1
|
Oliveira WS, Chen Q, Edleman D, Annor GA, Dias FFG. Unraveling the Impacts of Germination on the Volatile and Fatty Acid Profile of Intermediate Wheatgrass ( Thinopyrum intermedium) Seeds. Molecules 2024; 29:4268. [PMID: 39275115 PMCID: PMC11397152 DOI: 10.3390/molecules29174268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Intermediate wheatgrass (IWG) is a promising perennial grain explored for mainstream food applications. This study investigated the effects of different germination temperatures (10, 15, and 20 °C) and durations (2, 4, and 6 days) on IWG's volatile and fatty acid (FA) profiles. A method using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was optimized through response surface design to extract the volatile compounds, achieving ideal extraction conditions at 60 °C for 55 min. Multiple headspace extraction (MHE) was used for volatile compound quantification. Fifty-eight compounds were identified and quantified in IWG flour, mainly alcohols, aldehydes, hydrocarbons, terpenes, esters, organic acids, and ketones. The main FAs found were linoleic acid (C18:2), oleic acid (C18:1), palmitic acid (C16:0), and linolenic acid (C18:3). Principal component analysis showed a direct correlation between volatile oxidation products and FA composition. Germination at 15 °C for 6 days led to a reduced presence of aldehydes and alcohols such as nonanal and 1-pentanol. Therefore, optimized germination was successful in reducing the presence of potential off-odor compounds. This study provides valuable insights into the effects of germination on IWG flour, showing a way for its broader use in food applications.
Collapse
Affiliation(s)
- Wellington S Oliveira
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Qianqian Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Dana Edleman
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - George A Annor
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Fernanda F G Dias
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
2
|
Lee YG, Kwon JE, Choi WS, Baek NI, Kang SC. Deciphering chemical diversity among five variants of Abeliophyllum distichum flowers through metabolomics analysis. PLANT DIRECT 2024; 8:e616. [PMID: 39301044 PMCID: PMC11411454 DOI: 10.1002/pld3.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 09/22/2024]
Abstract
Abeliophyllum distichum (Oleaceae), endemic to the Korean Peninsula and the sole member of its genus and species, possesses high scarcity value, escalating its importance under the Nagoya Protocol. Despite its significance, their metabolites and activities of A. distichum flowers remain unexplored. This study employs an integrated metabolomic approach utilizing NMR, LC/MS, GC/MS, and FTIR techniques to comprehensively analyze the metabolite profile of A. distichum flowers. By combining these methods, we identified 35 metabolites, 43 secondary metabolites, and 108 hydrophobic primary metabolites. Notably, distinct concentration patterns of these compounds were observed across five variants, classified based on morphological characteristics. Correlation analyses of primary and secondary metabolites unveiled varietal metabolic flux, providing insights into A. distichum flower metabolism. Additionally, the reconstruction of metabolic pathways based on dissimilarities in morphological traits elucidates variant-specific metabolic signatures. These findings not only enhance our understanding of chemical differences between varieties but also underscore the importance of considering varietal differences in future research and conservation efforts.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology Kyung Hee University Yongin Korea
| | - Jeong Eun Kwon
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology Kyung Hee University Yongin Korea
| | - Won-Sil Choi
- National Instrumentation Center for Environmental Management Seoul National University Seoul Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology Kyung Hee University Yongin Korea
| | - Se Chan Kang
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology Kyung Hee University Yongin Korea
| |
Collapse
|
3
|
Dong L, Yang Y, Zhao Y, Liu Z, Li C, He L, Liu L. Effect of different conditions on the germination of coix seed and its characteristics analysis. Food Chem X 2024; 22:101332. [PMID: 38586225 PMCID: PMC10997825 DOI: 10.1016/j.fochx.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Coix seed (CS) has high nutritional value, but the deep processing of CS is relatively limited. Sprouting can significantly improve nutritional value, laying the foundation for efficient consumption or further processing. The optimal conditions for the germination of CS are a soaking temperature of 36 °C for 10 h and a germination temperature of 29 °C for 24 h. Under these conditions, the final germination rate of CS reached 90%. Additionally, the content of γ-aminobutyric acid was 21.205 mg/100 g; soluble protein, free amino acids, γ-aminobutyric acid, and other essential substances increased in CS. Especially after germination, the γ-aminobutyric acid (GABA) content increased by 7.8 times compared with the GABA content of ungerminated CS. Therefore, the nutritional value and flavor of germinated CS are better than those of ungerminated ones, which establishs a solid foundation for its application in developing various products such as compound health drinks, coix yogurt, and others.
Collapse
Affiliation(s)
- Lidan Dong
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yun Yang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yongcai Zhao
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zhengyu Liu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
- Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
- Guizhou Nanfang Dairy Co, Ltd, Guiyang 551499, PR China
| | - Lihua Liu
- Guizhou Nanfang Dairy Co, Ltd, Guiyang 551499, PR China
| |
Collapse
|
4
|
Liu F, Zheng Y, Hong H, Liu L, Chen X, Xia Q. Identification of Efficacy-Associated Markers to Discriminate Flos Chrysanthemum and Flos Chrysanthemi Indici Based on Fingerprint-Activity Relationship Modeling: A Combined Evaluation over Chemical Consistence and Quality Consistence. Molecules 2023; 28:6254. [PMID: 37687083 PMCID: PMC10488643 DOI: 10.3390/molecules28176254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Monitoring the quality consistency of traditional Chinese medicines, or herbal medicines (HMs), is the basis of assuring the efficacy and safety of HMs during clinical applications. The purpose of this work was to characterize the difference in hydrophilic antioxidants and related bioactivities between Flos Chrysanthemum (JH) and its wild relatives (Chrysanthemum indicum L.; YJH) based on the establishment of fingerprint-efficacy relationship modeling. The concentrations of the total phenolics and flavonoids of JH samples were shown to be generally higher than those of YJH, but the concentration distribution ranges of YJH were significantly greater compared to JH samples, possibly related to environmental stress factors leading to the concentration fluctuations of phytochemicals during the growth and flowering of Chrysanthemum cultivars. Correspondingly, the total antioxidant capabilities of JH were greatly higher than those of YJH samples, as revealed by chemical assays, including DPPH and ABTS radical scavenging activities and FRAP assays. In addition, cellular-based antioxidant activities confirmed the results of chemical assays, suggesting that the differences in antioxidant activities among the different types of Chrysanthemums were obvious. The extracts from YJH and JH samples showed significant α-glucosidase inhibitory activity and lipase-inhibitory activity, implying the modulatory effects on lipid and glucose metabolisms, which were also confirmed by an untargeted cell-based metabolomics approach. The selected common peaks by similarity analysis contributed to the discrimination of YJH and JH samples, and the modeling of the fingerprint-bioactivity relationship identified neochlorogenic acid, isochlorogenic acid A, and linarin as efficacy-associated chemical markers. These results have demonstrated that integrating HPLC fingerprints and the analysis of similarity indexes coupled with antioxidant activities and enzyme-inhibitory activities provides a rapid and effective approach to monitoring the quality consistency of YJH/JH samples.
