1
|
Yan J, Yang M, Wang M, Han Y, Zhou J, Ma Y, Wang T, Li L. Development and validation of signature peptide-based isotope dilution liquid chromatography-mass spectrometry for bovine lactoferrin purity assessment. Microchem J 2025; 208:112458. [DOI: 10.1016/j.microc.2024.112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Ma B, Zhu X, Li Z, Chen Q, Shu Q, Liu Y. Enhancement of mannosylerythritol lipid-A on physicochemical stability, antioxidant activity, and bioavailability of bovine lactoferrin emulsion under different pH conditions. Int J Biol Macromol 2024; 283:137669. [PMID: 39547622 DOI: 10.1016/j.ijbiomac.2024.137669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
This study systematically explored the enhancement of mannosylerythritol lipid-A (MEL-A) on physicochemical stability, antioxidant activity, and bioavailability of bovine lactoferrin (BLF) emulsion under different pH conditions by spectroscopic techniques, molecular simulation, and simulated in vitro digestion model. The bovine lactoferrin-MEL-A (BLF-MEL-A) emulsions were prepared and characterized with the Fourier infrared, of which results showed that high concentration MEL-A (1.00 mg/mL) changed the secondary structure of pH-induced BLF and rendered an increase in β-sheet and random coil fractions. Based on the results of fluorescence spectrum and isothermal titration calorimetry, hydrogen bonding, van der Waals forces, and electrostatic force were the interaction forces of BLF and MEL-A, which were similar to the simulated data of molecular docking and molecular dynamics. BLF-MEL-A emulsion also exerted considerable antioxidant activities and had great potential for functional food development. In addition, MEL-A could improve the stability of BLF emulsion in simulated in vitro digestion test, which promoted the bioavailability of BLF. Therefore, this study will facilitate to explore the interaction between BLF and MEL-A and expand the application of MEL-A as a food additive in food industry.
Collapse
Affiliation(s)
- Bohan Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Xiaopeng Zhu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
3
|
McCarthy EK, O’Callaghan TF. Bovine lactoferrin and its potential use as a functional ingredient for tackling the global challenge of iron deficiency. Curr Opin Food Sci 2024; 59:101211. [DOI: 10.1016/j.cofs.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Siddiqui SA, Khan S, Bahmid NA, Nagdalian AA, Jafari SM, Castro-Muñoz R. Impact of high-pressure processing on the bioactive compounds of milk - A comprehensive review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1632-1651. [PMID: 39049911 PMCID: PMC11263445 DOI: 10.1007/s13197-024-05938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 11/12/2023] [Accepted: 01/17/2024] [Indexed: 07/27/2024]
Abstract
High-pressure processing (HPP) is a promising alternative to thermal pasteurization. Recent studies highlighted the effectivity of HPP (400-600 MPa and exposure times of 1-5 min) in reducing pathogenic microflora for up to 5 logs. Analysis of modern scientific sources has shown that pressure affects the main components of milk including fat globules, lactose, casein micelles. The behavior of whey proteins under HPP is very important for milk and dairy products. HPP can cause significant changes in the quaternary (> 150 MPa) and tertiary (> 200 MPa) protein structures. At pressures > 400 MPa, they dissolve in the following order: αs2-casein, αs1-casein, k-casein, and β-casein. A similar trend is observed in the processing of whey proteins. HPP can affect the rate of milk fat adhering as cream with increased results at 100-250 MPa with time dependency while decreasing up to 70% at 400-600 MPa. Some studies indicated the lactose influencing casein on HP, with 10% lactose addition in case in suspension before exposing it to 400 MPa for 40 min prevents the formation of large casein micelles. Number of researches has shown that moderate pressures (up to 400 MPa) and mild heating can activate or stabilize milk enzymes. Pressures of 350-400 MPa for 100 min can boost the activity of milk enzymes by up to 140%. This comprehensive and critical review will benefit scientific researchers and industrial experts in the field of HPP treatment of milk and its effect on milk components. Graphical abstract
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), 55961 Yogyakarta, Indonesia
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Iran Food and Drug Administration, Halal Research Center of IRI, Ministry of Health and Medical Education, Tehran, Iran
| | - Roberto Castro-Muñoz
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80–233 Gdansk, Poland
| |
Collapse
|
5
|
Hong R, Xie A, Jiang C, Guo Y, Zhang Y, Chen J, Shen X, Li M, Yue X. A review of the biological activities of lactoferrin: mechanisms and potential applications. Food Funct 2024; 15:8182-8199. [PMID: 39027924 DOI: 10.1039/d4fo02083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Lactoferrin, a multifunctional iron-binding protein found in milk and other body fluids, possesses numerous biological activities. The functional activity of lactoferrin lies not only in its iron-binding capacity but also in the molecular mechanisms by which it can affect important chemical components in the host. However, the molecular mechanisms underlying these activities remain unelucidated. In this paper, we review the structure, properties, and contents of different lactoferrin milk sources. The different biological activities, namely antibacterial, antiviral, immunomodulatory, anti-inflammatory, bone regeneration, and improved metabolic disorder bioactivities, and the associated potential mechanisms of lactoferrin are summarized with the aim of providing a reference for the development of lactoferrin-related products.
Collapse
Affiliation(s)
- Ruiyao Hong
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Chengxi Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yangze Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yumeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Gori A, Brindisi G, Daglia M, del Giudice MM, Dinardo G, Di Minno A, Drago L, Indolfi C, Naso M, Trincianti C, Tondina E, Brunese FP, Ullah H, Varricchio A, Ciprandi G, Zicari AM. Exploring the Role of Lactoferrin in Managing Allergic Airway Diseases among Children: Unrevealing a Potential Breakthrough. Nutrients 2024; 16:1906. [PMID: 38931261 PMCID: PMC11206375 DOI: 10.3390/nu16121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of allergic diseases has dramatically increased among children in recent decades. These conditions significantly impact the quality of life of allergic children and their families. Lactoferrin, a multifunctional glycoprotein found in various biological fluids, is emerging as a promising immunomodulatory agent that can potentially alleviate allergic diseases in children. Lactoferrin's multifaceted properties make it a compelling candidate for managing these conditions. Firstly, lactoferrin exhibits potent anti-inflammatory and antioxidant activities, which can mitigate the chronic inflammation characteristic of allergic diseases. Secondly, its iron-binding capabilities may help regulate the iron balance in allergic children, potentially influencing the severity of their symptoms. Lactoferrin also demonstrates antimicrobial properties, making it beneficial in preventing secondary infections often associated with respiratory allergies. Furthermore, its ability to modulate the immune response and regulate inflammatory pathways suggests its potential as an immune-balancing agent. This review of the current literature emphasises the need for further research to elucidate the precise roles of lactoferrin in allergic diseases. Harnessing the immunomodulatory potential of lactoferrin could provide a novel add-on approach to managing allergic diseases in children, offering hope for improved outcomes and an enhanced quality of life for paediatric patients and their families. As lactoferrin continues to capture the attention of researchers, its properties and diverse applications make it an intriguing subject of study with a rich history and a promising future.
