1
|
Ren Y, Bi X, He Y, Zhang L, Luo L, Li L, You T. Research progress and applications of iron-based nanozymes in colorimetric sensing of agricultural pollutants. Biosens Bioelectron 2025; 271:116999. [PMID: 39642529 DOI: 10.1016/j.bios.2024.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Natural enzymes are highly valued for their efficient specificity and catalytic activity. However, their poor stability, environmental sensitivity, and costly preparation restrict their practical applications. Nanozymes are nanomaterials with superior catalytic properties that compensate for natural enzyme deficiencies. As one of the earliest developed nanozymes, iron-based nanozymes have diverse morphological structures and different simulated catalytic properties, showing promising potential for agricultural pollutant sensing. Compared with traditional detection methods, the colorimetric method based on nanozymes has the characteristics of simplicity, rapidity, and visualization, which can be used for immediate and rapid on-site detection. In this review, the catalytic types of iron-based nanozymes, such as peroxidase-like, oxidase-like, catalase-like, and superoxide dismutase-like activities, and the corresponding catalytic mechanisms are presented. The classification of iron-based nanozymes based on various structures is then discussed. Furthermore, this review focuses on the current status of iron-based nanozymes for the colorimetric detection of common agricultural pollutants, including heavy metal ions, nonmetal ions, pesticides, and pharmaceutical and personal care products. Finally, the current research status and development direction of iron-based nanozymes in sensing applications are summarized and prospected.
Collapse
Affiliation(s)
- Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China.
| |
Collapse
|
2
|
Zhang C, Wang M, Chen J, Chang Z, Zhou J, Yue M, Gu C, Feng Z. Insight into peroxidase-mediated Morinda citrifolia L. (noni) fruit juice browning and precipitation, and a thermal inactivation strategy. Int J Biol Macromol 2024; 287:138502. [PMID: 39647742 DOI: 10.1016/j.ijbiomac.2024.138502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Peroxidase-mediated enzymatic browning during the process of noni fruit juice causes major color deterioration and precipitation, which negatively affects consumer acceptance of the juice. The purpose of this study was to understand the browning and precipitate formation mechanisms in noni fruit juice and improve its quality. Peroxidase was isolated from noni fruit via gel separation purification and characterized for its kinetic properties. The influences of key phenolic compounds on browning and precipitate formation were investigated via a noni-juice-based model system. The results revealed that the major noni peroxidase was a 50.05 kDa dimer subunit, and peroxidase activity was optimal at pH 6.0 and 30 °C, with an activation energy of 159.50 kJ/mol. Additionally, peroxidase activity was significantly inhibited by glutathione, sodium metabisulfite, and ascorbic acid. The active sites contained histidine and arginine residues. All eight phenolic compounds in juice act as specific substrates for peroxidase-mediated browning. Among them, gallic acid made the most significant contribution to both browning and precipitate formation. To effectively deactivate peroxidase activity while minimizing phenolic compound loss, a thermal treatment of 90 °C for 10 min was identified as the optimal approach. This study provides new insights into improving the quality of noni juice and enzyme browning.
Collapse
Affiliation(s)
- Chao Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Mengrui Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junxia Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Ziqing Chang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junping Zhou
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Mingzhe Yue
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Chunhe Gu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, Wanning 571533, Hainan, China.
| | - Zhen Feng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, Wanning 571533, Hainan, China.
| |
Collapse
|
3
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
4
|
Pećanac O, Martin C, Savino S, Rozeboom HJ, Fraaije MW, Lončar N. Biochemical and Structural Characterisation of a Bacterial Lactoperoxidase. Chembiochem 2024:e202400713. [PMID: 39570012 DOI: 10.1002/cbic.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Peroxidases belong to a group of enzymes that are widely found in animals, plants and microorganisms. These enzymes are effective biocatalysts for a wide range of oxidations on various substrates. This work presents a biochemical and structural characterization of a novel heme-containing peroxidase from Cyanobacterium sp. TDX16, CyanoPOX. This cyanobacterial enzyme was successfully overexpressed in Escherichia coli as a soluble, heme-containing monomeric enzyme. Although CyanoPOX shares relatively low sequence identity (37 %) with bovine lactoperoxidase, it displays comparable biochemical properties. CyanoPOX is most stable and active in slightly acidic conditions (pH 6-6.5) and moderately thermostable (melting temperature around 48 °C). Several compounds that are typical substrates for mammalian lactoperoxidases were tested to establish the catalytic potential of CyanoPOX. Potassium iodide showed the highest catalytic efficiency (126 mM-1 s-1), while various aromatic compounds were also readily converted. Structural elucidation of CyanoPOX confirmed the presence of a non-covalently bound b-type heme cofactor that is situated in the central core of the protein. Except for a highly similar overall structure, CyanoPOX also has a conserved active site pocket when compared with mammalian lactoperoxidases. Due to its catalytic properties and high expression in a bacterial host, this newly discovered peroxidase shows promise for applications.
Collapse
Affiliation(s)
- Ognjen Pećanac
- GECCO Biotech, Zernikepark 6, 9747 AN, Groningen, The Netherlands
| | - Caterina Martin
- GECCO Biotech, Zernikepark 6, 9747 AN, Groningen, The Netherlands
| | - Simone Savino
- GECCO Biotech, Zernikepark 6, 9747 AN, Groningen, The Netherlands
| | - Henriette J Rozeboom
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Nikola Lončar
- GECCO Biotech, Zernikepark 6, 9747 AN, Groningen, The Netherlands
| |
Collapse
|
5
|
Singh E, Gupta A, Singh P, Jain M, Muthukumaran J, Singh RP, Singh AK. Exploring mammalian heme peroxidases: A comprehensive review on the structure and function of myeloperoxidase, lactoperoxidase, eosinophil peroxidase, thyroid peroxidase and peroxidasin. Arch Biochem Biophys 2024; 761:110155. [PMID: 39278306 DOI: 10.1016/j.abb.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The peroxidase family of enzymes is a ubiquitous cluster of enzymes primarily responsible for the oxidation of organic and inorganic substrates. The mammalian heme peroxidase subfamily is characterized by a covalently linked heme prosthetic group which plays a key role in the oxidation of halides and psuedohalides into their respective hypohalous acid and hypothiocyanous acid under the influence of H2O2 as substrate. The members of the heme peroxidase family include Lactoperoxidase (LPO), Eosinophil peroxidase (EPO), Myeloperoxidase (MPO), Thyroid peroxidase (TPO) and Peroxidasin (PXDN). The biological activity of LPO, MPO and EPO pertains to antibacterial, antifungal and antiviral while TPO is involved in the biosynthesis of the thyroid hormone and PXDN helps maintain the ECM. While these enzymes play several immunomodulatory roles, aberrations in their activity have been implicated in diseases such as myocardial infarction, asthma and Alzheimer's amongst others. The sequence and structural similarities amongst the members of the family are strikingly high while the substrate specificities and subcellular locations vary. Hence, it becomes important to provide a consortium of information regarding the members to study their biochemical, pathological and clinical function.
Collapse
Affiliation(s)
- Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Ayushi Gupta
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Pratyaksha Singh
- School of Biotechnology, Gautam Buddha University, P.C. 201312, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Rashmi Prabha Singh
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| |
Collapse
|
6
|
Ahmad MS, Shah N, Akbar Z, Khan T, Ali A. Simple two-step purification and characterisation of peroxidase from Citrullus colocynthis. Nat Prod Res 2024; 38:3374-3383. [PMID: 37621192 DOI: 10.1080/14786419.2023.2248644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Peroxidase is a biotechnologically important enzyme. The purification of peroxidase from the root of Citrullus colocynthis was carried out in a simple two-step process with maximum purity level. The sample was extracted in a high salt buffer, and the enzyme was partially purified with a Q-Sepharose anion exchange column. Final purification was carried out with HighLoad 16/600 Superdex G-75 column. The purified protein was analysed with SDS gel electrophoresis, which suggested a single band of approximately 35 kDa. Further, the enzyme was identified with the help of Mass spectrometric analysis using an ESI-QTOF Mass spectrometer. The study will be helpful for the isolation and its commercial uses in biotechnology.