Collapse
Affiliation(s)
- Feng Liu
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315100, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Huijie Hong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Qiang Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| |
Collapse
|
5
|
Liu H, Ainiwan D, Liu Y, Dong X, Fan H, Sun T, Huang P, Zhang S, Wang D, Liu T, Zhang Y. Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method. Curr Res Food Sci 2023; 7:100550. [PMID: 37534307 PMCID: PMC10391727 DOI: 10.1016/j.crfs.2023.100550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
In this study, steam explosion was employed as a modification process for rice bran insoluble dietary fiber (RBIDF) to improve the flavor adsorption and controlled release capacities of RBIDF. Results showed that the flavor adsorption ability of RBIDF was effectively improved due to the unfolding structure, increased specific surface area and pore volume and exposure of more functional groups after steam explosion treatment. The mechanism of the flavor adsorption behavior of modified RBIDF was preliminarily explored using adsorption kinetics and isotherms combined with SEM and DSC analysis. Results showed that the Langmuir isotherm model and pseudo-second-order kinetic model yielded the best fit to the adsorption data, indicating monolayer adsorption of flavor onto the modified RBIDF, and the adsorption was mainly driven by chemisorption process. The flavor release profile of modified RBIDF was investigated by HS-SPME/GC-MS and E-nose. After long-time storage, the flavor compounds were retained at a higher concentration in the modified RBIDF compared with the untreated RBIDF, indicating that the steam explosion treatment prolonged the retention time and enhanced the retention and controlled release capacities of RBIDF for flavor compounds. This study provides indications for potential applications of steam explosion-modified RBIDF as a novel flavor delivery system and functional ingredient.
Collapse
Affiliation(s)
- Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Dilinuer Ainiwan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Yingxu Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Xiaolan Dong
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Tong Sun
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Pingyun Huang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| |
Collapse
|
6
|
Kathuria D, Hamid, Chavan P, Jaiswal AK, Thaku A, Dhiman AK. A Comprehensive Review on Sprouted Seeds Bioactives, the Impact of Novel Processing Techniques and Health Benefits. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Deepika Kathuria
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hamid
- Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Prasad Chavan
- Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Technological University Dublin-City Campus, Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin-City Campus, Dublin, Ireland
| | - Abhimanyu Thaku
- Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Solan, India
| | - Anju K. Dhiman
- Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Solan, India
| |
Collapse
|
7
|
Fan H, Liu H, Li W, Su W, Wang D, Zhang S, Liu T, Zhang Y. Effect of Tremella fuciformis polysaccharide on the stalling and flavor of tteok during storage. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zhang H, Feng X, Liu S, Ren F, Wang J. Effects of high hydrostatic pressure on nutritional composition and cooking quality of whole grains and legumes. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Effects of Soaking on the Volatile Compounds, Textural Property, Phytochemical Contents, and Antioxidant Capacity of Brown Rice. Foods 2022; 11:foods11223699. [PMID: 36429291 PMCID: PMC9689972 DOI: 10.3390/foods11223699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Brown rice is a staple whole grain worldwide. Hence, the effects of cooking on the nutritional properties of brown rice are important considerations in the field of public health. Soaking is a key stage during rice cooking; however, different rice cookers use different soaking conditions and the effects of this on the physiochemical properties and nutritional composition of cooked brown rice remain unknown. In this study, the setting of varied soaking conditions was realized by a power-adjustable rice cooker, and the effects of soaking temperature (40, 50, 60 and 70 °C) and time (30 and 60 min) on cooked brown rice were thoroughly analyzed. Textural results revealed that cooked brown rice was softer and stickier after soaking. Grain hardness decreased by increasing the soaking temperature and time. Furthermore, stickiness after soaking for 60 min was higher than that after 30 min, and this decreased with the soaking temperature. There was no significant unpleasant flavor after soaking, and the volatile compound profile between soaked and unsoaked brown rice was similar. Neither soaking temperature nor time had any significant effect on the phytochemical contents (phenolic compounds, α-tocopherol and γ-oryzanol) or antioxidant capacity of cooked brown rice, whereas γ-aminobutyric acid content was effectively preserved within a certain soaking temperature range. Textural properties can be effectively controlled by soaking temperature and time, and nutritional properties remain stable when soaking at 40-70 °C for 30-60 min.
Collapse
|
10
|
Ding J, Hu H, Yang J, Wu T, Sun X, Fang Y, Huang Q. Mechanistic study of the impact of germinated brown rice flour on gluten network formation, dough properties and bread quality. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Yang C, Zheng Y, Green BD, Zhou C, Pan D, Cao J, Wang L, Cai Z, Xia Q. Volatilome evolution during storage and in vitro starch digestibility of high-power ultrasonication pretreated wholegrain Oryza sativa L. Food Res Int 2022; 162:112127. [DOI: 10.1016/j.foodres.2022.112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/22/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
12
|
Chemical composition and potential bioactivities of essential oil from Quercus mongolica bark. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
13
|
Zhang Y, Zhang ZH, He R, Xu R, Zhang L, Gao X. Improving Soy Sauce Aroma Using High Hydrostatic Pressure and the Preliminary Mechanism. Foods 2022; 11:2190. [PMID: 35892775 PMCID: PMC9330850 DOI: 10.3390/foods11152190] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Using high hydrostatic pressure (HHP) to treat liquid foods can improve their aroma; however, no information about the effects of HHP on soy sauce aroma has yet been reported. The effects of HHP on the aroma of soy sauce fermented for 30 d were investigated using quantitative descriptive analysis (QDA), SPME-GC-olfactometry/MS, hierarchical cluster analysis (HCA) and principal component analysis (PCA). Results showed that the pressure used during HHP treatment had a greater influence on soy sauce aroma than the duration of HHP. Compared to the control, soy sauce that was treated with HHP at 400 MPa for 30 min (HHP400-30) obtained the highest sensory score (33% higher) by increasing its sour (7%), malty (9%), floral (27%) and caramel-like (47%) aromas, while decreasing its alcoholic (6%), fruity (6%) and smoky (12%) aromas; moreover, the aroma of HHP400-30 soy sauce was comparable with that of soy sauce fermented for 180 d. Further investigation demonstrated that HHP (400 MPa/30 min) enhanced the OAVs of compounds with sour (19%), malty (37%), floral (37%), caramel-like (49%) and other aromas (118%), and lowered the OAVs of compounds with alcoholic (5%), fruity (12%) and smoky (17%) aromas. These results were consistent with the results of the QDA. HHP treatment positively regulated the Maillard, oxidation and hydrolysis reactions in raw soy sauce, which resulted in the improvement and accelerated formation of raw soy sauce aroma. HHP was capable of simultaneously improving raw soy sauce aroma while accelerating its aroma formation, and this could treatment become a new alternative process involved in the production of high-quality soy sauce.