Collapse
Affiliation(s)
- Alessandra Gori
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy;
- UOC Laboratory of Clinical Medicine, MultiLab Department, IRCCS Multimedica, 20138 Milan, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Chiara Trincianti
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
| | - Attilio Varricchio
- Department of Otolaryngology, University of Molise, 86100 Campobasso, Italy;
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| |
Collapse
|
7
|
Jiang H, Zhang T, Pan Y, Yang H, Xu X, Han J, Liu W. Thermal stability and in vitro biological fate of lactoferrin-polysaccharide complexes. Food Res Int 2024; 182:114182. [PMID: 38519194 DOI: 10.1016/j.foodres.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Lactoferrin (LF) is a thermally sensitive iron-binding globular glycoprotein. Heat treatment can induce its denaturation and aggregation and thus affect its functional activity. In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), allowed to apply in infant food, were used to form protein-polysaccharide complexes to improve the thermal stability of LF. Meanwhile, in vitro simulated infant digestion and absorption properties of LF were also estimated. The results showed that the complexes formed by CG and XG with LF (LF-CG and LF-XG) could significantly inhibit the loss of α-helix structure of LF against heating. LF-CG and LF-LBG could protect LF from digestion in simulated infant gastric fluid and slow down the degradation of LF under the simulated intestinal conditions. Besides, LF, LF-CG and LF-XG showed no adverse effects on the growth of Caco-2 cells in the LF concentration range of 10-300 μg/mL, and LF-XG exhibited better beneficial to improve the cell uptake of the digestive product than the other protein-polysaccharides at the LF concentration of 100 µg/mL. This study may provide a reference for the enhancement of thermal processing stability of LF and development infant food ingredient with high nutrients absorption efficiency in the gastrointestinal environment in the future.
Collapse
Affiliation(s)
- Hanyun Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tingting Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yujie Pan
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hui Yang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiankang Xu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Wu W, Shao Y, Wu Y, Gong Y, Guan X, Liu B, Lu Y. New Horizons of Covalent Complex of Plant-Derived Recombinant Human Lactoferrin (OsrhLF) Combined with Different Polyphenols: Formation, Physicochemical Properties, and Gastrointestinal Fate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2777-2788. [PMID: 38262965 DOI: 10.1021/acs.jafc.3c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Four typical dietary polyphenols ((-)-epigallocatechin gallate (EGCG), quinic acid (QA), caffeic acid (CA), and ferulic acid (FA)) were covalently prepared with rice recombinant human lactoferrin (OsrhLF) and bovine lactoferrin (bLF), and their structure and physicochemical properties were investigated, different lycopene emulsions were made by ultrasonic emulsification to analyze gastrointestinal fate. The results indicated that the covalent modification polyphenols changed the secondary/tertiary structure of LF, significantly improving the surface hydrophilicity, thermal stability, and antioxidant activity of LF. Compared with the bLF group, the OsrhLF group was more hydrophilic and the thermal denaturation temperature of the OsrhLF-CA reached 104.4 °C. LF-polyphenol emulsions significantly enhanced the photochemical stability and bioavailability of lycopene and achieved effective encapsulation and protection of lycopene compared to free lycopene, and the OsrhLF-EGCG reached 58.94% lycopene bioavailability. In short, OsrhLF does not differ much from bLF in terms of physicochemical properties and has a strong potential in the field of dietary supplements.
Collapse
Affiliation(s)
- Wanrong Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), Wuhan 430070, China
| | - Yeting Wu
- College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Baixue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), Wuhan 430070, China
| |
Collapse
|
9
|
Niero G, Thomas SA, Mouratidou K, Visentin G, De Marchi M, Penasa M, Cassandro M. Lactoferrin concentration in bovine milk: validation of radial immunodiffusion technique, sources of variation, and association to udder health status. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2180440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Giovanni Niero
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padua, Legnaro, Italy
| | - Steffi Anna Thomas
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padua, Legnaro, Italy
| | - Kassiani Mouratidou
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padua, Legnaro, Italy
| | - Giulio Visentin
- Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum, Università di Bologna, Ozzano dell’Emilia, Italy
| | - Massimo De Marchi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padua, Legnaro, Italy
| | - Mauro Penasa
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padua, Legnaro, Italy
| | - Martino Cassandro
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padua, Legnaro, Italy
- Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana, Cremona, Italy
| |
Collapse
|
10
|
Dyrda-Terniuk T, Pomastowski P. The Multifaceted Roles of Bovine Lactoferrin: Molecular Structure, Isolation Methods, Analytical Characteristics, and Biological Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20500-20531. [PMID: 38091520 PMCID: PMC10755757 DOI: 10.1021/acs.jafc.3c06887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Bovine lactoferrin (bLF) is widely known as an iron-binding glycoprotein from the transferrin family. The bLF molecule exhibits a broad spectrum of biological activity, including iron delivery, antimicrobial, antiviral, immunomodulatory, antioxidant, antitumor, and prebiotic functions, thereby making it one of the most valuable representatives for biomedical applications. Remarkably, LF functionality might completely differ in dependence on the iron saturation state and glycosylation patterns. Recently, a violently growing demand for bLF production has been observed, mostly for infant formulas, dietary supplements, and functional food formulations. Unfortunately, one of the reasons that inhibit the development of the bLF market and widespread protein implementation is related to its negligible amount in both major sources─colostrum and mature milk. This study provides a comprehensive overview of the significance of bLF research by delineating the key structural characteristics of the protein and elucidating their impact on its physicochemical and biological properties. Progress in the development of optimal isolation techniques for bLF is critically assessed, alongside the challenges that arise during its production. Furthermore, this paper presents a curated list of the most relevant instrumental techniques for the characterization of bLF. Lastly, it discusses the prospective applications and future directions for bLF-based formulations, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
11
|
Gerstweiler L, Schad P, Trunzer T, Enghauser L, Mayr M, Billakanti J. Model based process optimization of an industrial chromatographic process for separation of lactoferrin from bovine milk. J Chromatogr A 2023; 1710:464428. [PMID: 37797420 DOI: 10.1016/j.chroma.2023.464428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Model based process development using predictive mechanistic models is a powerful tool for in-silico downstream process development. It allows to obtain a thorough understanding of the process reducing experimental effort. While in pharma industry, mechanistic modeling becomes more common in the last years, it is rarely applied in food industry. This case study investigates risk ranking and possible optimization of the industrial process of purifying lactoferrin from bovine milk using SP Sepharose Big Beads with a resin particle diameter of 200 µm, based on a minimal number of lab-scale experiments combining traditional scale-down experiments with mechanistic modeling. Depending on the location and season, process water pH and the composition of raw milk can vary, posing a challenge for highly efficient process development. A predictive model based on the general rate model with steric mass action binding, extended for pH dependence, was calibrated to describe the elution behavior of lactoferrin and main impurities. The gained model was evaluated against changes in flow rate, step elution conditions, and higher loading and showed excellent agreement with the observed experimental data. The model was then used to investigate the critical process parameters, such as water pH, conductivity of elution steps, and flow rate, on process performance and purity. It was found that the elution behavior of lactoferrin is relatively consistent over the pH range of 5.5 to 7.6, while the elution behavior of the main impurities varies greatly with elution pH. As a result, a significant loss in lactoferrin is unavoidable to achieve desired purities at pH levels below pH 6.0. Optimal process parameters were identified to reduce water and salt consumption and increase purity, depending on water pH and raw milk composition. The optimal conductivity for impurity removal in a low conductivity elution step was found to be 43 mS/cm, while a conductivity of 95 mS/cm leads to the lowest overall salt usage during lactoferrin elution. Further increasing the conductivity during lactoferrin elution can only slightly lower the elution volume thus can also lead to higher total salt usage. Low flow rates during elution of 0.2 column volume per minute are beneficial compared to higher flow rates of 1 column volume per minute. The, on lab-scale, calibrated model allows predicting elution volume and impurity removal for large-scale experiments in a commercial plant processing over 106 liters of milk per day. The successful model extrapolation was possible without recalibration or detailed knowledge of the manufacturing plant. This study therefore provides a possible pathway for rapid process development of chromatographic purification in the food industries combining traditional scale-down experiments with mechanistic modeling.