Collapse
Affiliation(s)
- Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nayab Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zeeshan Akbar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Tajwali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Upadhyay A, Pal D, Kumar A. Combinatorial therapeutic enzymes to combat multidrug resistance in bacteria. Life Sci 2024; 353:122920. [PMID: 39047898 DOI: 10.1016/j.lfs.2024.122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
AIMS Antibiotic resistance including multidrug resistance (MDR) is a negative symbol to the human health system because it loses the capability to treat infections. Unfortunately, the available antibiotics do not show an effective therapeutic response against bacterial infections. In the situation of global antibiotic unresponsiveness, enzymatic therapy especially in combinatorial form seems an effective approach to control bacterial infection and combat resistance. The article is important because it focuses on combinatorial enzymatic therapy that has multiple properties (effective antibacterial performances, antibiofilm capacity, immunomodulators, targeted actions, synergistic actions, multiple targeting, and resistance-proof properties) and can address antibiotic resistance effectively. MATERIALS AND METHODS We searched the related topics with Pubmed, Scopus, and Google Scholar databases and finally 73 relevant papers were reviewed in detail and cited in this article. KEY FINDINGS Discusses properties of combinatorial therapeutic enzymes made it an accomplished means over antibiotic therapy. This article discusses the need for combinatorial enzymatic therapy against bacterial infection, its distinguished features, and properties with multi-mechanistic antibacterial action. It discussed the European Medicine Agency and Food and Drug Administration-approved therapeutic enzymes (antibacterial and antibiofilm). SIGNIFICANCE This article provided the possible combination of the enzyme that may be used as an antibacterial agent along with limitations and future scope of combinatorial antibacterial enzymatic agents. This article could draw the attention of researchers to combinatorial therapeutic enzymatic molecules as effective and futuristic therapy to overcome the problem of multiple antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
8
|
Zhang X, Zheng H, Lv H, Yin J, Li Y, Zhang K, Zhang L, Zhang W, Wang Z, Zhao L, Guo Y. A Sustainable Approach for Degradation of Alternariol by Peroxidase Extracted from Soybean Hulls: Performance, Pathway, and Toxicity Evaluation. Foods 2024; 13:2434. [PMID: 39123625 PMCID: PMC11311967 DOI: 10.3390/foods13152434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Alternariol (AOH), an emerging mycotoxin, inevitably exists widely in various food and feed commodities with cereals and fruits being particularly susceptible, raising global concerns over its harm to human and livestock health. The development of eco-friendly and efficient strategies to decontaminate AOH has been an urgent task. This study provided insight into the utilization of crude soybean hull peroxidase as a powerful biocatalyst for degrading AOH. The results confirmed that crude soybean hull peroxidase (SHP) could catalyze the oxidation of AOH by use of H2O2 as a co-substrate. The optimum reaction conditions for SHP-catalyzed AOH degradation were recorded at pH 4.0-8.0, at 42-57 °C, and at H2O2 concentration of 100-500 μM. Mass analysis elucidated the degradation of AOH through hydroxylation and methylation by crude SHP. Moreover, toxicological analysis indicated that crude SHP-catalyzed AOH degradation detoxified the hepatotoxicity of this mycotoxin. The performance of crude SHP to degrade AOH in food matrices was further evaluated, and it was found that the enzyme agent could achieve AOH degradation by 77% in wheat flour, 84% in corn flour, 34% in grape juice, and 26% in apple juice. Collectively, these findings establish crude SHP as a promising candidate for effective AOH degradation, with potential applications in the food and feed industry.
Collapse
Affiliation(s)
- Xingke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Hao Zheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Hao Lv
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Jiyuan Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Yi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Kexin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| | - Lihong Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (H.Z.); (H.L.); (J.Y.); (Y.L.); (K.Z.); (L.Z.); (W.Z.); (Z.W.)
| |
Collapse
|
9
|
Perez AV, Gaitan-Oyola JA, Vargas-Delgadillo DP, Castillo JJ, Barbosa O, Fernandez-Lafuente R. Synthesis and Characterization of Cross-Linked Aggregates of Peroxidase from Megathyrsus maximus (Guinea Grass) and Their Application for Indigo Carmine Decolorization. Molecules 2024; 29:2696. [PMID: 38893568 PMCID: PMC11173754 DOI: 10.3390/molecules29112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
We present the synthesis of a cross-linking enzyme aggregate (CLEAS) of a peroxidase from Megathyrsus maximus (Guinea Grass) (GGP). The biocatalyst was produced using 50%v/v ethanol and 0.88%w/v glutaraldehyde for 1 h under stirring. The immobilization yield was 93.74% and the specific activity was 36.75 U mg-1. The biocatalyst surpassed by 61% the free enzyme activity at the optimal pH value (pH 6 for both preparations), becoming this increase in activity almost 10-fold at pH 9. GGP-CLEAS exhibited a higher thermal stability (2-4 folds) and was more stable towards hydrogen peroxide than the free enzyme (2-3 folds). GGP-CLEAS removes over 80% of 0.05 mM indigo carmine at pH 5, in the presence of 0.55 mM H2O2 after 60 min of reaction, a much higher value than when using the free enzyme. The operational stability showed a decrease of enzyme activity (over 60% in 4 cycles), very likely related to suicide inhibition.
Collapse
Affiliation(s)
- Angie V. Perez
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Jorge A. Gaitan-Oyola
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Diana P. Vargas-Delgadillo
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - John J. Castillo
- Grupo de Investigación en Bioquímica y Microbiología, Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Oveimar Barbosa
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus Cantoblanco UAM-CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
10
|
Pan X, Yao Y, Zhang M, Yuan X, Yao Q, Hu W. Enzyme-mimic catalytic activities and biomedical applications of noble metal nanoclusters. NANOSCALE 2024; 16:8196-8215. [PMID: 38572762 DOI: 10.1039/d4nr00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble metal (e.g., Au and Ag) nanoclusters (NCs), which exhibit structural complexity and hierarchy comparable to those of natural proteins, have been increasingly pursued in artificial enzyme research. The protein-like structure of metal NCs not only ensures enzyme-mimic catalytic activity, including peroxidase-, catalase-, and superoxide dismutase-mimic activities, but also affords an unprecedented opportunity to correlate the catalytic performance with the cluster structure at the molecular or atomic levels. In this review, we aim to summarize the recent progress in programming and demystify the enzyme-mimic catalytic activity of metal NCs, presenting the state-of-the-art understandings of the structure-property relationship of metal NC-based artificial enzymes. By leveraging on a concise anatomy of the hierarchical structure of noble metal NCs, we manage to unravel the structural origin of the catalytic performance of metal NCs. Noteworthily, it has been proven that the surface ligands and metal-ligand interface of metal NCs are instrumental in influencing enzyme-mimic catalytic activities. In addition to the structure-property correlation, we also discuss the synthetic methodologies feasible to tailoring the cluster structure at the atomic level. Prior to the closure of this review with our perspectives in noble metal NC-based artificial enzymes, we also exemplify the biomedical applications based on the enzyme-mimic catalysis of metal NCs with the theranostics of kidney injury, brain inflammation, and tumors. The fundamental and methodological advancements delineated in this review would be conducive to further development of metal NCs as an alternative family of artificial enzymes.
