1
|
Yang LJ, He JB, Jiang Y, Li J, Zhou ZW, Zhang C, Tao X, Chen AF, Peng C, Xie HH. Berberine hydrochloride inhibits migration ability via increasing inducible NO synthase and peroxynitrite in HTR-8/SVneo cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116087. [PMID: 36584918 DOI: 10.1016/j.jep.2022.116087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inadequate trophoblasts migration and invasion is considered as an initial event resulting in preeclampsia, which is closely related to oxidative stress. Berberine hydrochloride (BBR), extracted from the traditional medicinal plant Coptis chinensis Franch., exerts a diversity of pharmacological effects, and the crude drug has been widely taken by most Chinese women to treat nausea and vomit during pregnancy. But there is no research regarding its effects on trophoblast cell function. AIM OF THE STUDY This study aimed to investigate the effect of BBR on human-trophoblast-derived cell line (HTR-8/SVneo) migration ability and its mechanism. MATERIALS AND METHODS Cell viability was detected by CCK-8 assay. The effect of BBR on cells migration function was examined by scratch wound healing assay and transwell migration assay. Intracellular nitric oxide (NO), superoxide (O2-) and peroxynitrite (ONOO-) levels were measured by flow cytometry. The expression levels of inducible NO synthase (iNOS), eNOS, p-eNOS, MnSOD, CuZnSOD, Rac1, NOX1, TLR4, nuclear factor-κB (NF-κB), p-NFκB, pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in cells were analyzed by Western blotting. Uric acid sodium salt (UA), the scavenger of ONOO-, PEG-SOD (a specific superoxide scavenger), L-NAME (a NOS inhibitor) and antioxidants (Vit E and DFO) were further used to characterize the pathway of BBR action. RESULTS 5 μM BBR decreased both the migration distance and the number of migrated cells without affecting cells viability in HTR-8/SVneo cells after 24 h treatment. BBR could increase the level of NO in HTR-8/SVneo cells, and the over-production of NO might be attributable to iNOS, but not eNOS. BBR could increase intracellular O2- levels, and the over-production of O2- is closely related with Rac1 in HTR-8/SVneo cells. The excessive production of NO and O2- further react to form ONOO-, and the increased ONOO- level induced by BBR was blunted by UA. Moreover, UA improved the impaired migration function caused by BBR in HTR-8/SVneo cells. The depressed migration function stimulated by BBR in HTR-8/SVneo cells was diminished by PEG-SOD and L-NAME. Furthermore, BBR increased the expression of IL-6 in HTR-8/SVneo cells, and antioxidants (Vit E and DFO) could decrease the expression of IL-6 and iNOS induced by BBR. CONCLUSIONS BBR inhibits the cell migration ability through increasing inducible NO synthase and peroxynitrite in HTR-8/SVneo cells, indicating that BBR and traditional Chinese medicines containing a high proportion of BBR should be used with caution in pregnant women.
Collapse
Affiliation(s)
- Li-Jun Yang
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jia-Bei He
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu Jiang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jianzhong Li
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zhen-Wei Zhou
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Cheng Peng
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - He-Hui Xie
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Campolo N, Mastrogiovanni M, Mariotti M, Issoglio FM, Estrin D, Hägglund P, Grune T, Davies MJ, Bartesaghi S, Radi R. Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation. J Biol Chem 2023; 299:102941. [PMID: 36702251 PMCID: PMC10011836 DOI: 10.1016/j.jbc.2023.102941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO-) in vitro. We found that ONOO- exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO- induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.
Collapse
Affiliation(s)
- Nicolás Campolo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Michele Mariotti
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Federico M Issoglio
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Darío Estrin
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Analítica y Química Física, Buenos Aires, Argentina
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Silvina Bartesaghi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Radi R. Interplay of carbon dioxide and peroxide metabolism in mammalian cells. J Biol Chem 2022; 298:102358. [PMID: 35961463 PMCID: PMC9485056 DOI: 10.1016/j.jbc.2022.102358] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
Abstract
The carbon dioxide/bicarbonate (CO2/HCO3-) molecular pair is ubiquitous in mammalian cells and tissues, mainly as a result of oxidative decarboxylation reactions that occur during intermediary metabolism. CO2 is in rapid equilibrium with HCO3-via the hydration reaction catalyzed by carbonic anhydrases. Far from being an inert compound in redox biology, CO2 enhances or redirects the reactivity of peroxides, modulating the velocity, extent, and type of one- and two-electron oxidation reactions mediated by hydrogen peroxide (H2O2) and peroxynitrite (ONOO-/ONOOH). Herein, we review the biochemical mechanisms by which CO2 engages in peroxide-dependent reactions, free radical production, redox signaling, and oxidative damage. First, we cover the metabolic formation of CO2 and its connection to peroxide formation and decomposition. Next, the reaction mechanisms, kinetics, and processes by which the CO2/peroxide interplay modulates mammalian cell redox biology are scrutinized in-depth. Importantly, CO2 also regulates gene expression related to redox and nitric oxide metabolism and as such influences oxidative and inflammatory processes. Accumulated biochemical evidence in vitro, in cellula, and in vivo unambiguously show that the CO2 and peroxide metabolic pathways are intertwined and together participate in key redox events in mammalian cells.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
San-Martín-Martínez D, Serrano-Lemus D, Cornejo V, Gajardo AIJ, Rodrigo R. Pharmacological Basis for Abrogating Myocardial Reperfusion Injury Through a Multi-Target Combined Antioxidant Therapy. Clin Pharmacokinet 2022; 61:1203-1218. [DOI: 10.1007/s40262-022-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
|
5
|
Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals. Int J Mol Sci 2022; 23:ijms23031797. [PMID: 35163717 PMCID: PMC8836854 DOI: 10.3390/ijms23031797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
The widespread interest in free radicals in biology extends far beyond the effects of ionizing radiation, with recent attention largely focusing on reactions of free radicals derived from peroxynitrite (i.e., hydroxyl, nitrogen dioxide, and carbonate radicals). These radicals can easily be generated individually by reactions of radiolytically-produced radicals in aqueous solutions and their reactions can be monitored either in real time or by analysis of products. This review first describes the general principles of selective radical generation by radiolysis, the yields of individual species, the advantages and limitations of either pulsed or continuous radiolysis, and the quantitation of oxidizing power of radicals by electrode potentials. Some key reactions of peroxynitrite-derived radicals with potential biological targets are then discussed, including the characterization of reactions of tyrosine with a model alkoxyl radical, reactions of tyrosyl radicals with nitric oxide, and routes to nitrotyrosine formation. This is followed by a brief outline of studies involving the reactions of peroxynitrite-derived radicals with lipoic acid/dihydrolipoic acid, hydrogen sulphide, and the metal chelator desferrioxamine. For biological diagnostic probes such as ‘spin traps’ to be used with confidence, their reactivities with radical species have to be characterized, and the application of radiolysis methods in this context is also illustrated.