Collapse
Affiliation(s)
- Lukas Gerstweiler
- The University of Adelaide, School of Chemical Engineering, 5000 Adelaide, Australia.
| | | | - Tatjana Trunzer
- Global Life Sciences Solutions Germany GmbH, R&D, 76133 Karlsruhe, Germany
| | - Lena Enghauser
- Global Life Sciences Solutions Germany GmbH, R&D, 76133 Karlsruhe, Germany
| | - Max Mayr
- Global Life Sciences Solutions Germany GmbH, Freiburg, Germany
| | - Jagan Billakanti
- Global Life Sciences Solutions Australia Pty Ltd, Level 11, 32 Phillip St, Parramatta, NSW 2150
| |
Collapse
|
12
|
Nadi WG, Taher EM, Awad AAN, Ahmed LI. Lactoferrin's potential application in enhancing yoghurt's microbial and sensory qualities, with emphasis on the starter culture activity. J DAIRY RES 2023; 90:403-408. [PMID: 38186209 DOI: 10.1017/s0022029923000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This research paper aimed to examine the antibacterial activity of lactoferrin (LF) as a potential natural alternative in the dairy sector, by measuring its minimum inhibitory concentration (MIC) against a number of common food-borne pathogens as well as Pseudomonas aeruginosa, one of the major dairy product spoiling microorganisms. Additionally, a viability experiment was applied to laboratory-manufactured set yoghurt to assess its impact on the activity of starter culture, sensory properties and STEC survivability. The findings demonstrated that LF exhibited significant antimicrobial activity, particularly against E. coli and S. typhimurium with MIC values of 0.0001 and 0.01 mg/ml, respectively. However, P. aeruginosa and B. cereus were quite resistant to LF requiring higher concentrations for MIC (2.5 mg/ml). By the third day of storage, LF at 0.0001 and 0.001 mg/ml significantly reduced the survivability of Shiga toxin-producing E. coli STEC by 70 and 91.6%, respectively, in the lab-manufactured yoghurt. Furthermore, LF enhanced the sensory properties of fortified yoghurt with a statistically significant difference in comparison to the control yoghurt group. There was no interference with the activity of the starter culture throughout the manufacturing process and the storage period. In conclusion, the potent antimicrobial effect of LF opens a new avenue for the dairy industry's potential applications of LF as a natural preservative without negatively influencing the sensory properties and starter culture activity of fermented products.
Collapse
Affiliation(s)
- Walaa G Nadi
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Eman M Taher
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Abeer Abdel Nasser Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Lamiaa Ibrahim Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
13
|
Uşaklıoğlu S, Çakan D. The Efficacy of Topical Lactoferrin on Wound Healing in an Experimental Animal Model of Nasal Septum Perforation. Facial Plast Surg 2023; 39:575-580. [PMID: 36750204 DOI: 10.1055/s-0043-1761482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The aim of the present experimental animal study was to investigate the efficacy of bovine lactoferrin (LF) on wound healing in an animal model of nasal septum perforation (NSP).Twenty-two, 8 to 10 weeks of age, male Sprague-Dawley rats were separated into two groups. Nasal septum perforation was created in each rat. The saline (control) and 0.05 mg LF (study) groups were delivered locally for 14 days. On the 14th day of the study, after the sacrifice, the cartilage nasal septa of the animals were excised. The degeneration and regeneration observed in the nasal septum epithelium and cartilage, the number of acute inflammatory cells, the number of eosinophils, the amount of new vessel formation, the amount of granulation, and the collagen density were examined microscopically. The microscopic parameters and macroscopic healing of NSPs were analyzed. The epithelium regeneration, the fibroblast number, the granulation tissue formation, the collagen density, and the macroscopic healing were significantly higher in the LF group (p < 0.05). Besides, the acute inflammatory cell count was lower in the LF group (p = 0.034). In conclusion, the topically delivered LF can improve wound healing in an experimental rat model of NSP.
Collapse
Affiliation(s)
- Semih Uşaklıoğlu
- ENT Department, Istanbul Haseki Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Doğan Çakan
- Istanbul University-Cerrahpaşa, Cerrahpaşa Medicine Faculty ENT Department, Istanbul, Türkiye
| |
Collapse
|
14
|
Abdelnour SA, Ghazanfar S, Abdel-Hamid M, Abdel-Latif HMR, Zhang Z, Naiel MAE. Therapeutic uses and applications of bovine lactoferrin in aquatic animal medicine: an overview. Vet Res Commun 2023; 47:1015-1029. [PMID: 36658448 PMCID: PMC10485086 DOI: 10.1007/s11259-022-10060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is an important food sector throughout the globe because of its importance in ensuring the availability of nutritious and safe food for human beings. In recent years, this sector has been challenged with several obstacles especially the emergence of infectious disease outbreaks. Various treatment and control aspects, including antibiotics, antiseptics, and other anti-microbial agents, have been used to treat farmed fish and shrimp against diseases. Nonetheless, these medications have been prohibited and banned in many countries because of the development of antimicrobial-resistant bacterial strains, the accumulation of residues in the flesh of farmed fish and shrimp, and their environmental threats to aquatic ecosystems. Therefore, scientists and researchers have concentrated their research on finding natural and safe products to control disease outbreaks. From these natural products, bovine lactoferrin can be utilized as a functional feed supplement. Bovine lactoferrin is a multi-functional glycoprotein applied in various industries, like food preservation, and numerous medications, due to its non-toxic and ecological features. Recent research has proposed multiple advantages and benefits of using bovine lactoferrin in aquaculture. Reports showed its potential ability to enhance growth, reduce mortalities, regulate iron metabolism, decrease disease outbreaks, stimulate the antioxidant defense system, and recuperate the overall health conditions of the treated fish and shrimp. Besides, bovine lactoferrin can be considered as a safe antibiotic alternative and a unique therapeutic agent to decrease the negative impacts of infectious diseases. These features can be attributed to its well-known antibacterial, anti-parasitic, anti-inflammatory, immunostimulatory, and antioxidant capabilities. This literature review will highlight the implications of bovine lactoferrin in aquaculture, particularly highlighting its therapeutic features and ability to promote immunological defensive pathways in fish. The information included in this article would be valuable for further research studies to improve aquaculture's sustainability and the functionality of aquafeeds.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, 45500, Islamabad, Pakistan
| | - Mahmoud Abdel-Hamid
- Dairy Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, 22758, Alexandria, Egypt
| | - Zhaowei Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, 430062, Wuhan, PR China
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt.
| |
Collapse
|
15
|
Garcia PF, Saez Torillo SN, Anzani A, Argüello G, Burgos Paci MA. Characterization of Binding Properties of Cr(Phen) 3 3+ and Ru(Phen) 3 2+ Complexes with Human Lactoferrin. Photochem Photobiol 2023; 99:1225-1232. [PMID: 36504265 DOI: 10.1111/php.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This work presents research about [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ interaction with human lactoferrin (HLf), a key carrier protein of ferric cations. The photochemical and photophysical properties of [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ have been widely studied in the last decades due to their potential use as photosensitizers in photodynamic therapy (PDT). The behavior between the complexes and the protein was studied employing UV-visible absorption, fluorescence emission and circular dichroism spectroscopic techniques. It was found that both complexes bind to HLf with a large binding constant (Kb ): 9.46 × 104 for the chromium complex and 4.16 × 104 for the ruthenium one at 299 K. Thermodynamic parameters were obtained from the Van't Hoff equation. Analyses of entropy (ΔS), enthalpy (ΔH) and free energy changes (ΔG) indicate that these complexes bind to HLf because of entropy-driven processes and electrostatic interactions. According to circular dichroism experiments, no conformational changes have been observed in the secondary and tertiary structure of the protein in the presence of any of the studied complexes. These experimental results suggest that [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ bind to HLf, indicating that this protein could act as a carrier of these complexes in further applications.
Collapse
Affiliation(s)
- Pablo Facundo Garcia
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Santiago N Saez Torillo
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Angel Anzani
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Gerardo Argüello
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Maxi A Burgos Paci
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
16
|
Regueiro U, López-López M, Varela-Fernández R, Otero-Espinar FJ, Lema I. Biomedical Applications of Lactoferrin on the Ocular Surface. Pharmaceutics 2023; 15:pharmaceutics15030865. [PMID: 36986726 PMCID: PMC10052036 DOI: 10.3390/pharmaceutics15030865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.