Collapse
Affiliation(s)
- Xinxin Pan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yidan Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Manxi Zhang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
11
|
Guo Y, Tang Y, Zhang L, Liu Y, Ma Q, Zhao L. Enzymatic characterization and application of soybean hull peroxidase as an efficient and renewable biocatalyst for degradation of zearalenone. Int J Biol Macromol 2024; 260:129664. [PMID: 38266837 DOI: 10.1016/j.ijbiomac.2024.129664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Zearalenone (ZEN) is a notorious mycotoxin commonly found in Fusarium-contaminated crops, which causes great loss in livestock farming and serious health problems to humans. In the present work, we found that crude peroxidase extraction from soybean hulls could use H2O2 as a co-substate to oxidize ZEN. Molecular docking and dynamic simulation also supported that ZEN could bind to the active site of soybean hull peroxidase (SHP). Subsequently, SHP extracted from soybean hulls was purified using a combined purification protocol involving ammonium sulfate precipitation, ion exchange chromatography and size exclusion chromatography. The purified SHP showed wide pH resistance and high thermal stability. This peroxidase could degrade 95 % of ZEN in buffer with stepwise addition of 100 μM H2O2 in 1 h. The two main ZEN degradation products were identified as 13-OH-ZEN and 13-OH-ZEN-quinone. Moreover, SHP-catalyzed ZEN degradation products displayed much less cytotoxicity to human liver cells than ZEN. The application of SHP in various food matrices obtained 54 % to 85 % ZEN degradation. The findings in this study will promote the utilization of SHP as a cheap and renewable biocatalyst for degrading ZEN in food.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Xu C, Xue P, Li R, Jia J, Ma L, Li P. Visible-light-driven photo-peroxidase catalysis: high-efficiency degradation of indole in water. RSC Adv 2024; 14:6874-6882. [PMID: 38410363 PMCID: PMC10895413 DOI: 10.1039/d4ra00536h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
The demand for H2O2 restricts the wider application of horseradish peroxidase (HRP) in degradation. In this work, a novel photoenzyme synergistic catalytic system was developed for high-efficiency degrading of indole in water by HRP without extra H2O2. The HRP was immobilized on CN-ZIF prepared by the combination of g-C3N4 and ZIF-8 to achieve photo-peroxidase catalyst HRP/Zn-CN-ZIF. Under visible light, photogenerated electrons and H2O2 from HRP/Zn-CN-ZIF participated in the biocatalytic cycle of HRP directly. As a result, the indole at 20 mg L-1 in water was degraded completely in 2 h by the HRP/Zn-CN-ZIF photoenzyme synergistic catalytic system without the addition of H2O2. Furthermore, HRP/Zn-CN-ZIF exhibited superior visible light absorption and charge transfer ability compared to g-C3N4. The results of the mechanism studies suggest that ·OH would play the most significant role from the HRP/Zn-CN-ZIF in indole degradation. This research provides an efficient approach for the removal of indole from water environments.
Collapse
Affiliation(s)
- Chongrui Xu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Ping Xue
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Rui Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Juan Jia
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Linmeng Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peng Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
13
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Yang S, Luo X, Jin J, Guo Y, Zhang L, Li J, Tong S, Luo Y, Li T, Chen X, Wu Y, Qin C. Key candidate genes for male sterility in peppers unveiled via transcriptomic and proteomic analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1334430. [PMID: 38384767 PMCID: PMC10880382 DOI: 10.3389/fpls.2024.1334430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
This study aimed to enhance the use of male sterility in pepper to select superior hybrid generations. Transcriptomic and proteomic analyses of fertile line 1933A and nucleic male sterility line 1933B of Capsicum annuum L. were performed to identify male sterility-related proteins and genes. The phylogenetic tree, physical and chemical characteristics, gene structure characteristics, collinearity and expression characteristics of candidate genes were analyzed. The study identified 2,357 differentially expressed genes, of which 1,145 and 229 were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, respectively. A total of 7,628 quantifiable proteins were identified and 29 important proteins and genes were identified. It is worth noting that the existence of CaPRX genes has been found in both proteomics and transcriptomics, and 3 CaPRX genes have been identified through association analysis. A total of 66 CaPRX genes have been identified at the genome level, which are divided into 13 subfamilies, all containing typical CaPRX gene conformal domains. It is unevenly distributed across 12 chromosomes (including the virtual chromosome Chr00). Salt stress and co-expression analysis show that male sterility genes are expressed to varying degrees, and multiple transcription factors are co-expressed with CaPRXs, suggesting that they are involved in the induction of pepper salt stress. The study findings provide a theoretical foundation for genetic breeding by identifying genes, metabolic pathways, and molecular mechanisms involved in male sterility in pepper.
Collapse
Affiliation(s)
- Shimei Yang
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xirong Luo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Jing Jin
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Ya Guo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Lincheng Zhang
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Jing Li
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Shuoqiu Tong
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yin Luo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Tangyan Li
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xiaocui Chen
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| | - Yongjun Wu
- Industrial Technology Institute of Pepper, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Cheng Qin
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| |
Collapse
|
15
|
Bilal M, Degorska O, Szada D, Rybarczyk A, Zdarta A, Kaplon M, Zdarta J, Jesionowski T. Support Materials of Organic and Inorganic Origin as Platforms for Horseradish Peroxidase Immobilization: Comparison Study for High Stability and Activity Recovery. Molecules 2024; 29:710. [PMID: 38338454 PMCID: PMC10856027 DOI: 10.3390/molecules29030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In the presented study, a variety of hybrid and single nanomaterials of various origins were tested as novel platforms for horseradish peroxidase immobilization. A thorough characterization was performed to establish the suitability of the support materials for immobilization, as well as the activity and stability retention of the biocatalysts, which were analyzed and discussed. The physicochemical characterization of the obtained systems proved successful enzyme deposition on all the presented materials. The immobilization of horseradish peroxidase on all the tested supports occurred with an efficiency above 70%. However, for multi-walled carbon nanotubes and hybrids made of chitosan, magnetic nanoparticles, and selenium ions, it reached up to 90%. For these materials, the immobilization yield exceeded 80%, resulting in high amounts of immobilized enzymes. The produced system showed the same optimal pH and temperature conditions as free enzymes; however, over a wider range of conditions, the immobilized enzymes showed activity of over 50%. Finally, a reusability study and storage stability tests showed that horseradish peroxidase immobilized on a hybrid made of chitosan, magnetic nanoparticles, and selenium ions retained around 80% of its initial activity after 10 repeated catalytic cycles and after 20 days of storage. Of all the tested materials, the most favorable for immobilization was the above-mentioned chitosan-based hybrid material. The selenium additive present in the discussed material gives it supplementary properties that increase the immobilization yield of the enzyme and improve enzyme stability. The obtained results confirm the applicability of these nanomaterials as useful platforms for enzyme immobilization in the contemplation of the structural stability of an enzyme and the high catalytic activity of fabricated biocatalysts.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12, PL-80233 Gdansk, Poland
- Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza, PL-80233 Gdansk, Poland
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Oliwia Degorska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Daria Szada
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Michal Kaplon
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| |
Collapse
|
16
|
Shi Y, Zhang G, Xiang C, Liu C, Hu J, Wang J, Ge R, Ma H, Niu Y, Xu Y. Defect-Engineering-Mediated Long-Lived Charge-Transfer Excited-State in Fe-Gallate Complex Improves Iron Cycle and Enables Sustainable Fenton-Like Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305162. [PMID: 37708316 DOI: 10.1002/adma.202305162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Fenton reactions are inefficient because the Fe(II) catalyst cannot be recycled in time due to the lack of a rapid electron transport pathway. This results in huge H2 O2 wastage in industrial applications. Here, it is shown that a sustainable heterogeneous Fenton system is attainable by enhancing the ligand-to-metal charge-transfer (LMCT) excited-state lifetime in Fe-gallate complex. By engineering oxygen defects in the complex, the lifetime is improved from 10-90 ps. The lengthened lifetime ensures sufficient concentrations of excited-states for an efficient Fe cycle, realizing previously unattainable H2 O2 activation kinetics and hydroxyl radical (• OH) productivity. Spectroscopic and electrochemical studies show the cyclic reaction mechanism involves in situ Fe(II) regeneration and synchronous supply of oxygen atoms from water to recover dissociated Fe─O bonds. Trace amounts of this catalyst effectively destroy two drug-resistant bacteria even after eight reaction cycles. This work reveals the link among LMCT excited-state lifetime, Fe cycle, and catalytic activity and stability, with implications for de novo design of efficient and sustainable Fenton-like processes.
