceutical and cosmetic fields due to their bioactive compounds. This study investigates the phytochemical profile and the bioactivity of Vitis vinifera variety Fetească neagră tendrils extract (TE) and leaves extract (LE), intended to be used in oral hygiene products recommended in periodontal disease. The evaluation of the phenolic content was performed by colorimetric analysis. Liquid chromatography coupled with mass spectrometry was used to determine the chemical profile of the two extracts obtained from V. vinifera. Moreover, the antioxidant activity of the extracts was determined by spectrophotometric methods, as well as on human gingival fibroblasts (HGF) cell line. The cytocompatibility and cytoprotective effect against nicotine-induced cytotoxicity were tested, as well as the anti-inflammatory and antimicrobial effects. The TE showed higher total polyphenolic content, rich in rutin, compared to the leaves extract that displayed important amounts of isoquercitrin. The antioxidant effect was confirmed by both non-cellular and cellular tests. The cytocompatibility of the extracts was confirmed at a wide range of concentrations. The cytoprotective effect was demonstrated in HGF exposed to cytotoxic doses of nicotine; 300 µg/mL of both tested extracts decreased nicotine toxicity by approximately 20%. When challenged with E. coli polysaccharides, in HGF cells co-exposed to TE and LE, a reduction in the release of proinflammatory cytokines (IL-8, IL-6 and IL-1β) was observed. The extracts were both able to reduce the levels of reactive oxygen species and inflammatory cytokines, and had notable antimicrobial effects on pathogenic bacteria associated with periodontitis.
Collapse
Affiliation(s)
- Mirela L. Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania; (M.L.M.); (C.B.)
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.)
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeș Street, 400012 Cluj-Napoca, Romania; (L.V.); (S.M.I.)
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania; (M.L.M.); (C.B.)
| | - Sonia M. Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeș Street, 400012 Cluj-Napoca, Romania; (L.V.); (S.M.I.)
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.)
| |
Collapse
|
18
|
Economou CN, Philippoussis AN, Diamantopoulou PA. Spent mushroom substrate for a second cultivation cycle of Pleurotus mushrooms and dephenolization of agro-industrial wastewaters. FEMS Microbiol Lett 2020; 367:5817841. [DOI: 10.1093/femsle/fnaa060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Spent mushroom substrate (SMS) of Pleurotus ostreatus was supplemented with wheat bran and soybean flour and used as substrate for a new cultivation cycle of the oyster mushrooms Pleurotus ostreatus and Pleurotus pulmonarius. The bioconversion efficiency of mushrooms produced over substrate (BE%) used and the chemical composition of sporophores were evaluated. The concentration of mycelial mass, crude exopolysaccharide content and laccase enzyme activity were also determined at the supplemented SMS before inoculation, at 50% and 100% of colonization stages in the new cultivation and in the final re-utilized SMS. The laccase enzyme was extracted to examine SMS potential for the dephenolization of olive mill and winery wastewaters. Results showed that both Pleurotus species exhibited BE over 185%, demonstrating this bioprocess could represent a promising strategy to convert SMS into nutritional food. Data also indicate the strong positive impact that SMS could have in the solid wastes’ management and agribusiness enhancement.
Collapse
Affiliation(s)
- Christina N Economou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou Street, GR-14123 Lykovryssi, Attiki, Greece
- Department of Chemical Engineering, University of Patras, Rio, GR-26504 Patras, Greece
| | - Antonios N Philippoussis
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou Street, GR-14123 Lykovryssi, Attiki, Greece
| | - Panagiota A Diamantopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou Street, GR-14123 Lykovryssi, Attiki, Greece
| |
Collapse
|
19
|
Leal C, Santos RA, Pinto R, Queiroz M, Rodrigues M, José Saavedra M, Barros A, Gouvinhas I. Recovery of bioactive compounds from white grape ( Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi J Biol Sci 2020; 27:1009-1015. [PMID: 32256161 PMCID: PMC7105666 DOI: 10.1016/j.sjbs.2020.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 02/23/2020] [Indexed: 11/19/2022] Open
Abstract
The grape is a matrix rich in bioactive compounds and its production generates large quantities of by-products, such as grape stems, which, to date, present low commercial value. However, there is a growing interest in the application of this material as a source of phenolic compounds. Therefore, the present study aims at assessing the phytochemical profile of (poly)phenolic extracts of white Portuguese grape stem varieties produced in the Região Demarcada do Douro (Portugal). The antioxidant activity determined by several assays, as well as the antimicrobial activity using the disc diffusion method against human gastrointestinal pathogenic bacteria of the hydromethanolic extracts, were evaluated. This work presents very positive results as the rich composition in phenolic compounds (94.71–123.09 mg GA−1 and 0.02–73.79 mg g−1 for the total phenol content and for individual phenolics, respectively) presented by grape stems can explain the high antioxidant (0.37–1.17 mmol Trolox g−1) and antimicrobial activities against, essentially, Gram-positive bacteria, and in some cases with higher efficacy than commercial antibiotics. Thus, demonstrating that this wine by-product should deserve greater attention from the pharmaceutical industries due to its excellent biological properties and characteristics not yet applied.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Irene Gouvinhas
- Corresponding author at: Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, (CITAB-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
20
|
Abstract
Wine production is one of the most important agricultural activities around the world. The production of wine involves the use of a large number of valuable resources, such as water, fertilizers, and other organic products. Moreover, it produces a large amount of wastewater and organic waste that must be treated adequately to avoid contaminating the areas of production. The nature of the waste produced depends very closely on the specific vinification procedures, which also affect the physical–chemical properties of the residual material generated, whose characteristics determine its subsequent use and even condition the subsequent specific recovery circuit in which can be integrated.