Collapse
Affiliation(s)
- Yaqiong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| | - Riyi Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| |
Collapse
|
14
|
Zhang K, Gao L, Zhang C, Feng T, Zhuang H. Analysis of Volatile Flavor Compounds of Corn Under Different Treatments by GC-MS and GC-IMS. Front Chem 2022; 10:725208. [PMID: 35860630 PMCID: PMC9290320 DOI: 10.3389/fchem.2022.725208] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
To establish a rapid and accurate method for detecting volatile components of corn, which will guide the production of corn products beloved by consumers. The fingerprints of corns under different treatments, including native, washing, blanching, precooling, freezing, steaming, boiling, frying, and freeze-drying, were depicted via gas chromatography ion mobility spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS). It was found via the Venn diagram and relative odor activity value (ROAV) that n-hexanal, 1-octene-3-ol, decylaldehyde, and 2-pentylthiazole could be the key flavor compounds present in corns. In addition, according to volatile fingerprint characteristics and the aroma profile of sensory evaluation, it was found that corns could be divided into four categories, which was consistent with the results of GC-IMS. Also, the results of the sensory panel showed that steamed, boiled, and fried corns were much more popular than corns under other treatments with the panel. The results indicated that a rapid method to classify products was established by GC-IMS. A suitable processing technology could produce a specific flavor, and further refined research might be focused on finding the best way to process corns.
Collapse
Affiliation(s)
- Kangyi Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lingling Gao
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Can Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Can Zhang, ; Haining Zhuang,
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haining Zhuang
- School of Health and Society Care, Shanghai Urban Construction Vocational College, Shanghai, China
- *Correspondence: Can Zhang, ; Haining Zhuang,
| |
Collapse
|
15
|
Bi S, Lao F, Pan X, Shen Q, Liu Y, Wu J. Flavor formation and regulation of peas (Pisum sativum L.) seed milk via enzyme activity inhibition and off-flavor compounds control release. Food Chem 2022; 380:132203. [PMID: 35101790 DOI: 10.1016/j.foodchem.2022.132203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/04/2022]
Abstract
Ascorbic acid, quercetin, epigallocatechin-3-gallate and reduced glutathione as well as high hydrostatic pressure were used to regulate the flavor of milk prepared from pea seeds. Activities of lipoxygenase (LOX) pathway enzymes and fatty acid contents of pea milk were determined. The hexanal content was positively correlated with the activity of LOX-2, but was negatively correlated with the contents of linoleic acid and α-linolenic acid. The intensity of the sensory attribute "fatty" was reduced when epigallocatechin-3-gallate or high hydrostatic pressure were combined with quercetin. Decreases in hexanal, pentanol, and 2-pentylfuran contents may have caused the change in sensory properties of pea milk. Pea protein, sodium sulfate and/or propylene glycol were used to regulate interactions between pea protein and flavor compounds. The hexanal content was reduced by commercial pea protein. Sodium sulfate and propylene glycol individually reduced the hexanal content and together reduced the hexanol content.
Collapse
Affiliation(s)
- Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Ye Liu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
16
|
Xia Q, Zhou C, Wu Z, Pan D, Cao J. Proposing processomics as the methodology of food quality monitoring: Re-conceptualization, opportunities, and challenges. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Tong H, Cao C, Du Y, Liu Y, Huang W. Ultrasonic‐assisted phosphate curing: a novel approach to improve curing rate and chicken meat quality. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Changwei Cao
- College of Food Science Sichuan Agricultural University Ya’ an Sichuan 625014 China
| | - Yanli Du
- College of Animal Science and Technology Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Yong Liu
- College of Animal Science and Technology Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Wei Huang
- Kunming University Kunming Yunnan 650214 China
| |
Collapse
|
18
|
Arslan M, Zareef M, Tahir HE, Zhang J, Ahmad W, Rakha A, Shi J, Xiaobo Z, Khan MR. Discrimination of basmati rice adulteration using colorimetric sensor array system. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
MUNARKO H, SITANGGANG AB, KUSNANDAR F, BUDIJANTO S. Germination of five Indonesian brown rice: evaluation of antioxidant, bioactive compounds, fatty acids and pasting properties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.19721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hadi MUNARKO
- IPB University, Indonesia; Faculty of Engineering, Indonesia
| | | | | | | |
Collapse
|
20
|
Ding Y, Ban Q, Wu Y, Sun Y, Zhou Z, Wang Q, Cheng J, Xiao H. Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: a review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34839776 DOI: 10.1080/10408398.2021.2005531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Consumers today are increasingly willing to reduce their meat consumption and adopt plant-based alternatives in their diet. As a main source of plant-based foods, cereals and legumes (CLs) together could make up for all the essential nutrients that humans consume daily. However, the consumption of CLs and their derivatives is facing many challenges, such as the poor palatability of coarse grains and vegetarian meat, the presence of anti-nutritional factors, and allergenic proteins in CLs, and the vulnerability of plant-based foods to microbial contamination. Recently, high hydrostatic pressure (HHP) technology has been used to tailor the techno-functionality of plant proteins and induce cold gelatinization of starch in CLs to improve the edible quality of plant-based products. The nutritional value (e.g., the bioavailability of vitamins and minerals, reduction of anti-nutritional factors of legume proteins) and bio-functional properties (e.g., production of bioactive peptides, increasing the content of γ-aminobutyric acid) of CLs were significantly improved as affected by HHP. Moreover, the food safety of plant-based products could be significantly improved as well. HHP lowered the risk of microbial contamination through the inactivation of numerous microorganisms, spores, and enzymes in CLs and alleviated the allergy symptoms from consumption of plant-based foods.