Collapse
Affiliation(s)
- Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, 15706 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| |
Collapse
|
17
|
Singh A, Duche RT, Wandhare AG, Sian JK, Singh BP, Sihag MK, Singh KS, Sangwan V, Talan S, Panwar H. Milk-Derived Antimicrobial Peptides: Overview, Applications, and Future Perspectives. Probiotics Antimicrob Proteins 2023; 15:44-62. [PMID: 36357656 PMCID: PMC9649404 DOI: 10.1007/s12602-022-10004-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The growing consumer awareness towards healthy and safe food has reformed food processing strategies. Nowadays, food processors are aiming at natural, effective, safe, and low-cost substitutes for enhancing the shelf life of food products. Milk, besides being a rich source of nutrition for infants and adults, serves as a readily available source of precious functional peptides. Due to the existence of high genetic variability in milk proteins, there is a great possibility to get bioactive peptides with varied properties. Among other bioactive agents, milk-originated antimicrobial peptides (AMPs) are gaining interest as attractive and safe additive conferring extended shelf life to minimally processed foods. These peptides display broad-spectrum antagonistic activity against bacteria, fungi, viruses, and protozoans. Microbial proteolytic activity, extracellular peptidases, food-grade enzymes, and recombinant DNA technology application are among few strategies to tailor specific peptides from milk and enhance their production. These bioprotective agents have a promising future in addressing the global concern of food safety along with the possibility to be incorporated into the food matrix without compromising overall consumer acceptance. Additionally, in conformity to the current consumer demands, these AMPs also possess functional properties needed for value addition. This review attempts to present the basic properties, synthesis approaches, action mechanism, current status, and prospects of antimicrobial peptide application in food, dairy, and pharma industry along with their role in ensuring the safety and health of consumers.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Rachael Terumbur Duche
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Federal University of Agriculture, Makurdi, Nigeria
| | - Arundhati Ganesh Wandhare
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Jaspreet Kaur Sian
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Punjab Agricultural University (PAU), Ludhiana, 141001 Punjab India
| | - Brij Pal Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, 123031 Haryana India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Kumar Siddharth Singh
- Institute for Microbiology, Gottfried Wilhelm Leibniz University, Herrenhäuser Str. 2, 30419 Hanover, Germany
| | - Vikas Sangwan
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Shreya Talan
- Dairy Microbiology Division, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001, Punjab, India.
| |
Collapse
|
18
|
FU J, YANG L, TAN D, LIU L. Iron transport mechanism of lactoferrin and its application in food processing. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Liu YANG
- Shenyang Agricultural University, China
| | | | - Ling LIU
- Shenyang Agricultural University, China
| |
Collapse
|
19
|
Jańczuk A, Brodziak A, Czernecki T, Król J. Lactoferrin-The Health-Promoting Properties and Contemporary Application with Genetic Aspects. Foods 2022; 12:foods12010070. [PMID: 36613286 PMCID: PMC9818722 DOI: 10.3390/foods12010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of the study is to present a review of literature data on lactoferrin's characteristics, applications, and multiple health-promoting properties, with special regard to nutrigenomics and nutrigenetics. The article presents a new approach to food ingredients. Nowadays, lactoferrin is used as an ingredient in food but mainly in pharmaceuticals and cosmetics. In the European Union, bovine lactoferrin has been legally approved for use as a food ingredient since 2012. However, as our research shows, it is not widely used in food production. The major producers of lactoferrin and the few available food products containing it are listed in the article. Due to anti-inflammatory, antibacterial, antiviral, immunomodulatory, antioxidant, and anti-tumour activity, the possibility of lactoferrin use in disease prevention (as a supportive treatment in obesity, diabetes, as well as cardiovascular diseases, including iron deficiency and anaemia) is reported. The possibility of targeted use of lactoferrin is also presented. The use of nutrition genomics, based on the identification of single nucleotide polymorphisms in genes, for example, FTO, PLIN1, TRAP2B, BDNF, SOD2, SLC23A1, LPL, and MTHFR, allows for the effective stratification of people and the selection of the most optimal bioactive nutrients, including lactoferrin, whose bioactive potential cannot be considered without taking into account the group to which they will be given.
Collapse
Affiliation(s)
- Anna Jańczuk
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Aneta Brodziak
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-8-1445-6836
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Dietitian Service, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
20
|
Einerhand AWC, van Loo-Bouwman CA, Weiss GA, Wang C, Ba G, Fan Q, He B, Smit G. Can Lactoferrin, a Natural Mammalian Milk Protein, Assist in the Battle against COVID-19? Nutrients 2022; 14:nu14245274. [PMID: 36558432 PMCID: PMC9782828 DOI: 10.3390/nu14245274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Notwithstanding mass vaccination against specific SARS-CoV-2 variants, there is still a demand for complementary nutritional intervention strategies to fight COVID-19. The bovine milk protein lactoferrin (LF) has attracted interest of nutraceutical, food and dairy industries for its numerous properties-ranging from anti-viral and anti-microbial to immunological-making it a potential functional ingredient in a wide variety of food applications to maintain health. Importantly, bovine LF was found to exert anti-viral activities against several types of viruses, including certain SARS-CoV-2 variants. LF's potential effect on COVID-19 patients has seen a rapid increase of in vitro and in vivo studies published, resulting in a model on how LF might play a role during different phases of SARS-CoV-2 infection. Aim of this narrative review is two-fold: (1) to highlight the most relevant findings concerning LF's anti-viral, anti-microbial, iron-binding, immunomodulatory, microbiota-modulatory and intestinal barrier properties that support health of the two most affected organs in COVID-19 patients (lungs and gut), and (2) to explore the possible underlying mechanisms governing its mode of action. Thanks to its potential effects on health, bovine LF can be considered a good candidate for nutritional interventions counteracting SARS-CoV-2 infection and related COVID-19 pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Genna Ba
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Qicheng Fan
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Baoping He
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Gerrit Smit
- Yili Innovation Center Europe, 6708 WH Wageningen, The Netherlands
| |
Collapse
|
21
|
Donovan SM, Abrams SA, Azad MB, Belfort MB, Bode L, Carlson SE, Dallas DC, Hettinga K, Järvinen K, Kim JH, Lebrilla CB, McGuire MK, Sela DA, Neu J. Summary of the joint National Institutes of Health and the Food and Drug Administration workshop titled "exploring the science surrounding the safe use of bioactive ingredients in infant formula: Considerations for an assessment framework". J Pediatr 2022; 255:30-41.e1. [PMID: 36463938 PMCID: PMC10121942 DOI: 10.1016/j.jpeds.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL
| | - Steven A Abrams
- Department of Pediatrics Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, Kansas University Medical Center and The University of Kansas, Kansas City, KS
| | - David C Dallas
- Department of Nutrition, Oregon State University, Corvallis, OR
| | - Kasper Hettinga
- Department of Food Sciences and Agrotechnology, Wageningen University, Wageningen, Netherlands
| | - Kirsi Järvinen
- Department of Pediatrics, Golisano Children's Hospital and University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Jae H Kim
- Perinatal Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | | | | | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Amherst, MA
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, FL.
| |
Collapse
|
22
|
Inhibited digestion of lactoferrin - lactose complexes: Preparation, structural characterization and digestion behaviors. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Liu Y, Hettinga K, Liu D, Zhang L, Zhou P. Current progress of emerging technologies in human and animals' milk processing: Retention of immune-active components and microbial safety. Compr Rev Food Sci Food Saf 2022; 21:4327-4353. [PMID: 36036722 DOI: 10.1111/1541-4337.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/28/2023]
Abstract
Human milk and commercial dairy products play a vital role in humans, as they can provide almost all essential nutrients and immune-active components for the development of children. However, how to retain more native immune-active components of milk during processing remains a big question for the dairy industry. Nonthermal technologies for milk processing are gaining increasing interest in both academic and industrial fields, as it is known that thermal processing may negatively affect the quality of milk products. Thermosensitive components, such as lactoferrin, immunoglobulins (Igs), growth factors, and hormones, are highly important for the healthy development of newborns. In addition to product quality, thermal processing also causes environmental problems, such as high energy consumption and greenhouse gas (GHG) emissions. This review summarizes the recent advances of UV-C, ultrasonication (US), high-pressure processing (HPP), and other emerging technologies for milk processing from the perspective of immune-active components retention and microbial safety, focusing on human, bovine, goat, camel, sheep, and donkey milk. Also, the detailed application, including the instrumental design, technical parameters, and obtained results, are discussed. Finally, future prospects and current limitations of nonthermal techniques as applied in milk processing are discussed. This review thereby describes the current state-of-the-art in nonthermal milk processing techniques and will inspire the development of such techniques for in-practice applications in milk processing.