Collapse
Affiliation(s)
- Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chao Xiang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengzhen Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi' an, 710069, China
| | - Junhu Wang
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China
| | - Rile Ge
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China
| | - Haixia Ma
- School of Chemical Engineering, Northwest University, Xi' an, 710069, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
17
|
Zhang Y, Cai X, Hou Y, Chen W, Zhang J. Triphenyltin Influenced Carotenoid-Based Coloration in Coral Reef Fish, Amphiprion ocellaris, by Disrupting Carotenoid Metabolism. TOXICS 2023; 12:13. [PMID: 38250969 PMCID: PMC10820653 DOI: 10.3390/toxics12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Triphenyltin (TPT), a kind of persistent pollutant, is prevalent in the aquatic environment and could pose a threat to coral reef fish. However, little is known about the toxicity of TPT on coral reef fish, especially regarding the representative characteristics of body coloration. Therefore, this study chose the clownfish (Amphiprion ocellaris) in order to investigate the effects of TPT exposure on its carotenoid-based body coloration under the environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 60 d, the carotenoid contents were decreased and histological damage in the liver was found, shown as nuclear pyknosis and shift, lipid deposition and fibrotic tissue hyperplasia. Liver transcriptomic analysis showed that TPT exposure interfered with oxidative phosphorylation and fatty acid metabolism pathways, which related to carotenoids uptake and metabolism. Furthermore, TPT exposure led to oxidative damage in the liver, which is responsible for the changes in the antioxidant capacity of enzymes, including GSH, MDA, POD, CAT and T-SOD. TPT exposure also affected the genes (Scarb1, CD36, Stard3 and Stard5) related to carotenoid absorption and transport, as well as the genes (GstP1 and Bco2) related to carotenoid deposition and decomposition. Taken together, our results demonstrate that TPT influenced carotenoid-based coloration in coral reef fish by disrupting carotenoid metabolism, which complements the ecotoxicological effects and toxic mechanisms of TPT and provides data for the body color biology of coral reef fishes.
Collapse
Affiliation(s)
- Yan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Xingwei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570206, China;
| | - Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
- Hainan Provincial Key Laboratory of Ecological Civilization and Integrated Land-Sea Development, Haikou 571158, China
| |
Collapse
|
18
|
Gogliettino M, Cocca E, Apone F, Del Prete S, Balestrieri M, Mirino S, Arciello S, Palmieri G. A new versatile peroxidase with extremophilic traits over-produced in MicroTom cell cultures. Sci Rep 2023; 13:15338. [PMID: 37714949 PMCID: PMC10504257 DOI: 10.1038/s41598-023-42597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Peroxidases are widespread key antioxidant enzymes that catalyse the oxidation of electron donor substrates in parallel with the decomposition of H2O2. In this work, a novel tomato peroxidase, named SAAP2, was isolated from MicroTom cell cultures, purified, and characterised. The enzyme was identified with 64% sequence coverage as the leprx21 gene product (suberization-associated anionic peroxidase 2-like) from Solanum lycopersicum, 334 amino acids long. Compared to other plant peroxidases, SAAP2 was more active at elevated temperatures, with the optimal temperature and pH at 90 °C and 5.0, respectively. Furthermore, the enzyme retained more than 80% of its maximal activity over the range of 70-80 °C and the presence of NaCl (1.0-4.5 M). It also exhibited broad pH versatility (65% relative activity over the pH range 2.0-7.0), acid-tolerance (80% residual activity after 22 h at pH 2.0-7.0), high thermostability (50% residual activity after 2 h at 80 °C) and proteolytic resistance. SAAP2 exhibited exceptional resistance under thermo-acidic conditions compared to the horseradish peroxidase benchmark, suggesting that it may find potential applications as a supplement or anti-pollution agent in the food industry.
Collapse
Affiliation(s)
- Marta Gogliettino
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Ennio Cocca
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Fabio Apone
- Novamont SpA, loc. La Fagianeria Snc, Piana di Monte Verna, Caserta, Italy
| | - Sonia Del Prete
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Marco Balestrieri
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Sara Mirino
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | | | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| |
Collapse
|
19
|
Magnuson ZL, Larsen RW. Peroxidase-like biomimetic epoxidation and subsequent alcoholysis of olefins by Fe(III)tetrakis(4-sulphonatophenyl) porphyrin (Fe4SP) encapsulated in the metal-organic framework HKUST-1. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
20
|
Liu S, Dong F, Hao J, Qiao L, Guo J, Wang S, Luo R, Lv Y, Cui J. Combination of hyperspectral imaging and entropy weight method for the comprehensive assessment of antioxidant enzyme activity in Tan mutton. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122342. [PMID: 36682252 DOI: 10.1016/j.saa.2023.122342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The antioxidant enzymes play the crucial role in inhibiting mutton spoilage. In this study, visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) combined with entropy weight method (EWM) was developed for the first time to evaluate the antioxidant properties of Tan mutton. The comprehensive index of antioxidant enzymes (AECI) consisting of peroxidase (49.34%), catalase (37.97%) and superoxidase (12.69%) was constructed by the EWM. Partial least squares regression, least squares support vector machine and artificial neural networks (ANN) were developed based on characteristic wavelengths extracted by successful projections algorithm, uninformative variable selection, iteratively retains informative variables (IRIV), regression coefficient and competitive adaptive reweighted sampling (CARS). The textural features (TF) were extracted by the gray level co-occurrence matrix and fused with the spectral data to establish models. Visualization of the changes in antioxidant enzyme activity was constructed from the optimal model. In addition, two-dimensional correlation spectra (2D-COS) with AECI as a perturbation variable was used to identify spectral features, revealing chemical bond changes order under the characteristic peaks at 612-799-473-708-559 nm. The results showed that the IRIV-CARS-TF-ANN model performed the best, with prediction set coefficient of determination (RP2) of 0.8813, which improved 2.12%, 1.11% and 2.77% over the RP2 of full band, IRIV and IRIV-CARS, respectively. It was suggested that fusion data of HSI may effectively predict the activity of antioxidant enzymes in Tan mutton.
Collapse
Affiliation(s)
- Sijia Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Fujia Dong
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Jie Hao
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Lu Qiao
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Jianhong Guo
- School of Chemical & Biological Engineering, Yinchuan University of Energy, Yinchuan 750021, China
| | - Songlei Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China.
| | - Ruiming Luo
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Yu Lv
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Jiarui Cui
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
21
|
Fabbri F, Bischof S, Mayr S, Gritsch S, Jimenez Bartolome M, Schwaiger N, Guebitz GM, Weiss R. The Biomodified Lignin Platform: A Review. Polymers (Basel) 2023; 15:polym15071694. [PMID: 37050308 PMCID: PMC10096731 DOI: 10.3390/polym15071694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
A reliance on fossil fuel has led to the increased emission of greenhouse gases (GHGs). The excessive consumption of raw materials today makes the search for sustainable resources more pressing than ever. Technical lignins are mainly used in low-value applications such as heat and electricity generation. Green enzyme-based modifications of technical lignin have generated a number of functional lignin-based polymers, fillers, coatings, and many other applications and materials. These bio-modified technical lignins often display similar properties in terms of their durability and elasticity as fossil-based materials while also being biodegradable. Therefore, it is possible to replace a wide range of environmentally damaging materials with lignin-based ones. By researching publications from the last 20 years focusing on the latest findings utilizing databases, a comprehensive collection on this topic was crafted. This review summarizes the recent progress made in enzymatically modifying technical lignins utilizing laccases, peroxidases, and lipases. The underlying enzymatic reaction mechanisms and processes are being elucidated and the application possibilities discussed. In addition, the environmental assessment of novel technical lignin-based products as well as the developments, opportunities, and challenges are highlighted.
Collapse
|
22
|
Che Hussian CHA, Leong WY. Thermostable enzyme research advances: a bibliometric analysis. J Genet Eng Biotechnol 2023; 21:37. [PMID: 36971917 PMCID: PMC10043094 DOI: 10.1186/s43141-023-00494-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Thermostable enzymes are enzymes that can withstand elevated temperatures as high as 50 °C without altering their structure or distinctive features. The potential of thermostable enzymes to increase the conversion rate at high temperature has been identified as a key factor in enhancing the efficiency of industrial operations. Performing procedures at higher temperatures with thermostable enzymes minimises the risk of microbial contamination, which is one of the most significant benefits. In addition, it helps reduce substrate viscosity, improve transfer speeds, and increase solubility during reaction operations. Thermostable enzymes offer enormous industrial potential as biocatalysts, especially cellulase and xylanase, which have garnered considerable amount of interest for biodegradation and biofuel applications. As the usage of enzymes becomes more common, a range of performance-enhancing applications are being explored. This article offers a bibliometric evaluation of thermostable enzymes. Scopus databases were searched for scientific articles. The findings indicated that thermostable enzymes are widely employed in biodegradation as well as in biofuel and biomass production. Japan, the United States, China, and India, as along with the institutions affiliated with these nations, stand out as the academically most productive in the field of thermostable enzymes. This study's analysis exposed a vast number of published papers that demonstrate the industrial potential of thermostable enzymes. These results highlight the significance of thermostable enzyme research for a variety of applications.
