1
|
Ebrahimi P, Khamirikar F, Lante A. Unlocking the biorefinery approaches to valorize sugar beet leaves (B. Vulgaris L.) for food industry applications: A critical review. Food Res Int 2024; 197:115145. [PMID: 39593358 DOI: 10.1016/j.foodres.2024.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The large-scale cultivation of sugar beets generates a significant amount of by-products, particularly leaves, which are often overlooked and wasted. However, these by-products are a valuable source of functional compounds that can be repurposed to enhance crop sustainability and produce food ingredients. Therefore, valorization of sugar beet leaves (SBLs) is a prudent biorefinery approach for future utilization. This literature review highlights the significant advances in valorizing SBLs for food industry applications. The extractable phytochemical compounds, the sustainability and challenges of recovery, the extraction methods, potential health benefits, current applications, and prospective valorization possibilities of SBLs within a circular economy framework were reviewed. The results showed that SBLs are rich in nutrients and bioactive phytochemicals such as polyphenols (e.g., flavonoids and phenolic acids), proteins, essential amino acids, chlorophylls, fiber, and essential fatty acids. The application of these compounds in the development of food products may exhibit numerous health benefits, including antioxidant, anti-microbial, anti-inflammatory, anti-diabetic, and anti-cancer properties. However, for potential applications of SBLs in the food industry to develop functional foods, nutritional supplements, and natural food additives, further research is needed to optimize the efficient extraction of functional compounds on an industrial scale and to verify the safety of extracted compounds for human consumption.
Collapse
Affiliation(s)
- Peyman Ebrahimi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment-DAFNAE, University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Faezeh Khamirikar
- Department of Land, Environment, Agriculture, and Forestry-TESAF, University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment-DAFNAE, University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy.
| |
Collapse
|
2
|
Ojo OA, Adeyemo TR, Iyobhebhe M, Adams MD, Asaleye RM, Evbuomwan IO, Abdurrahman J, Maduakolam-Aniobi TC, Nwonuma CO, Odesanmi OE, Ojo AB. Beta vulgaris L. beetroot protects against iron-induced liver injury by restoring antioxidant pathways and regulating cellular functions. Sci Rep 2024; 14:25205. [PMID: 39448782 PMCID: PMC11502780 DOI: 10.1038/s41598-024-77503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Beta vulgaris L. is a root vegetable that is consumed mainly as a food additive. This study aimed to describe the protective effect of B. vulgaris on Fe2+-mediated oxidative liver damage through in vitro, ex vivo, and in silico studies to establish a strong rationale for its protective effect. To induce oxidative damage, we incubated the livers of healthy male rats with 0.1 mM FeSO4 to induce oxidative injury and coincubated them with an aqueous extract of B. vulgaris root (BVFE) (15-240 µg/mL). Induction of liver damage significantly (p < .05) decreased the levels of GSH, SOD, CAT, and ENTPDase activities, with a corresponding increase in MDA and NO levels and Na+/K+ ATPase, G6 Pase, and F-1,6-BPase enzyme activities. BVFE treatment (p < .05) reduced these levels and activities to almost normal levels, with the most prominent effects observed at 240 µg/mL BVFE. An HPLC investigation revealed sixteen compounds in BVFE, with quercetin being the most abundant. Chlorogenic acid and iso-orientation showed the highest binding affinities for G6 Pase and Na+/K + ATPase, respectively. These findings suggest that B. vulgaris can protect against Fe2+-mediated liver damage by suppressing oxidative stress and cholinergic and purinergic activities while regulating gluconeogenesis. Overall, the hepatoprotective activity of this extract might be driven by the synergistic effect of the identified compounds and their probable interactions with target proteins.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria.
| | | | | | - Moses Dele Adams
- Clinical Biochemistry, Phytopharmacology and Biochemical Toxicology Research Laboratory (CBPBT-RL), Department of Biochemistry, Baze University, Abuja, Nigeria
| | | | | | | | | | | | | | - Adebola Busola Ojo
- Department of Environmental Management and Toxicology, University of Ilesa, Ilesa, Nigeria
| |
Collapse
|
3
|
Bian C, Ji L, Xu W, Dong S, Pan N. Research Progress on Bioactive Substances of Beets and Their Functions. Molecules 2024; 29:4756. [PMID: 39407683 PMCID: PMC11478215 DOI: 10.3390/molecules29194756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
As a globally cultivated and economic crop, beets are particularly important in the cane sugar and feed industries. Beet pigments are among the most important natural pigments, while various chemical components in beets display beneficial biological functions. Phenolic substances and betalains, as the main bioactive compounds, determine the functional characteristics of beets. This review categorizes the basic types of beets by the chemical composition of bioactive substances in their leaves, stems, and roots and emphatically summarizes the research progress made on the functions of two major substances in different types of beets: phenolic compounds and betalain pigments. This study provides useful insights for the comprehensive and effective application of beets in the health food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chun Bian
- College of Food Engineering, Harbin Institute, Harbin 150076, China; (W.X.); (S.D.); (N.P.)
| | - Lanyang Ji
- Heilongjiang Grain Quality Safety Monitoring and Technology Center, Harbin 150001, China;
| | - Wei Xu
- College of Food Engineering, Harbin Institute, Harbin 150076, China; (W.X.); (S.D.); (N.P.)
| | - Shirong Dong
- College of Food Engineering, Harbin Institute, Harbin 150076, China; (W.X.); (S.D.); (N.P.)
| | - Nan Pan
- College of Food Engineering, Harbin Institute, Harbin 150076, China; (W.X.); (S.D.); (N.P.)
| |
Collapse
|
4
|
Alves JM, Alvarenga VO, Tavares da Silva R, de Souza Pedrosa GT, Silva FA, Bicca GB, Baldwin C, Schaffner DW, Magnani M. Predicting the impact of temperature and relative humidity on Salmonella growth and survival in sliced chard, broccoli and red cabbage. Food Microbiol 2024; 120:104495. [PMID: 38431315 DOI: 10.1016/j.fm.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
This study assessed the fate of a Salmonella enterica cocktail (S. Typhimurium, S. Enteritidis, S. Newport, S. Agona and S. Anatum; initial counts 3.5 log CFU/g) in minimally processed sliced chard, broccoli and red cabbage at 16 conditions of different temperature (7, 14, 21 and 37 °C) and relative humidity (RH; 15, 35, 65 and 95%) over six days (144 h). Linear regression was used to estimate the rate change of Salmonella in cut vegetables as a function of temperature and relative humidity (RH). R2 value of 0.85, 0.87, and 0.78 were observed for the rates of change in chard, broccoli, and red cabbage, respectively. The interaction between temperature and RH was significant in all sliced vegetables. Higher temperatures and RH values favored Salmonella growth. As temperature or RH decreased, the rate of S. enterica change varied by vegetable. The models developed here can improve risk management of Salmonella in fresh cut vegetables.
