1
|
Budnikov AS, Krylov IB, Shevchenko MI, Sokova LL, Liu Y, Yu B, Terent'ev AO. Synthesis of ω-functionalized ketones from strained cyclic alcohols by ring-opening and cross-recombination between alkyl and N-oxyl radicals. Org Biomol Chem 2024. [PMID: 39385714 DOI: 10.1039/d4ob01490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Radical ring-opening oxyimidation of cyclobutanols and cyclopropanols with the formation of ω-functionalized ketones was discovered. The oxidative C-O coupling proceeds via the interception of a primary alkyl radical generated from a cyclic alcohol with a reactive radical generated in situ, which is an electron-deficient N-oxyl radical. The developed conditions allow for the balanced generation rates of carbon- and N-oxyl radicals, which are necessary for their selective cross-recombination. Thus, typical competitive dimerization processes of carbon-centered radicals, their intermolecular cyclization, and N-oxyl radical self-decay are suppressed. The method is applicable to a wide range of cyclobutanols and results in oxyimidated ketones in yields of up to 82%.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Lyubov' L Sokova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Shu VA, Eni DB, Ntie-Kang F. A survey of isatin hybrids and their biological properties. Mol Divers 2024:10.1007/s11030-024-10883-z. [PMID: 38833124 DOI: 10.1007/s11030-024-10883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The emergence of diverse infections worldwide, which is a serious global threat to human existence, necessitates the urgent development of novel therapeutic candidates that can combat these diseases with efficacy. Molecular hybridization has been established as an efficient technique in designing bioactive molecules capable of fighting infections. Isatin, a core nucleus of an array of compounds with diverse biological properties can be modified at different positions leading to the creation of novel drug targets, is an active area of medicinal chemistry. This review containing published articles from 2005 to 2022 highlights isatin hybrids which have been synthesized and reported in the literature alongside a discussion on their biological properties. The enriched structure-activity relationship studies discussed provides insights for the rational design of novel isatin hybrids with tailored biological properties as effective therapeutic candidates inspired by nature.
Collapse
Affiliation(s)
- Vanessa Asoh Shu
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
3
|
Marco-Contelles J. α-Phenyl- N-tert-Butylnitrone and Analogous α-Aryl- N-alkylnitrones as Neuroprotective Antioxidant Agents for Stroke. Antioxidants (Basel) 2024; 13:440. [PMID: 38671888 PMCID: PMC11047398 DOI: 10.3390/antiox13040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The recent advances in research on the use of the antioxidant and neuroprotective agent α-phenyl-N-tert-butylnitrone (PBN) for the therapy of stroke have been reviewed. The protective effect of PBN in the transient occlusion of the middle cerebral artery (MCAO) has been demonstrated, although there have been significant differences in the neuronal salvaging effect between PBN-treated and untreated animals, each set of data having quite large inter-experimental variation. In the transient forebrain ischemia model of gerbil, PBN reduces the mortality after ischemia and the neuronal damage in the hippocampal cornu ammonis 1 (CA1) area of the hippocumpus caused by ischemia. However, PBN fails to prevent postischemic CA1 damage in the rat. As for focal cerebral ischemia, PBN significantly reduces cerebral infarction and decreases neurological deficit after ischemia using a rat model of persistent MCAO in rats. Similarly, the antioxidant and neuroprotective capacity of a number of PBN-derived nitrones prepared in the author's laboratory have also been summarized here, showing their high potential therapeutic power to treat stroke.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/ Juan de la Cierva, 3, 28006 Madrid, Spain;
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Center for Biomedical Network Research (CIBER), Carlos III Health Institute (ISCIII), 46010 Madrid, Spain
| |
Collapse
|
4
|
Vargas EL, Franco M, Alonso I, Tortosa M, Belén Cid M. Diboron reagents in the deoxygenation of nitrones. Org Biomol Chem 2023; 21:807-816. [PMID: 36599009 DOI: 10.1039/d2ob01880b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
B2nep2 efficiently promotes the N-O cleavage of nitrones to form imines in very high yields via a simple, efficient, sustainable, functional group tolerant and scalable protocol. The reaction occurs in the absence of additives through a concerted mechanism. We demonstrated that DMPO and TEMPO, typically used as radical traps, are also deoxygenated by diboron reagents, which demonstrates their limitation as mechanistic probes.
Collapse
Affiliation(s)
- Emily L Vargas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Mario Franco
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Inés Alonso
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mariola Tortosa
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M Belén Cid
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Hadjipavlou-Litina D, Głowacka IE, Marco-Contelles J, Piotrowska DG. Synthesis and Antioxidant Properties of Novel 1,2,3-Triazole-Containing Nitrones. Antioxidants (Basel) 2022; 12:antiox12010036. [PMID: 36670898 PMCID: PMC9854728 DOI: 10.3390/antiox12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Herein, we report the synthesis and antioxidant capacity of twelve novel 1,2,3-triazole-containing nitrones such as N-(2-(4-aryl-1H-1,2,3-triazol-1-yl)ethylidene)methanamine oxides 8a-f and N-(2-(4-aryl)-1H-1,2,3-triazol-1-yl)ethylidene)-2-methylpropan-2-amine oxides 9a-f, bearing an N-methyl, and an N-t-butyl substituent, respectively, at the nitrogen of the nitrone motif. Nitrones 8 and 9 were studied with regard to their antioxidant ability, as well as their ability to inhibit soybean lypoxygenase (LOX), and their in vitro antioxidant activity. For this, we used three different antioxidant assays, such as that featuring the interaction with the water-soluble azo compound AAPH for the inhibition of lipid peroxidation (LP), the competition with the DMSO for scavenging hydroxyl radicals, and the ABTS•+-decolorization assay. t-Butyl nitrone 9e, bearing the 2,4-difluorophenyl motif, showed a strong LP inhibitory effect (100%), close to the reference compound Trolox (93%), being the most potent LP inhibitor (LPi) of the whole series of tested nitrones. Nitrones 9d, 9e and 9f, bearing the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, were almost equipotent, and the most potent hydroxyl radical scavengers (~100%), more potent than Trolox (88%), were used as a reference compound. Regarding the LOX inhibition, the most potent inhibitor was the t-butyl substituted nitrone 9f (27 μM), bearing the 4-fluoro-3-methylphenyl motif, being 60-fold less potent than NDGA (0.45 μM), which was used as the standard in this test. The results from the antioxidant determination in the ABTS radical cation (ABTS•+) decolorization assay were not significant. N-Methyl nitrone 8f, bearing the 4-fluoro-3-methylphenyl motif, was the only promising representative, with a value of 34.3%, followed by nitrone 9f (16%). From the antioxidant analyses, we have identified N-(2-(4-(4-fluoro-3-methylphenyl)-1H-1,2,3-triazol-1-yl)ethylidene)-2-methylpropan-2-amine oxide (9f), bearing t-butyl and 4-fluoro-3-methylphenyl motifs in its structure, as the most balanced and potent antioxidant agent among the tested nitrones, as it was the most potent LOX inhibitor (27 μM), an extremely efficient and potent hydroxyl radical scavenger (99.9%), as well as one of the most potent LPi (87%) and ABTS•+ scavengers (16%).