Collapse
Affiliation(s)
- Yaowei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen, University and Research, Wageningen, The Netherlands
| | - Dasong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
24
|
Gharbi N, Marciniak A, Doyen A. Factors affecting the modification of bovine milk proteins in high hydrostatic pressure processing: An updated review. Compr Rev Food Sci Food Saf 2022; 21:4274-4293. [PMID: 35904187 DOI: 10.1111/1541-4337.13012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 01/28/2023]
Abstract
High hydrostatic pressure (HHP) treatment induces structural changes in bovine milk proteins depending on factors such as the temperature, pH, concentration, decompression rate, cycling, composition of the medium and pressure level and duration. An in-depth understanding of the impact of these factors is important for controlling HHP-induced modification of milk proteins and the interactions within or between them, which can be applied to prevent undesired aggregation, gelation, and precipitation during HHP processing or to obtain specific milk protein modifications to attain specific protein properties. In this regard, understanding the influences of these factors can provide insight into the modulation and optimization of HHP conditions to attain specific milk protein structures. In recent years, there has been a great research attention on HHP-induced changes in milk proteins influenced by factors such as pH, temperature, concentration, cycling, decompression condition, and medium composition. Hence, to provide insight into how these factors control milk protein structures under HHP treatment and to understand if their effects depend on HHP parameters and environmental conditions, this review discusses recent findings on how various factors (pH, temperature, cycling, decompression rate, medium composition, and concentration) affect HHP-induced bovine milk protein modification. Practical Application: The information provided in this review will be very useful to anticipate the challenges related to the formulation and development of pressure-treated milk and dairy products.
Collapse
Affiliation(s)
- Negar Gharbi
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Alice Marciniak
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Alain Doyen
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| |
Collapse
|
25
|
Yan J, Wang M, Yang M, Zhou J, Xue X, Wang T. Study of SI-traceable purity assessment of bovine lactoferrin using mass balance approach and amino acid-based isotope dilution liquid chromatography-mass spectrometry. Food Chem 2022; 385:132674. [PMID: 35290950 DOI: 10.1016/j.foodchem.2022.132674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
Abstract
The accurate measurement of bovine lactoferrin (bLF) attracts wide attention in food and nutraceutical applications as its important physiological and nutritional functions. We present SI traceable procedures for assessing bLF purity using mass balance method and amino acid (AA)-based isotope dilution mass spectrometry (IDMS). The mass balance method was revealed with a purity of 0.938 ± 0.011 g/g by deducting all aspects of impurities, including related structure impurities of 4.60%, ignition residue of 0.28%, Cl- of 1.10%, SO42- of 0.13%, and moisture of 0.17%. The AA-based IDMS quantitative result was 0.937 ± 0.027 g/g. Hydrolysis conditions were optimized and methodology validation including, accuracy, precision, were studied. Good consistency was achieved between the two independent strategies and bLF purity assigned via the weighted mean value of their results was 0.938 ± 0.015 g/g. These analyses are expected to be applicable to proteins quantification and development of LF certified reference materials.
Collapse
Affiliation(s)
- Jingjing Yan
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Min Wang
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Mengrui Yang
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Jian Zhou
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongtong Wang
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| |
Collapse
|
26
|
Taha A, Casanova F, Šimonis P, Stankevič V, Gomaa MAE, Stirkė A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022; 11:foods11111556. [PMID: 35681305 PMCID: PMC9180040 DOI: 10.3390/foods11111556] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins' structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions.
Collapse
Affiliation(s)
- Ahmed Taha
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (F.C.); (A.S.)
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Voitech Stankevič
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
- Correspondence: (F.C.); (A.S.)
| |
Collapse
|
27
|
Duarte LG, Alencar WM, Iacuzio R, Silva NC, Picone CS. Synthesis, characterization and application of antibacterial lactoferrin nanoparticles. Curr Res Food Sci 2022; 5:642-652. [PMID: 35373146 PMCID: PMC8971344 DOI: 10.1016/j.crfs.2022.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lactoferrin (L) and gellan gum (G) nanoparticles were produced in different biopolymer proportions through electrostatic complexation to enhance the antimicrobial properties of lactoferrin. The nanoparticles were characterized according to size, charge density, morphology and antimicrobial activity against S. aureus and E. coli, in two different broths to show the effect of the broth composition on the nanoparticle activity. The 9L:1G particles showed the highest positive zeta potential (+21.20 mV) and reduced diameter (92.03 nm) which resulted in a minimum inhibitory concentration six times smaller (0.3 mg/ml) than pure lactoferrin (2 mg/ml). However, the bacteriostatic action of nanoparticles was inhibited in the presence of divalent cations. When applied to strawberries as a coating, lactoferrin nanoparticles extended fruit shelf-life up to 6 days in the presence of carboxymethylcellulose (CMC). Therefore, lactoferrin-gellan gum complexation was proved to be a promising tool to enhance lactoferrin antimicrobial action and broaden its application as a food preserver.
Collapse
Affiliation(s)
- Larissa G.R. Duarte
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - William M.P. Alencar
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Raiza Iacuzio
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Nathália C.C. Silva
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Carolina S.F. Picone
- School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
28
|
Current practices with commercial scale bovine lactoferrin production and alternative approaches. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Ceniti C, Costanzo N, Morittu VM, Tilocca B, Roncada P, Britti D. Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2034165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Nicola Costanzo
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| |
Collapse
|
30
|
Pryshchepa O, Sagandykova G, Rudnicka J, Pomastowski P, Sprynskyy M, Buszewski B. Synthesis and physicochemical characterization of zinc-lactoferrin complexes. J Dairy Sci 2022; 105:1940-1958. [PMID: 35033339 DOI: 10.3168/jds.2021-20538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023]
Abstract
One trend of the modern world is the search for new biologically active substances based on renewable resources. Milk proteins can be a solution for such purposes as they have been known for a long time as compounds that can be used for the manufacturing of multiple food and non-food products. Thus, the goal of the work was to investigate the parameters of Zn-bovine lactoferrin (bLTF) interactions, which enables the synthesis of Zn-rich protein complexes. Zinc-bLTF complexes can be used as food additives or wound-healing agents. Methodology of the study included bLTF characterization by sodium dodecyl sulfate-PAGE, MALDI-TOF, and MALDI-TOF/TOF mass spectrometry as well Zn-bLTF interactions by attenuated total reflection-Fourier-transform infrared, Raman spectroscopy, scanning and transmission microscopy, and zeta potential measurements. The obtained results revealed that the factors that affect Zn-bLTF interactions most significantly were found to be pH and ionic strength of the solution and, in particular, the concentration of Zn2+. These findings imply that these factors should be considered when aiming at the synthesis of Zn-bLTF metallocomplexes.
Collapse
Affiliation(s)
- Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Joanna Rudnicka
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
31
|
Jiang H, Gallier S, Feng L, Han J, Liu W. Development of the digestive system in early infancy and nutritional management of digestive problems in breastfed and formula-fed infants. Food Funct 2022; 13:1062-1077. [DOI: 10.1039/d1fo03223b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food digestion and absorption in infants are closely related to early growth and long-term health. Human milk and infant formula are the main food sources for 0-6 month-old infants. Due...