Collapse
Affiliation(s)
- Yangyue Ding
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yue Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhihao Zhou
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
21
|
Integrated Analysis of Metabolome and Volatile Profiles of Germinated Brown Rice from the Japonica and Indica Subspecies. Foods 2021; 10:foods10102448. [PMID: 34681497 PMCID: PMC8535935 DOI: 10.3390/foods10102448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023] Open
Abstract
In the present study, germinated brown rice (GBR) from three Japonica and three Indica rice cultivars were subjected to metabolomics analysis and volatile profiling. The statistical assessment and pathway analysis of the metabolomics data demonstrated that in spite of significant metabolic changes in response to the germination treatment, the Japonica rice cultivars consistently expressed higher levels of several health-promoting compounds, such as essential amino acids and γ-aminobutyric acid (GABA), than the Indica cultivars. No clear discriminations of the volatile profiles were observed in light of the subspecies, and the concentrations of the volatile organic compounds (VOCs), including alkenes, aldehydes, furans, ketones, and alcohols, all exhibited significant reductions ranging from 26.8% to 64.1% after the germination. The results suggest that the Japonica cultivars might be desirable as the raw materials for generating and selecting GBR food products for health-conscious consumers.
Collapse
|
22
|
Arslan M, Zareef M, Tahir HE, Guo Z, Rakha A, Xuetao H, Shi J, Zhihua L, Xiaobo Z, Khan MR. Discrimination of rice varieties using smartphone-based colorimetric sensor arrays and gas chromatography techniques. Food Chem 2021; 368:130783. [PMID: 34399174 DOI: 10.1016/j.foodchem.2021.130783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 11/04/2022]
Abstract
A smartphone-based colorimetric sensor array system was established for discrimination of rice varieties having different geographical origins. Purposely, aroma profiling of nine rice varieties was performed using solid-phase microextraction gas chromatography-mass spectrometry. Alcohols, aldehydes, alkanes, ketones, heterocyclic compounds, and organic acids represent the abundant compounds. Colorimetric sensor array system produced a characteristic color difference map upon its exposure to volatile compounds of rice. Discrimination of rice varieties was subsequently achieved using principal component analysis, hierarchical clustering analysis, and k-nearest neighbors. Rice varieties from same geographical source were clustered together in the scatter plot of principal component analysis and hierarchical clustering analysis dendrogram. The k-nearest neighbors algorithm delivered optimal results with discrimination rate of 100% for both calibration and prediction sets using sensor array system. The smartphone-based colorimetric sensor array system and gas chromatography technique were able to effectively differentiate rice varieties with the advantage of being simple, rapid, and low-cost.
Collapse
Affiliation(s)
- Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Haroon Elrasheid Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Ziang Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hu Xuetao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Zhihua
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
23
|
Zhang K, Zhang C, Gao L, Zhuang H, Feng T, Xu G. Analysis of volatile flavor compounds of green wheat under different treatments by GC-MS and GC-IMS. J Food Biochem 2021; 46:e13875. [PMID: 34312899 DOI: 10.1111/jfbc.13875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023]
Abstract
Volatile components in green wheat under different treatments including raw, washing, blanching, precooling, freezing, steaming, boiling, frying, and freeze-drying were evaluated by gas chromatography-ion mobility spectroscopy (GC-IMS) and gas chromatography-mass spectrometry (GC-MS). Five key aroma substances including n-hexanal, benzaldehyde, nonanal, 2-pentylfuran, and (E)-oct-2-enal were found by Venn diagram and odor activity values (OAV). Furthermore, according to volatile fingerprints characteristics and the aroma profile of sensory evaluation, it was found that green wheat under different treatments mainly presented seven characteristic flavor notes including sweet flowers, fat fragrance, mushroom hay, waxy aldehyde, citrus fruity, vegetable-like bean, and bitter almond from the sensory evaluation, and they could be divided into four categories, which was consistent with the results of PCA and GC-IMS. Hence, the volatile compounds of green wheat samples could be visualized and identified quickly via GC-IMS and the samples could be clearly classified based on the difference of volatile compounds. PRACTICAL APPLICATIONS: In the study, fingerprints coupled with cluster analysis were a visualized method for the identification of volatile compounds. Meanwhile, a new method, Venn diagram with OAV, was used to identify the key aroma of products. Finally, a rapid method to classify products by GC-IMS was performed. In future practical applications, GC-IMS can be used to classify products from different origins and different manufacturers. Similarly, it can identify fake and inferior products and whether the products have deteriorated. In addition, this research will provide a new strategy to find the relationship between flavor compounds and various processed technologies toward different cereals.
Collapse
Affiliation(s)
- Kangyi Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Can Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lingling Gao
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haining Zhuang
- School of Health & Society Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Guozhen Xu
- Puyang Academy of Agricultural Sciences, Puyang, China
| |
Collapse
|
24
|
Precursors of volatile organics in foxtail millet (Setaria italica) porridge: The relationship between volatile compounds and five fatty acids upon cooking. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Fu T, Niu L, Tu J, Xiao J. The effect of different tea products on flavor, texture, antioxidant and in vitro digestion properties of fresh instant rice after commercial sterilization at 121 °C. Food Chem 2021; 360:130004. [PMID: 33975072 DOI: 10.1016/j.foodchem.2021.130004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/05/2021] [Accepted: 05/02/2021] [Indexed: 11/18/2022]
Abstract
The conventional process of commercial sterilization at 121 °C resulted in undesirable flavor, injured texture and fast starch digestion of fresh instant rice (FIR) with non-dehydration. In this study, tea products, such as instant green tea (IGT), instant black tea (IBT) and matcha (Mat) were chosen as ingredients to improve the quality of FIR. The results showed thatadding tea products endowed FIR with subtle flavors and higher antioxidant capacity. And the data of XRD, FTIR and SEM indicated that the improved texture of FIR with suitable chewiness was attributed to the stability of non-crystal structure. Furthermore, compared with IBT and Mat, IGT increased the ability against digestion from 10.18% to 30.44% and delayed the retrogradation rate from 18.89% to 4.38% evidenced by T2 values after stored for 14 d. Therefore, adding tea products will be a new way to improve the quality of FIR.