Collapse
Affiliation(s)
- Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.H.-L.); (D.G.P.); Tel.: +30-23-1099-7627 (D.H.-L.); +48-42-677-92-33 (D.G.P.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, 46010 Madrid, Spain
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
- Correspondence: (D.H.-L.); (D.G.P.); Tel.: +30-23-1099-7627 (D.H.-L.); +48-42-677-92-33 (D.G.P.)
| |
Collapse
|
6
|
Lo Celso F, Barone G, Maiuolo L, Algieri V, Cretu C, Calandra P. Dissolution of nitrones in alkylphosphates: A structural study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Komissarova NG, Orlov AV, Malikova KA, Nugumanov TR, Yunusov MS. Nitrones Based on Pentacyclic Triterpenoids. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Preclinical Characterization of Antioxidant Quinolyl Nitrone QN23 as a New Candidate for the Treatment of Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11061186. [PMID: 35740081 PMCID: PMC9220178 DOI: 10.3390/antiox11061186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Nitrones are encouraging drug candidates for the treatment of oxidative stress-driven diseases such as acute ischemic stroke (AIS). In a previous study, we found a promising quinolylnitrone, QN23, which exerted a neuroprotective effect in neuronal cell cultures subjected to oxygen–glucose deprivation and in experimental models of cerebral ischemia. In this paper, we update the biological and pharmacological characterization of QN23. We describe the suitability of intravenous administration of QN23 to induce neuroprotection in transitory four-vessel occlusion (4VO) and middle cerebral artery occlusion (tMCAO) experimental models of brain ischemia by assessing neuronal death, apoptosis induction, and infarct area, as well as neurofunctional outcomes. QN23 significantly decreased the neuronal death and apoptosis induced by the ischemic episode in a dose-dependent manner and showed a therapeutic effect when administered up to 3 h after post-ischemic reperfusion onset, effects that remained 11 weeks after the ischemic episode. In addition, QN23 significantly reduced infarct volume, thus recovering the motor function in a tMCAO model. Remarkably, we assessed the antioxidant activity of QN23 in vivo using dihydroethidium as a molecular probe for radical species. Finally, we describe QN23 pharmacokinetic parameters. All these results pointing to QN23 as an interesting and promising preclinical candidate for the treatment of AIS.
Collapse
|
9
|
Shukla G, Yadav D, Singh S, Shankar Singh M. Access to Nitrones from Amines via Electrocatalysis at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Dhananjay Yadav
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Saurabh Singh
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Maya Shankar Singh
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
10
|
Nucleobase-Derived Nitrones: Synthesis and Antioxidant and Neuroprotective Activities in an In Vitro Model of Ischemia-Reperfusion. Int J Mol Sci 2022; 23:ijms23063411. [PMID: 35328832 PMCID: PMC8955307 DOI: 10.3390/ijms23063411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Herein, we report the synthesis, antioxidant, and neuroprotective properties of some nucleobase-derived nitrones named 9a–i. The neuroprotective properties of nitrones, 9a–i, were measured against an oxygen-glucose-deprivation in vitro ischemia model using human neuroblastoma SH-SY5Y cells. Our results indicate that nitrones, 9a–i, have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN) and are similar to N-acetyl-L-cysteine (NAC), a well-known antioxidant and neuroprotective agent. The nitrones with the highest neuroprotective capacity were those containing purine nucleobases (nitrones 9f, g, B = adenine, theophylline), followed by nitrones with pyrimidine nucleobases with H or F substituents at the C5 position (nitrones 9a, c). All of these possess EC50 values in the range of 1–6 μM and maximal activities higher than 100%. However, the introduction of a methyl substituent (nitrone 9b, B = thymine) or hard halogen substituents such as Br and Cl (nitrones 9d, e, B = 5-Br and 5-Cl uracil, respectively) worsens the neuroprotective activity of the nitrone with uracil as the nucleobase (9a). The effects on overall metabolic cell capacity were confirmed by results on the high anti-necrotic (EC50′s ≈ 2–4 μM) and antioxidant (EC50′s ≈ 0.4–3.5 μM) activities of these compounds on superoxide radical production. In general, all tested nitrones were excellent inhibitors of superoxide radical production in cultured neuroblastoma cells, as well as potent hydroxyl radical scavengers that inhibit in vitro lipid peroxidation, particularly, 9c, f, g, presenting the highest lipoxygenase inhibitory activity among the tested nitrones. Finally, the introduction of two nitrone groups at 9a and 9d (bis-nitronas 9g, i) did not show better neuroprotective effects than their precursor mono-nitrones. These results led us to propose nitrones containing purine (9f, g) and pyrimidine (9a, c) nucleobases as potential therapeutic agents for the treatment of cerebral ischemia and/or neurodegenerative diseases, leading us to further investigate their effects using in vivo models of these pathologies.
Collapse
|
11
|
Synthesis, crystal structure study, and evaluation of antimicrobial and antibiofilm activities of a novel dihydroisoquinoline-derived. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Sobočan N, Himelreich-Perić M, Katušić-Bojanac A, Krasić J, Sinčić N, Majić Ž, Jurić-Lekić G, Šerman L, Marić A, Ježek D, Bulić-Jakuš F. Extended Prophylactic Effect of N-tert-Butyl-α-phenylnitron against Oxidative/Nitrosative Damage Caused by the DNA-Hypomethylating Drug 5-Azacytidine in the Rat Placenta. Int J Mol Sci 2022; 23:603. [PMID: 35054786 PMCID: PMC8775603 DOI: 10.3390/ijms23020603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/10/2022] Open
Abstract
Antioxidant N-tert-Butyl-α-phenylnitron (PBN) partly protected embryos from the negative effects of a DNA demethylating drug 5-azacytidine during pregnancy. Our aim was to investigate PBN's impact on the placenta. Fischer rat dams were treated on gestation days (GD) 12 and 13 by PBN (40 mg/kg), followed by 5azaC (5 mg/kg) after one hour. Global methylation was assessed by pyrosequencing. Numerical density was calculated from immunohistochemical expression in single cells for proliferating (PCNA), oxidative (oxoguanosine) and nitrosative (nitrotyrosine) activity. Results were compared with the PBN-treated and control rats. PBN-pretreatment significantly increased placental weight at GD15 and GD20, diminished by 5azaC, and diminished apoptosis in GD 20 placentas caused by 5azaC. Oxoguanosine expression in placentas of 5azaC-treated dams was especially high in the placental labyrinth on GD 15, while PBN-pretreatment lowered its expression on GD 15 and GD 20 in both the labyrinth and basal layer. 5azaC enhanced nitrotyrosine level in the labyrinth of both gestational stages, while PBN-pretreatment lowered it. We conclude that PBN exerted its prophylactic activity against DNA hypomethylating agent 5azaC in the placenta through free radical scavenging, especially in the labyrinthine part of the placenta until the last day of pregnancy.
Collapse
Affiliation(s)
- Nikola Sobočan
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Gastroenterology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Marta Himelreich-Perić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ana Katušić-Bojanac
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Jure Krasić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Nino Sinčić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Željka Majić
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gordana Jurić-Lekić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ljiljana Šerman
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Andreja Marić
- Department of Internal Medicine, County Hospital Čakovec, 40000 Čakovec, Croatia;
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Floriana Bulić-Jakuš
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
13
|
Rizwana N, Agarwal V, Nune M. Antioxidant for Neurological Diseases and Neurotrauma and Bioengineering Approaches. Antioxidants (Basel) 2021; 11:72. [PMID: 35052576 PMCID: PMC8773039 DOI: 10.3390/antiox11010072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Antioxidants are a class of molecules with an innate affinity to neutralize reactive oxygen species (ROS), which are known to cause oxidative stress. Oxidative stress has been associated with a wide range of diseases mediated by physiological damage to the cells. ROS play both beneficial and detrimental roles in human physiology depending on their overall concentration. ROS are an inevitable byproduct of the normal functioning of cells, which are produced as a result of the mitochondrial respiration process. Since the establishment of the detrimental effect of oxidative stress in neurological disorders and neurotrauma, there has been growing interest in exploring antioxidants to rescue remaining or surviving cells and reverse the neurological damage. In this review, we present the survey of different antioxidants studied in neurological applications including neurotrauma. We also delve into bioengineering approaches developed to deliver antioxidants to improve their cellular uptake in neurological applications.