Collapse
Affiliation(s)
| | - Wai Yie Leong
- INTI International University & Colleges, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
23
|
Chunyan X, Qaria MA, Qi X, Daochen Z. The role of microorganisms in petroleum degradation: Current development and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161112. [PMID: 36586680 DOI: 10.1016/j.scitotenv.2022.161112] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon compounds are persistent organic pollutants, which can cause permanent damage to ecosystems due to their biomagnification. Bioremediation of oil is currently the main solution for the remediation of petroleum hydrocarbon pollutants in ecosystems. Despite several lab studies on oil microbial biodegradation efficiency, still there are various challenges for microorganisms to perform efficiently in outside environments. Herewith, investigating efficient biodegradation technologies through discovering new microorganisms, biodegradation pathways modification, and new bioremediations technologies are in great demand. The degradation of petroleum pollutants by microorganisms and the remediation of contaminated soils are achieved through their key enzymes and metabolic pathways. Although, several challenges hinder the effective biodegradation processes such as the toxic environment, long chains and versatility of petroleum hydrocarbons and the existence of the full metabolism pathways in a single microorganism. There are several developed oil biodegradation strategies by microorganisms such as synthetic biology, biofilm, recombinant technology and microbial consortia. Herewith, the application of multi-omics technology to discover oil-contaminated environments microbial communities, synthetic biology, microbial consortia, and other technologies would help improve the efficiency of microbial remediation.
Collapse
Affiliation(s)
- Xu Chunyan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Majjid A Qaria
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xu Qi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhu Daochen
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
24
|
Kupnik K, Primožič M, Kokol V, Knez Ž, Leitgeb M. Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado ( Persea americana L.) Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051201. [PMID: 36904061 PMCID: PMC10007261 DOI: 10.3390/plants12051201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
The aim of this research was to identify and quantify biologically active compounds from avocado (Persea americana L.) seeds (AS) utilizing different techniques with the use of ultrasound (US), ethanol (EtOH), and supercritical carbon dioxide (scCO2) for possible applications in (bio)medicine, pharmaceutical, cosmetic, or other relevant industries. Initially, a study of the process efficiency (η) was carried out, which revealed yields in the range of 2.96-12.11 wt%. The sample obtained using scCO2 was found to be the richest in total phenols (TPC) and total proteins (PC), while the sample obtained with the use of EtOH resulted in the highest content of proanthocyanidins (PAC). Phytochemical screening of AS samples, quantified by the HPLC method, indicated the presence of 14 specific phenolic compounds. In addition, the activity of the selected enzymes (cellulase, lipase, peroxidase, polyphenol oxidase, protease, transglutaminase, and superoxide dismutase) was quantified for the first time in the samples from AS. Using DPPH radical scavenging activity, the highest antioxidant potential (67.49%) was detected in the sample obtained with EtOH. The antimicrobial activity was studied using disc diffusion method against 15 microorganisms. Additionally, for the first time, the antimicrobial effectiveness of AS extract was quantified by determination of microbial growth-inhibition rates (MGIRs) at different concentrations of AS extract against three strains of Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens) bacteria, three strains of Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus pyogenes) bacteria, and fungi (Candida albicans). MGIRs and minimal inhibitory concentration (MIC90) values were determined after 8 and 24 h of incubation, thus enabling the screening of antimicrobial efficacy for possible further applications of AS extracts as antimicrobial agents in (bio)medicine, pharmaceutical, cosmetic, or other industries. For example, the lowest MIC90 value was determined for B. cereus after 8 h of incubation in the case of UE and SFE extracts (70 μg/mL), indicating an outstanding result and the potential of AS extracts, as the MIC values for B. cereus have not been investigated so far.
Collapse
Affiliation(s)
- Kaja Kupnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2294-462
| |
Collapse
|
25
|
Chen X, Hu Y, Tan Z. Innovative three-phase partitioning based on deep-eutectic solvents and sugars (sugaring-out effect) for cucumber peroxidase purification. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Biodegradation of Aflatoxin B1 in Maize Grains and Suppression of Its Biosynthesis-Related Genes Using Endophytic Trichoderma harzianum AYM3. J Fungi (Basel) 2023; 9:jof9020209. [PMID: 36836323 PMCID: PMC9964583 DOI: 10.3390/jof9020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Aflatoxin B1 is one of the most deleterious types of mycotoxins. The application of an endophytic fungus for biodegradation or biosuppression of AFB1 production by Aspergillus flavus was investigated. About 10 endophytic fungal species, isolated from healthy maize plants, were screened for their in vitro AFs-degrading activity using coumarin medium. The highest degradation potential was recorded for Trichoderma sp. (76.8%). This endophyte was identified using the rDNA-ITS sequence as Trichoderma harzianum AYM3 and assigned an accession no. of ON203053. It caused a 65% inhibition in the growth of A. flavus AYM2 in vitro. HPLC analysis revealed that T. harzianum AYM3 had a biodegradation potential against AFB1. Co-culturing of T. harazianum AYM3 and A. flavus AYM2 on maize grains led to a significant suppression (67%) in AFB1 production. GC-MS analysis identified two AFB1-suppressing compounds, acetic acid and n-propyl acetate. Investigating effect on the transcriptional expression of five AFB1 biosynthesis-related genes in A. flavus AYM2 revealed the downregulating effects of T. harzianum AYM3 metabolites on expression of aflP and aflS genes. Using HepaRG cell line, the cytotoxicity assay indicated that T. harazianum AYM3 metabolites were safe. Based on these results, it can be concluded that T. harzianum AYM3 may be used to suppress AFB1 production in maize grains.
Collapse
|
27
|
The Disturbance of the Antioxidant System Results in Internal Blue Discoloration of Postharvest Cherry Radish ( Raphanus sativus L. var. radculus pers) Roots. Foods 2023; 12:foods12030677. [PMID: 36766205 PMCID: PMC9914160 DOI: 10.3390/foods12030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Internal blue discoloration in cherry radish (Raphanus sativus L. var. radculus pers) roots can appear after harvest. The antioxidant system and content of reactive oxygen species (ROS) will affect the blue discoloration. Currently, the reason for the blue discoloration is not yet clear. In order to reveal the mechanism of the blue discoloration of cherry radish, we selected the blue discolored cherry radish as the research object and the white cherry radish as the control. The difference in the antioxidant system between them were compared, including related enzymes and non-enzymatic antioxidants in this system. Meanwhile, the changes in the contents of 4-hydroxyglucobrassicin as a precursor substance and ROS were compared. The results showed that the activities of typical antioxidant enzymes decreased and the cycle of Glutathione peroxidase (GPX) and Ascorbic acid-Glutathione (ASA-GSH) was disturbed, leading to the reduction of antioxidant effect and the failure of timely and effective decomposition of superoxide anions (O2•-) and hydrogen peroxide (H2O2). In addition, the elevated level of O2•- and H2O2 led to the disorder of the antioxidant system, while the 4-hydroxybrassinoside was oxidized under the catalysis of peroxidase (POD) and eventually led to the internal blue discoloration in cherry radish. These results can provide a theoretical basis for solving the blue discoloration problem.