Collapse
|
6
|
Gotham JP, Li R, Tipple TE, Lancaster JR, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med 2020; 154:84-94. [PMID: 32376456 PMCID: PMC7368495 DOI: 10.1016/j.freeradbiomed.2020.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Electron Paramagnetic Resonance (EPR) spectroscopy coupled with spin traps/probes enables quantitative determination of reactive nitrogen and oxygen species (RNOS). Even with numerous studies using spin probes, the methodology has not been rigorously investigated. The autoxidation of spin probes has been commonly overlooked. Using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH), the present study has tested the effects of metal chelators, temperature, and oxygen content on the autoxidation of spin probes, where an optimized condition is refined for cell studies. The apparent rate of CMH autoxidation under this condition is 7.01 ± 1.60 nM/min, indicating low sensitivity and great variation of the CMH method and that CMH autoxidation rate should be subtracted from the generation rate of CMH-detectable oxidants (simplified as oxidants below) in samples. Oxidants in RAW264.7 cells are detected at an initial rate of 4.0 ± 0.7 pmol/min/106 cells, which is not considered as the rate of basal oxidants generation because the same method has failed to detect oxidant generation from the stimulation of phorbol-12-mysirate-13-acetate (PMA, 0.1 nmol/106 cells) in cells (2.5 ± 0.9 for PMA vs. 2.1 ± 1.5 pmol/min/106 cells for dimethyl sulfoxide (DMSO)-treated cells). In contrast, the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which exhibits minimal autoxidation, reveals differences between PMA and DMSO treatment (0.26 ± 0.09 vs. -0.06 ± 0.12 pmol/min/106 cells), which challenges previous claims that spin probes are more sensitive than spin traps. We have also found that low temperature EPR measurements of frozen samples of CMH autoxidation provide lower signal intensity and greater variation compared to RT measurements of fresh samples. The current study establishes an example for method development of RNOS detection, where experimental details are rigorously considered and tested, and raises questions on the applications of spin probes and spin traps.
Collapse
Affiliation(s)
- John P Gotham
- Science and Technology Honors College, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jack R Lancaster
- Department of Pharmacology & Chemical Biology, Medicine, and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Arch Toxicol 2020; 94:3105-3123. [PMID: 32607613 PMCID: PMC7415766 DOI: 10.1007/s00204-020-02826-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
While the etiology of non-familial Parkinson’s disease (PD) remains unclear, there is evidence that increased levels of tissue iron may be a contributing factor. Moreover, exposure to some environmental toxicants is considered an additional risk factor. Therefore, brain-targeted iron chelators are of interest as antidotes for poisoning with dopaminergic toxicants, and as potential treatment of PD. We, therefore, designed a series of small molecules with high affinity for ferric iron and containing structural elements to allow their transport to the brain via the neutral amino acid transporter, LAT1 (SLC7A5). Five candidate molecules were synthesized and initially characterized for protection from ferroptosis in human neurons. The promising hydroxypyridinone SK4 was characterized further. Selective iron chelation within the physiological range of pH values and uptake by LAT1 were confirmed. Concentrations of 10–20 µM blocked neurite loss and cell demise triggered by the parkinsonian neurotoxicants, methyl-phenyl-pyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in human dopaminergic neuronal cultures (LUHMES cells). Rescue was also observed when chelators were given after the toxicant. SK4 derivatives that either lacked LAT1 affinity or had reduced iron chelation potency showed altered activity in our assay panel, as expected. Thus, an iron chelator was developed that revealed neuroprotective properties, as assessed in several models. The data strongly support the role of iron in dopaminergic neurotoxicity and suggests further exploration of the proposed design strategy for improving brain iron chelation.
Collapse
|
8
|
Möller MN, Rios N, Trujillo M, Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J Biol Chem 2019; 294:14776-14802. [PMID: 31409645 PMCID: PMC6779446 DOI: 10.1074/jbc.rev119.006136] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO), and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
9
|
Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, Shvedova AA, Philpott CC, Bayir H, Kagan VE. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med 2019; 133:153-161. [PMID: 30217775 PMCID: PMC6555767 DOI: 10.1016/j.freeradbiomed.2018.09.008] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Duality of iron as an essential cofactor of many enzymatic metabolic processes and as a catalyst of poorly controlled redox-cycling reactions defines its possible biological beneficial and hazardous role in the body. In this review, we discuss these two "faces" of iron in a newly conceptualized program of regulated cell death, ferroptosis. Ferroptosis is a genetically programmed iron-dependent form of regulated cell death driven by enhanced lipid peroxidation and insufficient capacity of thiol-dependent mechanisms (glutathione peroxidase 4, GPX4) to eliminate hydroperoxy-lipids. We present arguments favoring the enzymatic mechanisms of ferroptotically engaged non-heme iron of 15-lipoxygenases (15-LOX) in complexes with phosphatidylethanolamine binding protein 1 (PEBP1) as a catalyst of highly selective and specific oxidation reactions of arachidonoyl- (AA) and adrenoyl-phosphatidylethanolamines (PE). We discuss possible role of iron chaperons as control mechanisms for guided iron delivery directly to their "protein clients" thus limiting non-enzymatic redox-cycling reactions. We also consider opportunities of loosely-bound iron to contribute to the production of pro-ferroptotic lipid oxidation products. Finally, we propose a two-stage iron-dependent mechanism for iron in ferroptosis by combining its catalytic role in the 15-LOX-driven production of 15-hydroperoxy-AA-PE (HOO-AA-PE) as well as possible involvement of loosely-bound iron in oxidative cleavage of HOO-AA-PE to oxidatively truncated electrophiles capable of attacking nucleophilic targets in yet to be identified proteins leading to cell demise.