Collapse
Affiliation(s)
- Jade Morais Alves
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Verônica Ortiz Alvarenga
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Geany Targino de Souza Pedrosa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Gerson Balbueno Bicca
- Department of Food Engineering, Federal University of Rondônia, Ariquemes, Rondônia, Brazil
| | - Clif Baldwin
- Stockton University - Department of Data Science and Strategic Analytics, USA
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
5
|
Zöngür A. Antimicrobial, Antioxidant and Cytotoxic Effects of Essential Oil, Fatty Acids and Bioactive Compounds of Beta vulgaris var. crassa (Fodder Beet). Indian J Microbiol 2024; 64:719-731. [PMID: 39010984 PMCID: PMC11246347 DOI: 10.1007/s12088-024-01269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/24/2024] [Indexed: 07/17/2024] Open
Abstract
Beta vulgaris var. crassa is undoubtedly a very important plant that is not used enough in the world. In this study, it was aimed to determine the cytotoxic activities of the components (essential oils, fatty acids, total phenol and flavonoid) found in the leaf parts of Beta vulgaris var. crassa against PC-3, MCF-7 and HeLa cancer cell lines. In addition, the effectiveness of these ingredients against bacteria and fungi that can cause serious health problems in humans was tested. In experiments, three tumor cell lines were exposed to various plant extract concentrations (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) for 72 h. It was found that plant extracts showed high (SI: 2.14 > 2) cytotoxicity to PC-3 cells, moderate (SI: 1.62 < 2) to HeLa cells, and low (SI: 0.93 < 2) cytotoxicity to MCF-7 cells. Also, different plant extract concentrations were found to cause an inhibition rate of 16.3-22.3% in Staphylococcus aureus, 16.8-23.5% in Streptococcus pyogenes and 12-16.2% in Cutibacterium acnes. Similarly, inhibition rates were determined between 9.5-20.7% for Candida albicans, 3.5-7.7% for Candida auris, and 5.5-15.1% for Candida glabrata. The results showed that the plant extract exhibited a concentration-dependent cytotoxic and antimicrobial effect against both cancer cell lines and microbial pathogens. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01269-8.
Collapse
|
6
|
Timm M, Offringa LC, Van Klinken BJW, Slavin J. Beyond Insoluble Dietary Fiber: Bioactive Compounds in Plant Foods. Nutrients 2023; 15:4138. [PMID: 37836422 PMCID: PMC10574517 DOI: 10.3390/nu15194138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Consumption of plant foods, including whole grains, vegetables, fruits, pulses, nuts, and seeds, is linked to improved health outcomes. Dietary fiber is a nutrient in plant foods that is associated with improved health outcomes, including a lower risk of chronic diseases such as cardiovascular disease, type 2 diabetes, and certain cancers. Different fibers deliver different health benefits based on their physiochemical properties (solubility, viscosity) and physiological effects (fermentability). Additionally, plant foods contain more than dietary fiber and are rich sources of bioactives, which also provide health benefits. The concept of the solubility of fiber was introduced in the 1970s as a method to explain physiological effects, an idea that is no longer accepted. Dividing total dietary fiber (TDF) into insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) is an analytical distinction, and recent work finds that IDF intake is linked to a wide range of health benefits beyond increased stool weight. We have focused on the IDF content of plant foods and linked the concept of IDF to the bioactives in plant foods. Ancestral humans might have consumed as much as 100 g of dietary fiber daily, which also delivered bioactives that may be more important protective compounds in disease prevention. Isolating fibers to add to human diets may be of limited usefulness unless bioactives are included in the isolated fiber supplement.
Collapse
Affiliation(s)
- Madeline Timm
- Department of Food Science and Nutrition, University of Minnesota—Twin Cities, 1334 Eckles Avenue, St. Paul, MN 55108, USA;
| | - Lisa C. Offringa
- Brightseed, 201 Haskins Way, San Francisco, CA 94080, USA; (L.C.O.); (B.J.-W.V.K.)
| | | | - Joanne Slavin
- Department of Food Science and Nutrition, University of Minnesota—Twin Cities, 1334 Eckles Avenue, St. Paul, MN 55108, USA;
| |
Collapse
|
7
|
Mallor C, Bertolín JR, Paracuellos P, Juan T. Nutraceutical Potential of Leafy Vegetables Landraces at Microgreen, Baby, and Adult Stages of Development. Foods 2023; 12:3173. [PMID: 37685105 PMCID: PMC10486669 DOI: 10.3390/foods12173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Nutraceutical compounds present in leafy vegetables have gained substantial attention due to the health benefits they offer beyond their nutritional value. The biosynthesis, composition, and concentration of these compounds vary widely among leafy vegetables and carry the influence of genetic, agronomic, and environmental factors. Recently, micro-vegetables are gaining importance among consumers worldwide and are used in gastronomy at different development stages. Another tendency is the utilization of local genetic resources as an integral component of agricultural biodiversity crucial for sustainable production. The present study identifies the nutraceutical potential of 10 leafy vegetables at the microgreen, baby, and adult development stages using local genetic resources from the Spanish Vegetable Genebank (CITA, Aragón). Specifically, two landraces for each of the following crops were used: chard (Beta vulgaris), spinach (Spinacia oleracea), lettuce (Lactuca sativa), borage (Borago officinalis), and chicory (Cichorium intybus). The results reinforce the value of traditional local genetics and demonstrate the potential of these leafy vegetables as a source of functional compounds (fatty acids, vitamin C, carotenoids, polyphenols, antioxidant activity, and tocopherols). The observed variability depending on the crop and the developmental stage recommends the necessity of having a varied diet, since each leafy vegetable product offers a unique nutritional profile.
Collapse
Affiliation(s)
- Cristina Mallor
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana, 930, 50059 Zaragoza, Spain; (J.R.B.); (T.J.)
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Juan Ramón Bertolín
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana, 930, 50059 Zaragoza, Spain; (J.R.B.); (T.J.)
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Pablo Paracuellos
- Basque Culinary Center (BCC), Paseo Juan Avelino Barriola, 101, 20009 Donostia, Spain
| | - Teresa Juan
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana, 930, 50059 Zaragoza, Spain; (J.R.B.); (T.J.)
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain
| |
Collapse
|
8
|
Ojo OA, Agboola AO, Ogunro OB, Iyobhebhe M, Elebiyo TC, Rotimi DE, Ayeni JF, Ojo AB, Odugbemi AI, Egieyeh SA, Oluba OM. Beet leaf (beta vulgaris L.) extract attenuates iron-induced testicular toxicity: Experimental and computational approach. Heliyon 2023; 9:e17700. [PMID: 37483802 PMCID: PMC10359825 DOI: 10.1016/j.heliyon.2023.e17700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The purpose of this study was to investigate the protective effect of Beta vulgaris leaf extract (BVLE) on Fe2+-induced oxidative testicular damage via experimental and computational models. Oxidative testicular damage was induced via incubation of testicular tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C. Treatment was achieved by incubating the testicular tissues with BVLE under the same conditions. The catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) levels, acetylcholinesterase (AChE), sodium-potassium adenosine triphosphatase (Na+/K + ATPase), ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase), glucose-6-phosphatase (G6Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase) were all measured in the tissues. We identified the bioactive compounds present using high-performance liquid chromatography (HPLC). Molecular docking and dynamic simulations were done on all identified compounds using a computational approach. The induction of testicular damage (p < 0.05) decreased the activities of GSH, SOD, CAT, and ENTPDase. In contrast, induction of testicular damage also resulted in a significant increase in MDA and NO levels and an increase in ATPase, G6Pase, and F-1,6-BPase activities. BVLE treatment (p < 0.05) reduced these levels and activities compared to control levels. An HPLC investigation revealed fifteen compounds in BVLE, with quercetin being the most abundant. The molecular docking and MDS analysis of the present study suggest that schaftoside may be an effective allosteric inhibitor of fructose 1,6-bisphosphatase based on the interacting residues and the subsequent effect on the dynamic loop conformation. These findings indicate that B. vulgaris can protect against Fe2+-induced testicular injury by suppressing oxidative stress, acetylcholinesterase, and purinergic activities while regulating carbohydrate dysmetabolism.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | | | | | | | | | | | | | | | - Adeshina Isaiah Odugbemi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
- South African National Bioinformatics Institute, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town, South Africa
| | - Samuel Ayodele Egieyeh
- National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town, South Africa
- School of Pharmacy, University of Western Cape, Cape Town, South Africa
| | | |
Collapse
|
9
|
Boujbiha MA, Chahdoura H, Adouni K, Ziani BEC, Snoussi M, Chakroun Y, Ciudad-Mulero M, Fernández-Ruiz V, Achour L, Selmi B, Morales P, Flamini G, Mosbah H. Wild Vitex agnus-castus L.: Phytochemical Characterization, Acute Toxicity, and Bioactive Properties. Molecules 2023; 28:5096. [PMID: 37446759 DOI: 10.3390/molecules28135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Wild Vitex agnus-castus (VAC) is a Mediterranean plant that is rich in bioactive metabolites. This study aimed to validate, for the first time, the beneficial use of VAC fruits and fruit decoctions (VFDs) through in vitro and in vivo trials. Forty-one volatile components were detected in VAC fruits, with 1,8-cineole (30.3%) comprising the majority. The antioxidant activity of VFD was measured by using different in vitro methods (EC50 of 0.16 mg/mL by β-carotene bleaching inhibition assay) and by measuring the DNA protection power. Using the disc diffusion assay, the antimicrobial activity of VFD was evaluated, and it exhibited a noticeable anticandidal activity. VFD did not cause any toxicity or mortality in rats treated with doses > 200 mg/kg. Using the acetic acid writhing test, the antinociceptive activity of VFD was measured. Our results showed that VFD at 200 mg/kg exhibited a higher analgesic activity (81.68%) than acetylsalicylic acid used as a positive control (74.35%). Its gastroprotective ability was assessed by HCl/ethanol-induced gastric lesions, which were remarkably inhibited (84.62%) by intraperitoneal administration of VFD. This work helps to validate the popular use of VAC to treat nociceptive, inflammatory, and gastric disorders and encourages researchers to further investigate the identification of pharmacological compounds from this species.