Collapse
|
28
|
Wu H, Ye N, Huang Z, Lei K, Shi F, Wei Q. Dietary curcumin supplementation relieves hydrogen peroxide-induced testicular injury by antioxidant and anti-apoptotic effects in roosters. Theriogenology 2023; 197:46-56. [PMID: 36470109 DOI: 10.1016/j.theriogenology.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
This study was aimed to investigate the effects of dietary curcumin supplementation on the hydrogen peroxide (H2O2)-induced testicular oxidative damage in breeder roosters. Thirty-two 20-week roosters were randomly divided into four groups: (1) basal diet (CON); (2) basal diet with H2O2 challenge (H2O2); (3) basal diet with 200 mg/kg curcumin (CUR); (4) basal diet with 200 mg/kg curcumin and H2O2 challenge (CUR + H2O2). The trial lasted for 8 weeks, H2O2 challenged groups got an intraperitoneal injection of H2O2 at the 50 and 53 days, while the CON and CUR groups received an injection of saline. The results showed that dietary curcumin supplementation significantly decreased abnormal sperm rates in the semen, notably improved seminiferous tubules, increased testis scores, and serum testosterone levels. Curcumin supplementation could also ameliorate the redox damage caused by H2O2, by enhancing the capacities of antioxidant enzymes (CAT, GSH-Px, SOD, and T-AOC), and reducing MDA levels. In addition, curcumin normalized the H2O2-induced negative effects, which included downregulations in spermatogenesis-related genes (STAR, HSD3-β1, SYCP3, AKT1) and antioxidant genes (HMOX-1, NQO-1), reduced protein expressions of Nrf2, PCNA, and Bcl-2, and increased protein expressions of Caspase 3 and Bax. Moreover, H2O2-induced decreased mRNA expressions of EIF2AK3, Caspase3, and BCL-2 were all reversed by dietary curcumin supplementation. In summary, dietary curcumin supplementation could relieve H2O2-induced oxidative damage and reproduction decline through the Nrf2 signaling pathway and anti-apoptotic effects in roosters.
Collapse
Affiliation(s)
- Haoze Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nanwei Ye
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Lei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
29
|
Electrochemical ELASA: improving early cancer detection and monitoring. Anal Bioanal Chem 2023:10.1007/s00216-023-04546-5. [PMID: 36702904 DOI: 10.1007/s00216-023-04546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
The discovery of new molecular biomarkers of cancer during the last decades and the development of new diagnostic devices exploiting those have significantly contributed to the clinical analysis of cancer and to improve the outcomes. Among those, liquid biopsy sensors exploiting aptamers for the detection of cancer biomarkers in body fluids are useful and accurate tools for a fast and inexpensive non-invasive screening of population. The incorporation of aptamers in electrochemical sandwich biosensors using enzyme labels, a so-called ELASA, has demonstrated its utility to improve the detection schemes. In this review, we overview the existing ELASA assays for numerous cancer biomarkers as alternatives to the traditional ELISA and discuss their possibilities to reach the market, currently dominated by optical immunoassays.
Collapse
|
30
|
da Costa FP, Henriques RO, Furigo Junior A. Practical and Rapid Membrane-Based Biosensor for Phenol Using Copper/Calcium-Enzyme Hybrid Nanoflowers. Appl Biochem Biotechnol 2023; 195:86-106. [PMID: 35980513 DOI: 10.1007/s12010-022-04101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
Phenol, a pollutant frequently found in chemical industries effluents, is highly toxic even in low concentrations. This study reports a green, simple, and rapid method for qualitative phenol biosensing using horseradish peroxidase (HRP) hybrid nanoflowers made with copper (Cu2+-hNF) or calcium (Ca2+-hNF) ions. The enzyme was immobilized through protein-inorganic self-assembly into hybrid structures and subsequently supported onto a polyvinylidene fluoride (PVDF) membrane. SEM, EDS, FTIR, and XRD techniques sustained the effective enzyme encapsulation into hybrid structures. The protein concentration in the structures was 0.25 mg.mL-1 for both ions. The best temperature and pH were 60 °C and 7.4, respectively, for both hybrids and the free enzyme, suggesting that the immobilization did not affect the optimal conditions of the free HRP. Thermal stability from 25 to 70 °C and pH stability from 4.0 to 9.0 of the hybrids were also determined. Finally, using copper and calcium hybrids, both biosensors produced onto a PVDF membrane could detect phenol in concentrations ranging from 0.72 to 24.00 µmol.mL-1 in 1 min. In contrast, control biosensors produced with free enzyme have not presented a visible color change in the same conditions. The findings suggest a promising application of the developed biosensors in functional phenol detection.
Collapse
Affiliation(s)
- Felipe Pereira da Costa
- Department of Chemical and Food Engineering, Federal University of Santa Catarina - UFSC, CEP, Florianópolis, SC, 88040-900, Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical and Food Engineering, Federal University of Santa Catarina - UFSC, CEP, Florianópolis, SC, 88040-900, Brazil.
| | - Agenor Furigo Junior
- Department of Chemical and Food Engineering, Federal University of Santa Catarina - UFSC, CEP, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
31
|
Nogueira WV, Moyano FJ, Tesser MB, Garda-Buffon J. Mitigation of aflatoxin B 1 in fish feed by peroxidase from soybean meal. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:110-120. [PMID: 36395353 DOI: 10.1080/19440049.2022.2134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Potential of the enzyme peroxidase (PO) from soybean meal to mitigate aflatoxin B1 (AFB1) in fish feed was evaluated. Reaction parameters studied in the wet stage of the feed production process were enzyme activity (0.01-0.1 U/g), temperature (20-36 °C), time (0-8 h) and humidity content (40-70%). Feed was produced in conformity with the National Research Council and spiked with AFB1 at 10 ng/g. Any residual concentration of AFB1 in the diet was extracted by the QuEChERS method and quantified by a liquid chromatograph with a fluorescence detector. AFB1 mitigation of 90% was reached when feed production conditions were 0.035 U/g, 32 °C, 6 h and 70% humidity. Therefore, application of PO to the feed industry may be considered a promising tool for mitigation of AFB1, considering its toxicity and frequent occurrence. In addition, it guarantees safe food for consumers of fish farming products, as AFB1 can bioaccumulate in the food chain. It also provides an alternative use for soybean meal that would previously be discarded.
Collapse
|
32
|
Machado BR, Silva PGP, Garda-Buffon J, Santos LO. Magnetic fields as inducer of glutathione and peroxidase production by Saccharomyces cerevisiae. Braz J Microbiol 2022; 53:1881-1891. [PMID: 36199005 PMCID: PMC9679107 DOI: 10.1007/s42770-022-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/25/2022] [Indexed: 01/13/2023] Open
Abstract
Glutathione (GSH) and peroxidase (POD) are biomolecules of interest in the global market; thus, it is desirable to seek ways to increase their production. Magnetic field (MF) application is one of the technologies used in cultivation that has shown promising results to increase bioproducts. Therefore, this study aimed at evaluating the influence of MFs on GSH and POD production by Saccharomyces cerevisiae ATCC 7754. Different periods of MF application (35 mT) were evaluated over 72 h. The highest GSH production was reached in 48 h of cultivation in assays MF 0-24 (155.32 ± 9.12 mg L-1) and MF 0-72 (149.27 ± 3.62 mg L-1), which showed an increase of 121.9 % and 113 %, respectively, by comparison with the control without any MF application. The highest POD activity was achieved when MFs were applied throughout the culture (36.31 U mg-1) and POD productivity of 0.72 U mg-1 h-1. MF application throughout cultivation proved to be a promising strategy since all responses increased, i.e., GSH concentration, GSH productivity, POD activity, and POD productivity increased 113.7 %, 113 %, 20.4 %, and 28.6 %, respectively. This study is one of the first to consider MFs as a viable and low-cost alternative to produce GSH and POD in bioprocesses.
Collapse
Affiliation(s)
- Bruno Roswag Machado
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Pedro Garcia Pereira Silva
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Jaqueline Garda-Buffon
- Laboratory of Mycotoxin and Food Science, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
33
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
34
|
An insight into the mechanisms underpinning the anti-browning effect of Codium tomentosum on fresh-cut apples. Food Res Int 2022; 161:111884. [DOI: 10.1016/j.foodres.2022.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
35
|
Liu D, Yang X, Zhang L, Tang Y, He H, Liang M, Tu Z, Zhu H. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13830. [PMID: 36360710 PMCID: PMC9657116 DOI: 10.3390/ijerph192113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In the field of environmental science and engineering, microorganisms, enzymes and algae are promising biomass materials that can effectively degrade pollutants. However, problems such as poor environmental adaptability, recycling difficulties, and secondary pollution exist in the practical application of non-immobilized biomass materials. Biomass immobilization is a novel environmental remediation technology that can effectively solve these problems. Compared with non-immobilized biomass, immobilized biomass materials have the advantages of reusability and stability in terms of pH, temperature, handling, and storage. Many researchers have studied immobilization technology (i.e., methods, carriers, and biomass types) and its applications for removing refractory organic pollutants. Based on this, this paper reviews biomass immobilization technology, outlines the mechanisms and factors affecting the removal of refractory organic pollutants, and introduces the application of immobilized biomass materials as fillers for reactors in water purification. This review provides some practical references for the preparation and application of immobilized biomass materials and promotes further research and development to expand the application range of this material for water purification.