Collapse
Affiliation(s)
- Nasera Rizwana
- Manipal Institute of Regenerative Medicine (MIRM), Bengaluru, Manipal Academy of Higher Education (MAHE), Manipal 576104, India;
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine (MIRM), Bengaluru, Manipal Academy of Higher Education (MAHE), Manipal 576104, India;
| |
Collapse
|
14
|
Patamia V, Floresta G, Pistarà V, Rescifina A. Green Efficient One-Pot Synthesis and Separation of Nitrones in Water Assisted by a Self-Assembled Nanoreactor. Int J Mol Sci 2021; 23:ijms23010236. [PMID: 35008661 PMCID: PMC8745384 DOI: 10.3390/ijms23010236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
This article reports an alternative method for preparing nitrones using a tetrahedral capsule as a nanoreactor in water. Using the hydrophobic cavity of the capsule allowed us to reduce the reaction times and easily separate the nitrones from the reaction mixture, obtaining reaction yields equal or comparable to those obtained with the methods already reported. Furthermore, at the basis of this methodology, there is an eco-friendly approach carried out that can certainly be extended to other synthesis methods for the preparation of other substrates by exploiting various types of macrocyclic hosts, suitably designed and widely used in supramolecular chemistry.
Collapse
Affiliation(s)
- Vincenzo Patamia
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Giuseppe Floresta
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.); (V.P.)
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.); (V.P.)
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.); (V.P.)
- Correspondence:
| |
Collapse
|
15
|
Chioua M, Marco‐Contelles J. Synthesis of New Statin Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3 28006 -Madrid Spain
| | - José Marco‐Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3 28006 -Madrid Spain
| |
Collapse
|
16
|
Sohail M, Sun Z, Li Y, Gu X, Xu H. Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy. Expert Rev Anticancer Ther 2021; 21:1385-1398. [PMID: 34636282 DOI: 10.1080/14737140.2021.1991316] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION DOX exerts strong anticancer activity and is commonly used to treat different cancers, including bone sarcomas, soft tissues, bladder, ovary, stomach, thyroid, breast, acute lymphoblastic leukemia, Hodgkin lymphoma, lung cancer, and myeloblastic leukemia. However, the cumulative doses of DOX above 550mg/m2 cause irreversible cardiotoxicity and other severe adverse effects. In this context, concerning DOX, several patents have been published in the last two decades. This activity highlights various aspects of DOX, such as registered patent analysis, pharmacological action, toxicityminimization, formulation development such as those approved by FDA, under clinical trials, and newly developed nano-delivery systems. AREAS COVERED This review analyzes the different aspects of DOX-based chemotherapeutics and the development of drug delivery systems in theliterature published from 2000 to early 2020. EXPERT OPINION DOX-based chemotherapy is still few steps away from being "perfect and safe" therapy. Certain severe systemic side effects are associated with DOX therapy. It is expected that, in the near future, DOX therapy can be much effective by selecting an ideal nanocarrier system, DOX conjugates, proper structural modifications, DOX-immunotherapy, and combination therapy. The advanced formulationsof DOX from the registered patents and recent research articles need clinical trials to bring safe treatment for cancer patients.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Xuejing Gu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, People's Republic of China
| |
Collapse
|
17
|
Luo G, Sun L, Li H, Chen J, He P, Zhao L, Tang W, Qiu H. The potent radioprotective agents: Novel nitronyl nitroxide radical spin-labeled resveratrol derivatives. Fitoterapia 2021; 155:105053. [PMID: 34610355 DOI: 10.1016/j.fitote.2021.105053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023]
Abstract
It is commonly known that radiotherapy is still a key modality for treatment of cancer. Though this effect is desirable during radiotherapy, it leads to radiotoxicity on normal healthy cells. In the present research, we designed, synthesized and analyzed a series of nitronyl nitroxide radical (NITR) spin-labeled resveratrol (RES) derivatives. The cytotoxicity of the newly synthesized substances was tested on Jurkat T cells. The derivatives were studied as reactive oxygen species (ROS) scavenger to protect ionizing radiation of Jurkat T cells upon 6 Gy X-irradiation. The experimental results revealed that compound 2 and 3 could significantly alleviate the damage of Jurkat T cells, as evidenced by decreasing ROS production and restoring the cell apoptosis. Further mechanism investigations indicated that the radioprotective effects of the novel derivatives were largely associated with modulating the expression of apoptotic proteins including cIAP-1, cIAP-2, cytochrome c, caspase-3 and caspase-9. Based on the experimental result, we disclosed that the novel NITR spin-labeled RES derivatives exhibit the potential to be used as the novel radioprotective candidates to ameliorate the injury induced by ionizing radiation.
Collapse
Affiliation(s)
- Guoying Luo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lanlan Sun
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Peilan He
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
18
|
Varela-Nieto I, Murillo-Cuesta S, Rodríguez-de la Rosa L, Oset-Gasque MJ, Marco-Contelles J. Use of Radical Oxygen Species Scavenger Nitrones to Treat Oxidative Stress-Mediated Hearing Loss: State of the Art and Challenges. Front Cell Neurosci 2021; 15:711269. [PMID: 34539349 PMCID: PMC8440819 DOI: 10.3389/fncel.2021.711269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nitrones are potent antioxidant molecules able to reduce oxidative stress by trapping reactive oxygen and nitrogen species. The antioxidant potential of nitrones has been extensively tested in multiple models of human diseases. Sensorineural hearing loss has a heterogeneous etiology, genetic alterations, aging, toxins or exposure to noise can cause damage to hair cells at the organ of Corti, the hearing receptor. Noxious stimuli share a battery of common mechanisms by which they cause hair cell injury, including oxidative stress, the generation of free radicals and redox imbalance. Therefore, targeting oxidative stress-mediated hearing loss has been the subject of much attention. Here we review the chemistry of nitrones, the existing literature on their use as antioxidants and the general state of the art of antioxidant treatments for hearing loss.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Neurochemistry Research, Complutense University of Madrid, Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, CSIC, Madrid, Spain
| |
Collapse
|
19
|
Peng C, Gao Y, Wang P, Zhao Y, Chapagain B, Wang Y, Liu W, Yang Y. Theoretical Exploration of Copper-Catalyzed Mechanisms of Cope-Type Hydroamination of Cyclopropene and Oxime. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Bilodeau DA, Margison KD, Serhan M, Pezacki JP. Bioorthogonal Reactions Utilizing Nitrones as Versatile Dipoles in Cycloaddition Reactions. Chem Rev 2021; 121:6699-6717. [PMID: 33464040 DOI: 10.1021/acs.chemrev.0c00832] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemical reactions have emerged as convenient and rapid methods for incorporating unnatural functionality into living systems. Different prototype reactions have been optimized for use in biological settings. Optimization of 3 + 2 dipolar cycloadditions involving nitrones has resulted in highly efficient reaction conditions for bioorthogonal chemistry. Through substitution at the nitrone carbon or nitrogen atom, stereoelectronic tuning of the reactivity of the dipole has assisted in optimizing reactivity. Nitrones have been shown to react rapidly with cyclooctynes with bimolecular rate constants approaching k2 = 102 M-1 s-1, which are among the fastest bioorthogonal reactions reported (McKay et al. Org. Biomol. Chem. 2012, 10, 3066-3070). Nitrones have also been shown to react with trans-cyclooctenes (TCO) in strain-promoted TCO-nitrone cycloadditions reactions. Copper catalyzed reactions involving alkynes and nitrones have also been optimized for applications in biology. This review provides a comprehensive accounting of the different bioorthogonal reactions that have been developed using nitrones as versatile reactants, and provides some recent examples of applications for probing biological systems.