Collapse
Affiliation(s)
- Tiantian Fu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jin Tu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
26
|
Gao C, Li Y, Pan Q, Fan M, Wang L, Qian H. Analysis of the key aroma volatile compounds in rice bran during storage and processing via HS-SPME GC/MS. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Lomelí-Martín A, Martínez LM, Welti-Chanes J, Escobedo-Avellaneda Z. Induced Changes in Aroma Compounds of Foods Treated with High Hydrostatic Pressure: A Review. Foods 2021; 10:878. [PMID: 33923715 PMCID: PMC8072623 DOI: 10.3390/foods10040878] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022] Open
Abstract
Since conventional thermal processing can have detrimental consequences on aroma compounds, non-thermal technologies such as high hydrostatic pressure (HHP) have been explored. HHP may alter the weak chemical bonds of enzymes. These changes can modify the secondary, tertiary, and quaternary structures of key enzymes in the production of aroma compounds. This can result in either an increase or decrease in their content, along with reactions or physical processes associated with a reduction of molecular volume. This article provides a comprehensive review of HHP treatment's effects on the content of lipid-derived aroma compounds, aldehydes, alcohols, ketones, esters, lactones, terpenes, and phenols, on various food matrices of vegetable and animal origin. The content of aldehydes and ketones in food samples increased when subjected to HHP, while the content of alcohols and phenols decreased, probably due to oxidative processes. Both ester and lactone concentrations appeared to decline due to hydrolysis reactions. There is no clear tendency regarding terpenes concentration when subjected to HHP treatments. Because of the various effects of HHP on aroma compounds, an area of opportunity arises to carry out future studies that allow optimizing and controlling the effect.
Collapse
Affiliation(s)
| | | | | | - Zamantha Escobedo-Avellaneda
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64700, Mexico; (A.L.-M.); (L.M.M.); (J.W.-C.)
| |
Collapse
|
28
|
Ruan Y, Cai Z, Deng Y, Pan D, Zhou C, Cao J, Chen X, Xia Q. An untargeted metabolomic insight into the high-pressure stress effect on the germination of wholegrain Oryza sativa L. Food Res Int 2021; 140:109984. [PMID: 33648219 DOI: 10.1016/j.foodres.2020.109984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
High hydrostatic pressure (HHP) technique is used as a novel abiotic stress factor for efficiently enhancing the biosynthesis of selected bioactive phytochemicals in germinated wholegrain, but the information about HHP stress-induced metabolic changes remains rather limited. Thus, the current work employed an untargeted gas chromatography-mass spectrometry-based metabolomic approach combining with multivariate models to analyze the effect of mild HHP stress (30 MPa/5 min) on the overall metabolome shifts of wholegrain brown rice (WBR) during germination. Simultaneously, major phenolics in germinated WBR (GBR) were detected by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry, to explore the potential relationship between HHP stress-induced rice metabolome alternations and the biotransformation of bioactive components. The results demonstrated that the influence of HHP stress on GBR metabolite profiles was defined by germination durations, as revealed by the differentiation of the stressed grains from the naturally germinated grains at different germination points according to principal component analysis. This was further confirmed by the results of orthogonal projections to latent structures discriminant analysis, in which the discriminating metabolites between naturally germinated and HHP-stressed grains varied across the germination process. The metabolite signatures differentiating natural and HHP-stressed germination included glycerol-3-phosphate, monosaccharides, gamma-aminobutyric acid, 2,3-butanediol, glyceryl-glycoside, amino acids and myo-inositol. Besides, HHP stress led to the increase in ribose, arabinitol, salicylic acid, azelaic acid and gamma-aminobutyric acid, as well as the reduced phenolic acids. These results demonstrated that HHP stress before germination matched with appropriate process parameters could be used as a promising technology to tailor metabolic features of germinated products, thus exerting targeted nutrition and health implications.
Collapse
Affiliation(s)
- Yifan Ruan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yun Deng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
29
|
Yuan X, Chen X, Virk MS, Ma Y, Chen F. Effects of Various Rice-Based Raw Materials on Enhancement of Volatile Aromatic Compounds in Monascus Vinegar. Molecules 2021; 26:687. [PMID: 33525711 PMCID: PMC7866154 DOI: 10.3390/molecules26030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Monascus vinegar (MV), during whose brewing process Monascus spp. and polished rice (PR) are normally used as the starter and the raw material, respectively, is one of the traditional vinegars in China. In this study, the effects of three raw materials, including PR, unhusked rice (UR), and germinated UR (GR), on MV volatile compounds have been investigated. The results revealed that MV of GR (GMV), and its intermediate Monascus wine (GMW), exhibited the highest amount of aroma, not only in the concentrations but also in the varieties of the aromatic compounds mainly contributing to the final fragrance. Especially after three years of aging, the contents of benzaldehyde and furfural in GMV could reach to 13.93% and 0.57%, respectively, both of which can coordinate synergistically on enhancing the aroma. We also found that the filtering efficiency was significantly improved when UR and GR were applied as the raw materials, respectively. Therefore, GR might be more suitable raw materials for MV.
Collapse
Affiliation(s)
- Xi Yuan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyuan Chen
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China;
| | - Muhammad Safiullah Virk
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglun Ma
- Fujian Yongchun Ageing Vinegar Vinegar Industry Co., Ltd., Quanzhou 362000, China;
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Lee YG, Choi WS, Yang SO, Hwang-Bo J, Kim HG, Fang M, Yi TH, Kang SC, Lee YH, Baek NI. Volatile Profiles of Five Variants of Abeliophyllum distichum Flowers Using Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) Analysis. PLANTS 2021; 10:plants10020224. [PMID: 33498954 PMCID: PMC7912044 DOI: 10.3390/plants10020224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
Abeliophyllum distichum (Oleaceae), which is the only species in the monotypic genus and is grown only on the Korean peninsula, has a high scarcity value. Its five variants (white, pink, round, blue, and ivory) have different morphological characteristics in terms of the color of petals and sepals or shape of the fruits. Despite its high value, there has been no study on variant classification except in terms of their morphological characteristics. Thus, we performed a volatile component analysis of A. distichum flowers and multivariate data analyses to reveal the relationship between fragments emitted from five variants of A. distichum flowers with their morphological characteristics. As a result, 66 volatile components of this plant were identified by headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS), showing unique patterns for each set of morphological characteristics, especially the color of the petals. These results suggest that morphological characteristics of each variant are related to the volatile composition.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-G.L.); (J.H.-B.); (H.-G.K.); (M.F.); (T.-H.Y.); (S.C.K.)