Collapse
Affiliation(s)
- Danxia Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaolong Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiyan Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huijun He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Zhihong Tu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongxiang Zhu
- Guangxi Modern Industry College of Ecology and Environmental Protection, Guilin 541006, China
| |
Collapse
|
36
|
The effects of aurone on the yellowing of fresh-cut water chestnuts. Food Chem X 2022; 15:100411. [PMID: 36211781 PMCID: PMC9532801 DOI: 10.1016/j.fochx.2022.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Aurone (0.6 and 1.0 %) could inhibit the yellowing of FCWCs by decreasing the yield of eriodictyol and restraining POD activity. The inhibition aurone to POD activity was a kind of mixed inhibition. PPO and PAL did not catalyze the yellowing of FCWCs.
Yellowing is the main reason for deterioration of edible quality of fresh cut water chestnuts (FCWCs). The mechanism of aurone inhibiting the yellowing of FCWCs was studied. FCWCs were treated with aurone (0.2, 0.6 and 1.0 %). The controls yellowed completely on day 9. The treatment sample with 1.0 % aurone did not yellow on day 9. Compared to the controls, aurone (1.0 %) completely inhibited the production of eriodictyol during 9 d of storage. Aurone (1.0 %) reduced peroxidase activity of FCWCs by 23 % on day 9. The effects of aurone on naringenin concentration, polyphenol oxidase activity, phenylalanine lyase activity, number of thermophilic bacteria colonies, and number of yeasts and molds colonies of FCWCS were not significant. Aurone reduced the yellowing by decreasing the yield of eriodictyol and inhibiting POD activity. Aurone (1.0 %) can be used to inhibit the yellowing of FCWCs in practice.
Collapse
|
37
|
Sai Preethi P, Hariharan NM, Vickram S, Rameshpathy M, Manikandan S, Subbaiya R, Karmegam N, Yadav V, Ravindran B, Chang SW, Kumar Awasthi M. Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. BIORESOURCE TECHNOLOGY 2022; 359:127444. [PMID: 35691504 DOI: 10.1016/j.biortech.2022.127444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The bioremediation of emerging recalcitrant pollutants in wastewater via enzyme biotechnology has been evolving as cost-effective with an input of low-energy technological approach. However, the enzyme based bioremediation technology is still not fully developed at a commercial level. The oxidoreductases being the domineering biocatalysts are promising candidates for wastewater treatments. Henceforth, comprehending their global market and biotransformation efficacy is mandatory for establishing these techno-economic bio-enzymes in commercial scale. The biocatalytic strategy can be established as a combinatorial approach with existing treatment technology to achieve towering bioremediation and effective removal of emerging pollutants from wastewater. This review provides a novel insight on the toxicological xenobiotics released from industries such as paper and pulps, soap and detergents, pharmaceuticals, textiles, pesticides, explosives and aptitude of peroxidases, nitroreductase and cellobiose dehydrogenase in their bio-based treatment. Moreover, the review comprehensively covers environmental relevance of wastewater pollution and the critical challenges based on remediation achieved through biocatalysts for future prospectives.
Collapse
Affiliation(s)
- P Sai Preethi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China; Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chembarambakkam - 600 123, Tamil Nadu, India
| | - N M Hariharan
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chembarambakkam - 600 123, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - M Rameshpathy
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - S W Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
38
|
Dini I, Alborino V, Lanzuise S, Lombardi N, Marra R, Balestrieri A, Ritieni A, Woo SL, Vinale F. Trichoderma Enzymes for Degradation of Aflatoxin B1 and Ochratoxin A. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123959. [PMID: 35745082 PMCID: PMC9231114 DOI: 10.3390/molecules27123959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
The contamination of agricultural products with mycotoxins causes risks to animal and human health and severe economic losses. Mycotoxicoses can be reduced by preventing fungal infection using chemical and biological approaches. The chemical strategies can release toxic molecules; therefore, strategies for biological control are being evaluated, such as using nontoxic fungi and their metabolites. This work evaluated the effect of exoenzymes produced by the beneficial fungus Trichoderma afroharzianum strain T22 in degrading Aflatoxin B1 (AFB1) and Ochratoxin A (OTA). The ability of Trichoderma to produce hydrolases was stimulated by using different inducing substrates. The highest AFB1 and OTA degradation activity was obtained using a medium containing lyophilized mushrooms and crude fiber. The T. afroharzianum T22’s ability to reduce mycotoxins may be attributed to peroxidase enzymes. This study showed that T.afroharzianum strain T22 or its peroxidase supplementation could represent a sustainable strategy for the degradation of AFB1 and OTA in feed and food products.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
- Correspondence: (I.D.); (F.V.)
| | - Vittoria Alborino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
| | - Stefania Lanzuise
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Anna Balestrieri
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Italy;
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Francesco Vinale
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80138 Naples, Italy
- Correspondence: (I.D.); (F.V.)
| |
Collapse
|
39
|
Deep eutectic solvents-based three-phase partitioning for tomato peroxidase purification: A promising method for substituting t-butanol. Food Chem 2022; 393:133379. [DOI: 10.1016/j.foodchem.2022.133379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
|
40
|
Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage. Foods 2022; 11:foods11101470. [PMID: 35627040 PMCID: PMC9140707 DOI: 10.3390/foods11101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Browning and lignification often occur in fresh-cut apple processing, leading to quality deterioration and limiting the shelf life of products. In this study, 0.8% (v/v) phytic acid was used to improve the quality and shelf life of fresh-cut apples. From the results, the browning was inhibited by the phytic acid treatment and the browning index (BI) of the control fruit was 1.62 times that of phytic acid treatment at 2 d of storage. The lignin content in phytic acid-treated fruit significantly decreased at 2, 4, and 6 d of storage compared to the control. Phytic acid treatment also reduced H2O2 and malonaldehyde (MDA) contents, which may indicate lighter membrane damage to apples. Compared with the control, the polyphenol oxidase (PPO) and peroxidase (POD) activities decreased while superoxide dismutase (SOD) and catalase (CAT) activities increased in phytic acid-treated fruit. Consistent with the lignin content, the activities of phenylpropane metabolism-related enzymes phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL) were inhibited by phytic acid treatment. In conclusion, phytic acid alleviated the browning and lignification of fresh-cut apples by reducing PPO and POD activities, maintaining cell membrane integrity, and inhibiting phenylpropane metabolism.
Collapse
|
41
|
Kinetic analysis of PGA/PBAT plastic films for strawberry fruit preservation quality and enzyme activity. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Augusto A, Miranda A, Costa L, Pinheiro J, Campos MJ, Raimundo D, Pedrosa R, Mitchell G, Niranjan K, Silva SF. A pilot plant scale testing of the application of seaweed‐based natural coating and modified atmosphere packaging for shelf‐life extension of fresh‐cut apple. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ana Augusto
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
- Department of Food and Nutritional Sciences University of Reading Reading United Kingdom
- Centre for Rapid and Sustainable Product Development (CDRsp), Politécnico de Leiria, 2430‐028 Marinha Grande
| | - Andreia Miranda
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Leonor Costa
- iBET – Instituto de Biologia Experimental e Tecnológica, 2781‐901 Oeiras Portugal
| | - Joaquina Pinheiro
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Maria J. Campos
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | | | - Rui Pedrosa
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Geoffrey Mitchell
- Centre for Rapid and Sustainable Product Development (CDRsp), Politécnico de Leiria, 2430‐028 Marinha Grande
| | - Keshavan Niranjan
- Department of Food and Nutritional Sciences University of Reading Reading United Kingdom
| | - Susana F.J. Silva
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| |
Collapse
|
43
|
Oxidation of dobutamine and dopamine by horseradish peroxidase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Wang Y, Chen Y, Jiang L, Huang H. Improvement of the enzymatic detoxification activity towards mycotoxins through structure-based engineering. Biotechnol Adv 2022; 56:107927. [PMID: 35182727 DOI: 10.1016/j.biotechadv.2022.107927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Mycotoxin contamination of food and feed is posing a serious threat to the global food safety and public health. Biological detoxification mediated by enzymes has emerged as a promising approach, as they can specifically degrade mycotoxins into non-toxic ones. However, the low degradation efficiency and stability limit their further application. To optimize the enzymes for mycotoxin removal, modification strategies that combine computational design with their structural data have been developed. Accordingly, this review will comprehensively summarize the recent trends in structure-based engineering to improve the enzyme catalytic efficiency, selectivity and stability in mycotoxins detoxification, which also provides perspectives in obtaining innovative and effective biocatalysts for mycotoxins degradation.