Collapse
Affiliation(s)
- Mohamed Ali Boujbiha
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - Hassiba Chahdoura
- Unité de Recherche "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Khaoula Adouni
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | | | - Mejdi Snoussi
- Department of Biology, University of Hail, Ha'il P.O. Box 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - Yasmine Chakroun
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - María Ciudad-Mulero
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramon y Cajal, s/n, E-28040 Madrid, Spain
| | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramon y Cajal, s/n, E-28040 Madrid, Spain
| | - Lotfi Achour
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - Boulbaba Selmi
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - Patricia Morales
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramon y Cajal, s/n, E-28040 Madrid, Spain
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Habib Mosbah
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| |
Collapse
|
10
|
Martínez-Castro J, Cámara-Martos F, Moreno-Ortega A, Victorio-Sánchez M, Krstova A, Lopes JA, Pérez-Rodríguez F. Use of granules and free salts for Fe and Zn fortification of leafy vegetables: Improvements in trace element bioaccessibility and fulfillment of Dietary Reference Intakes. J Trace Elem Med Biol 2023; 78:127181. [PMID: 37163823 DOI: 10.1016/j.jtemb.2023.127181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Leafy vegetables represent an excellent dietary source of trace elements such as Fe and Zn. Nevertheless, Fe and Zn bioaccessibility can lessen due to a high concentration of anti-nutritional compounds. The encapsulation of Fe and Zn salts as granules could be used to fortify these leafy vegetables. METHOD Three leafy vegetables, spinach, Swiss chard and Ethiopian mustard were fortified with iron sulfate and zinc sulfate as granules and free salts in order to test the improvements in the bioaccessibility and fulfillments of DRIs. Fe and Zn granules were prepared in a fluidized bed granulator. A probabilistic analysis was performed, using experimental data, to assess bioaccessible intake and fulfillments of DRIs in European populations. RESULTS Fe contents ranged between 4.8 mg/100 g of Ethiopian mustard to 157.4 mg/100 g of spinach. Fe and Zn bioaccessibility percentages were low for Swiss chard and spinach without fortification. Fortification with granules improved Fe bioaccessibility of these latter vegetables (196 and 223 mg/100 g). Zn contents in samples without fortification ranged between 2.3 mg/100 g for Ethiopian mustard and 7.4 mg/100 g for spinach. Zn fortification as granules improved Zn bioaccessibility for the three vegetables studied. Thus, Zn bioccessible concentrations ranged between 17.4 and 108 mg/100 g for the solubility assay and between 5.9 and 31.1 mg/100 g for the dialyzability assay. Besides, the probability analysis showed that fortification had a better performance in meeting DRIs for those populations with higher consumption levels of leafy vegetables. CONCLUSIONS The probability analysis demonstrated that fortification can be a suitable strategy to meet DRIs for both trace elements, which was especially remarkable for Fe. Fortification with granule was more effective in most the cases, although for Ethiopian mustard, free salt of Fe showed a better performance.
Collapse
Affiliation(s)
- J Martínez-Castro
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-1, 14014 Córdoba, España
| | - F Cámara-Martos
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-1, 14014 Córdoba, España.
| | - A Moreno-Ortega
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-1, 14014 Córdoba, España
| | - M Victorio-Sánchez
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-1, 14014 Córdoba, España
| | - A Krstova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - J Almeida Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - F Pérez-Rodríguez
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-1, 14014 Córdoba, España
| |
Collapse
|
11
|
Chahdoura H, Mzoughi Z, Ziani BEC, Chakroun Y, Boujbiha MA, Bok SE, M'hadheb MB, Majdoub H, Mnif W, Flamini G, Mosbah H. Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes. Foods 2023; 12:foods12061301. [PMID: 36981228 PMCID: PMC10048770 DOI: 10.3390/foods12061301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The goal of this work was to investigate the impact of the flavoring of some aromatic plants/spices, including rosemary (R), lemon (L) and orange (O) at the concentration of 5% and 35% (w/w) added by 2 methods (conventional maceration and direct flavoring), on quality attributes, chemical changes and oxidative stability of extra virgin olive oil (EVOO). Six flavored oils were obtained (EVOO + O, O + O, EVOO + R, O + R, EVOO + L and O + L). The physicochemical parameters (water content, refractive index, acidity and peroxide value, extinction coefficient, fatty acids, volatile aroma profiles, Rancimat test, phenols and pigments composition) of the flavored oils were investigated. Based on the results obtained, it was observed that flavoring with a conventional process provided increased oxidative stability to the flavored oils, especially with rosemary (19.38 ± 0.26 h), compared to that of unflavored oil. The volatile profiles of the different flavored oils revealed the presence of 34 compounds with the dominance of Limonene. The fatty acid composition showed an abundance of mono-unsaturated fatty acids followed by poly-unsaturated ones. Moreover, a high antioxidant activity, a significant peripheral analgesic effect (77.7% of writhing inhibition) and an interesting gastroprotective action (96.59% of ulcer inhibition) have been observed for the rosemary-flavored oil. Indeed, the flavored olive oils of this study could be used as new functional foods, leading to new customers and further markets.
Collapse
Affiliation(s)
- Hassiba Chahdoura
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Zeineb Mzoughi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Borhane E C Ziani
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, Tipaza 42000, Algeria
| | - Yasmine Chakroun
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| | - Mohamed Ali Boujbiha
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| | - Safia El Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Department of Biology, Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia
| | - Manel Ben M'hadheb
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Guido Flamini
- Diparitmento di Farmacia, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Habib Mosbah
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| |
Collapse
|
12
|
de Souza Medina T, D’Almeida CTDS, do Nascimento TP, de Abreu JP, de Souza VR, Kalili DC, Teodoro AJ, Cameron LC, Koblitz MG, Ferreira MSL. Food Service Kitchen Scraps as a Source of Bioactive Phytochemicals: Disposal Survey, Optimized Extraction, Metabolomic Screening and Chemometric Evaluation. Metabolites 2023; 13:386. [PMID: 36984826 PMCID: PMC10057048 DOI: 10.3390/metabo13030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Untargeted metabolomics is a powerful tool with high resolution and the capability to characterize a wide range of bioactive natural products from fruit and vegetable by-products (FVB). Thus, this approach was applied in the study to evaluate the phenolic compounds (PC) by metabolomic screening in five FVB after optimizing their extraction. The total phenolic content and antioxidant activity analyses were able to select the best extractor (SM) and ultrasonication time (US) for each FVB; methanol was used as a control. Although ultrasonication yielded a lower number of PC identifications (84 PC), the US extract was the most efficient in total ionic abundance (+21% and +29% compared to the total PC and SM extracts, respectively). Ultrasonication also increased the phenolic acid (+38%) and flavonoid classes (+19%) extracted compared to SM, while the multivariate analyses showed the control as the most dissimilar sample. FVB extracted from the same parts of the vegetable/fruit showed similarities and papaya seed presented the most atypical profile. The application of the metabolomics approach increased the knowledge of the bioactive potential of the evaluated residues and possibilities of exploring and valorizing the generated extracts.