Collapse
|
21
|
Sousa RMOF, Amaral C, Fernandes JMC, Fraga I, Semitela S, Braga F, Coimbra AM, Dias AA, Bezerra RM, Sampaio A. Hazardous impact of vinasse from distilled winemaking by-products in terrestrial plants and aquatic organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109493. [PMID: 31376802 DOI: 10.1016/j.ecoenv.2019.109493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/21/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Vinasses obtained from the distillation of winemaking by-products (WDV) are complex effluents with variable physicochemical properties. Frequently, WDVs are used to irrigate agricultural soil, and/or discharged into aquatic bodies, which may result in serious environmental pollution, due to the presence of organic acids and recalcitrant compounds (polyphenols, tannins and metals). The present study aimed to evaluate the toxicity impact of an untreated WDV on terrestrial and aquatic organisms, at different levels of biological organization. The effluent was collected at the distillation column exit and characterized according to several physicochemical properties. The WDV potential phytotoxicity was assessed by germination inhibition assays on six agricultural crops, and its acute toxicity was assessed on Aliivibrio fisheri (microtox assay), Daphnia magna neonates (freshwater crustacean), and zebrafish Danio rerio (fish embryo toxicity test, FET). The WDV presented a low pH (3.88), high levels of electrical conductivity, ECond (6.36 dS m-1) and salinity (3.3 ppt), besides high level of potassium (2.1 g L-1) and organic compounds (TOC = 17.7 g L-1), namely polyphenols (1.7 g L-1). The diluted WDV displayed variable inhibitory effects on the plant endpoints (percentage of inhibition of germination and radicle elongation and germination index). Overall, plants' susceptibility to increasing concentrations of WDV were differential (onion ≈ garden cress ≥ tomato > lettuce > maize > green beans) and the germination index EC50 varied from 10.9 to 64.4% v/v. Also, the acute negative effects toward aquatic organisms were determined, decreasing from the more complex organism to the simpler one: zebrafish embryos (96 h-LC50 = 0.34% v/v)>D. magna (48 h-LC50 = 4.8% v/v)>A. fisheri (30min-EC50 = 7.0% v/v). In conclusion, the findings suggest that WDVs might have a high toxicological impact on both terrestrial plants and aquatic organisms, even at high dilution levels, reinforcing the need for appropriate treatments before considering its discharge or reuse.
Collapse
Affiliation(s)
- Rose Marie O F Sousa
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Carla Amaral
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Joana M C Fernandes
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Irene Fraga
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Sabrina Semitela
- Centro de Química de Vila Real (CQ-VR), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Fernando Braga
- Centro de Química de Vila Real (CQ-VR), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Ana Maria Coimbra
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Albino A Dias
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Rui M Bezerra
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal
| | - Ana Sampaio
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-Os-Montes e Alto Douro, Quinta de Prados, 5001- 801, Vila Real, Portugal.