Collapse
Affiliation(s)
- D A Stoyanovsky
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - I Shrivastava
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Department of Computational and Systems Biology, University of Pittsburgh, USA
| | - I Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, USA
| | - V A Tyurin
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - O Protchenko
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - S Jadhav
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - S B Bolevich
- Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - A V Kozlov
- L Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - Y A Vladimirov
- Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - A A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, WV, USA
| | - C C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - H Bayir
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Departments of Critical Care Medicine, University of Pittsburgh, USA
| | - V E Kagan
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation; Departments of Chemistry, University of Pittsburgh, USA; Departments of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Departments of Radiation Oncology, University of Pittsburgh, USA.
| |
Collapse
|
10
|
Quan YY, Liu YH, Lin CM, Wang XP, Chen TS. Peroxynitrite dominates sodium nitroprusside-induced apoptosis in human hepatocellular carcinoma cells. Oncotarget 2018; 8:29833-29845. [PMID: 28415737 PMCID: PMC5444707 DOI: 10.18632/oncotarget.16164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
This study aims to explore which radicals dominate sodium nitroprusside (SNP)-induced cytotoxicity in human hepatocellular carcinoma (HCC) cells (HepG2 and Hep3B). Exposure of SNP to cell medium produced abundant nitric oxide (NO), superoxide anion (O2·−), hydrogen peroxide (H2O2) and iron ions. SNP potently induced caspases activation, mitochondrial membrane permeabilization and apoptosis in HCC cells. In Hep3B cells, pretreatment with NO scavenger (PTIO) did not prevent SNP-induced cytotoxicity. However, in HepG2 cells, SNP-induced cytotoxicity was prevented significantly by pretreatment with PTIO and O2·− scavenger, and especially was almost completely blocked by pretreatment with FeTPPS (peroxynitrite scavenger). In contrast, although H2O2 scavenger potently scavenged SNP-induced H2O2 production, it did not prevent SNP-induced cytotoxicity in HepG2 cells. In addition, pretreatment with DFO (iron ions chelator) and iron-saturated DFO respectively completely prevented SNP-induced cytotoxicity in HepG2 cells. Collectively, peroxynitrite from the reaction between NO and O2·− elicited from SNP dominates the SNP-induced apoptosis of HepG2 cells, in which both iron ions and H2O2 are not involved.
Collapse
Affiliation(s)
- Ying-Yao Quan
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Hong Liu
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chun-Mei Lin
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Ping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tong-Sheng Chen
- MOE Key Laboratory of Laser Life Science and College of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
Aicardo A, Mastrogiovanni M, Cassina A, Radi R. Propagation of free-radical reactions in concentrated protein solutions. Free Radic Res 2018; 52:159-170. [DOI: 10.1080/10715762.2017.1420905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Adrián Aicardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Khan MA, Alam K, Zafaryab M, Rizvi MMA. Peroxynitrite-modified histone as a pathophysiological biomarker in autoimmune diseases. Biochimie 2017; 140:1-9. [DOI: 10.1016/j.biochi.2017.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/07/2017] [Indexed: 11/25/2022]
|
14
|
Mani A, Staikou C, Karmaniolou I, Orfanos N, Mylonas A, Nomikos T, Pafiti A, Papalois A, Arkadopoulos N, Smyrniotis V, Theodoraki K. N-Acetylcysteine and Desferoxamine Reduce Pulmonary Oxidative Stress Caused by Hemorrhagic Shock in a Porcine Model. J INVEST SURG 2016; 30:33-40. [PMID: 27715338 DOI: 10.1080/08941939.2016.1215580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM OF THE STUDY To investigate the pulmonary oxidative stress and possible protective effect of N-Acetylcysteine (NAC) and Desferoxamine (DFX)in a porcine model subjected to hemorrhagic shock. MATERIALS AND METHODS Twenty-one pigs were randomly allocated to Group-A (sham, n = 5), Group-B (fluid resuscitation, n = 8) and Group-C (fluid, NAC and DFX resuscitation, n = 8). Groups B and C were subjected to a 40-min shock period induced by liver trauma, followed by a 60-min resuscitation period. During shock, the mean arterial pressure (MAP) was maintained at 30-40 mmHg. Resuscitation consisted of crystalloids (35 mL/kg) and colloids (18 mL/kg) targeting to MAP normalization (baseline values ± 10%). In addition, Group-C received pretreatment with NAC 200 mg/kg plus DFX 2 g as intravenous infusions. Thiobarbituric Acid Reactive Substances (TBARS), protein carbonyls and glutathione peroxidase (GPx) activity were determined in lung tissue homogenates. Also, histological examination of pulmonary tissue specimens was performed. RESULTS TBARS were higher in Group-B than in Group-A or Group-C: 2.90 ± 0.47, 0.57 ± 0.10, 1.78 ± 0.47 pmol/μg protein, respectively (p < 0.05). Protein carbonyls content was higher in Group-B than in Group-A or Group-C: 3.22 ± 0.68, 0.89 ± 0.30, 1.95 ± 0.54 nmol/mg protein, respectively (p > 0.05). GPx activity did not differ significantly between the three groups (p > 0.05). Lung histology was improved in Group-C versus Group-B, with less alveolar collapse, interstitial edema and inflammation. CONCLUSION NAC plus DFX prevented the increase of pulmonary oxidative stress markers and protein damage after resuscitated hemorrhagic shock and had beneficial effect on lung histology. NAC/DFX combination may be used in the multimodal treatment of hemorrhagic shock, since it may significantly prevent free radical injury in the lung.