Collapse
Affiliation(s)
- Didier A Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Kaitlyn D Margison
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Mariam Serhan
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
21
|
Pinheiro AC, Fazzi RB, Esteves LC, Machado CO, Dörr FA, Pinto E, Hattori Y, Sa J, da Costa Ferreira AM, Bastos EL. A bioinspired nitrone precursor to a stabilized nitroxide radical. Free Radic Biol Med 2021; 168:110-116. [PMID: 33798616 DOI: 10.1016/j.freeradbiomed.2021.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023]
Abstract
Nitrones derived from natural antioxidants are emerging as highly specific therapeutics against various human diseases, including stroke, neurodegenerative pathologies, and cancer. However, the development of useful pseudo-natural nitrones requires the judicious choice of a secondary metabolite as the precursor. Betalains are nitrogen-containing natural pigments that exhibit marked antioxidant capacity and pharmacological properties and, hence, are ideal candidates for designing multifunctional nitrones. In this work, we describe the semisynthesis and properties of a biocompatible and antioxidant betalain-nitrone called OxiBeet. This bio-based compound is a better radical scavenger than ascorbic acid, gallic acid, and most non-phenolic antioxidants and undergoes concerted proton-coupled electron transfer. The autoxidation of OxiBeet produces a persistent nitroxide radical, which, herein, is studied via electron paramagnetic resonance spectroscopy. In addition, femtosecond transient absorption spectroscopy reveals that excited state formation is not required for the oxidation of OxiBeet. The results are compared with those obtained using betanin, a natural betalain, and pBeet, the imine analog of OxiBeet. The findings of this study will enable the development of antioxidant and spin-trap nitrones based on the novel N-oxide 1,7-diazaheptamethinium scaffold and betalain dyes with enhanced hydrolytic stability in aqueous alkaline media.
Collapse
Affiliation(s)
- Amanda Capistrano Pinheiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Rodrigo Boni Fazzi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Larissa Cerrato Esteves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Caroline Oliveira Machado
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Felipe Augusto Dörr
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Ernani Pinto
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Yocefu Hattori
- Physical Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 75120, Uppsala, Sweden
| | - Jacinto Sa
- Physical Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 75120, Uppsala, Sweden; Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Erick Leite Bastos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Synthesis and evaluation of cyclic nitrone derivatives as potential anti-cancer agents. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Macedo CM, Saraiva FMDS, Paula JIO, Nascimento SDB, Costa DDSDS, Costa PRR, Dias AG, Paes MC, Nogueira NP. The Potent Trypanocidal Effect of LQB303, a Novel Redox-Active Phenyl-Tert-Butyl-Nitrone Derivate That Causes Mitochondrial Collapse in Trypanosoma cruzi. Front Microbiol 2021; 12:617504. [PMID: 33935988 PMCID: PMC8081855 DOI: 10.3389/fmicb.2021.617504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Chagas disease, which is caused by Trypanosoma cruzi, establishes lifelong infections in humans and other mammals that lead to severe cardiac and gastrointestinal complications despite the competent immune response of the hosts. Furthermore, it is a neglected disease that affects 8 million people worldwide. The scenario is even more frustrating since the main chemotherapy is based on benznidazole, a drug that presents severe side effects and low efficacy in the chronic phase of the disease. Thus, the search for new therapeutic alternatives is urgent. In the present study, we investigated the activity of a novel phenyl-tert-butyl-nitrone (PBN) derivate, LQB303, against T. cruzi. LQB303 presented trypanocidal effect against intracellular [IC50/48 h = 2.6 μM] and extracellular amastigotes [IC50/24 h = 3.3 μM] in vitro, leading to parasite lysis; however, it does not present any toxicity to host cells. Despite emerging evidence that mitochondrial metabolism is essential for amastigotes to grow inside mammalian cells, the mechanism of redox-active molecules that target T. cruzi mitochondrion is still poorly explored. Therefore, we investigated if LQB303 trypanocidal activity was related to the impairment of the mitochondrial function of amastigotes. The investigation showed there was a significant decrease compared to the baseline oxygen consumption rate (OCR) of LQB303-treated extracellular amastigotes of T. cruzi, as well as reduction of “proton leak” (the depletion of proton motive force by the inhibition of F1Fo ATP synthase) and “ETS” (maximal oxygen consumption after uncoupling) oxygen consumption rates. Interestingly, the residual respiration (“ROX”) enhanced about three times in LQB303-treated amastigotes. The spare respiratory capacity ratio (SRC: cell ability to meet new energy demands) and the ATP-linked OCR were also impaired by LQB303 treatment, correlating the trypanocidal activity of LQB303 with the impairment of mitochondrial redox metabolism of amastigotes. Flow cytometric analysis demonstrated a significant reduction of the ΔΨm of treated amastigotes. LQB303 had no significant influence on the OCR of treated mammalian cells, evidencing its specificity against T. cruzi mitochondrial metabolism. Our results suggest a promising trypanocidal activity of LQB303, associated with parasite bioenergetic inefficiency, with no influence on the host energy metabolism, a fact that may point to an attractive alternative therapy for Chagas disease.
Collapse
Affiliation(s)
- Carolina Machado Macedo
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francis Monique de Souza Saraiva
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Isis Oliveira Paula
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen de Brito Nascimento
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Hematologia, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | | | - Ayres Guimarães Dias
- Departamento de Química Orgânica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Cristina Paes
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Natália Pereira Nogueira
- Laboratório de Interação de Tripanossomatídeos e Vetores, Departamento de Bioquímica, IBRAG - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Chamorro B, García-Vieira D, Diez-Iriepa D, Garagarza E, Chioua M, Hadjipavlou-Litina D, López-Muñoz F, Marco-Contelles J, Oset-Gasque MJ. Synthesis, Neuroprotection, and Antioxidant Activity of 1,1'-Biphenylnitrones as α-Phenyl- N-tert-butylnitrone Analogues in In Vitro Ischemia Models. Molecules 2021; 26:1127. [PMID: 33672652 PMCID: PMC7926640 DOI: 10.3390/molecules26041127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Herein, we report the neuroprotective and antioxidant activity of 1,1'-biphenyl nitrones (BPNs) 1-5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1'-biphenyl]-4-carbaldehyde and [1,1'-biphenyl]-4,4'-dicarbaldehyde. The neuroprotection of BPNs1-5 has been measured against oligomycin A/rotenone and in an oxygen-glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1-5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 μM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen-glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 μM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 μM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 μM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.
Collapse
Affiliation(s)
- Beatriz Chamorro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (B.C.); (E.G.)
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Spain;
| | - David García-Vieira
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
| | - Daniel Diez-Iriepa
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
- Department of Organic Chemistry and Inorganic Chemistry, Alcalá University, 28805 Alcalá de Henares, Spain
| | - Estíbaliz Garagarza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (B.C.); (E.G.)
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Spain;
- Neuropsychopharmacology Unit, “Hospital 12 de Octubre” Research Institute, Av. de Córdoba s/n, 28041 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (B.C.); (E.G.)