| |
Collapse
|
22
|
Ureta MM, Romano N, Kakisu E, Gómez-Zavaglia A. Synthesis of fructo-oligosaccharides using grape must and sucrose as raw materials. Food Res Int 2019; 123:166-171. [PMID: 31284964 DOI: 10.1016/j.foodres.2019.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/29/2022]
Abstract
Grape must market has been rising and there is an increasing interest to use it as a "natural" replacement for traditional sugars. Food or beverages with prebiotic compounds, including fructo-oligosaccharides (FOS), emerge as an alternative for the new health style trend. The aim of this work was to investigate whether the combination of grape must with sucrose was a suitable raw material for the synthesis of FOS. This way, a prebiotic syrup containing fructose and FOS, potentially useful for the formulation of foods and beverages, could be obtained. The main process consisted of three stages, namely conditioning of grape must (oxidation of the initial glucose concentration, stage 1), synthesis of FOS [incorporation of 20, 30 and 55% (w/w) sucrose, and 3.5% v/v Viscozyme L - 4.2 U/mg-, stage 2], and conditioning of the final product (oxidation of the glucose generated during the synthesis, stage 3). At stage 1, glucose concentration decreased from 222.8 mg/mL to 47.2 mg/mL, representing a decay of about 80% regarding the initial concentration of glucose. At stage 2, incorporating 20% (w/w) sucrose was not enough to impulse FOS synthesis. In turn, although 30 and 55% (w/w) sucrose produced very similar concentrations of total FOS (DP3 + DP4), 55% (w/w) sucrose led to higher glucose generation and less DP4 formation. Hence, 30% (w/w) sucrose was the condition selected for the synthesis and further conditioning of the obtained product (stage 3). In these conditions, the final product consisted of more than 30% of short chain FOS (19% and 13% of DP3 and DP4, respectively), 55% fructose and less than 11% of glucose and sucrose. Considering that fructose has approximately double sweetening power than glucose, the obtained syrup has a bigger sweetening power in comparison with the original grape must, also providing the prebiotic benefits of FOS.
Collapse
Affiliation(s)
- Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Nelson Romano
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Emiliano Kakisu
- Department of Productive and Technological Development, National University of Lanus, RA 1826 Buenos Aires, Argentina
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina.
| |
Collapse
|
23
|
Gómez-Brandón M, Lores M, Insam H, Domínguez J. Strategies for recycling and valorization of grape marc. Crit Rev Biotechnol 2019; 39:437-450. [PMID: 30939940 DOI: 10.1080/07388551.2018.1555514] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Grapes are one of the most cultivated fruit crops worldwide. Either for wine or juice production, grape processing generates a large amount of residues that must be treated, disposed of or reused properly to reduce their pollution load before being applied to the soil. In this review, a special focus is given to the treatment and valorization of the winemaking by-product like grape marc via anaerobic digestion, composting and vermicomposting at laboratory, pilot, and industrial scales. The impact of the final products (digestates, composts, and vermicomposts) on soil properties is briefly addressed. Moreover, the role of grape marc and seeds as a valuable source of natural phytochemicals that include polyphenols and other bioactive compounds of interest for pharmaceutical, cosmetic, and food industries is also discussed. This is of paramount importance given the fact that sustainability requires the use of management and valorization strategies that allow the recovery of valuable compounds (e.g. antioxidants) with minimum disposal of waste streams.
Collapse
Affiliation(s)
- María Gómez-Brandón
- a Departamento de Ecoloxía e Bioloxía Animal , Universidade de Vigo , Vigo , Spain
| | - Marta Lores
- b Departamento de Química Analítica, Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA) , Nutrición y Bromatología, Universidade de Santiago de Compostela, Facultad de Quimica, Avda das Ciencias s/n , Santiago de Compostela , Spain
| | - Heribert Insam
- c Institute of Microbiology , University of Innsbruck , Innsbruck , Austria
| | - Jorge Domínguez
- a Departamento de Ecoloxía e Bioloxía Animal , Universidade de Vigo , Vigo , Spain
| |
Collapse
|
24
|
Rubio JA, Romero LI, Wilkie AC, García-Morales JL. Mesophilic Anaerobic Co-digestion of Olive-Mill Waste With Cattle Manure: Effects of Mixture Ratio. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Recovery of Oligomeric Proanthocyanidins and Other Phenolic Compounds with Established Bioactivity from Grape Seed By-Products. Molecules 2019; 24:molecules24040677. [PMID: 30769803 PMCID: PMC6413075 DOI: 10.3390/molecules24040677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Grape seeds are a copious part of the grape pomace produced by wine and juice industry and they represent an interesting source of phenolic compounds. Proanthocyanidins (PAs) are the main class of grape seed phenols and are important dietary supplements for their well-known beneficial properties. In this study enriched extracts obtained from Chardonnay and Pignoletto grape seeds were characterized for their proanthocyanidins and other minor phenolic compounds content and composition. Seed PAs were fractionated using Sephadex LH-20, using different ethanol aqueous solutions as mobile phase and analysed by normal phase HPLC-FLD-ESI-MS. Monomers, oligomers up to dodecamers and polymers were recorded in all samples. For both cultivars, the extracts showed a high content in PAs. The determination of other phenolic compounds was carried out using a HPLC-QqQ-ESI-MS and Chardonnay samples reported a greater content compared to Pignoletto samples. Contrary to PAs fraction, extracts obtained with ethanol/water 50/50 (v/v) presented a significant higher phenolic content than the others.