| | - Won-Sil Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Korea; (W.-S.C.); (S.-O.Y.)
| | - Seung-Ok Yang
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Korea; (W.-S.C.); (S.-O.Y.)
| | - Jeon Hwang-Bo
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-G.L.); (J.H.-B.); (H.-G.K.); (M.F.); (T.-H.Y.); (S.C.K.)
| | - Hyoun-Geun Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-G.L.); (J.H.-B.); (H.-G.K.); (M.F.); (T.-H.Y.); (S.C.K.)
| | - Minzhe Fang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-G.L.); (J.H.-B.); (H.-G.K.); (M.F.); (T.-H.Y.); (S.C.K.)
| | - Tae-Hoo Yi
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-G.L.); (J.H.-B.); (H.-G.K.); (M.F.); (T.-H.Y.); (S.C.K.)
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-G.L.); (J.H.-B.); (H.-G.K.); (M.F.); (T.-H.Y.); (S.C.K.)
| | - Youn-Hyung Lee
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Nam-In Baek
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-G.L.); (J.H.-B.); (H.-G.K.); (M.F.); (T.-H.Y.); (S.C.K.)
- Correspondence: ; Tel.: +82-31-201-2661
| |
Collapse
|
31
|
Yu C, Zhu L, Zhang H, Bi S, Wu G, Qi X, Zhang H, Wang L, Qian H, Zhou L. Effect of cooking pressure on phenolic compounds, gamma-aminobutyric acid, antioxidant activity and volatile compounds of brown rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Xia Q, Zheng Y, Liu Z, Cao J, Chen X, Liu L, Yu H, Barba FJ, Pan D. Nonthermally driven volatilome evolution of food matrices: The case of high pressure processing. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
de Araújo Cordeiro ARR, de Medeiros LL, Bezerra TKA, Pacheco MTB, de Sousa Galvão M, Madruga MS. Effects of thermal processing on the flavor molecules of goat by-product hydrolysates. Food Res Int 2020; 138:109758. [DOI: 10.1016/j.foodres.2020.109758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
|
34
|
Sun Y, Miao R, Guan L. Effect of germinated brown rice flour on volatile compounds and sensory evaluation of germinated brown rice steamed bread. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Sun
- College of Tourism and Culinary Science Harbin University of Commerce Harbin China
| | - Rongxin Miao
- College of Tourism and Culinary Science Harbin University of Commerce Harbin China
| | - Lina Guan
- College of Tourism and Culinary Science Harbin University of Commerce Harbin China
| |
Collapse
|
35
|
Meng L, Zhang W, Hui A, Wu Z. Effect of high hydrostatic pressure on pasting properties, volatile flavor components, and water distribution of cooked black rice. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ling Meng
- Engineering Research Center of Bio‐Process of Ministry of Education School of Food and Biological Engineering Hefei University of Technology Hefei P. R. China
| | - Wencheng Zhang
- Engineering Research Center of Bio‐Process of Ministry of Education School of Food and Biological Engineering Hefei University of Technology Hefei P. R. China
| | - Ailing Hui
- Engineering Research Center of Bio‐Process of Ministry of Education School of Food and Biological Engineering Hefei University of Technology Hefei P. R. China
| | - Zeyu Wu
- Engineering Research Center of Bio‐Process of Ministry of Education School of Food and Biological Engineering Hefei University of Technology Hefei P. R. China
| |
Collapse
|
36
|
Yang Y, Hua J, Deng Y, Jiang Y, Qian MC, Wang J, Li J, Zhang M, Dong C, Yuan H. Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Res Int 2020; 137:109656. [PMID: 33233235 DOI: 10.1016/j.foodres.2020.109656] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 08/29/2020] [Indexed: 11/29/2022]
Abstract
The drying technology is crucial to the quality of Congou black tea. In this study, the aroma dynamic characteristics during the variable-temperature final firing of Congou black tea was investigated by electronic nose (e-nose) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). Varying drying temperatures and time obtained distinctly different types of aroma characteristics such as faint scent, floral aroma, and sweet fragrance. GC × GC-TOFMS identified a total of 243 volatile compounds. Clear discrimination among different variable-temperature final firing samples was achieved by using partial least squares discriminant analysis (R2Y = 0.95, Q2 = 0.727). Based on a dual criterion of variable importance in the projection value (VIP > 1.0) and one-way ANOVA (p < 0.05), ninety-one specific volatile biomarkers were identified, including 2,6-dimethyl-2,6-octadiene and 2,5-diethylpyrazine with VIP > 1.5. In addition, for the overall odor perception, e-nose was able to distinguish the subtle difference during the variable-temperature final firing process.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Michael C Qian
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Jinjin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingming Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunwang Dong
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
37
|
Changes in Physicochemical Properties and Volatiles of Kiwifruit Pulp Beverage Treated with High Hydrostatic Pressure. Foods 2020; 9:foods9040485. [PMID: 32290555 PMCID: PMC7230769 DOI: 10.3390/foods9040485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 11/28/2022] Open
Abstract
Physicochemical properties and volatiles of kiwifruit pulp beverage treated with high hydrostatic pressure (HHP, 400–600 MPa/5–15 min) were investigated during 40-day refrigerated storage. Compared with heat treatment (HT), HHP ranged from 400–500 MPa was superior in retaining vitamin C, fresh-like color and volatiles, while soluble solids content and pH were not affected significantly. Furthermore, HHP improved brightness and inhibited browning of kiwifruit pulp beverage. Samples treated at 400 MPa for 15 min showed significantly higher vitamin C content and lower ∆E values over 40 days than heat-treated kiwifruit pulp beverage. The total content of alcohols, esters, acids, and ketones gradually increased, whereas the total aldehydes content decreased during storage. Interestingly, HHP treatment at 500 MPa for 15 min mostly retained important characteristic volatiles including hexanal and (E)-2-hexenal, indicating this treatment was more conducive to preserve the original fruity, fresh, grassy and green notes of kiwifruit pulp beverage than HT.