Collapse
Affiliation(s)
- Alexandra Mani
- a 1st Department of Anesthesiology, Aretaieio Hospital , University of Athens, School of Medicine , Greece
| | - Chryssoula Staikou
- a 1st Department of Anesthesiology, Aretaieio Hospital , University of Athens, School of Medicine , Greece
| | | | - Nikolaos Orfanos
- b 4th Department of Surgery, Attikon Hospital , School of Medicine , Greece
| | | | - Tzortzis Nomikos
- c Department of Science of Nutrition-Dietetics , Harokopio University of Athens , Greece
| | - Agathi Pafiti
- d 1st Department of Pathology, Aretaieio Hospital , University of Athens, School of Medicine , Greece
| | | | | | | | - Kassiani Theodoraki
- a 1st Department of Anesthesiology, Aretaieio Hospital , University of Athens, School of Medicine , Greece
| |
Collapse
|
15
|
Tada M, Niwano Y, Kohno M. Generation Mechanism of Deferoxamine Radical by Tyrosine-Tyrosinase Reaction. ANAL SCI 2016; 31:911-6. [PMID: 26353957 DOI: 10.2116/analsci.31.911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nitroxide radical formations of deferoxamine mesylate (DFX) that is used clinically to treat iron-overload patients was examined by a tyrosine-tyrosinase reaction system as models of the H-atom transfer or proton-coupled electron transfer. When DFX was exposed to the tyrosine-tyrosinase reaction, nine-line ESR spectrum (g = 2.0063, hfcc; aN = 0.78 mT, aH(2) = 0.63 mT) was detected, indicating that the oxidation of DFX leads to a nitroxide radical. The signal intensity of the DFX radical increased dependently on the concentrations of tyrosine and tyrosinase. The amounts of DMPO-OH spin adducts via the tyrosine-tyrosinase reaction declined with DFX. Furthermore, mass spectra of an extra removed from the tyrosine-tyrosinase reaction mixture showed that the enzyme reactions might not be degradations of DFX. Therefore, there might be two types of DFX reaction passways, which could be through an internal electron transfer from tyrosine and hydrogen absorptions by ·OH directly.
Collapse
Affiliation(s)
- Mika Tada
- Center for General Education, Tohoku Institute of Technology
| | | | | |
Collapse
|
16
|
Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M. Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:723-35. [PMID: 25603991 PMCID: PMC4346251 DOI: 10.1111/tpj.12762] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/12/2014] [Accepted: 01/07/2015] [Indexed: 05/20/2023]
Abstract
Protein tyrosine (Tyr) nitration is a post-translational modification yielding 3-nitrotyrosine (NO2 -Tyr). Formation of NO2 -Tyr is generally considered as a marker of nitro-oxidative stress and is involved in some human pathophysiological disorders, but has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as an O2 transporter. Liquid chromatography coupled to tandem mass spectrometry was used for a targeted search and quantification of NO2 -Tyr in Lb. For all Lbs examined, Tyr30, located in the distal heme pocket, is the major target of nitration. Lower amounts were found for NO2 -Tyr25 and NO2 -Tyr133. Nitrated Lb and other as yet unidentified nitrated proteins were also detected in nodules of plants not receiving NO3- and were found to decrease during senescence. This demonstrates formation of nitric oxide (˙NO) and NO2- by alternative means to nitrate reductase, probably via a ˙NO synthase-like enzyme, and strongly suggests that nitrated proteins perform biological functions and are not merely metabolic byproducts. In vitro assays with purified Lb revealed that Tyr nitration requires NO2- + H2 O2 and that peroxynitrite is not an efficient inducer of nitration, probably because Lb isomerizes it to NO3-. Nitrated Lb is formed via oxoferryl Lb, which generates nitrogen dioxide and tyrosyl radicals. This mechanism is distinctly different from that involved in heme nitration. Formation of NO2 -Tyr in Lb is a consequence of active metabolism in functional nodules, where Lb may act as a sink of toxic peroxynitrite and may play a protective role in the symbiosis.
Collapse
Affiliation(s)
- Martha Sainz
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), 50080 Zaragoza, Spain
| | - Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), 50080 Zaragoza, Spain
| | - Carmen Pérez-Rontomé
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), 50080 Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Joaquín Abián
- Laboratorio de Proteómica CSIC-Universidad Autónoma de Barcelona, Instituto de Investigaciones Biomédicas de Barcelona, 08036 Barcelona, Spain
| | - Christiana Staudinger
- Laboratorio de Proteómica CSIC-Universidad Autónoma de Barcelona, Instituto de Investigaciones Biomédicas de Barcelona, 08036 Barcelona, Spain
| | - Silvina Bartesaghi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research
- Departamento de Educación Médica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), 50080 Zaragoza, Spain
| |
Collapse
|
17
|
Goldstein S, Samuni A. Oxidation Mechanism of Hydroxamic Acids Forming HNO and NO. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Carballal S, Bartesaghi S, Radi R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta Gen Subj 2013; 1840:768-80. [PMID: 23872352 DOI: 10.1016/j.bbagen.2013.07.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Peroxynitrite, the product of the reaction between superoxide radicals and nitric oxide, is an elusive oxidant with a short half-life and a low steady-state concentration in biological systems; it promotes nitroxidative damage. SCOPE OF REVIEW We will consider kinetic and mechanistic aspects that allow rationalizing the biological fate of peroxynitrite from data obtained by a combination of methods that include fast kinetic techniques, electron paramagnetic resonance and kinetic simulations. In addition, we provide a quantitative analysis of peroxynitrite production rates and conceivable steady-state levels in living systems. MAJOR CONCLUSIONS The preferential reactions of peroxynitrite in vivo include those with carbon dioxide, thiols and metalloproteins; its homolysis represents only <1% of its fate. To note, carbon dioxide accounts for a significant fraction of peroxynitrite consumption leading to the formation of strong one-electron oxidants, carbonate radicals and nitrogen dioxide. On the other hand, peroxynitrite is rapidly reduced by peroxiredoxins, which represent efficient thiol-based peroxynitrite detoxification systems. Glutathione, present at mM concentration in cells and frequently considered a direct scavenger of peroxynitrite, does not react sufficiently fast with it in vivo; glutathione mainly inhibits peroxynitrite-dependent processes by reactions with secondary radicals. The detection of protein 3-nitrotyrosine, a molecular footprint, can demonstrate peroxynitrite formation in vivo. Basal peroxynitrite formation rates in cells can be estimated in the order of 0.1 to 0.5μMs(-1) and its steady-state concentration at ~1nM. GENERAL SIGNIFICANCE The analysis provides a handle to predict the preferential fate and steady-state levels of peroxynitrite in living systems. This is useful to understand pathophysiological aspects and pharmacological prospects connected to peroxynitrite. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Sebastián Carballal
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
19
|
Shortt CM, O'Halloran KD. Hydrogen peroxide alters sternohyoid muscle function. Oral Dis 2013; 20:162-70. [PMID: 23445083 DOI: 10.1111/odi.12084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022]
Abstract
Upper airway (UA) dilator muscles are critical for the maintenance of airway patency. Injury or fatigue to this group of muscles, as observed in patients with obstructive sleep apnoea (OSA) and animal models of OSA, may leave the UA susceptible to collapse. Although the mechanisms underlying respiratory muscle dysfunction are not completely understood, there is strong evidence suggesting a link between increased production of reactive oxygen species and altered muscle function. The aim of this study was to examine the effects of H2O2 on rat sternohyoid muscle function in vitro. Sternohyoid contractile and endurance properties were examined at 35 °C under control or hypoxic conditions. Studies were conducted in the presence of varying concentrations of H2O2 (0, 0.01, 0.1 and 1 mM). Muscle function was also examined in the presence of antioxidants [desferoxamine (DFX), catalase] and the reducing agent dithiothreitol (DTT). H2O2 decreased muscle endurance in a concentration-dependent manner. This was partially reversed by catalase, DFX and DTT. Our results suggest that oxidants may contribute to UA respiratory muscle dysfunction with implications for the control of UA patency in vivo.