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid. Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
25
|
Lu J, West MB, Du X, Cai Q, Ewert DL, Cheng W, Nakmali D, Li W, Huang X, Kopke RD. Electrophysiological assessment and pharmacological treatment of blast-induced tinnitus. PLoS One 2021; 16:e0243903. [PMID: 33411811 PMCID: PMC7790300 DOI: 10.1371/journal.pone.0243903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
Tinnitus, the phantom perception of sound, often occurs as a clinical sequela of auditory traumas. In an effort to develop an objective test and therapeutic approach for tinnitus, the present study was performed in blast-exposed rats and focused on measurements of auditory brainstem responses (ABRs), prepulse inhibition of the acoustic startle response, and presynaptic ribbon densities on cochlear inner hair cells (IHCs). Although the exact mechanism is unknown, the “central gain theory” posits that tinnitus is a perceptual indicator of abnormal increases in the gain (or neural amplification) of the central auditory system to compensate for peripheral loss of sensory input from the cochlea. Our data from vehicle-treated rats supports this rationale; namely, blast-induced cochlear synaptopathy correlated with imbalanced elevations in the ratio of centrally-derived ABR wave V amplitudes to peripherally-derived wave I amplitudes, resulting in behavioral evidence of tinnitus. Logistic regression modeling demonstrated that the ABR wave V/I amplitude ratio served as a reliable metric for objectively identifying tinnitus. Furthermore, histopathological examinations in blast-exposed rats revealed tinnitus-related changes in the expression patterns of key plasticity factors in the central auditory pathway, including chronic loss of Arc/Arg3.1 mobilization. Using a formulation of N-acetylcysteine (NAC) and disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07) as a therapeutic for addressing blast-induced neurodegeneration, we measured a significant treatment effect on preservation or restoration of IHC ribbon synapses, normalization of ABR wave V/I amplitude ratios, and reduced behavioral evidence of tinnitus in blast-exposed rats, all of which accorded with mitigated histopathological evidence of tinnitus-related neuropathy and maladaptive neuroplasticity.
Collapse
Affiliation(s)
- Jianzhong Lu
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Matthew B. West
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Qunfeng Cai
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Donald L. Ewert
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Weihua Cheng
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Don Nakmali
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Wei Li
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Xiangping Huang
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Richard D. Kopke
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Departments of Physiology and Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
26
|
Petrocchi C, Thétiot-Laurent S, Culcasi M, Pietri S. Novel Mitochondria-Targeted Triphenylphosphonium Conjugates of Linear β-Phosphorylated Nitrones : Preparation, 31P NMR Mitochondrial Distribution, EPR Spin Trapping Reporting, and Site-Directed Antiapoptotic Properties. Methods Mol Biol 2021; 2275:65-85. [PMID: 34118032 DOI: 10.1007/978-1-0716-1262-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mitochondrion can be considered as the metabolic powerhouse of the cell, having a key impact on energy production, cell respiration, and intrinsic cell death. Mitochondria are also the main source of endogenous reactive oxygen species , including free radicals (FR), which are physiologically involved in signaling pathways but may promote cell damage when unregulated or excessively formed in inappropriate locations. A variety of chronic pathologies have been associated with FR-induced mitochondrial dysfunctions , such as cancer, age-related neurodegenerative diseases, and metabolic syndrome.In recent years drug design based on specific mitochondria-targeted antioxidants has become a very attractive therapeutic strategy and, among target compounds, nitrones have received growing attention because of their specific affinity toward FR. Here, we describe protocols dealing with the preparation, mitochondria permeation assessment, electron paramagnetic resonance (EPR) spin trapping setting, and antiapoptotic properties evaluation of a series of new linear nitrones vectorized by a triphenylphosphonium cation and labeled with a diethoxyphosphoryl moiety as 31P nuclear magnetic resonance (NMR) reporter with antioxidant property.
Collapse
Affiliation(s)
- Consuelo Petrocchi
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Sondes Moléculaires en Biologie et Stress Oxydant, Marseille, France
| | - Sophie Thétiot-Laurent
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Sondes Moléculaires en Biologie et Stress Oxydant, Marseille, France
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Sondes Moléculaires en Biologie et Stress Oxydant, Marseille, France
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Sondes Moléculaires en Biologie et Stress Oxydant, Marseille, France.
| |
Collapse
|
27
|
Deletraz A, Tuccio B, Roussel J, Combes M, Cohen-Solal C, Fabre PL, Trouillas P, Vignes M, Callizot N, Durand G. Para-Substituted α-Phenyl- N- tert-butyl Nitrones: Spin-Trapping, Redox and Neuroprotective Properties. ACS OMEGA 2020; 5:30989-30999. [PMID: 33324807 PMCID: PMC7726753 DOI: 10.1021/acsomega.0c03907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/15/2020] [Indexed: 05/06/2023]
Abstract
In this work, a series of para-substituted α-phenyl-N-tert-butyl nitrones (PBN) were studied. Their radical-trapping properties were evaluated by electron paramagnetic resonance, with 4-CF3-PBN being the fastest derivative to trap the hydroxymethyl radical (•CH2OH). The redox properties of the nitrones were further investigated by cyclic voltammetry, and 4-CF3-PBN was the easiest to reduce and the hardest to oxidize. This is due to the presence of the electron-withdrawing CF3 group. Very good correlations between the Hammett constants (σp) of the substituents and both spin-trapping rates and redox potentials were observed. These correlations were further supported by computationally determined ionization potentials and atom charge densities. Finally, the neuroprotective effect of these derivatives was studied using two different in vitro models of cell death on primary cortical neurons injured by glutamate exposure or on glial cells exposed to t BuOOH. Trends between the protection afforded by the nitrones and their lipophilicity were observed. 4-CF3-PBN was the most potent agent against t BuOOH-induced oxidative stress on glial cells, while 4-Me2N-PBN showed potency in both models.
Collapse
Affiliation(s)
- Anaïs Deletraz
- Institut
des Biomolécules Max Mousseron, UMR 5247 CNRS-Université
Montpellier-ENSCM & Avignon Université, Equipe Chimie Bioorganique
et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, BP 21239, Avignon 84916, Cedex 9, France
| | - Béatrice Tuccio
- Aix-Marseille
Université, CNRS, ICR UMR 7273, Avenue Escadrille Normandie
Niemen, 13397 Marseille, Cedex 20, France
| | - Julien Roussel
- Institut
des Biomolécules Max Mousseron, UMR 5247 CNRS-Université
Montpellier-ENSCM-Site faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France
| | - Maud Combes
- Neuro-Sys, 410 Chemin Départemental
60, 13120 Gardanne, France
| | - Catherine Cohen-Solal
- Institut
des Biomolécules Max Mousseron, UMR 5247 CNRS-Université
Montpellier-ENSCM-Site faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France
| | - Paul-Louis Fabre
- Pharma-Dev,
UMR152, Université de Toulouse, IRD, UPS, 35 chemin des Maraîchers, 31400 Toulouse, France
| | - Patrick Trouillas
- INSERM U1248
IPPRITT, Univ. Limoges, Faculté de Médecine et Pharmacie, 2 rue Du Professeur Descottes, 87000 Limoges, France
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu, 771 46 Olomouc, Czech Republic
| | - Michel Vignes
- Institut
des Biomolécules Max Mousseron, UMR 5247 CNRS-Université
Montpellier-ENSCM-Site faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France
| | - Noelle Callizot
- Neuro-Sys, 410 Chemin Départemental
60, 13120 Gardanne, France
| | - Grégory Durand
- Institut
des Biomolécules Max Mousseron, UMR 5247 CNRS-Université
Montpellier-ENSCM & Avignon Université, Equipe Chimie Bioorganique
et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, BP 21239, Avignon 84916, Cedex 9, France
- . Phone: +33 (0)4 9014 4445
| |
Collapse
|
28
|
Smith N, Saunders D, Jensen RL, Towner RA. Association of decreased levels of lipopolysaccharide-binding protein with OKN-007-induced regression of tumor growth in an F98 rat glioma model. J Neurosurg 2020; 133:1695-1703. [PMID: 31628293 DOI: 10.3171/2019.7.jns182435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 07/26/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE High-grade gliomas, such as glioblastoma (GBM), are devastating tumors with a very poor prognosis. Previously the authors have found that the nitrone compound OKN-007 (OKlahoma Nitrone 007; or disodium 4-[(tert-butyl-imino) methyl] benzene-1,3-disulfonate N-oxide) is effective against high-grade gliomas in various GBM rodent and human xenograft models. The purpose of the present study was to assess the levels of the lipopolysaccharide-binding protein (LBP) in rodent gliomas treated with OKN-007 as well as determine the expression of LBP in human gliomas. METHODS Microarray analysis was done to assess altered gene expression following OKN-007 administration in an F98 glioma model. An enzyme-linked immunosorbent assay was incorporated to assess LBP levels in glioma tissues, as well as blood serum, comparing results in OKN-007-treated and untreated tumor-bearing animals. Immunohistochemistry was used to assess LBP levels in varying grades of human glioma tissue sections. RESULTS Upon further assessment of gene expression fold changes in F98 gliomas in rats that received or did not receive OKN-007, it was found that the gene for LBP was significantly downregulated by OKN-007. Further investigation was done to see whether levels of LBP were affected by OKN-007 treatment in F98 gliomas. It was found that LBP could be detected not only in glioma tissue but also in blood serum of F98 glioma-bearing rats and that OKN-007 decreased the levels of LBP. It was also found that LBP levels are highly expressed in human high-grade glioma tissues. CONCLUSIONS LBP could potentially be used as a serum diagnostic marker of treatment response in high-grade gliomas.