Collapse
|
32
|
Morel J, Md Zain SN, Archer R. Comparison of drying techniques for bovine lactoferrin: Iron binding and antimicrobial properties of dried lactoferrin. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Artym J, Zimecki M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9121940. [PMID: 34944756 PMCID: PMC8699013 DOI: 10.3390/biomedicines9121940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Women’s intimate health depends on several factors, such as age, diet, coexisting metabolic disorders, hormonal equilibrium, sexual activity, drug intake, contraception, surgery, and personal hygiene. These factors may affect the homeostasis of the internal environment of the genital tract: the vulva, vagina and cervix. This equilibrium is dependent on strict and complex mutual interactions between epithelial cells, immunocompetent cells and microorganisms residing in this environment. The microbiota of the genital tract in healthy women is dominated by several species of symbiotic bacteria of the Lactobacillus genus. The bacteria inhibit the growth of pathogenic microorganisms and inflammatory processes by virtue of direct and multidirectional antimicrobial action and, indirectly, by the modulation of immune system activity. For the homeostasis of the genital tract ecosystem, antimicrobial and anti-inflammatory peptides, as well as proteins secreted by mucus cells into the cervicovaginal fluid, have a fundamental significance. Of these, a multifunctional protein known as lactoferrin (LF) is one of the most important since it bridges innate and acquired immunity. Among its numerous properties, particular attention should be paid to prebiotic activity, i.e., exerting a beneficial action on symbiotic microbiota of the gastrointestinal and genital tract. Such activity of LF is associated with the inhibition of bacterial and fungal infections in the genital tract and their consequences, such as endometritis, pelvic inflammation, urinary tract infections, miscarriage, premature delivery, and infection of the fetus and newborns. The aim of this article is to review the results of laboratory as well as clinical trials, confirming the prebiotic action of LF on the microbiota of the lower genital tract.
Collapse
|
34
|
Zhang L, Zhou R, Zhang J, Zhou P. Heat-induced denaturation and bioactivity changes of whey proteins. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Abad I, Conesa C, Sánchez L. Development of Encapsulation Strategies and Composite Edible Films to Maintain Lactoferrin Bioactivity: A Review. MATERIALS 2021; 14:ma14237358. [PMID: 34885510 PMCID: PMC8658689 DOI: 10.3390/ma14237358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Lactoferrin (LF) is a whey protein with various and valuable biological activities. For this reason, LF has been used as a supplement in formula milk and functional products. However, it must be considered that the properties of LF can be affected by technological treatments and gastrointestinal conditions. In this article, we have revised the literature published on the research done during the last decades on the development of various technologies, such as encapsulation or composite materials, to protect LF and avoid its degradation. Multiple compounds can be used to conduct this protective function, such as proteins, including those from milk, or polysaccharides, like alginate or chitosan. Furthermore, LF can be used as a component in complexes, nanoparticles, hydrogels and emulsions, to encapsulate, protect and deliver other bioactive compounds, such as essential oils or probiotics. Additionally, LF can be part of systems to deliver drugs or to apply certain therapies to target cells expressing LF receptors. These systems also allow improving the detection of gliomas and have also been used for treating some pathologies, such as different types of tumours. Finally, the application of LF in edible and active films can be effective against some contaminants and limit the increase of the natural microbiota present in meat, for example, becoming one of the most interesting research topics in food technology.
Collapse
Affiliation(s)
- Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-761-585
| |
Collapse
|
36
|
Influence of iron binding in the structural stability and cellular internalization of bovine lactoferrin. Heliyon 2021; 7:e08087. [PMID: 34632151 PMCID: PMC8487029 DOI: 10.1016/j.heliyon.2021.e08087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
Lactoferrin (Lf) is an iron-binding glycoprotein and a component of many external secretions with a wide diversity of functions. Structural studies are important to understand the mechanisms employed by Lf to exert so varied functions. Here, we used guanidine hydrochloride and high hydrostatic pressure to cause perturbations in the structure of bovine Lf (bLf) in apo and holo (unsaturated and iron-saturated, respectively) forms, and analyzed conformational changes by intrinsic and extrinsic fluorescence spectroscopy. Our results showed that the iron binding promotes changes on tertiary structure of bLf and increases its structural stability. In addition, we evaluated the effects of bLf structural change on the kinetics of bLf internalization in Vero cells by confocal fluorescence microscopy, and observed that the holo form was faster than the apo form. This finding may indicate that structural changes promoted by iron binding may play a key role in the intracellular traffic of bLf. Altogether, our data improve the comprehension of bLf stability and uptake, adding knowledge to its potential use as a biopharmaceutical.
Collapse
|
37
|
Soni A, Samuelsson LM, Loveday SM, Gupta TB. Applications of novel processing technologies to enhance the safety and bioactivity of milk. Compr Rev Food Sci Food Saf 2021; 20:4652-4677. [PMID: 34427048 DOI: 10.1111/1541-4337.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Bioactive compounds in food can have high impacts on human health, such as antioxidant, antithrombotic, antitumor, and anti-inflammatory activities. However, many of them are sensitive to thermal treatments incurred during processing, which can reduce their availability and activity. Milk, including ovine, caprine, bovine, and human is a rich source of bioactive compounds, including immunoglobulins, vitamins, and amino acids. However, processing by various novel thermal and non-thermal technologies has different levels of impacts on these compounds, according to the studies reported in the literature, predominantly in the last 10 years. The reported effect of these technologies either covers microbial inactivation or the bioactive composition; however, there is a lack of comprehensive compilation of studies that compare the effect of these technologies on bioactive compounds in milk (especially, caprine and ovine) to microbial inactivation at similar settings. This research gap makes it challenging to conclude on the specific processing parameters that could be optimized to achieve targets of microbial safety and nutritional quality at the same time. This review covers the effect of a wide range of thermal and non-thermal processing technologies including high-pressure processing, pressure-assisted thermal sterilization, pulsed-electric field treatment, cold plasma, microwave-assisted thermal sterilization, ultra-high-pressure homogenization, ultrasonication, irradiation on the bioactive compounds as well as on microbial inactivation in milk. Although a combination of more than one technology could improve the reduction of bacterial contaminants to meet the required food safety standards and retain bioactive compounds, there is still scope for research on these hurdle approaches to simultaneously achieve food safety and bioactivity targets.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| | - Linda M Samuelsson
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand
| | - Simon M Loveday
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B Gupta
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
38
|
Βasdeki AM, Fatouros DG, Βiliaderis CG, Moschakis T. Physicochemical properties of human breast milk during the second year of lactation. Curr Res Food Sci 2021; 4:565-576. [PMID: 34467219 PMCID: PMC8384777 DOI: 10.1016/j.crfs.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
The present study examined the microstructure as well as the physicochemical properties of human milk during the second year of lactation in an attempt to explore its applicability for the formulation of food products. It was observed that human milk fat globules (MFG) droplet size increased within 3 days of milk extraction due to coalescence, as evidenced by confocal microscopy. Furthermore, a gradual decrease of the average MFG size was noted from the sixteenth (16th) to twenty-fifth (25th) month of lactation. It was also found that the size of casein micellar structures increased upon acidification to pH 4.3 (isoelectric point of human caseins). In addition, human milk proteins enhanced the stability of oil-in-water emulsions against coalescence compared to cow, sheep, and goat milk proteins employed as macromolecular emulsifying ingredients. The cold-acid-gels of human milk proteins showed a less elastic behavior than the other milk samples, possibly due to the different structure, composition and size of human casein micelles. Furthermore, the DSC thermograms showed that human whey proteins are denatured in the same temperature range as do the cow whey proteins, but exhibit different thermal transition profiles. Overall, the findings of this research confirm that both the structure and the physicochemical properties of human milk are affected by the stage of lactation. Moreover, the particular composition and structure of human milk proteins seem to be responsible for the special functional characteristics of human milk that may lead towards the formulation of innovative products.