Collapse
Affiliation(s)
- Tatiana de Souza Medina
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Carolina Thomaz dos Santos D’Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Talita Pimenta do Nascimento
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Joel Pimentel de Abreu
- Laboratory of Functional Food, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Vanessa Rosse de Souza
- Laboratory of Functional Food, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Diego Calandrini Kalili
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Anderson Junger Teodoro
- Laboratory of Functional Food, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Maria Gabriela Koblitz
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
- Laboratory of Biotechnology, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil
| |
Collapse
|
13
|
Pateiro M, Domínguez R, Munekata PES, Nieto G, Bangar SP, Dhama K, Lorenzo JM. Bioactive Compounds from Leaf Vegetables as Preservatives. Foods 2023; 12:foods12030637. [PMID: 36766166 PMCID: PMC9914076 DOI: 10.3390/foods12030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Trends toward a healthier diet are increasing attention to clean-label products. This has led to the search for new ingredients that avoid the use of chemical additives. Food industries are responding to these demands by incorporating natural preservatives into their products, which consumers perceive as healthy. Leafy vegetables would fit this strategy since they are common components of the diet and are associated with beneficial health effects. The objective of this chapter is to offer an overview of the large number of bioactive compounds (phenolic acids, flavonoids, anthocyanins, glucosinolates, and sulfur compounds) present in these plants, which would be responsible for their activity as potential preservatives. Its incorporation into food would improve the quality and extend the shelf life by reducing oxidative processes and inhibiting or retarding the microbial growth that occurs during processing and storage without reducing the organoleptic characteristics of the product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Campus Mare Nostrum, 30071 Espinardo, Spain
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly 243122, India
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Area de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
14
|
Ombra MN, Nazzaro F, Fratianni F. Enriched pasta incorporating typical vegetables of mediterranean diet: in vitro evaluation of inhibitory potential on digestive enzymes and predicted glycaemic index. Int J Food Sci Nutr 2023; 74:72-81. [PMID: 36534971 DOI: 10.1080/09637486.2022.2158180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Swiss chard (Beta vulgaris L.) and chicory (Cichorium intybus L.) contain biologically active compounds with proven health benefits. Durum wheat noodle-shaped pasta enriched with dried and powder leaves of chard or chicory, at two different levels of supplementation (3%, 6%) was prepared on a laboratory scale. The content of polyphenols, pigments, carotenoids, in vitro inhibition of digestive enzymes and the predicted glycaemic response of the fortified pasta were evaluated. All formulations showed in vitro enzyme inhibition of amylase, glucosidase, and lipase and a low pGI <43. The lowest predicted glycaemic index (pGI = 34 ± 1.1) was found for pasta enriched with 3% beet powder. The incorporation of Beta vulgaris and Cichorium intybus leaf powders improved the nutritional properties of the pasta and also imparted an attractive natural colour to the products.
Collapse
Affiliation(s)
- Maria Neve Ombra
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| | - Florinda Fratianni
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
15
|
Ojo AB, Gyebi GA, Alabi O, Iyobhebhe M, Kayode AB, Nwonuma CO, Ojo OA. Syzygium aromaticum (L.) Merr. & L.M.Perry mitigates iron-mediated oxidative brain injury via in vitro, ex vivo, and in silico approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Stazi SR, Allevato E, Marabottini R, Digiesi L, Vannini A, Chilosi G. Use of compost in the uptake mitigation of arsenic in Beta vulgaris L. var. cicla. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6596-6602. [PMID: 35598330 PMCID: PMC9796393 DOI: 10.1002/jsfa.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Arsenic (As) may represent a risk for crop yield quality and human health since it may accumulate in the edible plant organs with the potential of leading to acute or chronic toxic effects in varied segments of the population. Management of soil fertility through compost has proven to be a valuable practice for increasing and maintaining soil organic matter, with nutritional benefits for crops. This work aimed to evaluate Swiss chard yield and the change in the bioavailability, bioaccumulation, and partitioning of As in the response of the use of compost or conventional mineral fertilization in an open-field trial conducted in a volcanic area in central Italy characterized by the natural contamination of As in soil. RESULTS Compost treatment led to a short-term increase trend in soil organic carbon, total nitrogen, and available phosphorus in a significant way. In the compost-amended plots, the mitigation of the As uptake was detected in leaves, which are the edible part of Swiss chard. The As bioaccumulation factor in leaves of Swiss chard and the translocation factor for leaves/roots were also decreased using compost. CONCLUSION Fertilization by compost can improve soil fertility, sustain Swiss chard production, and mitigate As accumulation in leaves of this crop grown in a naturally As-contaminated soil. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Science (DOCPAS)University of FerraraFerraraItaly
| | - Enrica Allevato
- Department of Chemical, Pharmaceutical and Agricultural Science (DOCPAS)University of FerraraFerraraItaly
| | - Rosita Marabottini
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF)University of TusciaViterboItaly
| | - Leonardo Digiesi
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF)University of TusciaViterboItaly
| | - Andrea Vannini
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF)University of TusciaViterboItaly
| | - Gabriele Chilosi
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF)University of TusciaViterboItaly
| |
Collapse
|
17
|
Biochemical composition and biological activities of Salicornia europaea L. from southern Tunisia. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01574-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
A sandponics comparative study investigating different sand media based integrated aqua vegeculture systems using desalinated water. Sci Rep 2022; 12:11093. [PMID: 35773314 PMCID: PMC9247079 DOI: 10.1038/s41598-022-15291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study investigated the utilization of fish effluents as irrigation water and nutrient sources to close the crop yield gap and increase Swiss chard productivity in a closed-loop sandponics system. The experiment was operated using desalinated water from a Reverse Osmosis plant. The study followed a completely randomized design with four variants, i.e., an aquaponic system (T1) and three sandponics systems; October (T2), Benu Suef (T3) and Fayoum (T4). Results indicated that T2 and T4 significantly recorded the highest plant heights in all cuts. The number of leaves per plant decreased with the increase in cut number. Leaf area and chlorophyll was significantly different between the treatments. T1 significantly had low biomass yields in cuts one and two, almost 40% less than T3 and T4. The various systems efficiently minimized water consumption ranging from 1.5 to 1.96 L/m2/day. The crop protein content ranged from 11.84 to 18.72 mg/100 g dry weight. Mineral composition in cut one was significantly higher compared to cuts two and three. The study recommends a novel technique for increasing crop production using fish effluents under sandponics systems while increasing water and fertilizer efficiency to close the crop yield gap.