Collapse
Affiliation(s)
- C M Shortt
- UCD School of Medicine and Medical Science, Health Sciences, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
20
|
Chavarría C, Perez DI, Pérez C, Morales Garcia JA, Alonso-Gil S, Pérez-Castillo A, Gil C, Souza JM, Porcal W. Microwave-assisted synthesis of hydroxyphenyl nitrones with protective action against oxidative stress. Eur J Med Chem 2012; 58:44-9. [DOI: 10.1016/j.ejmech.2012.09.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
|
21
|
Adgent MA, Squadrito GL, Ballinger CA, Krzywanski DM, Lancaster JR, Postlethwait EM. Desferrioxamine inhibits protein tyrosine nitration: mechanisms and implications. Free Radic Biol Med 2012; 53:951-61. [PMID: 22705369 PMCID: PMC3462664 DOI: 10.1016/j.freeradbiomed.2012.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
Abstract
Tissues are exposed to exogenous and endogenous nitrogen dioxide ((·)NO(2)), which is the terminal agent in protein tyrosine nitration. Besides iron chelation, the hydroxamic acid (HA) desferrioxamine (DFO) shows multiple functionalities including nitration inhibition. To investigate mechanisms whereby DFO affects 3-nitrotyrosine (3-NT) formation, we utilized gas-phase (·)NO(2) exposures, to limit introduction of other reactive species, and a lung surface model wherein red cell membranes (RCM) were immobilized under a defined aqueous film. When RCM were exposed to ()NO(2) covered by +/- DFO: (i) DFO inhibited 3-NT formation more effectively than other HA and non-HA chelators; (ii) 3-NT inhibition occurred at very low[DFO] for prolonged times; and (iii) 3-NT formation was iron independent but inhibition required DFO present. DFO poorly reacted with (·)NO(2) compared to ascorbate, assessed via (·)NO(2) reactive absorption and aqueous-phase oxidation rates, yet limited 3-NT formation at far lower concentrations. DFO also inhibited nitration under aqueous bulk-phase conditions, and inhibited 3-NT generated by active myeloperoxidase "bound" to RCM. Per the above and kinetic analyses suggesting preferential DFO versus (·)NO(2) reaction within membranes, we conclude that DFO inhibits 3-NT formation predominantly by facile repair of the tyrosyl radical intermediate, which prevents (·)NO(2) addition, and thus nitration, and potentially influences biochemical functionalities.
Collapse
Affiliation(s)
- Margaret A. Adgent
- Department of Environmental Health Sciences School of Public Health, University of Alabama at Birmingham Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham Birmingham, Alabama
| | - Giuseppe L. Squadrito
- Department of Environmental Health Sciences School of Public Health, University of Alabama at Birmingham Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham Birmingham, Alabama
| | - Carol A. Ballinger
- Department of Environmental Health Sciences School of Public Health, University of Alabama at Birmingham Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham Birmingham, Alabama
| | - David M. Krzywanski
- Department of Environmental Health Sciences School of Public Health, University of Alabama at Birmingham Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham Birmingham, Alabama
| | - Jack R. Lancaster
- Department of Anesthesiology Department of Physiology & Biophysics School of Medicine, University of Alabama at Birmingham Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham Birmingham, Alabama
| | - Edward M. Postlethwait
- Department of Environmental Health Sciences School of Public Health, University of Alabama at Birmingham Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|
22
|
Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci U S A 2012; 109:2660-5. [PMID: 22308405 DOI: 10.1073/pnas.1116559109] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Globins constitute a superfamily of proteins widespread in all kingdoms of life, where they fulfill multiple functions, such as efficient O(2) transport and modulation of nitric oxide bioactivity. In plants, the most abundant Hbs are the symbiotic leghemoglobins (Lbs) that scavenge O(2) and facilitate its diffusion to the N(2)-fixing bacteroids in nodules. The biosynthesis of Lbs during nodule formation has been studied in detail, whereas little is known about the green derivatives of Lbs generated during nodule senescence. Here we characterize modified forms of Lbs, termed Lba(m), Lbc(m), and Lbd(m), of soybean nodules. These green Lbs have identical globins to the parent red Lbs but their hemes are nitrated. By combining UV-visible, MS, NMR, and resonance Raman spectroscopies with reconstitution experiments of the apoprotein with protoheme or mesoheme, we show that the nitro group is on the 4-vinyl. In vitro nitration of Lba with excess nitrite produced several isomers of nitrated heme, one of which is identical to those found in vivo. The use of antioxidants, metal chelators, and heme ligands reveals that nitration is contingent upon the binding of nitrite to heme Fe, and that the reactive nitrogen species involved derives from nitrous acid and is most probably the nitronium cation. The identification of these green Lbs provides conclusive evidence that highly oxidizing and nitrating species are produced in nodules leading to nitrosative stress. These findings are consistent with a previous report showing that the modified Lbs are more abundant in senescing nodules and have aberrant O(2) binding.