Collapse
Affiliation(s)
- Nataliya Smith
- 1Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; and
| | - Debra Saunders
- 1Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; and
| | - Randy L Jensen
- 2Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rheal A Towner
- 1Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; and
| |
Collapse
|
29
|
Homo-Tris-Nitrones Derived from α-Phenyl- N-tert-butylnitrone: Synthesis, Neuroprotection and Antioxidant Properties. Int J Mol Sci 2020; 21:ijms21217949. [PMID: 33114714 PMCID: PMC7663103 DOI: 10.3390/ijms21217949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Herein we report the synthesis, antioxidant and neuroprotective power of homo-tris-nitrones (HTN) 1-3, designed on the hypothesis that the incorporation of a third nitrone motif into our previously identified homo-bis-nitrone 6 (HBN6) would result in an improved and stronger neuroprotection. The neuroprotection of HTNs 1-3, measured against oligomycin A/rotenone, showed that HTN2 was the best neuroprotective agent at a lower dose (EC50 = 51.63 ± 4.32 μM), being similar in EC50 and maximal activity to α-phenyl-N-tert-butylnitrone (PBN) and less potent than any of HBNs 4-6. The results of neuroprotection in an in vitro oxygen glucose deprivation model showed that HTN2 was the most powerful (EC50 = 87.57 ± 3.87 μM), at lower dose, but 50-fold higher than its analogous HBN5, and ≈1.7-fold less potent than PBN. HTN3 had a very good antinecrotic (IC50 = 3.47 ± 0.57 μM), antiapoptotic, and antioxidant (EC50 = 6.77 ± 1.35 μM) profile, very similar to that of its analogous HBN6. In spite of these results, and still being attractive neuroprotective agents, HTNs 2 and 3 do not have better neuroprotective properties than HBN6, but clearly exceed that of PBN.
Collapse
|
30
|
Abstract
The recent advances of tetramethylpyrazine nitrones and quinolylnitrones for the treatment of stroke have been reviewed and compared with other agents, showing promising therapeutic applications. As a result of a functional transformation of natural product ligustrazine, (Z)-N-tert-butyl-1-(3,5,6-trimethylpyrazin-2-yl)methanimine oxide (6) is a multitarget small nitrone showing potent thrombolytic activity and free radicals scavenging power, in addition to nontoxicity and blood-brain barrier permeability. Similarly, antioxidant (Z)-N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (17) is a novel agent for cerebral ischemia therapy as it is able to scavenge different types of free radical species, showing strong neuroprotection and reduced infarct size.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC; Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
31
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
32
|
Deletraz A, Zéamari K, Hua K, Combes M, Villamena FA, Tuccio B, Callizot N, Durand G. Substituted α-Phenyl and α-Naphthlyl- N- tert-butyl Nitrones: Synthesis, Spin-Trapping, and Neuroprotection Evaluation. J Org Chem 2020; 85:6073-6085. [PMID: 32267700 DOI: 10.1021/acs.joc.0c00563] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
New derivatives of α-phenyl-N-tert-butyl nitrone (PBN) bearing a hydroxyl, an acetate, or an acetamide substituent on the N-tert-butyl moiety and para-substituted phenyl or naphthlyl moieties were synthesized. Their ability to trap hydroxymethyl radical was evaluated by electron paramagnetic resonance spectroscopy. The presence of two electron-withdrawing substituents on both sides of the nitronyl function improves the spin-trapping properties, with 4-HOOC-PBN-CH2OAc and 4-HOOC-PBN-CH2NHAc being ∼4× more reactive than PBN. The electrochemical properties of the derivatives were further investigated by cyclic voltammetry and showed that the redox potentials of the nitrones are largely influenced by the nature of the substituents both on the aromatic ring and on the N-tert-butyl function. The acetamide derivatives PBN-CH2NHAc, 4-AcNHCH2-PBN-CH2NHAc, and 4-MeO-PBN-CH2NHAc were the easiest to oxidize. A computational approach was used to rationalize the effect of functionalization on the free energies of nitrone reactivity with hydroxymethyl radical as well as on the electron affinity and ionization potential. Finally, the neuroprotection of the derivatives was evaluated in an in vitro model of cellular injury on cortical neurons. Five derivatives showed good protection at very low concentrations (0.1-10 μM), with PBN-CH2NHAc and 4-HOOC-PBN being the two most promising agents.
Collapse
Affiliation(s)
- Anaïs Deletraz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM & Avignon Université, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, BP 21239, Avignon 84916 Cedex 9, France
| | - Kamal Zéamari
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM & Avignon Université, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, BP 21239, Avignon 84916 Cedex 9, France
| | - Kangyu Hua
- The Ohio State University, Department of Biological Chemistry and Pharmacology, 473 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Maud Combes
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Frederick A Villamena
- The Ohio State University, Department of Biological Chemistry and Pharmacology, 473 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Béatrice Tuccio
- Aix-Marseille Université, CNRS, ICR UMR 7273, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France
| | - Noelle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM & Avignon Université, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, BP 21239, Avignon 84916 Cedex 9, France
| |
Collapse
|
33
|
Panahi M, Rahimi B, Rahimi G, Yew Low T, Saraygord-Afshari N, Alizadeh E. Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy. J Cell Physiol 2020; 235:6462-6495. [PMID: 32239727 DOI: 10.1002/jcp.29660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.
Collapse
Affiliation(s)
- Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Golbarg Rahimi
- Department of Cellular and Molecular Biology, University of Esfahan, Esfahan, Iran
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Characterization of a CholesteroNitrone (ISQ-201), a Novel Drug Candidate for the Treatment of Ischemic Stroke. Antioxidants (Basel) 2020; 9:antiox9040291. [PMID: 32244303 PMCID: PMC7222207 DOI: 10.3390/antiox9040291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/17/2022] Open
Abstract
Nitrones have a well-recognized capacity as spin-traps and are considered powerful free radical scavengers, which are two important issues in hypoxia-induced oxidative stress and cell death in brain ischemia. Consequently, nitrones have been proposed as therapeutic agents in acute ischemic stroke (AIS). In this paper, we update the biological and pharmacological characterization of ISQ-201, a previously identified cholesteronitrone hybrid with antioxidant and neuroprotective activity. This study characterizes ISQ-201 as a neuroprotective agent against the hypoxia-induced ischemic injury. Transitory four-vessel occlusion and middle cerebral artery occlusion (tMCAO) were used to induce cerebral ischemia. Functional outcomes were determined using neurofunctional tests. Infarct area, neuronal death, and apoptosis induction were evaluated. In addition, ISQ-201 reactivity towards free radicals was studied in a theoretical model. ISQ-201 significantly decreased the ischemia-induced neuronal death and apoptosis, in a dose-dependent manner, showing its therapeutic effect when administered up until 6 h after post-ischemic reperfusion onset, effects that remained after 3 months from the ischemic episode. Furthermore, ISQ-201 significantly reduced infarct volume, leading to recovery of the motor function in the tMCAO model. Finally, the theoretical study confirmed the reactivity of ISQ-201 towards hydroxyl radicals. The results reported here prompted us to suggest ISQ-201 as a promising candidate for the treatment of AIS.