Collapse
|
19
|
Effect of the Addition of Different Levels of Chard on the Dough Properties and Physicochemical and Sensory Characteristics of Pan Breads. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2678302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Chard is a valuable vegetable and is considered a beneficial functional food. Fortification of bread with chard could increase the nutraceutical and functional food consumption. Objective. In this study, we performed a chemical analysis of chard and performed rheological analyses and sensory attribute evaluations of pan breads fortified with 5% and 10% chard powder. Design. The gross chemical composition of chard, some minerals, vitamin C, and total phenolic and flavonoid compounds were estimated. The rheological properties of doughs fortified with 5% and 10% chard powder and the chemical composition and sensory attributes of control, 5% chard and 10% chard pan bread samples were determined. Results. Chard contains carbohydrate, protein, and ash in addition to essential minerals and antioxidants such as vitamin C, phenols, and flavonoids. The chemical composition of 5% chard pan bread was significantly higher in ash and fiber, while the chemical composition of 10% chard pan bread was significantly higher in protein, ash, fiber, and moisture and significantly lower in fat, carbohydrate, and energy level than that of control pan breads. Compared with the control pan bread, the pan bread with increased chard powder content (10%) had significantly increased water absorption percentage, arrival time, dough development, elasticity, and proportional number ratio but significantly decreased stability time, softening degree, and extensibility. Pan bread fortified with 10% chard had the lowest specific volume among the tested breads. Sensory attribute evaluation further showed that increasing the amount of chard to 10% in the bread dough formulation produced lower overall acceptability scores. Conclusions. Pan bread containing 5% chard had better rheological scores and sensory attributes than the other formulations, in addition to good nutritional quality values.
Collapse
|
20
|
Beta vulgaris subsp. maritima: A Valuable Food with High Added Health Benefits. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was conducted to evaluate a natural extract, obtained from the Beta vulgaris plant, for its phytochemical composition and its beneficial health effects. Therefore, total phenolic and flavonoid contents, as well as identification and quantification of phenolic compounds by HPLC, were assessed in leaves’ extract. Moreover, antioxidant activities were investigated using free radical scavenging tests, (ABTS+ and DPPH+) and reducing power assay (FRAP) as well as ferrous ions’ (Fe2+) chelating activity. The Antiglycation effect was also evaluated, using the BSA-fructose model, and the antidiabetic effect was determined by inhibition of α-amylase and α-glucosidase enzymes. Additionally, the in vitro antitumor effect was quantified using the MTT assay, and the antibacterial activity was evaluated using the agar disc diffusion and broth microdilution methods. Both aqueous and methanolic extracts exhibited potential antioxidant capacity with a higher effect for the methanolic extract. Furthermore, the in vitro antitumor activity of the methanolic extracts exhibited potent cytotoxic effects against two breast cancer cell lines, MDA-MB-468 and MCF-7. Moreover, Beta vulgaris extracts inhibit not only α-amylase and α-glucosidase, but also advanced glycation end-products’ (AGEs) formation, which would prevent diabetes’ complications. Beta vulgaris methanolic extract revealed also a high antibacterial effect against Proteus mirabilis and Bacillus subtilis. Taken together, these results revealed that Beta vulgaris leaves’ extracts constitute a valuable food and natural source of bioactive molecules that could be used for the development of new, natural drugs against cancer and diabetes.
Collapse
|
21
|
Fukalova Fukalova T, García-Martínez MD, Raigón MD. Nutritional Composition, Bioactive Compounds, and Volatiles Profile Characterization of Two Edible Undervalued Plants: Portulaca oleracea L. and Porophyllum ruderale (Jacq.) Cass. PLANTS (BASEL, SWITZERLAND) 2022; 11:377. [PMID: 35161358 PMCID: PMC8839399 DOI: 10.3390/plants11030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 05/17/2023]
Abstract
Wild edible plants are an important source of healthy food and have played an important role in traditional Mediterranean diets. In this paper, quality characteristics were typified in Portulaca oleracea L. and Porophyllum ruderale (Jacq.) Cass, undervalued plants inherent to the spring-summer season in the Valencian coastal region. Nutritional composition and bioactive compounds were analyzed and compared between plants in wild and organic cultivation conditions. Proximate analysis was carried out according to Association of Official Analytical Chemists methods. Total antioxidants were measured as 2.2-diphenyl-1-picrylhydrazyl hydrate and total polyphenols content via the Folin-Ciocalteu procedure. The HS-SPME technique was used to characterize the volatiles profile, and the polyphenol profile was evaluated by HPLC. The most important microelement was iron. Total antioxidants ranged from 4392.16 to 7315.00 μmol Trolox·equivalents 100 g-1 fw, and total phenolic content ranged from 99.09 to 391.18 mg gallic acid equivalents·100 g-1 fw. Results show that the content of antioxidants and phenols was higher in wild species than in cultivated ones. The volatiles profile revealed that P. ruderale was rich in monoterpenoids (48.65-55.82%), and fatty alcohols were characteristic in P. oleracea species (16.21-54.18%). The results suggest that both plants could be healthy foods and could have new sustainable agro-ecological potential for the local commercial sector.
Collapse
Affiliation(s)
- Tamara Fukalova Fukalova
- Laboratorio de Fitoquímica y Productos Biológicos, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador;
| | - María Dolores García-Martínez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - María Dolores Raigón
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
22
|
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets ( Beta vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010012. [PMID: 35009016 PMCID: PMC8747243 DOI: 10.3390/plants11010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Cultivated beets (sugar beets, fodder beets, leaf beets, and garden beets) belonging to the species Beta vulgaris L. are important sources for many products such as sugar, bioethanol, animal feed, human nutrition, pulp residue, pectin extract, and molasses. Beta maritima L. (sea beet or wild beet) is a halophytic wild ancestor of all cultivated beets. With a requirement of less water and having shorter growth period than sugarcane, cultivated beets are preferentially spreading from temperate regions to subtropical countries. The beet cultivars display tolerance to several abiotic stresses such as salt, drought, cold, heat, and heavy metals. However, many environmental factors adversely influence growth, yield, and quality of beets. Hence, selection of stress-tolerant beet varieties and knowledge on the response mechanisms of beet cultivars to different abiotic stress factors are most required. The present review discusses morpho-physiological, biochemical, and molecular responses of cultivated beets (B. vulgaris L.) to different abiotic stresses including alkaline, cold, heat, heavy metals, and UV radiation. Additionally, we describe the beet genes reported for their involvement in response to these stress conditions.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India;
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| |
Collapse
|
23
|
El-Khodor BF, James K, Chang Q, Zhang W, Loiselle YR, Panda C, Hanania T. Elevation of brain magnesium with Swiss chard and buckwheat extracts in an animal model of reduced magnesium dietary intake. Nutr Neurosci 2021; 25:2638-2649. [PMID: 34730480 DOI: 10.1080/1028415x.2021.1995119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Inadequate dietary magnesium (Mg) intake is a growing public health concern. Mg is critical for diverse metabolic processes including energy production, macromolecule biosynthesis, and electrolyte homeostasis. Inadequate free Mg2+ ion concentration ([Mg2+]) in the brain is associated with several neurological and behavioral disorders. Elevating [Mg2+]in the brain using oral Mg supplementation has proven to be challenging due to the tight regulation of Mg2+ transport to the brain. This study explored the effect of short-term moderate reduction in dietary Mg intake (87% of normal Mg diet for 30 days) on [Mg2+] in the cerebrospinal fluid (CSF) ([Mg2+]CSF) and red blood cells (RBCs) ([Mg2+]RBC) in adult male rats. In addition, we investigated the effectiveness of magnesium-rich blend of Swiss chard and buckwheat extracts (SC/BW extract) in increasing brain [Mg2+] compared to various Mg salts commonly used as dietary supplements. METHODS Animals were assigned to either normal or low Mg diet for 30 - 45 days. Following this, animals maintained on low Mg diet were supplemented with various Mg compounds. [Mg2+]CSF and [Mg2+]RBC were measured at baseline and following Mg administration. Anxiety-like behavior and cognitive function were also evaluated. RESULTS The present study showed that a short-term and moderate reduction in Mg dietary intake results in a significant decline in [Mg2+]CSF and [Mg2+]RBC and the emergence of anxiety-like behavior in comparison to animals maintained on normal Mg diet. Supplementation with SC/BW extract significantly elevated [Mg2+]CSF and improved animal performance in the novel object recognition test in comparison with animals maintained on reduced Mg intake and supplemented with various Mg compounds. DISCUSSION These observations indicate that brain [Mg2+] is more sensitive to a short-term and moderate reduction in Mg dietary intake than previously thought and emphasizes the importance of dietary Mg in replenishing brain Mg2+ reserves.