Collapse
|
23
|
Samuni A, Goldstein S. One-Electron Oxidation of Acetohydroxamic Acid: The Intermediacy of Nitroxyl and Peroxynitrite. J Phys Chem A 2011; 115:3022-8. [DOI: 10.1021/jp201796q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amram Samuni
- Department of Molecular Biology, Medical School and #Chemistry Institute, The Accelerator Laboratory, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sara Goldstein
- Department of Molecular Biology, Medical School and #Chemistry Institute, The Accelerator Laboratory, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Lu N, Chen W, Peng YY. Effects of glutathione, Trolox and desferrioxamine on hemoglobin-induced protein oxidative damage: anti-oxidant or pro-oxidant? Eur J Pharmacol 2011; 659:95-101. [PMID: 21419762 DOI: 10.1016/j.ejphar.2011.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/21/2011] [Accepted: 03/08/2011] [Indexed: 12/23/2022]
Abstract
Evidence to support the role of heme proteins as major inducers of oxidative damage is increasingly present. Antioxidants have been widely used to ameliorate oxidative damage in vivo and in vitro, where the mechanism of this therapeutic action was usually dependent on their anti-oxidant effects. In this study, we chose three classic antioxidants, i.e. glutathione (GSH, an important intracellular antioxidant), 6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Trolox, a phenolic antioxidant without chelating effect) and desferrioxamine (DFO, a good iron chelator), to study their efficiencies on hemoglobin-induced protein oxidative damage. It was found that all of these antioxidants had the capacities to act as free radical scavengers and reducing agents to remove cytotoxic ferryl hemoglobin, demonstrating apparent anti-oxidant activities. However, the effects on hemoglobin-H(2)O(2)-induced protein oxidation depended on the categories and concentrations of antioxidants. GSH efficiently inhibited protein (bovine serum albumin or rat heart homogenate) carbonyl formation in a dose-dependent manner. In contrast to their protective effects at high concentrations, both Trolox and DFO could significantly aggravate protein oxidation at low concentrations. The pro-oxidant effects of Trolox and DFO on hemoglobin-mediated oxidative damage were probably related to their abilities in producing additional free radicals, such as superoxide (O·(2)(-)) and hydroxyl radical (·OH). The dual effects on hemoglobin redox reactions may provide new insights into the physiological implications of Trolox and DFO with cellular heme proteins.
Collapse
Affiliation(s)
- Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China
| | | | | |
Collapse
|
25
|
Folkes LK, Trujillo M, Bartesaghi S, Radi R, Wardman P. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione. Arch Biochem Biophys 2011; 506:242-9. [DOI: 10.1016/j.abb.2010.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/17/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
|
26
|
Nitrative and oxidative modifications of enolase are associated with iron in iron-overload rats and in vitro. J Biol Inorg Chem 2010; 16:481-90. [DOI: 10.1007/s00775-010-0747-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/30/2010] [Indexed: 12/17/2022]
|
27
|
Kalimeris K, Nastos C, Papoutsidakis N, Xanthopoulou MN, Defterevos G, Tympa A, Pafiti A, Andreadou I, Kostopanagiotou G, Smyrniotis V, Arkadopoulos N. Iron chelation prevents lung injury after major hepatectomy. Hepatol Res 2010; 40:841-50. [PMID: 20649822 DOI: 10.1111/j.1872-034x.2010.00682.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM Oxidative stress has been implicated in lung injury following ischemia/reperfusion and resection of the liver. We tested whether alleviating oxidative stress with iron chelation could improve lung injury after extended hepatectomy. METHODS Twelve adult female pigs subjected to liver ischemia for 150 min, 65-70% hepatectomy and reperfusion of the remnant liver for 24 h were randomized to a desferrioxamine (DF) group (n = 6) which received i.v. desferrioxamine to a total dose of 100 mg/kg during both ischemia and reperfusion, and a control (C) group (n = 6). We recorded hemodynamic and respiratory parameters, plasma interleukin-6 and malondialdehyde levels, as well as liver malondialdehyde and protein carbonyls content. Total non-heme iron was measured in lung and liver. Pulmonary tissue was evaluated histologically for its nitrotyrosine and protein carbonyls content and for superoxide dismutase (SOD) and platelet-activating factor acetylhydrolase (PAF-AcH) activities. RESULTS Reperfusion of the remnant liver resulted in gradual deterioration of gas-exchange and pulmonary vascular abnormalities. Iron chelation significantly decreased the oxidative markers in plasma, liver and the lung and lowered activities of pulmonary SOD and PAF-AcH. The improved liver function was followed by improved arterial oxygenation and pulmonary vascular resistance. DF also improved alveolar collapse and inflammatory cell infiltration, while serum interleukin-6 increased. CONCLUSION In an experimental pig model that combines liver resection with prolonged ischemia, iron chelation during reperfusion of the remnant liver is associated with improvement of several parameters of oxidative stress, lung injury and arterial oxygenation.
Collapse
|
28
|
Wang H, Li Y, Liu H, Liu S, Liu Q, Wang XM, Shi Y, Duan H. Peroxynitrite mediates glomerular lesion of diabetic rat via JAK/STAT signaling pathway. J Endocrinol Invest 2009; 32:844-51. [PMID: 19636222 DOI: 10.1007/bf03345756] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Peroxynitrite, a highly reactive oxidant produced by the reaction of nitric oxide with free radicals superoxide, has been indicated to be involved in many diseases. However, the contributions of peroxynitrite to diabetic nephropathy and the underlying mechanism have not been fully explored. AIM The present study was designed to evaluate the role and the underlying mechanism of peroxynitrite in glomerular lesion of diabetic rat. METHODS Diabetes was induced in male Wistar rats by i.p. injection of streptozotocin, and urate was used as a specific scavenger of peroxynitrite; the pathological changes of rat glomerulus were evaluated by hematoxylin and eosin, periodic acid-Schiff staining and transmission electron microscopy observation; immunohistochemistry and Western blot were used to detect the content of nitrotyrosine (the marker of peroxynitrite) in renal cortex; the expression levels of tyrosine phosphorylation of JAK2, STAT1, and STAT3 were assessed by Western blot assay; RT-PCR and Western blot were used to assay expression levels of transforming growth factor (TGF)-beta1 and fibronectin; biochemical indicators of renal function were also detected. RESULTS The content of nitrotyrosine was increased, consistent with the pathological changes of glomerulus and renal dysfunction in the diabetes group. Urate prevented the formation of nitrotyrosine in rat glomerulus and attenuated the pathological alterations. Furthermore, urate inhibited the activation of JAK2, STAT1, and STAT3. Finally, homogenates from renal cortices demonstrated reduced expression of TGF- beta1 and fibronectin under urate treatment. CONCLUSIONS Our findings thus provides in vivo evidence that exaggerated peroxynitrite formation mediates the glomerular lesion in, at least, Type 1 diabetes, which may function through JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- H Wang