Collapse
|
35
|
Ivanov AV, Martynovskaya SV, Shcherbakova VS, Ushakov IA, Borodina TN, Bobkov AS, Vitkovskaya NM. Ambient access to a new family of pyrrole-fused pyrazine nitrones via 2-carbonyl- N-allenylpyrroles. Org Chem Front 2020. [DOI: 10.1039/d0qo00762e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemo-, regio- and stereoselective synthesis of pyrrole-fused pyrazine nitrones via the direct reaction of 2-carbonyl-N-allenylpyrroles (readily accessible from the corresponding NH-pyrroles) with hydroxyl amine hydrochloride has been developed.
Collapse
Affiliation(s)
- Andrey V. Ivanov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Svetlana V. Martynovskaya
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Victoria S. Shcherbakova
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Igor A. Ushakov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Tatyana N. Borodina
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Alexander S. Bobkov
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| | - Nadezhda M. Vitkovskaya
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| |
Collapse
|
36
|
The protective effect of nitronyl nitroxide radical on peroxidation of A549 cell damaged by iron overload. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110189. [PMID: 31924023 DOI: 10.1016/j.msec.2019.110189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023]
Abstract
Particulate pollution in the air has strong links with increased morbidity of cardiopulmonary diseases. Iron is one of the major carcinogens in air pollution and can produce hydroxyl radical which induce oxidative stress, lead to cell damage and even to cancer. In this work, a novel nitronyl nitroxide radical NITPh(OMe)2 (2-(2,4-dimethoxyphenyl) -4,4,5,5- tetramethylimidazoline- 1- oxyl-3- oxide) was prepared and characterized by electron spin-resonance spectroscopy (ESR), X-ray crystal diffraction, Fourier transform infrared (IR), X-ray powder diffraction (XRD), elemental analysis, ultraviolet and visible spectra (UV-Vis), and the electronic transition processes was also calculated by time-dependent density functional theory (TDDFT) to analysis UV-Vis spectrum. In vitro cell model of oxidative damage was established by ferric ammonium citrate (FAC) overload, and NITPh(OMe)2 was studied as a free radical scavenger to protect peroxidation of A549 cells. Results showed that NITPh(OMe)2 could significantly alleviate the damage of A549 cells by iron overload in cell morphology, cell viability, cell proliferation and cell apoptosis. The apoptotic signaling pathway of A549 cells induced by FAC and the protection mechanism of NITPh(OMe)2 were all discussed through the expression of three relating proteins, Bcl-2, Bax and DDIT3. This work confirms that nitroxide radicals are effective antioxidants, and have potential application in clinical practice as therapeutic agents.
Collapse
|
37
|
Headley CA, Hoffman CN, Freisen JM, Han Y, Macklin JM, Zweier JL, Rockenbauer A, Kuret J, Villamena FA. Membrane-specific spin trap, 5-dodecylcarbamoyl-5-N-dodecylacetamide-1-pyroline-N-oxide (diC 12PO): theoretical, bioorthogonal fluorescence imaging and EPR studies. Org Biomol Chem 2019; 17:7694-7705. [PMID: 31328213 PMCID: PMC6703941 DOI: 10.1039/c9ob01334b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membranous organelles are major endogenous sources of reactive oxygen and nitrogen species. When present at high levels, these species can cause macromolecular damage and disease. To better detect and scavenge free radical forms of the reactive species at their sources, we investigated whether nitrone spin traps could be selectively targeted to intracellular membranes using a bioorthogonal imaging approach. Electron paramagnetic resonance imaging demonstrated that the novel cyclic nitrone 5-dodecylcarbamoyl-5-N-dodecylacetamide-1-pyroline-N-oxide (diC12PO) could be used to target the nitrone moiety to liposomes composed of phosphatidyl choline. To test localization with authentic membranes in living cells, fluorophores were introduced via strain-promoted alkyne-nitrone cycloaddition (SPANC). Two fluorophore-conjugated alkynes were investigated: hexynamide-fluoresceine (HYA-FL) and dibenzylcyclooctyne-PEG4-5/6-sulforhodamine B (DBCO-Rhod). Computational and mass spectrometry experiments confirmed the cycloadduct formation of DBCO-Rhod (but not HYA-FL) with diC12PO in cell-free solution. Confocal microscopy of bovine aortic endothelial cells treated sequentially with diC12PO and DBCO-Rhod demonstrated clear localization of fluorescence with intracellular membranes. These results indicate that targeting of nitrone spin traps to cellular membranes is feasible, and that a bioorthogonal approach can aid the interrogation of their intracellular compartmentalization properties.
Collapse
Affiliation(s)
- Colwyn A Headley
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Claire N Hoffman
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Juliana M Freisen
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Yongbin Han
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Joseph M Macklin
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, and Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jeff Kuret
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Zhang M, Liu S, Li H, Guo Y, Li N, Guan M, Mehfooz H, Zhao J, Zhang Q. Copper‐Catalyzed Cope‐Type Hydroamination of Nonactivated Olefins toward Cyclic Nitrones: Scope, Mechanism, and Enantioselective Process Development. Chemistry 2019; 25:12620-12627. [DOI: 10.1002/chem.201902683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Mengru Zhang
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Shuang Liu
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Hexin Li
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Yajing Guo
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Na Li
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Meihui Guan
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Haroon Mehfooz
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Jinbo Zhao
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Qian Zhang
- Key Laboratory of Functional Molecule Synthesis of Jilin ProvinceDepartment of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
39
|
Soleymani M, Kazemi Chegeni Z. A molecular electron density theory study on the [3+2] cycloaddition reaction of 5,5-dimethyl-1-pyrroline N-oxide with 2-cyclopentenone. J Mol Graph Model 2019; 92:256-266. [PMID: 31422198 DOI: 10.1016/j.jmgm.2019.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/11/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
In the present work, the [3 + 2] cycloaddition reaction of 5,5-dimethyl-1-pyrroline N-oxide (Nit-5) and 2-cyclopentenone (CPN-6), experimentally reported by Tamura et al., was theoretically studied using the newly introduced molecular electron density theory (MEDT). Based on the experimental findings, this reaction takes place in an O3-C4 regio- and an exo-stereospecific fashion to give corresponding [3 + 2] exo cycloadduct as the sole product. The results of the potential energy surface analysis indicated that the experimentally reported product is more favorable both thermodynamically and kinetically relative to other possible adducts. In complete agreement with the experimental outcomes, the conceptual density functional theory reactivity indices explained the reactivity and regioselectivity of the reaction. Calculation of global electron density transfer of the energetically most preferred transition state indicated that the electron density fluxes from Nit-5 as a nucleophilic species toward CPN-6 as an electrophilic species. Analysis of the molecular electrostatic potential map of the most favorable transition state showed that approach of Nit-5 and CPN-6 locates the oppositely charged regions over each other leading to attractive forces between two reagents rationalizing the exo stereoselectivity predominance. The molecular mechanism of the reactions was specified using electron localization function analysis over some relevant points along the intrinsic reaction coordinate profile of the most favorable transition state and the results indicated that this zwitterionic-type [3 + 2] cycloaddition reaction proceeds through a two-stage one-step mechanism. In fact, while the O3-C4 single bond is initialy formed between two fragments through donation of some electron density from the O3 oxygen lone electron-pairs of Nit-5 toward the C4 carbon atom of CPN-6, the delayed C1-C5 single bond begins to form via C1- to -C5 coupling of pseudodiracal centers created on theses atoms over the course of reaction.