Collapse
Affiliation(s)
| | - Karma James
- Nutrition Innovation Center, Standard Process Inc., Kannapolis, NC, USA
| | | | - Wei Zhang
- Nutrition Innovation Center, Standard Process Inc., Kannapolis, NC, USA
| | - Yvette R Loiselle
- Nutrition Innovation Center, Standard Process Inc., Kannapolis, NC, USA
| | - Chinmayee Panda
- Nutrition Innovation Center, Standard Process Inc., Kannapolis, NC, USA
| | | |
Collapse
|
24
|
Al-Harbi LN, Pandurangan SB, Al-Dossari AM, Shamlan G, Salamatullah AM, Alshatwi AA, Alotiby AA. Beta vulgaris rubra L. (Beetroot) Peel Methanol Extract Reduces Oxidative Stress and Stimulates Cell Proliferation via Increasing VEGF Expression in H 2O 2 Induced Oxidative Stressed Human Umbilical Vein Endothelial Cells. Genes (Basel) 2021; 12:genes12091380. [PMID: 34573361 PMCID: PMC8466581 DOI: 10.3390/genes12091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The antioxidant capacity of polyphenols and flavonoids present in dietary agents aids in arresting the development of reactive oxygen species (ROS) and protecting endothelial smooth muscle cells from oxidative stress/induced necrosis. Beetroot (Beta vulgaris var. rubra L.; BVr) is a commonly consumed vegetable representing a rich source of antioxidants. Beetroot peel’s bioactive compounds and their role in human umbilical vein endothelial cells (HUVECs) are still under-researched. In the present study, beetroot peel methanol extract (BPME) was prepared, and its effect on the bio-efficacy, nuclear integrity, mitochondrial membrane potential and vascular cell growth, and immunoregulation-related gene expression levels in HUVECs with induced oxidative stress were analysed. Gas chromatography–mass spectroscopy (GC-MS) results confirmed that BPME contains 5-hydroxymethylfurfural (32.6%), methyl pyruvate (15.13%), furfural (9.98%), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one (12.4%). BPME extract effectively enhanced cell proliferation and was confirmed by MTT assay; the nuclear integrity was confirmed by propidium iodide (PI) staining assay; the mitochondrial membrane potential (Δψm) was confirmed by JC-1 staining assay. Annexin V assay confirmed that BPME-treated HUVECs showed 99% viable cells, but only 39.8% viability was shown in HUVECs treated with H2O2 alone. In addition, BPME treatment of HUVECs for 48 h reduced mRNA expression of lipid peroxide (LPO) and increased NOS-3, Nrf-2, GSK-3β, GPX, endothelial nitric oxide synthase (eNOS) and vascular cell growth factor (VEGF) mRNA expression levels. We found that BPME treatment decreased proinflammatory (nuclear factor-κβ (F-κβ), tissue necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), interleukin-1β (IL-1β)) and vascular inflammation (intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), EDN1, IL-1β)-related mRNA expressions. In conclusion, beetroot peel treatment effectively increased vascular smooth cell growth factors and microtubule development, whereas it decreased vascular inflammatory regulators. BPME may be beneficial for vascular smooth cell regeneration, tissue repair and anti-ageing potential.
Collapse
Affiliation(s)
- Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
- Correspondence:
| | - Subash-Babu Pandurangan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Alhanouf Mohammed Al-Dossari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ali A Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Amna Abdullah Alotiby
- Department of Haematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah 24237, Saudi Arabia;
| |
Collapse
|
25
|
Lopes M, Sanches-Silva A, Castilho M, Cavaleiro C, Ramos F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit Rev Food Sci Nutr 2021; 63:1078-1101. [PMID: 34338575 DOI: 10.1080/10408398.2021.1959295] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Halophytes are salt-tolerant plants that inhabit environments in which they are exposed to extreme stress, wherefore they exhibit conserved and divergent metabolic responses different from those of conventional plants. Thus, the synthesis and accumulation of metabolites, especially of those oxidative stress-related such as phenolic compounds, should be investigated. The potential of halophytes as a source of phenolics and their prospective industrial applications are evaluated based on a comprehensive review of the scientific literature on the phenolic compounds of more than forty halophytes and their biological activities. Additionally, an overview of the analytical methodologies adopted for phenolics determination in halophytes is provided. Finally, the prospective uses and beneficial effects of the phenolic preparations from these plants are discussed. Halophytes are complex matrices, exhibiting a wide variety of phenolics in their composition, wherefore the results can be greatly affected depending on the organ plant under analysis and the extraction methodology, especially the extraction solvent used. High-performance liquid chromatography, coupled with diode array detection (HPLC-DAD) or mass spectrometry (HPLC-MS), are the most used technique. Halophytes biosynthesize phenolics in concentrations that justify the remarkable antioxidant and antimicrobial activities shown, making them ideal sources of bioactive molecules to be employed in a multitude of sectors.
Collapse
Affiliation(s)
- Maria Lopes
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Vila do Conde, Portugal.,Centre for Study in Animal Science (CECA)-ICETA, University of Porto, Porto, Portugal
| | - Maria Castilho
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Abstract
As vermicomposting has become a viable alternative for the valorization of organic waste; the objectives of this research were to (1) assess the feasibility of said process for corn cob waste (corn cobs and corn husks) and (2) evaluate the operation conditions for the biodegradation of different mixtures with load material (LM). LM did not include animal excreta as a nitrogen source, a practice widely used in a range of studies. The experiment consisted of an initial phase of pre-composting in order to obtain a partially stabilized substrate. Subsequently, four separate mixtures were made consisting of corn cob waste mixed with consistent load material (LM) containing vegetable waste and eggshells (CR, M1, M2, M3) to obtain a balance substrate able to facilitate degradation using Eisenia fetida earthworms. The following parameters were analyzed during the control process: temperature, pH, humidity, organic material (OM), total organic carbon (TOC), total nitrogen (TN) and carbon/nitrogen (C/N) ratio. The analysis of the final values of the stabilized mixtures showed that vermicomposting is indeed a feasible alternative for the degradation of corn cob waste for use as a soil improver.
Collapse
|
27
|
Functional components in extracts of Beta vulgaris (Chukandar) parts for antioxidant effect and antiobesity potential with lipase inhibition. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Amirpoor A, Zavar R, Amerizadeh A, Asgary S, Moradi S, Farzaei MH, Masoumi G, Sadeghi M. Effect of Beetroot Consumption on Serum Lipid Profile: A Systematic Review and Meta-Analysis. Curr Probl Cardiol 2021; 47:100887. [PMID: 34154819 DOI: 10.1016/j.cpcardiol.2021.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 11/03/2022]
Abstract
Beetroot has recently become very popular among people as a medicinal superfood that decreases blood pressure and improves athletes' performance. The present meta-analysis aimed to investigate the effect of beetroot consumption on serum lipid profile. A literature search was conducted covering PubMed, ISI Web of Science, Scopus, and Google scholar of English human subject randomized clinical trials (RCT) up to December 2020. Pooled results showed that beetroot consumption had no significant effect on any of the variables. The mean difference (95% CI) between intervention and control groups for TC was 1.25 (-0.03, 2.53), for TG -0.47 (-1.16, 0.21), for HDL 0.54 (-0.13, 1.21) and for LDL was -0.48(-1.04, 0.09). Subgroup analysis by the health condition of subjects, the form of beetroot consumption, and type of intervention showed no significant differences. It can be concluded that beetroot cannot be categorized as an effective supplementation for adjustment of lipid profile.