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu N, Zhou G, Pei D, Yi L, Gao Z. Peroxynitrite and heme protein – Mediated nitrative/oxidative modification of human plasma protein: The role of free radical scavenging vs. complex forming. Toxicol In Vitro 2009; 23:1227-33. [DOI: 10.1016/j.tiv.2009.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/03/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
30
|
Abstract
Blood platelets, in analogy to other circulating blood cells, can generate reactive oxygen/nitrogen species (ROS/RNS) that may behave as second messengers and may regulate platelet functions. Accumulating evidence suggest a role of ROS/RNS in platelet activation. On the other hand, an increased production of ROS/RNS causes oxidative stress, and thus, may contribute to the development of different diseases, including vascular complications, inflammatory and psychiatric illnesses. Oxidative stress in platelets leads to chemical changes in a wide range of their components, and platelet proteins may be initial targets of ROS/RNS action. It has been demonstrated that reaction of proteins with ROS/RNS results in the oxidation and nitration of some amino acid residues, formation of aggregates or fragmentation of proteins. In oxidized proteins new carbonyl groups and protein hydroperoxides are also formed. In platelets, low molecular weight thiols such as glutathione (GSH), cysteine and cysteinylglycine and protein thiols may be also target for ROS/RNS action. This review describes the chemical structure and biological activities of reactive nitrogen species, mainly nitric oxide ((*)NO) and peroxynitrite (ONOO(-)) and their effects on blood platelet functions, and the mechanisms involved in their action on platelets.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | | |
Collapse
|
31
|
Fontana M, Giovannitti F, Pecci L. The protective effect of hypotaurine and cysteine sulphinic acid on peroxynitrite-mediated oxidative reactions. Free Radic Res 2009; 42:320-30. [DOI: 10.1080/10715760801999727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Al-Gonaiah M, Smith RA, Stone TW. Xanthine oxidase-induced neuronal death via the oxidation of NADH: prevention by micromolar EDTA. Brain Res 2009; 1280:33-42. [PMID: 19450565 DOI: 10.1016/j.brainres.2009.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/29/2022]
Abstract
The oxidation of xanthine by xanthine oxidase (XO) or xanthine dehydrogenase represents an important source of reactive oxygen species (ROS), which contribute to the damaging consequences of cerebral ischemia, inflammation, and neurodegenerative disorders. However, both enzymes are also able to act on reduced nicotinamide adenine dinucleotide (NADH). The FAD binding site to which NADH binds is distinct from that of the xanthine binding site. We report that the combination of xanthine oxidase and NADH is toxic to cultures of cerebellar granule neurons. Protection by superoxide dismutase (Cu,Zn-SOD or Mn-SOD) or catalase indicates mediation of the toxicity by superoxide and hydrogen peroxide. In addition, pre-incubating XO with EDTA at concentrations as low as 2 microM, prevented the toxicity, indicating that a metal contaminating XO is involved in producing the toxic effects of XO/NADH. It is possible that such a metal might play a role in the toxicity of XO in vivo.
Collapse
Affiliation(s)
- Majed Al-Gonaiah
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
33
|
Degasperi GR, Castilho RF, Vercesi AE. High susceptibility of activated lymphocytes to oxidative stress-induced cell death. AN ACAD BRAS CIENC 2008; 80:137-48. [PMID: 18345382 DOI: 10.1590/s0001-37652008000100009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/21/2008] [Indexed: 11/21/2022] Open
Abstract
The present study provides evidence that activated spleen lymphocytes from Walker 256 tumor bearing rats are more susceptible than controls to tert-butyl hydroperoxide (t-BOOH)-induced necrotic cell death in vitro. The iron chelator and antioxidant deferoxamine, the intracellular Ca2+ chelator BAPTA, the L-type Ca2+ channel antagonist nifedipine or the mitochondrial permeability transition inhibitor cyclosporin A, but not the calcineurin inhibitor FK-506, render control and activated lymphocytes equally resistant to the toxic effects of t-BOOH. Incubation of activated lymphocytes in the presence of t-BOOH resulted in a cyclosporin A-sensitive decrease in mitochondrial membrane potential. These results indicate that the higher cytosolic Ca2+ level in activated lymphocytes increases their susceptibility to oxidative stress-induced cell death in a mechanism involving the participation of mitochondrial permeability transition.
Collapse
Affiliation(s)
- Giovanna R Degasperi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | |
Collapse
|
34
|
Lu N, Zhang M, Li H, Gao Z. Completely Different Effects of Desferrioxamine on Hemin/Nitrite/H2O2-Induced Bovine Serum Albumin Nitration and Oxidation. Chem Res Toxicol 2008; 21:1229-34. [DOI: 10.1021/tx800013e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Methods to measure the reactivity of peroxynitrite-derived oxidants toward reduced fluoresceins and rhodamines. Methods Enzymol 2008; 441:261-82. [PMID: 18554539 DOI: 10.1016/s0076-6879(08)01214-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The commonest probes for "reactive oxygen and nitrogen species" are reduced fluorescein and rhodamine dyes that fluoresce when oxidized. The reduced dyes are reactive toward peroxynitrite, although probably not directly but via free radical oxidants derived from it: hydroxyl, carbonate, and nitrogen dioxide free radicals. The reaction with peroxynitrite can be monitored by rapid mixing and stopped-flow spectrophotometry, but reliable measurement of reactivity of the peroxynitrite-derived radicals requires specialized techniques such as flash photolysis or pulse radiolysis to monitor the fast reactions in real time. A key feature of oxidation by radicals is that the reaction produces an intermediate fluorescein or rhodamine radical, which normally is oxidized further by oxygen to yield the fluorescent, stable product. Susceptibility of the yield of fluorescence to interference by antioxidants can be assessed from kinetic parameters, which reflect reactivity. This chapter outlines methods for estimation of key rate constants involving peroxynitrite-derived oxidants.