Collapse
Affiliation(s)
- Yanxia Wang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Chen
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; College of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
45
|
Kumar G, Saini M, Kundu S. Therapeutic enzymes as non-conventional targets in cardiovascular impairments:A Comprehensive Review. Can J Physiol Pharmacol 2021; 100:197-209. [PMID: 34932415 DOI: 10.1139/cjpp-2020-0732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last few decades, substantial progress has been made towards the understanding of cardiovascular diseases (CVDs). In-depth mechanistic insights have also provided opportunities to explore novel therapeutic targets and treatment regimens to be discovered. Therapeutic enzymes are an example of such opportunities. The balanced functioning of such enzymes protects against a variety of CVDs while on the other hand, even a small shift in the normal functioning of these enzymes may lead to deleterious outcomes. Owing to the great versatility of these enzymes, inhibition and activation are key regulatory approaches to counter the onset and progression of several cardiovascular impairments. While cardiovascular remedies are already available in excess and of course they are efficacious, a comprehensive description of novel therapeutic enzymes to combat CVDs is the need of the hour. In light of this, the regulation of the functional activity of these enzymes also opens a new avenue for the treatment approaches to be employed. This review describes the importance of non-conventional enzymes as potential candidates in several cardiovascular disorders while highlighting some of the recently targeted therapeutic enzymes in CVDs.
Collapse
Affiliation(s)
- Gaurav Kumar
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Manisha Saini
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Suman Kundu
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| |
Collapse
|
46
|
Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation. Biochimie 2021; 195:114-134. [PMID: 34890732 DOI: 10.1016/j.biochi.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/31/2022]
Abstract
The concept of oxidative distress had arisen from the assessment of cellular response to high concentrations of reactive species that result from an imbalance between oxidants and antioxidants and cause biomolecular damage. The intracellular distribution and flux of reactive species dramatically change in time and space contributing to the remodeling of the redox landscape and sensitivity of protein residues to oxidants. Here, we hypothesize that compromised spatiotemporal control of generation, conversions, and removal of reactive species underlies protein damage and dysfunction of protein degradation machineries. This leads to the accumulation of oxidatively damaged proteins resulted in an age-dependent decline in the organismal adaptability to oxidative stress. We highlight recent data obtained with the use of various cell cultures, animal models, and patients on irreversible and non-repairable oxidation of key redox-sensitive residues. Multiple reaction products include peptidyl hydroperoxides, alcohols, carbonyls, and carbamoyl moieties as well as Tyr-Tyr, Trp-Tyr, Trp-Trp, Tyr-Cys, His-Lys, His-Arg, and Tyr-Lys cross-links. These lead to protein fragmentation, misfolding, covalent cross-linking, oligomerization, aggregation, and ultimately, causing impaired protein function and turnover. 20S proteasome and autophagy-lysosome pathways are two major types of machinery for the degradation and elimination of oxidatively damaged proteins. Spatiotemporal dysregulation of these pathways under oxidative distress conditions is implicated in aging and age-related disorders such as neurodegenerative and cardiovascular diseases and diabetes. Future investigations in this field allow the discovery of new drugs to target components of dysregulated cell signaling and protein degradation machinery to combat aging and age-related chronic diseases.
Collapse
|
47
|
Park YJ, Kim DM. Production of Recombinant Horseradish Peroxidase in an Engineered Cell-free Protein Synthesis System. Front Bioeng Biotechnol 2021; 9:778496. [PMID: 34778239 PMCID: PMC8579056 DOI: 10.3389/fbioe.2021.778496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
One of the main advantages of a cell-free synthesis system is that the synthetic machinery of cells can be modularized and re-assembled for desired purposes. In this study, we attempted to combine the translational activity of Escherichia coli extract with a heme synthesis pathway for the functional production of horseradish peroxidase (HRP). We first optimized the reaction conditions and the sequence of template DNA to enhance protein expression and folding. The reaction mixture was then supplemented with 5-aminolevulinic acid synthase to facilitate co-synthesis of the heme prosthetic group from glucose. Combining the different synthetic modules required for protein synthesis and cofactor generation led to successful production of functional HRP in a cell-free synthesis system.
Collapse
Affiliation(s)
- Yu-Jin Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
48
|
Iranifam M, Toolooe Gardeh Rasht M, Al Lawati HAJ. CuS nanoparticles-enhanced luminol-O 2 chemiluminescence reaction used for determination of paracetamol and vancomycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120038. [PMID: 34118521 DOI: 10.1016/j.saa.2021.120038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
A new chemiluminescence (CL) method was proposed to measure two widely used drugs, including paracetamol (PCM) and vancomycin (VAN). The CL reaction used was the CuS nanoparticles (CuS NPs)-luminol-O2 system. In this system, CuS NPs played the role of catalyst and increased the CL intensity. CuS NPs were easily synthesized by quick-precipitation. CuS NPs were characterized by spectroscopic techniques, and the mean size of NPs was estimated to be about 9 nm. In the developed CL methods, PCM and VAN decreased the CL intensity. In the proposed method, the linear concentration ranges were 4.0 × 10-5-4.0 × 10-4 mol L-1 of PCM and 2.0 × 10-5-6.0 × 10-4 mol L-1 of VAN. The limit of detections were 2.9 × 10-5 mol L-1 and 8.9 × 10-6 mol L-1 for PCM and VAN, respectively. The relative standard deviations (RSD) of the CL method were 2.99 and 4.31 (n = 6) for the determination of 3.0 × 10-4 mol L-1 PCM and VAN, respectively. It was also shown that the CL methods can measure PCM and VAN concentrations in various real samples.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
49
|
Yang Z, Qian J, Shan C, Li H, Yin Y, Pan B. Toward Selective Oxidation of Contaminants in Aqueous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14494-14514. [PMID: 34669394 DOI: 10.1021/acs.est.1c05862] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The presence of diverse pollutants in water has been threating human health and aquatic ecosystems on a global scale. For more than a century, chemical oxidation using strongly oxidizing species was one of the most effective technologies to destruct pollutants and to ensure a safe and clean water supply. However, the removal of increasing amount of pollutants with higher structural complexity, especially the emerging micropollutants with trace concentrations in the complicated water matrix, requires excessive dosage of oxidant and/or energy input, resulting in a low cost-effectiveness and possible secondary pollution. Consequently, it is of practical significance but scientifically challenging to achieve selective oxidation of pollutants of interest for water decontamination. Currently, there are a variety of examples concerning selective oxidation of pollutants in aqueous systems. However, a systematic understanding of the relationship between the origin of selectivity and its applicable water treatment scenarios, as well as the rational design of catalyst for selective catalytic oxidation, is still lacking. In this critical review, we summarize the state-of-the-art selective oxidation strategies in water decontamination and probe the origins of selectivity, that is, the selectivity resulting from the reactivity of either oxidants or target pollutants, the selectivity arising from the accessibility of pollutants to oxidants via adsorption and size exclusion, as well as the selectivity due to the interfacial electron transfer process and enzymatic oxidation. Finally, the challenges and perspectives are briefly outlined to stimulate future discussion and interest on selective oxidation for water decontamination, particularly toward application in real scenarios.
Collapse
Affiliation(s)
- Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chao Shan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuyang Yin
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| |
Collapse
|
50
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. BIOSENSORS 2021; 11:410. [PMID: 34821626 PMCID: PMC8615953 DOI: 10.3390/bios11110410] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (L.A.-R.); (M.R.-A.); (J.R.-R.); (J.E.S.-H.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|