Collapse
Affiliation(s)
- Afshin Amirpoor
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Zavar
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Amerizadeh
- Cardiac Department, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajjad Moradi
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Masoumi
- Department of Cardiology, Chamran Cardiovascular Medical and Research Hospital Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Deghima A, Ansorena D, Calvo MI, Astiasarán I, Bedjou F. Nutritional constituents and effect of in vitro digestion on polyphenols and antioxidant activity of the large-leaved buttercup (Ranunculus macrophyllus Desf.). FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Shabab S, Gholamnezhad Z, Mahmoudabady M. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113328. [PMID: 32871233 DOI: 10.1016/j.jep.2020.113328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Nowadays, there is an increase in global tendency to use medicinal plants as preventive and therapeutic agents to manage diabetes and its long-term complications such as cardiovascular disorders owing to their availability and valuable traditional background. AIM OF STUDY This review aims to introduce common medicinal plants, which have been demonstrated to have cardioprotective effects on diabetes and their mechanisms of action. MATERIALS AND METHODS Online literature databases, including Web of Sciences, PubMed, Science Direct, Scopus and Google Scholar were searched without date limitation by May 2020. The following keywords (natural products or medicinal plants or herbal medicine or herb or extract) and (diabetes or antidiabetic or hyperglycemic) and (cardiomyopathy or heart or cardioprotective or cardiac or cardio) were used, and after excluding non-relevant articles, 81 original English articles were selected. RESULTS The surveyed medicinal plants induced cardioprotective effects mostly through increasing antioxidant effects leading to attenuating ROS production as well as by inhibiting inflammatory signaling pathways and related cytokines. Moreover, they ameliorated the Na+/K + ATPase pump, the L-type Ca2+ channel current, and the intracellular ATP. They also reduced cardiac remodeling and myocardial cell apoptosis through degradation of caspase-3, Bax, P53 protein, enhancement of Bcl-2 protein expression as well as downregulation of TGFβ1 and TNFα expression. In addition, the extracts improved cardiac function through increasing EF% and FS% as well as restoring hemodynamic parameters. CONCLUSIONS The reviewed medicinal plants demonstrated cardioprotective manifestations in diabetes through intervention with mechanisms involved in the diabetic heart to restore cardiovascular complications.
Collapse
Affiliation(s)
- Sadegh Shabab
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Fernández-López J, Botella-Martínez C, Navarro-Rodríguez de Vera C, Sayas-Barberá ME, Viuda-Martos M, Sánchez-Zapata E, Pérez-Álvarez JA. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. PLANTS 2020; 9:plants9121769. [PMID: 33327480 PMCID: PMC7764940 DOI: 10.3390/plants9121769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Vegetable soups and creams have gained popularity among consumers worldwide due to the wide variety of raw materials (vegetable fruits, tubers, bulbs, leafy vegetables, and legumes) that can be used in their formulation which has been recognized as a healthy source of nutrients (mainly proteins, dietary fiber, other carbohydrates, vitamins, and minerals) and bioactive compounds that could help maintain the body’s health and wellbeing. In addition, they are cheap and easy to preserve and prepare at home, ready to eat, so in consequence they are very useful in the modern life rhythms that modify the habits of current consumption and that reclaim foods elaborated with natural ingredients, ecologic, vegans, less invasive production processes, agroindustry coproducts valorization, and exploring new flavors and textures. This review focuses on the nutritional and healthy properties of vegetable soups and creams (depending on the raw materials used in their production) highlighting their content in bioactive compounds and their antioxidant properties. Apart from the effect that some processing steps could have on these compounds, innovation trends for the development of healthier soups and creams adapted to specific consumer requirements have also been explored.
Collapse
Affiliation(s)
- Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - María Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Elena Sánchez-Zapata
- Research & Development Pre-Cooked Convenience Food, Surinver El Grupo S.Coop, 03191 Alicante, Spain;
| | - José Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
- Correspondence: ; Tel.: +94-96-674-9739
| |
Collapse
|
32
|
Gamba M, Raguindin PF, Asllanaj E, Merlo F, Glisic M, Minder B, Bussler W, Metzger B, Kern H, Muka T. Bioactive compounds and nutritional composition of Swiss chard ( Beta vulgaris L. var. cicla and flavescens): a systematic review. Crit Rev Food Sci Nutr 2020; 61:3465-3480. [PMID: 32746613 DOI: 10.1080/10408398.2020.1799326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Swiss chard (Beta vulgaris L. var. cicla or flavescens) is a green leafy vegetable whose bioactive compounds have been studied due to its effects on health. We systematically reviewed the nutritional profile and bioactive composition of Swiss chard and reported their concentrations. Four main databases were searched for studies analyzing the chemical composition of Swiss chard. Screening, selection of articles, and data extraction were carried out by two independent reviewers. Twenty-eight articles of 1102 records identified by bibliographic search met our inclusion criteria for final analysis. We found a total of 192 chemical compounds categorized into 23 groups. The cicla variety was the most studied, and nutrients and phytochemicals were reported mainly on leaves. Betalains with 20% of the reported data, fats (16%), flavonoids (11%), non-flavonoid phenolics (11%), terpenes and derivatives (8%), carbohydrates (7%), and minerals (6%) were among the most reported categories. Swiss chard leaves have the highest content of fiber, sodium, magnesium, flavonoids, and vitamin C, while stems are high in potassium. Swiss chard should be considered a source of nutrients and phytochemicals, and further research is needed on identifying and quantifying other bioactive compounds and understanding their impact on health.
Collapse
Affiliation(s)
- Magda Gamba
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Peter Francis Raguindin
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Swiss Paraplegic Research, Nottwil, Switzerland
| | - Eralda Asllanaj
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Francesco Merlo
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Swiss Paraplegic Research, Nottwil, Switzerland
| | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Weston Bussler
- Nutrition Innovation Center, Standard Process Inc, Palmyra, Wisconsin, USA
| | - Brandon Metzger
- Nutrition Innovation Center, Standard Process Inc, Palmyra, Wisconsin, USA
| | - Hua Kern
- Nutrition Innovation Center, Standard Process Inc, Palmyra, Wisconsin, USA
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Kroth A, Santos MDCQ, da Silva TCB, Silveira EMS, Trapp M, Bezzerra RMN, Simabuco F, Niero R, Partata WA. Aqueous extract from Luehea divaricata Mart. Leaves reduces nociception in rats with neuropathic pain. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112761. [PMID: 32171894 DOI: 10.1016/j.jep.2020.112761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luehea divaricata, popularly known in Brazil as "açoita-cavalo", has been widely explored by different ethnic groups native to Brazil to treat different pathologic conditions, including inflammatory pain. However, no report could be found on the effect that extract of L. divaricata has on neuropathic pain. This is an important topic because convergent and divergent mechanisms underlie inflammatory vs. neuropathic pain indicate that there may not always be a clear mechanistic delineation between these two conditions. AIM OF THE STUDY The study aimed to determine antioxidant activity and macronutrient composition of aqueous extract from leaves of L. divaricata, and the effect of oral administration on nociception in rats with chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain, one of the most commonly employed animal models of neuropathic pain. MATERIALS AND METHODS The antioxidant activity of the extract was evaluated by total phenolic content and DPPH, ABTS●+ and ORAC methods. Vitexin was determined by HPLC to show that the composition of the extract of the present study is similar to that used in previous studies with this genus. Total sugar and sucrose concentrations were assessed by the anthrone method, while glucose and triacilglycerides were determined using commercially available kits. Fructose concentration was calculated from values for total sugars, glucose and sucrose. Total protein was determined by Bradford assay. The effect on DNA strand breaking was investigated by inhibition of strand breaking of supercoiled DNA by hydroxyl radical. The antinociceptive effects of aqueous extract (100, 300, 500, and 1000 mg/kg, i.g.) were evaluated on thermal and mechanical thresholds for neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. We also compared the antinociceptive effect of the extract (500 mg/kg, i.g.) with that induced by gabapentin (50 mg/kg, i.g.), a first-line clinical treatment for neuropathic pain. The effect of co-administration of extract (500 mg/kg, i.g.) and low-dose gabapentin (30 mg/kg, i.g.) was also assessed. In addition, the effect of the extract on body weight, and blood and hepatic parameters were investigated to reveal possible side effects of treatment. RESULTS The extract showed high content of total phenol; good reducing capacity for DPPH, ABTS●+ and ORAC assays; presence of vitexin; and a high capacity to inhibit strand breaking of supercoiled DNA. The predominant sugar was sucrose, followed by glucose and fructose. Total protein was greater than triacylglycerides, with the latter being present in a trace amount in the extract. The extract increased the thermal and mechanical thresholds, which was reduced by CCI. The antinociceptive effect was comparable to gabapentin and was also found after co-administration of extract and low-dose gabapentin. No significant change was found in body weight and blood and hepatic indicators after extract treatment. CONCLUSIONS Aqueous extract from L. divaricata leaves was as effective as gabapentin at attenuating CCI-induced neuropathic pain, indicating for first time the therapeutic potential of this species for this type of pain.