Collapse
|
26
|
Alcaraz L, López Fernández A, García-Díaz I, López FA. Preparation and characterization of activated carbons from winemaking wastes and their adsorption of methylene blue. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418770295] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This work reports the preparation of activated carbons via the hydrothermal treatment at 523 K/30 bar of two common winemaking wastes: bagasse and cluster stalks. The hydrothermal carbons produced by the above treatment were turned into activated carbons via their exposure to KOH and carbonization at 1073 K. These were then subjected to Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy examination, and the determination of their Brunauer–Emmett–Teller surface area. The ability of the activated carbons to adsorb methylene blue in aqueous solution was then examined, determining the influence of time, methylene blue concentration, and temperature. Equilibrium conditions were reached for reaction times between 180 and 240 min at pH 7. The adsorption isotherms were found to better fit the Langmuir than the Freundlich model, and the adsorption kinetics fitted a pseudo-second-order model. The maximum adsorption at 303 K was 714–847 mg g−1. Thermodynamic studies revealed the adsorption of methylene blue to be spontaneous and exothermic. These results show that high-quality activated carbons can be produced from winemaking waste.
Collapse
Affiliation(s)
- Lorena Alcaraz
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Spain
| | | | | | - Félix A López
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Spain
| |
Collapse
|
27
|
Dias AA, Fernandes JMC, Sousa RMOF, Pinto PA, Amaral C, Sampaio A, Bezerra RMF. Fungal Conversion and Valorization of Winery Wastes. Fungal Biol 2018. [DOI: 10.1007/978-3-319-77386-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Reina R, García-Sánchez M, Liers C, García-Romera I, Aranda E. An Overview of Fungal Applications in the Valorization of Lignocellulosic Agricultural By-Products: The Case of Two-Phase Olive Mill Wastes. Fungal Biol 2018. [DOI: 10.1007/978-3-319-77386-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Maicas S, Lilao J, Mateo JJ. Characterization of a β-glucosidase isolated from an alpeorujo strain of Candida adriatica. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2017.1303388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Universitat de València, Burjassot, Spain
| | - Joaquín Lilao
- Departament de Microbiologia i Ecologia, Universitat de València, Burjassot, Spain
| | - José Juan Mateo
- Departament de Microbiologia i Ecologia, Universitat de València, Burjassot, Spain
| |
Collapse
|
30
|
Sarris D, Stoforos NG, Mallouchos A, Kookos IK, Koutinas AA, Aggelis G, Papanikolaou S. Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng Life Sci 2017; 17:695-709. [PMID: 32624815 DOI: 10.1002/elsc.201600225] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022] Open
Abstract
Yarrowia lipolytica ACA-YC 5033 was grown on glucose-based media in which high amounts of olive mill wastewaters (OMWs) had been added. Besides shake-flask aseptic cultures, trials were also performed in previously pasteurized media while batch bioreactor experiments were also done. Significant decolorization (∼58%) and remarkable removal of phenolic compounds (∼51% w/w) occurred, with the latter being amongst the highest ones reported in the international literature, as far as yeasts were concerned during their growth on phenol-containing media. In nitrogen-limited flask fermentations the microorganism produced maximum citric acid quantity ≈19.0 g/L [simultaneous yield of citric acid produced per unit of glucose consumed (YCit/Glc)≈0.74 g/g]. Dry cell weight (DCW) values decreased at high phenol-containing media, but, on the other hand, the addition of OMWs induced reserve lipid accumulation. Maximum citric acid concentration achieved (≈52.0 g/L; YCit/Glc≈0.64 g/g) occurred in OMW-based high sugar content media (initial glucose added at ≈80.0 g/L). The bioprocess was successfully simulated by a modified logistic growth equation. A satisfactory fitting on the experimental data occurred while the optimized parameter values were found to be similar to those experimentally measured. Finally, a non-aseptic (previously pasteurized) trial was performed and its comparison with the equivalent aseptic experiment revealed no significant differences. Yarrowia lipolytica hence can be considered as a satisfactory candidate for simultaneous OMWs bioremediation and the production of added-value compounds useful for the food industry.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Nikolaos G Stoforos
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Ioannis K Kookos
- Department of Chemical Engineering University of Patras Patras Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - George Aggelis
- Department of Biology Division of Genetics, Cell and Development Biology University of Patras Patras Greece