Collapse
Affiliation(s)
- Alexandra-Maria Βasdeki
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Dimitrios G. Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Costas G. Βiliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
39
|
Goulding DA, O'Regan J, Bovetto L, O'Brien NM, O'Mahony JA. Influence of thermal processing on the physicochemical properties of bovine lactoferrin. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Stability-Indicating Analytical Approach for Stability Evaluation of Lactoferrin. Pharmaceutics 2021; 13:pharmaceutics13071065. [PMID: 34371755 PMCID: PMC8309015 DOI: 10.3390/pharmaceutics13071065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin is a multifunctional iron-binding glycoprotein in milk. Due to its potential for the treatment of various diseases, interest in products containing lactoferrin is increasing. However, as a protein, it is prone to degradation, which critically affects the quality of products. Therefore, the main purpose of our work was to develop a stability-indicating analytical approach for stability evaluation of lactoferrin. We were focused on two complementary methods: reversed-phase and size-exclusion chromatography. The stability-indicating nature of the selected methods was confirmed. They were successfully validated by following the ICH guidelines and applied to preliminary lactoferrin stability studies. Up to three degradation products, as well as aggregates and fragments of lactoferrin, were detected in various samples using complementary reversed-phase and size-exclusion chromatographic methods. The analytical approach was additionally extended with three spectroscopic techniques (absorbance, intrinsic fluorescence, and bicinchoninic acid method), which may provide valuable complementary information in some cases. The presented analytical approach allows the stability evaluation of lactoferrin in various samples, including the ability to detect differences in its degradation mechanisms. Furthermore, it has the potential to be used for the quality control of products containing lactoferrin.
Collapse
|
41
|
Wang Y, Morton JD, Bekhit AELDA, Carne A, Mason SL. Amino Acid Sequences of Lactoferrin from Red Deer ( Cervus elaphus) Milk and Antimicrobial Activity of Its Derived Peptides Lactoferricin and Lactoferrampin. Foods 2021; 10:1305. [PMID: 34200201 PMCID: PMC8228779 DOI: 10.3390/foods10061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Although the bioactivities of bovine lactoferrin have been extensively investigated, little is known about deer milk lactoferrin bioactivity and its amino acid sequence. This research investigated the amino acid sequence of deer lactoferrin and the antimicrobial activities of two lactoferrin-encrypted peptides; lactoferricin (Lfcin) and lactoferrampin (Lfampin). Deer lactoferrin was found to have a molecular weight of 77.1 kDa and an isoelectric point of 7.99, which are similar to that of bovine lactoferrin, 78 kDa and pI 7.9. Deer lactoferrin contains 707 amino acids, one amino acid less than bovine lactoferrin, and has 92% homology with bovine lactoferrin. Deer lactoferricin exhibited strong antimicrobial activity against E. coli American Type Culture Collection (ATCC) 25922 and L. acidophilus ATCC 4356. The antimicrobial activities of deer and bovine Lfcin and Lfampin were compared. Based on MIC, deer Lfcin was found to be a more effective inhibitor of L. acidophilus ATCC 4356 than bovine Lfcin, but bovine Lfcin and Lfampin were more effective against E. coli ATCC 25922 than deer Lfcin and Lfampin. The deer Lfcin sequence differed at seven amino acids from bovine Lfcin and this decreased the net positive charge and increased the hydrophobicity. Deer Lfampin contained two differences in amino acid sequence compared to bovine Lfampin which decreased the net positive charge. These amino acid sequence differences likely account for differences in antibacterial activity. Positive charge and hydrophobic residues provide the amphipathic character of these helical peptides, and are considered important for binding of antimicrobial peptides. In silico modelling of deer Lfcin indicated an identical α-helical structure compared to bovine Lfcin.
Collapse
Affiliation(s)
- Ye Wang
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 84, Lincoln 7674, New Zealand; (J.D.M.); (S.L.M.)
| | - James D. Morton
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 84, Lincoln 7674, New Zealand; (J.D.M.); (S.L.M.)
| | - Alaa EL-Din A. Bekhit
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Alan Carne
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Susan L. Mason
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 84, Lincoln 7674, New Zealand; (J.D.M.); (S.L.M.)
| |
Collapse
|
42
|
Goulding DA, Vidal K, Bovetto L, O'Regan J, O'Brien NM, O'Mahony JA. The impact of thermal processing on the simulated infant gastrointestinal digestion, bactericidal and anti-inflammatory activity of bovine lactoferrin - An in vitro study. Food Chem 2021; 362:130142. [PMID: 34087706 DOI: 10.1016/j.foodchem.2021.130142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Lactoferrin (LF) is a multifunctional glycoprotein which, when thermally processed, undergoes significant physicochemical changes. The link between such changes and the bioactivity of LF is not well characterised and requires much research. In this work, bovine LF solutions (1%, w/v, protein, pH 7) were thermally processed using high temperature short time conditions (72, 80, 85 or 95 °C with 15 s holding times). Following this, it was shown that LF and heat induced LF aggregates were largely resistant to simulated infant gastric, but not intestinal, digestion. Also, the efficacy of LF bactericidal activity, and inhibition of lipopolysaccharide-induced NF-κB activation were negatively impacted by thermal processing. This study confirmed that the efficacy of LF bio-functionalities was affected by the extent of heat-induced changes in protein structure whereby processing conditions of least severity (i.e. pasteurisation) had the least impact on bioactivity.
Collapse
Affiliation(s)
- David A Goulding
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Karine Vidal
- Nestlé Research, Nestlé Institute of Health Sciences, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Lionel Bovetto
- Nestlé Research, Nestlé Institute of Material Sciences, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Askeaton, Co. Limerick, Ireland
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.
| |
Collapse
|
43
|
Wei YS, Feng K, Li SF, Hu TG, Linhardt RJ, Zong MH, Wu H. Oral fate and stabilization technologies of lactoferrin: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6341-6358. [PMID: 33749401 DOI: 10.1080/10408398.2021.1900774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
44
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
45
|
Chen K, Zhang G, Chen H, Cao Y, Dong X, Li H, Liu C. Dose Effect of Bovine Lactoferrin Fortification on Iron Metabolism of Anemic Infants. J Nutr Sci Vitaminol (Tokyo) 2020; 66:24-31. [PMID: 32115450 DOI: 10.3177/jnsv.66.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To evaluate the effect of iron-fortified formula with different concentrations of bovine lactoferrin (bLF) on improvement of anemic status in term infants who were previously breast-fed. A randomized, controlled, open, and post-market intervention study. A total of 108 infants aged 6-9 mo who were previously breast-fed and weaned were selected. The subjects were divided into three groups with the sequence of outpatient: fortified group 1 (FG1) with a bLF concentration of 38 mg/100 g, FG2 with 76 mg/100 g bLF, FG0 with no bLF. The intervention duration was 3 mo. Weight, height, head circumference and the concentration of hemoglobin (Hb), serum ferritin (SF), serum transferring receptor (sTfR) were measured and sTfR-SF index (TFR-F index) and total body iron content (TBIC) were computed before and after intervention. The primary outcome measures were obtained from 96 infants (35, 33 and 28 for FG0, FG1 and FG2, respectively). After 1 mo of intervention, the changes of Hb level showed no significant difference (p>0.05) among the three groups, however, the Hb level of infants in FG2 were significantly higher than those of infants in the other two groups after 3 mo of intervention (p<0.05). The present data indicated that the formula fortified with 76 mg/100 g bLF positively affected the Hb of anemic infants who were previously breastfed when compared with fortification with 38 mg/100 g bLF and no bLF fortification.