Collapse
Affiliation(s)
- Adarly Kroth
- Área Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina, Rua Getúlio Vargas, 2125, Bairro Flor da Serra, CEP 89600-000, Joaçaba, SC, Brazil
| | - Maria do Carmo Quevedo Santos
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Thaisla Cristiane Borella da Silva
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Elza Maria Santos Silveira
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Márcia Trapp
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | | | - Fernando Simabuco
- Faculdade de Ciências Aplicadas, Unicamp Campus 2, Rua Pedro Zaccaria, 1300, CEP 13484-350, Limeira, SP, Brazil
| | - Rivaldo Niero
- Escola de Ciências da Saúde, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Campus Itajaí, Rua Uruguai, 458, Centro, CEP 88302-901, Itajaí, SC, Brazil
| | - Wania Aparecida Partata
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
34
|
Characterization of Extra Early Spanish Clementine Varieties ( Citrus clementina Hort ex Tan) as a Relevant Source of Bioactive Compounds with Antioxidant Activity. Foods 2020; 9:foods9050642. [PMID: 32429360 PMCID: PMC7278874 DOI: 10.3390/foods9050642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
The most relevant nutrients and bioactive compounds (soluble sugars, dietary fiber, ascorbic acid and organic acids, individual phenolic compounds, fatty acids, and tocopherols) as well as antioxidant activity have been characterized in three extra early varieties of clementine (Citrus clementina Hort ex Tan. Basol, Clemensoon and Clemenrubí) cultivated in Valencia (Spain). Clementines are a relevant source of bioactive compounds, such as vitamin C (values around 80 mg/100 g), allowing to satisfy the recommended daily intake with the consumption of a normal portion. Sucrose was the most abundant sugar, and potassium the main mineral while manganese was the least. Fat content was very low (<0.5 mg/100 g), with palmitic acid and α-tocopherol the most abundant fatty acid and vitamin E form, respectively. Flavonoids were the predominant phenolic compounds, with narirutin/naringin and (neo)hesperidin the best represented ones. The antioxidant capacity evaluated by reducing power, DPPH, and β-carotene bleaching inhibition assays was satisfactory with values similar to those reported in other citrus fruits. Thus, this fruit is a relevant source of bioactive compounds with antioxidant properties of interest for consumers and the food industry.
Collapse
|
35
|
Marrelli M, Statti G, Conforti F. A Review of Biologically Active Natural Products from Mediterranean Wild Edible Plants: Benefits in the Treatment of Obesity and Its Related Disorders. Molecules 2020; 25:molecules25030649. [PMID: 32028716 PMCID: PMC7036856 DOI: 10.3390/molecules25030649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Wild foods constitute an essential component of people’s diets around the world. According to the Food and Agriculture Organization (FAO), over 100 million people in the EU consume wild foods, while 65 million collect some form of wild food themselves. The Mediterranean basin is a biodiversity hotspot of wild edible species. Nowadays, due to the renewed interest in alimurgic plants and the recent findings on the beneficial role of their phytochemical constituents, these species have been defined as “new functional foods”. Research on natural products has recently regained importance with the growing understanding of their biological significance. Botanical food supplements marketed for weight and fat loss in obese subjects will be one of the most important items in marketed nutraceuticals. The aim of this report was to review the phytochemical compounds of Mediterranean wild edible species and their therapeutic potential against obesity and its related disorders. Results on the in vitro and in vivo activity of the most interesting plant extracts and their bioactive components are presented and discussed. The most interesting discoveries on their mechanisms of action are reported as well. Overall, this contribution highlights the importance and beneficial health roles of wild edible species.
Collapse
|
36
|
da Silva LGS, Morelli AP, Pavan ICB, Tavares MR, Pestana NF, Rostagno MA, Simabuco FM, Bezerra RMN. Protective effects of beet (Beta vulgaris) leaves extract against oxidative stress in endothelial cells in vitro. Phytother Res 2020; 34:1385-1396. [PMID: 31989717 DOI: 10.1002/ptr.6612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/04/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022]
Abstract
Beetroot is an herb used worldwide as a food product, raw material for food industry, ethanol production and source of food coloring. Beet leaves are an unconventional food with antioxidant properties, which might neutralize reactive oxygen species (ROS) induced by oxidized Low-Density Lipoprotein (LDL) present in dyslipidemias. This study aimed to elucidate the effects of beet leaves on the suppression of LDL oxidative processes. Beet leaves extract was produced, characterized, and tested for its antioxidant capacity using endothelial cells in vitro. A model of human umbilical vein endothelial cells was used in various tests, including viability assay, molecular analysis of antioxidant genes, ROS labeling, and macrophage adhesion assay. The extract improved the antioxidative protection of endothelial cells against different agents including oxidized LDL-cholesterol and H2 O2 . It acted on ROS directly due to its high content of natural antioxidants, but also due to the activation and improvement of cellular defenses such as Superoxide dismutase 1, Superoxide dismutase 2, and catalase. The inhibition of LDL-mediated oxidative effects on endothelial cells may turn this unconventional food a functional food with great potential for phytotherapy of atherosclerosis as an adjuvant for medicinal treatments.
Collapse
Affiliation(s)
- Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Nathalie Fortes Pestana
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
37
|
Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants (Basel) 2020; 9:antiox9020097. [PMID: 31979214 PMCID: PMC7070715 DOI: 10.3390/antiox9020097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
The current trend for substituting synthetic compounds with natural ones in the design and production of functional and healthy foods has increased the research interest about natural colorants. Although coloring agents from plant origin are already used in the food and beverage industry, the market and consumer demands for novel and diverse food products are increasing and new plant sources are explored. Fresh vegetables are considered a good source of such compounds, especially when considering the great color diversity that exists among the various species or even the cultivars within the same species. In the present review we aim to present the most common species of colored vegetables, focusing on leafy and fruit vegetables, as well as on vegetables where other plant parts are commercially used, with special attention to blue color. The compounds that are responsible for the uncommon colors will be also presented and their beneficial health effects and antioxidant properties will be unraveled.
Collapse
|