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| |
Collapse
|
31
|
Machado NFL, Domínguez-Perles R. Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products. Molecules 2017; 22:E286. [PMID: 28216592 PMCID: PMC6155862 DOI: 10.3390/molecules22020286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
Grape and wine phenolics display a noticeable structural diversity, encompassing distinct compounds ranging from simple molecules to oligomers, as well as polymers usually designated as tannins. Since these compounds contribute critically to the organoleptic properties of wines, their analysis and quantification are of primordial importance for winery industry operators. Besides, the occurrence of these compounds has been also extensively described in winery residues, which have been pointed as a valuable source of bioactive phytochemicals presenting potential for the development of new added value products that could fit the current market demands. Therefore, the cumulative knowledge generated during the last decades has allowed the identification of the most promising compounds displaying interesting biological functions, as well as the chemical features responsible for the observed bioactivities. In this regard, the present review explores the scope of the existing knowledge, concerning the compounds found in these winery by-products, as well as the chemical features presumably responsible for the biological functions already identified. Moreover, the present work will hopefully pave the way for further actions to develop new powerful applications to these materials, thus, contributing to more sustainable valorization procedures and the development of newly obtained compounds with enhanced biological properties.
Collapse
Affiliation(s)
- Nelson F L Machado
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (CITAB-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Raúl Domínguez-Perles
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (CITAB-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University, Edif. 25, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
32
|
Sugnaux M, Happe M, Cachelin CP, Gloriod O, Huguenin G, Blatter M, Fischer F. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2016; 221:61-69. [PMID: 27639225 DOI: 10.1016/j.biortech.2016.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries.
Collapse
Affiliation(s)
- Marc Sugnaux
- Institute of Life Technologies, HES-SO Valais, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950 Sion, Switzerland
| | - Manuel Happe
- Institute of Life Technologies, HES-SO Valais, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950 Sion, Switzerland
| | - Christian Pierre Cachelin
- Systems Engineering, HES-SO Valais, University of Applied Sciences and Arts Western Switzerland, Route du Rawyl 47, 1950 Sion, Switzerland
| | - Olivier Gloriod
- Systèmes Informatiques Embarqués, Haute École Arc, University of Applied Sciences and Arts Western Switzerland, Rue de la Serre 7, 2610 St-Imier, Switzerland
| | - Gérald Huguenin
- Systèmes Informatiques Embarqués, Haute École Arc, University of Applied Sciences and Arts Western Switzerland, Rue de la Serre 7, 2610 St-Imier, Switzerland
| | - Maxime Blatter
- Institute of Life Technologies, HES-SO Valais, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950 Sion, Switzerland
| | - Fabian Fischer
- Institute of Life Technologies, HES-SO Valais, University of Applied Sciences and Arts Western Switzerland Valais, Route du Rawyl 64, 1950 Sion, Switzerland.
| |
Collapse
|
33
|
Pleissner D, Qi Q, Gao C, Rivero CP, Webb C, Lin CSK, Venus J. Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Corneli E, Adessi A, Dragoni F, Ragaglini G, Bonari E, De Philippis R. Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation. BIORESOURCE TECHNOLOGY 2016; 216:941-947. [PMID: 27341463 DOI: 10.1016/j.biortech.2016.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The present study was aimed at assessing the biotransformation of dark fermented agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate (PHB), in lab-scale photofermentation. The investigation on novel substrates for photofermentation is needed in order to enlarge the range of sustainable feedstocks. Dark fermentation effluents of ensiled maize, ensiled giant reed, ensiled olive pomace, and wheat bran were inoculated with Rhodopseudomonas palustris CGA676, a mutant strain suitable for hydrogen production in ammonium-rich media. The highest hydrogen producing performances were observed in wheat bran and maize effluents (648.6 and 320.3mLL(-1), respectively), both characterized by high initial volatile fatty acids (VFAs) concentrations. Giant reed and olive pomace effluents led to poor hydrogen production due to low initial VFAs concentrations, as the original substrates are rich in fiber. The highest PHB content was accumulated in olive pomace effluent (11.53%TS), ascribable to magnesium deficiency.