Collapse
|
38
|
Li P, Zhu Y, Li S, Zhang A, Zhao W, Zhang J, Chen Q, Ren S, Liu J, Wang H. Variation Patterns of the Volatiles during Germination of the Foxtail Millet ( Setaria Italic): The Relationship between the Volatiles and Fatty Acids in Model Experiments. Molecules 2020; 25:molecules25051238. [PMID: 32182963 PMCID: PMC7179401 DOI: 10.3390/molecules25051238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/31/2023] Open
Abstract
Functional and nutritional compounds are increased during foxtail millet germination while bad smell is produced due to the fatty acid oxidation. To eliminate the unpleasant aroma, the origins of the volatiles must be known. A comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry showed forty-nine volatiles containing 8 ketones, 10 aldehydes, 20 alkanes, 4 alcohols, 5 alkenes, and 2 furans were tentatively identified, and they increased during the germination of the foxtail millet. To identify the origin of some volatiles, model experiments by adding 6 fatty acids to the crude enzymes of the foxtail millet was designed, and 17 volatiles could be detected. The saturated fatty acids (palmitic acid and stearic acid) had no contributions to the formation of the volatiles, whereas the unsaturated fatty acid played important roles in the formation of volatiles. Among the unsaturated fatty acids, palmitoleic acid and linoleic acid produced most aldehydes, alcohols, and ketones, while linolenic acid produced the most alkanes and alkenes. This study will be helpful for controlling the smell of germinated seeds from the raw material selection.
Collapse
Affiliation(s)
- PengLiang Li
- Institute of millet crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang 050035, China; (P.L.); (S.L.); (A.Z.); (W.Z.); (J.Z.); (S.R.)
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou 310008, China; (Y.Z.); (Q.C.)
| | - ShaoHui Li
- Institute of millet crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang 050035, China; (P.L.); (S.L.); (A.Z.); (W.Z.); (J.Z.); (S.R.)
| | - AiXia Zhang
- Institute of millet crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang 050035, China; (P.L.); (S.L.); (A.Z.); (W.Z.); (J.Z.); (S.R.)
| | - Wei Zhao
- Institute of millet crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang 050035, China; (P.L.); (S.L.); (A.Z.); (W.Z.); (J.Z.); (S.R.)
| | - JiaLi Zhang
- Institute of millet crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang 050035, China; (P.L.); (S.L.); (A.Z.); (W.Z.); (J.Z.); (S.R.)
| | - QinCao Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou 310008, China; (Y.Z.); (Q.C.)
| | - SuFen Ren
- Institute of millet crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang 050035, China; (P.L.); (S.L.); (A.Z.); (W.Z.); (J.Z.); (S.R.)
| | - JingKe Liu
- Institute of millet crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang 050035, China; (P.L.); (S.L.); (A.Z.); (W.Z.); (J.Z.); (S.R.)
- Correspondence: (J.L.); (H.W.); Tel.: +86-311-87670703 (J.L. & H.W.)
| | - HuiJun Wang
- Institute of millet crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang 050035, China; (P.L.); (S.L.); (A.Z.); (W.Z.); (J.Z.); (S.R.)
- Correspondence: (J.L.); (H.W.); Tel.: +86-311-87670703 (J.L. & H.W.)
| |
Collapse
|
39
|
Hu X, Lu L, Guo Z, Zhu Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Ren C, Hong B, Zheng X, Wang L, Zhang Y, Guan L, Yao X, Huang W, Zhou Y, Lu S. Improvement of germinated brown rice quality with autoclaving treatment. Food Sci Nutr 2020; 8:1709-1717. [PMID: 32180978 PMCID: PMC7063372 DOI: 10.1002/fsn3.1459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022] Open
Abstract
Germinated brown rice (GBR) is a popular functional food containing considerable amounts of beneficial nutrients and bioactive compounds. Here, autoclaving at 115°C for 20 min was employed to process GBR (AGBR) to evaluate the effect of autoclaving on the nutritional and health function of GBR in microstructure, taste value, aroma, as well as the physiological ingredients. The results showed that autoclaving treatment influenced the starch gelatinization and aroma to improve the taste of cooked AGBR. Autoclaving treatment significantly increased the gamma‐aminobutyric acid (GABA) and ferulic acid levels of AGBR (p < .05). In addition, consuming AGBR for 1 month significantly decreased the fasting plasma glucose (FPG), 0.5, 1, and 2 hr postprandial plasma glucose (PPG), triglyceride (TG), total cholesterol (TC), high‐density lipoprotein cholesterol (HDL‐c), and low‐density lipoprotein cholesterol (LDL‐c) in metabolic syndrome (MS) patients (p < .05). Therefore, autoclaving treatment, as a promising processing strategy, may both improve the sensory attributes and the nutrition of GBR.
Collapse
Affiliation(s)
- Chuanying Ren
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Bin Hong
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Xianzhe Zheng
- College of Engineering Northeast Agricultural University Harbin China
| | - Liqun Wang
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Yinglei Zhang
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Lijun Guan
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Xinmiao Yao
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Wengong Huang
- Institute of Industrial Crops Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Ye Zhou
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Shuwen Lu
- Food Processing Research Institute Heilongjiang Academy of Agricultural Sciences Harbin China
| |
Collapse
|
41
|
Xia Q, Feng T, Lou X, Wang Y, Sun Y, Pan D, Cao J. Headspace fingerprinting approach to identify the major pathway influencing volatile patterns of vinasse‐cured duck processed by high pressure, as well as its impact on physicochemical and sensory attributes. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Tao Feng
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Xiaowei Lou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
- Department of Food Science & Nutrition Nanjing Normal University Nanjing China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| |
Collapse
|
42
|
Xu M, Jin Z, Lan Y, Rao J, Chen B. HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chem 2019; 280:83-95. [PMID: 30642511 DOI: 10.1016/j.foodchem.2018.12.048] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 01/16/2023]
Abstract
In this study, volatile component changes of germinated chickpea, lentil, and yellow pea flours over the course of 6 days germination were characterized by HS-SPME-GC-MS/O. In total, 124 volatile components were identified involving 19 odor active components being recorded by GC-O exclusively. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that lentil and yellow pea flours had the similar aromatic attributes, while the decrease of beany flavor compounds along with the occurrence of unpleasant flavors was detected in chickpea flours upon germination. Six beany flavor markers, including hexanal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 3-methyl-1-butanol, 1-hexanol, and 2-pentyl-furan, were employed to quantify beany flavor formation in the flours over the course of germination. The results suggested that no significant beany flavor formation or mitigation was appeared after 1 day of germination. The findings are crucial for tailing pulse germination process to enhance the macronutrients without increasing undesirable beany flavor.