Collapse
Affiliation(s)
- Ke Chen
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China.,Department of Child Health Care, New Century Women's and Children's Hospital
| | - Guoying Zhang
- Department of Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Haixia Chen
- Department of Disease Prevention and Control, Center for Disease Control and Prevention of Baoxing County
| | - Yanmei Cao
- Department of Child Health Care, Dayi Maternal and Child Health Care Hospital
| | - Xiaobing Dong
- Department of Child Health Care, Hehuachi Community Health Service Center
| | - Hua Li
- Department of Child Hygiene, Qingbaijiang Maternal and Child Health Care Hospital
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University
| |
Collapse
|
46
|
|
47
|
Lönnerdal B, Du X, Jiang R. Biological activities of commercial bovine lactoferrin sources. Biochem Cell Biol 2020; 99:35-46. [PMID: 32706983 DOI: 10.1139/bcb-2020-0182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lactoferrin (Lf) samples from several manufacturers were evaluated in vitro. The purity and protein form of each Lf were examined by SDS-PAGE, Western blot, and proteomics analysis. Assays were conducted to evaluate uptake of Lfs and iron from Lfs by enterocytes as well as Lf bioactivities, including effects on intestinal cell proliferation and differentiation, IL-18 secretion, TGF-β1 transcription, and growth of enteropathogenic Escherichia coli (EPEC). Composition of the Lfs varies; some only contain a major Lf band (∼80 kDa), and some also contain minor forms. All Lfs and iron from the Lfs were absorbed by Caco-2 cells, with various efficiencies. The bioactivities of the Lfs varied considerably, but there was no consistent trend. All Lfs promoted intestinal cell proliferation, secretion of IL-18, and transcription of TGF-β1. Some Lfs exhibited pro-differentiation effects on Caco-2 cells. Effects of pasteurization (62.5 °C for 30 min, 72 °C for 15 s, or 121 °C for 5 min) on integrity, uptake, and bioactivities were examined using Dicofarm, Tatua, and native bovine Lfs. Results show that pasteurization did not affect protein integrity, but variously affected uptake of Lf and its effects on intestinal proliferation, differentiation, and EPEC growth. To choose a Lf source for a clinical trial, assessment of bioactivities is recommended.
Collapse
Affiliation(s)
- Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA.,Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Xiaogu Du
- Department of Nutrition, University of California, Davis, CA 95616, USA.,Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Rulan Jiang
- Department of Nutrition, University of California, Davis, CA 95616, USA.,Department of Nutrition, University of California, Davis, CA 95616, USA
| |
Collapse
|
48
|
Nunes R, Pereira BD, Cerqueira MA, Silva P, Pastrana LM, Vicente AA, Martins JT, Bourbon AI. Lactoferrin-based nanoemulsions to improve the physical and chemical stability of omega-3 fatty acids. Food Funct 2020; 11:1966-1981. [DOI: 10.1039/c9fo02307k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Omega-3 (ω-3) polyunsaturated fatty acids are highly susceptible to oxidation and have an intense odour and poor water solubility, which make their direct applications in foods extremely difficult.
Collapse
Affiliation(s)
- Rafaela Nunes
- Centre of Biological Engineering
- University of Minho
- Braga
- Portugal
| | - Beatriz D'Avó Pereira
- Centre of Biological Engineering
- University of Minho
- Braga
- Portugal
- International Iberian Nanotechnology Laboratory
| | | | - Pedro Silva
- Centre of Biological Engineering
- University of Minho
- Braga
- Portugal
| | | | | | - Joana T. Martins
- Centre of Biological Engineering
- University of Minho
- Braga
- Portugal
| | - Ana I. Bourbon
- International Iberian Nanotechnology Laboratory
- Braga
- Portugal
| |
Collapse
|
49
|
Influence of treatment and refrigeration time on antimicrobial activity of goat and sheep colostrum. J DAIRY RES 2019; 86:450-453. [PMID: 31722775 DOI: 10.1017/s0022029919000657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of the studies presented in this research communication was to compare species of origin (goat and sheep) and the effect of treatment (pasteurization at 56, 63 and 72 °C, skimming and curding) and refrigeration time on colostrum antimicrobial activity (AnAc). Two experiments were performed. In experiment 1, twenty-four first milking colostrum samples were obtained (12 goats, 12 sheep) and an aliquot of each sample was subjected to 6 different treatments, control (untreated), pasteurization at 56, 63 and 72 °C, skimming and curding. Colostrum AnAc was tested directly against E. coli using disks in a Petri dish and Enrofloxacin (antibiotic) and saline serum as positive and negative control, respectively. Species had no effect (P > 0.05) on colostrum AnAc, and neither did pasteurization at different temperatures or skimming. However, curding showed the lowest colostrum AnAc (P < 0.05) in both species. In the second experiment, four treatments were assayed, control, pasteurization at 56 and 63 °C and skimming. An aliquot of twelve goat colostrum samples were refrigerated after treatments for 10 d at 4 °C. Colostrum AnAc was measured at 0, 2, 4, 6, 8, and 10 d. A reduction in colostrum AnAc was observed due to refrigeration time. The results suggest that if farmers use frozen colostrum for neonates, the process of curding colostrum or refrigeration at 4 °C longer than 4 d is not recommended.
Collapse
|
50
|
Hu P, Zhao F, Zhu W, Wang J. Effects of early-life lactoferrin intervention on growth performance, small intestinal function and gut microbiota in suckling piglets. Food Funct 2019; 10:5361-5373. [PMID: 31393487 DOI: 10.1039/c9fo00676a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The early postnatal stage is a critical period for suckling animals in developing intestinal function and stabilizing gut microbiota. Lactoferrin (LF) plays a critical role in promoting gut development and regulating gut microbiota. This study investigates the impact of early-life lactoferrin (LF) intervention on the growth performance, small intestinal function and gut microbiota in suckling piglets. Sixty suckling piglets (1.51 ± 0.05 kg) obtained from six sows (10 piglets per litter) were assigned to a control (CON) group and an LF group in each litter, which were sow-fed. Piglets in the LF group were orally administered 8-12 mL LF solution (0.5 g per kg body weight per day) for a week, and piglets in the CON group were orally administered the same dose of physiological saline. Six piglets (n = 6) from each group were euthanized on days 8 and 21. The early-life LF intervention increased growth performance, with higher villi height of the jejunum and greater disaccharidase activity of the jejunum and ileum (P < 0.05). Diarrhoea incidence decreased in the LF group from day 1 to day 7 (P < 0.05). Urinary lactulose-mannitol ratios decreased in the LF group, whereas the gene and protein expressions of jejunal occludin increased in the LF group on day 8 and day 21, and higher gene and protein levels of ileal occludin were observed on day 8 (P < 0.05). Additionally, the LF piglets had lower concentrations of IL-1β and TNF-α, and higher concentration of IL-10 in the jejunum (P < 0.05). For the ileum, higher concentration of IL-10 and lower concentration of TNF-α were observed in the LF group (P < 0.05). LF piglets had a greater abundance of Lactobacillus and lower abundance of Veillonella and Escherichia-Shigella in the jejunum on day 8 (P < 0.05). In the ileum, the abundance of Actinobacillus was decreased in the LF piglets on day 8 and day 21 (P < 0.05). The early-life LF intervention enhanced the growth performance and decreased diarrhoea incidence in the suckling piglets by promoting the development of intestinal function and changing the microbiota in the small intestine.
Collapse
Affiliation(s)
- Ping Hu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu Province 210095, P. R. China. and Laboratory of Gastrointestinal Microbiology, Xiaolingwei Street, Weigang 1, Nanjing 210095, China
| | - Fangzhou Zhao
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu Province 210095, P. R. China. and Laboratory of Gastrointestinal Microbiology, Xiaolingwei Street, Weigang 1, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu Province 210095, P. R. China. and Laboratory of Gastrointestinal Microbiology, Xiaolingwei Street, Weigang 1, Nanjing 210095, China
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu Province 210095, P. R. China. and Laboratory of Gastrointestinal Microbiology, Xiaolingwei Street, Weigang 1, Nanjing 210095, China
| |
Collapse
|