Collapse
|
36
|
Bartesaghi S, Peluffo G, Zhang H, Joseph J, Kalyanaraman B, Radi R. Tyrosine nitration, dimerization, and hydroxylation by peroxynitrite in membranes as studied by the hydrophobic probe N-t-BOC-l-tyrosine tert-butyl ester. Methods Enzymol 2008; 441:217-36. [PMID: 18554537 DOI: 10.1016/s0076-6879(08)01212-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein tyrosine oxidation mechanisms in hydrophobic biocompartments (i.e., biomembranes, lipoproteins) leading to nitrated, dimerized, and hydroxylated products are just starting to be appreciated. This chapter reports on the use of the hydrophobic tyrosine analog N-t-BOC-l-tyrosine tert-butyl ester (BTBE) incorporated to phosphatidyl choline liposomes to study peroxynitrite-dependent tyrosine oxidation processes in model biomembranes. The probe proved to be valuable in defining the role of biologically relevant variables in the oxidation process, including the action of hydrophilic and hydrophobic peroxynitrite and peroxynitrite-derived free radical scavengers, transition metal catalysts, carbon dioxide, molecular oxygen, pH, and fatty acid unsaturation degree. Moreover, detection of the BTBE phenoxyl radical and relative product distribution yields of 3-nitro-, 3,3'-di-, and 3-hydroxy-BTBE in the membrane fully accommodate with a free radical mechanism of tyrosine oxidation, with physical chemical and biochemical determinants that in several respects differ of those participating in aqueous environments. The methods presented herein can be extended to explore the reaction mechanisms of tyrosine oxidation by other biologically relevant oxidants and in other hydrophobic biocompartments.
Collapse
Affiliation(s)
- Silvina Bartesaghi
- Department of Biochemistry, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
37
|
Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6:662-80. [PMID: 17667957 DOI: 10.1038/nrd2222] [Citation(s) in RCA: 1639] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Surgery, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, University Heights, Newark, New Jersey 07103-2714, USA.
| | | | | |
Collapse
|
38
|
Balcerczyk A, Sowa K, Bartosz G. Metal chelators react also with reactive oxygen and nitrogen species. Biochem Biophys Res Commun 2007; 352:522-5. [PMID: 17126814 DOI: 10.1016/j.bbrc.2006.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 11/11/2006] [Indexed: 01/31/2023]
Abstract
Popular chelators (desferrioxamine, SIH, EDTA, EGTA, DTPA, and NTA) were demonstrated to have antioxidant properties, being able to reduce ABTS radical cation and react with peroxyl radicals, peroxynitrite, and hypochlorite. Desferrioxamine and SIH were most potent antioxidants in all cases. These results point to the necessity of a careful interpretation of experiments in which the inhibition of free radical reactions by antioxidants is used as a proof of involvement of metal ions in a reaction.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | | |
Collapse
|
39
|
|
40
|
Trujillo M, Folkes L, Bartesaghi S, Kalyanaraman B, Wardman P, Radi R. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radic Biol Med 2005; 39:279-88. [PMID: 15964519 DOI: 10.1016/j.freeradbiomed.2005.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022]
Abstract
Alpha-lipoic acid (LA) and dihydrolipoic acid (DHLA) may have a role as antioxidants against nitric oxide-derived oxidants. We previously reported that peroxynitrite reacts with LA and DHLA with second-order rate constants of 1400 and 500 M(-1) s(-1), respectively, but indicated that these direct reactions are not fast enough to protect against peroxynitrite-mediated damage in vivo. Moreover, the mechanism of the reaction of peroxynitrite with LA has been recently challenged (J. Biol. Chem.279:9693-9697; 2004). Pulse radiolysis studies indicate that LA and DHLA react with peroxynitrite-derived nitrogen dioxide (*NO2) (k2 = 1.3 x 10(6) and 2.9 x 10(7) M(-1) s(-1), respectively) and carbonate radicals (CO(3-)) (k2 = 1.6 x 10(9) and 1.7 x 10(8) M(-1) s(-1), respectively). Carbonate radical-mediated oxidation of LA led to the formation of the potent one-electron oxidant LA radical cation. LA inhibited peroxynitrite-mediated nitration of tyrosine and of a hydrophobic tyrosine analog, N-t-BOC L-tyrosine tert-butyl ester (BTBE), incorporated into liposomes but enhanced tyrosine dimerization. Moreover, while LA competitively inhibited the direct oxidation of glutathione by peroxynitrite, it was poorly effective against the radical-mediated thiol oxidation. The mechanisms of reaction defined herein allow to rationalize the biochemistry of peroxynitrite based on direct and free radical-mediated processes and contribute to the understanding of the antioxidant actions of LA and DHLA.
Collapse
Affiliation(s)
- Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The occurrence of protein tyrosine nitration under disease conditions is now firmly established and represents a shift from the signal transducing physiological actions of (.)NO to oxidative and potentially pathogenic pathways. Tyrosine nitration is mediated by reactive nitrogen species such as peroxynitrite anion (ONOO(-)) and nitrogen dioxide ((.)NO2), formed as secondary products of (.)NO metabolism in the presence of oxidants including superoxide radicals (O2(.-)), hydrogen peroxide (H2O2), and transition metal centers. The precise interplay between (.)NO and oxidants and the identification of the proximal intermediate(s) responsible for nitration in vivo have been under controversy. Despite the capacity of peroxynitrite to mediate tyrosine nitration in vitro, its role on nitration in vivo has been questioned, and alternative pathways, including the nitrite/H2O2/hemeperoxidase and transition metal-dependent mechanisms, have been proposed. A balanced analysis of existing evidence indicates that (i) different nitration pathways can contribute to tyrosine nitration in vivo, and (ii) most, if not all, nitration pathways involve free radical biochemistry with carbonate radicals (CO3(.-)) and/or oxo-metal complexes oxidizing tyrosine to tyrosyl radical followed by the diffusion-controlled reaction with (.)NO2 to yield 3-nitrotyrosine. Although protein tyrosine nitration is a low-yield process in vivo, 3-nitrotyrosine has been revealed as a relevant biomarker of (.)NO-dependent oxidative stress; additionally, site-specific nitration focused on particular protein tyrosines may result in modification of function and promote a biological effect. Tissue distribution and quantitation of protein 3-nitrotyrosine, recognition of the predominant nitration pathways and individual identification of nitrated proteins in disease states open new avenues for the understanding and treatment of human pathologies.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay.
| |
Collapse
|
42
|
Olas B, Nowak P, Kolodziejczyk J, Wachowicz B. The effects of antioxidants on peroxynitrite-induced changes in platelet proteins. Thromb Res 2004; 113:399-406. [PMID: 15226095 DOI: 10.1016/j.thromres.2004.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/30/2004] [Accepted: 04/04/2004] [Indexed: 01/13/2023]
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | | | | |
Collapse
|