Collapse
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yang Lan
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
43
|
Li P, Xie J, Tang H, Shi C, Xie Y, He J, Zeng Y, Zhou H, Xia B, Zhang C, Jiang L. Fingerprints of volatile flavor compounds from southern stinky tofu brine with headspace solid-phase microextraction/gas chromatography-mass spectrometry and chemometric methods. Food Sci Nutr 2019; 7:890-896. [PMID: 30847168 PMCID: PMC6392830 DOI: 10.1002/fsn3.943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/03/2022] Open
Abstract
It is difficult to produce southern stinky tofu, a famous traditional Chinese snack, at industry scale due to the complex composition of its brine. In this study, the fingerprints of organic volatile flavor compounds in the southern stinky tofu brine samples from five manufacturers were studied using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) with the aid of chemometric methods. The fingerprints were obtained by HS-SPME/GC-MS and analyzed with the time shift alignment method, Shannon entropy, correlation coefficient, and principal component analysis. The results show that the time shifts in the samples can be accurately corrected by the time shift alignment method despite unexpected interferences. The fingerprint information was evaluated by Shannon entropy, while the similarities and differences in the fingerprints were investigated by correlation coefficient. Moreover, the identification of stinky tofu manufacturers can be achieved by principal component analysis. The predominant volatile compounds in southern stinky tofu brines were indole, 3-methylindole, phenol, and 4-methylphenol. Therefore, the established fingerprinting of volatile compounds for the brines by combining HS-SPME/GC-MS with chemometric methods was a simple and reliable method.
Collapse
Affiliation(s)
- Pao Li
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
- Hunan Agricultural Product Processing InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Jing Xie
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Hui Tang
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Cong Shi
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Yanhua Xie
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Jing He
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Yulun Zeng
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Hongli Zhou
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Bo Xia
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Chunyan Zhang
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Liwen Jiang
- Hunan Provincial Key Laboratory of Food Science and BiotechnologyCollege of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| |
Collapse
|
44
|
Jackson V, Penumetcha M. Dietary oxidised lipids, health consequences and novel food technologies that thwart food lipid oxidation: an update. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Victoria Jackson
- University of Central Missouri 108 W South St Warrensburg MO 64093 USA
| | - Meera Penumetcha
- University of Central Missouri 108 W South St Warrensburg MO 64093 USA
| |
Collapse
|
45
|
Hoffmann JF, Bassinello PZ, Colombari Filho JM, Lindemann IDS, Elias MC, Takeoka GR, Vanier NL. Volatile compounds profile of Brazilian aromatic brown rice genotypes and its cooking quality characteristics. Cereal Chem 2018. [DOI: 10.1002/cche.10121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Fernanda Hoffmann
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel Universidade Federal de Pelotas Pelotas Brasil
| | | | | | - Igor da Silva Lindemann
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel Universidade Federal de Pelotas Pelotas Brasil
| | - Moacir Cardoso Elias
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel Universidade Federal de Pelotas Pelotas Brasil
| | - Gary R. Takeoka
- Healthy Processed Foods Research USDA, ARS, PWA, WRRC‐PFR Albany California
| | - Nathan Levien Vanier
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel Universidade Federal de Pelotas Pelotas Brasil
| |
Collapse
|
46
|
Li N, Mei J, Shen Y, Xie J. Quality improvement of half-smooth tongue sole (Cynoglossus Semilaevis) fillets by chitosan coatings containing rosmarinic acid during storage. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1518344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Na Li
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), The Ministry of Agriculture of the People’s Republic of China, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), The Ministry of Agriculture of the People’s Republic of China, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Shen
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), The Ministry of Agriculture of the People’s Republic of China, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), The Ministry of Agriculture of the People’s Republic of China, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
47
|
Xia Q, Green BD, Zhu Z, Li Y, Gharibzahedi SMT, Roohinejad S, Barba FJ. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice ( Oryza sativa L.) - opportunities for enhancing food quality and health attributes. Crit Rev Food Sci Nutr 2018; 59:3349-3370. [PMID: 29993273 DOI: 10.1080/10408398.2018.1491829] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rice is a globally important staple consumed by billions of people, and recently there has been considerable interest in promoting the consumption of wholegrain brown rice (WBR) due to its obvious advantages over polished rice in metabolically protective activities. This work highlights the effects of innovative processing technologies on the quality and functional properties of WBR in comparison with traditional approaches; and it is aimed at establishing a quantitative and/or qualitative link between physicochemical changes and high-efficient processing methods. Compared with thermal treatments, applications of innovative nonthermal techniques, such as high hydrostatic pressure (HHP), pulsed electric fields (PEF), ultrasound and cold plasma, are not limited to modifying physicochemical properties of WBR grains, since improvements in nutritional and functional components as well as a reduction in anti-nutritional factors can also be achieved through inducing related biochemical transformation. Much information about processing methods and parameters which influence WBR quality changes has been obtained, but simultaneously achieving the product stabilization and functionality of processed WBR grains requires a comprehensive evaluation of all the quality changes induced by different processing procedures as well as quantitative insights into the relationship between the changes and processing variables.
Collapse
Affiliation(s)
- Qiang Xia
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Brian D Green
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Zhenzhou Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yunfei Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Shahin Roohinejad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.,Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, València, 46100, Spain
| |
Collapse
|
48
|
Xia Q, Wang L, Li Y. Exploring high hydrostatic pressure-mediated germination to enhance functionality and quality attributes of wholegrain brown rice. Food Chem 2018; 249:104-110. [DOI: 10.1016/j.foodchem.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/31/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
|
49
|
Xia Q, Li Y. Ultra-high pressure effects on color, volatile organic compounds and antioxidants of wholegrain brown rice (Oryza sativa L.) during storage: A comparative study with high-intensity ultrasound and germination pretreatments. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Quantitative strategies for detecting different levels of ethyl carbamate (EC) in various fermented food matrices: An overview. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|