Collapse
Affiliation(s)
- Elisa Corneli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alessandra Adessi
- Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy.
| | - Federico Dragoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Giorgio Ragaglini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; CRIBE - Centro di Ricerche Interuniversitario Biomasse da Energia, Via Vecchia Livornese 748, 56122 Pisa, Italy
| | - Enrico Bonari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; CRIBE - Centro di Ricerche Interuniversitario Biomasse da Energia, Via Vecchia Livornese 748, 56122 Pisa, Italy
| | - Roberto De Philippis
- Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy
| |
Collapse
|
35
|
Corneli E, Dragoni F, Adessi A, De Philippis R, Bonari E, Ragaglini G. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 211:509-518. [PMID: 27038259 DOI: 10.1016/j.biortech.2016.03.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Aim of this study was to evaluate the suitability of ensiled giant reed, ensiled maize, ensiled olive pomace, wheat bran for combined systems (CS: dark fermentation+anaerobic digestion (AD)) producing hydrogen-rich biogas (biohythane), tested in batch under basic operational conditions (mesophilic temperatures, no pH control). Substrates were also analyzed under a single stage AD batch test, in order to investigate the effects of DF on estimated energy recovery (ER) in combined systems. In CS, maize and wheat bran exhibited the highest hydrogen potential (13.8 and 18.9NLkgVS(-1)) and wheat bran the highest methane potential (243.5NLkgVS(-1)). In one-stage AD, giant reed, maize and wheat bran showed the highest methane production (239.5, 267.3 and 260.0NLkgVS(-1)). Butyrate/acetate ratio properly described the dark fermentation, correlating with hydrogen production (r=0.92). Wheat bran proved to be a promising residue for CS in terms of hydrogen/methane potential and ER.
Collapse
Affiliation(s)
- Elisa Corneli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Federico Dragoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alessandra Adessi
- Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, Florence, Italy
| | - Roberto De Philippis
- Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, Florence, Italy; Department of Agrifood Production and Environmental Sciences, University of Florence, Italy
| | - Enrico Bonari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; CRIBE - Centro di Ricerche Interuniversitario Biomasse da Energia, Via Vecchia Livornese 748, 56122 Pisa, Italy
| | - Giorgio Ragaglini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; CRIBE - Centro di Ricerche Interuniversitario Biomasse da Energia, Via Vecchia Livornese 748, 56122 Pisa, Italy
| |
Collapse
|
36
|
Mingo E, Silván JM, Martinez-Rodriguez AJ. Selective antibacterial effect on Campylobacter of a winemaking waste extract (WWE) as a source of active phenolic compounds. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.006] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Cerrutti P, Roldán P, García RM, Galvagno MA, Vázquez A, Foresti ML. Production of bacterial nanocellulose from wine industry residues: Importance of fermentation time on pellicle characteristics. J Appl Polym Sci 2015. [DOI: 10.1002/app.43109] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patricia Cerrutti
- Biotechnology and Biosynthesis Group, Institute of Technology in Polymers and Nanotechnology (ITPN), Engineering Faculty; University of Buenos Aires; Argentina
- Chemical Engineering Department, Engineering Faculty; University of Buenos Aires
| | - Pamela Roldán
- Biotechnology and Biosynthesis Group, Institute of Technology in Polymers and Nanotechnology (ITPN), Engineering Faculty; University of Buenos Aires; Argentina
| | - Ricardo Martínez García
- National Scientific and Technical Research Council (CONICET); Argentina
- Natural Resources Faculty; National University of Formosa, University Campus; Formosa Argentina
| | - Miguel A. Galvagno
- Chemical Engineering Department, Engineering Faculty; University of Buenos Aires
- National Scientific and Technical Research Council (CONICET); Argentina
- IIB-INTECH-UNSAM (Institute of Biotechnological Research); San Martín Buenos Aires Argentina
| | - Analía Vázquez
- Biotechnology and Biosynthesis Group, Institute of Technology in Polymers and Nanotechnology (ITPN), Engineering Faculty; University of Buenos Aires; Argentina
- National Scientific and Technical Research Council (CONICET); Argentina
| | - María L. Foresti
- Biotechnology and Biosynthesis Group, Institute of Technology in Polymers and Nanotechnology (ITPN), Engineering Faculty; University of Buenos Aires; Argentina
- National Scientific and Technical Research Council (CONICET); Argentina
| |
Collapse
|
39
|
Introduction to the special issue Byproducts from agri-food industry: New strategies for their revalorization. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|