Collapse
Affiliation(s)
- Mousa Soleymani
- Chemistry Department, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, Iran.
| | - Zeinab Kazemi Chegeni
- Chemistry Department, Faculty of Science, Ayatollah Boroujerdi University, Boroujerd, Iran
| |
Collapse
|
40
|
Towner RA, Saunders D, Smith N, Gulej R, McKenzie T, Lawrence B, Morton KA. Anti-inflammatory agent, OKN-007, reverses long-term neuroinflammatory responses in a rat encephalopathy model as assessed by multi-parametric MRI: implications for aging-associated neuroinflammation. GeroScience 2019; 41:483-494. [PMID: 31478121 PMCID: PMC6815317 DOI: 10.1007/s11357-019-00094-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced encephalopathy induces neuroinflammation. Long-term neuroinflammation is associated with aging and subsequent cognitive impairment (CI). We treated rats that had LPS-induced neuroinflammation with OKN-007, with an anti-inflammatory agent currently considered an anti-cancer investigational new drug in clinical trials for glioblastoma (GBM). Contrast-enhanced magnetic resonance imaging (MRI) (CE-MRI), perfusion MRI, and MR spectroscopy were used as methods to assess long-term (up to 6 weeks post-LPS) alterations in blood-brain barrier (BBB) permeability, microvascularity, and metabolism, respectively, and the therapeutic effect of OKN-007. A free radical-targeted molecular MRI approach was also used to detect the effect of OKN-007 on brain free radical levels at 24 h and 1 week post-LPS injection. OKN-007 was able to reduce BBB permeability in the cerebral cortex and hippocampus at 1 week post-LPS using CE-MRI. OKN-007 was able to restore vascular perfusion rates by reducing LPS-induced increased relative cerebral blood flow (rCBF) in the cortex and hippocampus regions at all time points studied (1, 3, and 6 weeks post-LPS). OKN-007 was also able to restore LPS-induced brain metabolite depletions. NAA/Cho, Cr/Cho, and Myo-Ins/Cho metabolite ratios at 1, 3, and 6 weeks post-LPS were all restored to normal levels following OKN-007 treatment. OKN-007 also reduced LPS-induced free radical levels at 24 h and 1 week post-LPS, as detected by free radical-targeted MRI. LPS-exposed rats were compared with saline-treated controls and LPS + OKN-007-treated animals. We clearly demonstrated that OKN-007 restores LPS-induced BBB dysfunction, impaired vascularity, and decreased brain metabolites, all long-term neuroinflammatory indicators, as well as decreases free radicals in a LPS-induced neuroinflammation model. OKN-007 should be considered an anti-inflammatory agent for age-associated neuroinflammation.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA.
- Oklahoma Nathan Shock Aging Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Tyler McKenzie
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Brandy Lawrence
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kathryn A Morton
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
41
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
42
|
Liu M, Zhou T, Zhang M, Zhao J, Zhang Q. Palladium(II)‐Catalyzed Cope‐Type Hydroamination: Efficient Access to Five and Six‐Membered Cyclic Nitrones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mingzhu Liu
- Department of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Tingting Zhou
- Department of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Mengru Zhang
- Department of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Jinbo Zhao
- Department of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Qian Zhang
- Department of ChemistryNortheast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, CAS Shanghai 200032 P. R. China
| |
Collapse
|
43
|
Chioua M, Salgado-Ramos M, Diez-Iriepa D, Escobar-Peso A, Iriepa I, Hadjipavlou-Litina D, Martínez-Alonso E, Alcázar A, Marco-Contelles J. Novel Quinolylnitrones Combining Neuroprotective and Antioxidant Properties. ACS Chem Neurosci 2019; 10:2703-2706. [PMID: 30943011 DOI: 10.1021/acschemneuro.9b00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We describe here the preparation, neuroprotective analysis, and antioxidant capacity of 11 novel quinolylnitrones (QN). The neuroprotective analysis of QN1-11 in an oxygen-glucose deprivation model, in primary neuronal cultures, has been determined, allowing us to identify QN6 as a very potent neuroprotective agent, showing significant high value at 0.5 and 10 μM (86.2%), a result in good agreement with the observed strong hydroxyl radical scavenger of QN6.
Collapse
Affiliation(s)
- Mourad Chioua
- Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Manuel Salgado-Ramos
- Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, Madrid 28006, Spain
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Daniel Diez-Iriepa
- Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Alejandro Escobar-Peso
- Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, Madrid 28006, Spain
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Isabel Iriepa
- School of Pharmacy, University of Alcalá, Alcalá de Henares 28871, Spain
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Emma Martínez-Alonso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Alberto Alcázar
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - José Marco-Contelles
- Institute of General Organic Chemistry (CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
44
|
Muñoz MD, Gutierrez LJ, Delignat S, Russick J, Gomez Mejiba SE, Lacroix-Desmazes S, Enriz RD, Ramirez DC. The nitrone spin trap 5,5‑dimethyl‑1‑pyrroline N‑oxide binds to toll-like receptor-2-TIR-BB-loop domain and dampens downstream inflammatory signaling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1152-1159. [DOI: 10.1016/j.bbadis.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
|
45
|
McCaig C, Ataliotis P, Shtaya A, Omar AS, Green AR, Kind CN, Pereira AC, Naray-Fejes-Toth A, Fejes-Toth G, Yáñez-Muñoz RJ, Murray JT, Hainsworth AH. Induction of the cell survival kinase Sgk1: A possible novel mechanism for α-phenyl-N-tert-butyl nitrone in experimental stroke. J Cereb Blood Flow Metab 2019; 39:1111-1121. [PMID: 29260627 PMCID: PMC6545623 DOI: 10.1177/0271678x17746980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Nitrones (e.g. α-phenyl-N-tert-butyl nitrone; PBN) are cerebroprotective in experimental stroke. Free radical trapping is their proposed mechanism. As PBN has low radical trapping potency, we tested Sgk1 induction as another possible mechanism. PBN was injected (100 mg/kg, i.p.) into adult male rats and mice. Sgk1 was quantified in cerebral tissue by microarray, quantitative RT-PCR and western analyses. Sgk1+/+ and Sgk1-/- mice were randomized to receive PBN or saline immediately following transient (60 min) occlusion of the middle cerebral artery. Neurological deficit was measured at 24 h and 48 h and infarct volume at 48 h post-occlusion. Following systemic PBN administration, rapid induction of Sgk1 was detected by microarray (at 4 h) and confirmed by RT-PCR and phosphorylation of the Sgk1-specific substrate NDRG1 (at 6 h). PBN-treated Sgk1+/+ mice had lower neurological deficit ( p < 0.01) and infarct volume ( p < 0.01) than saline-treated Sgk1+/+ mice. PBN-treated Sgk1-/- mice did not differ from saline-treated Sgk1-/- mice. Saline-treated Sgk1-/- and Sgk1+/+ mice did not differ. Brain Sgk3:Sgk1 mRNA ratio was 1.0:10.6 in Sgk1+/+ mice. Sgk3 was not augmented in Sgk1-/- mice. We conclude that acute systemic treatment with PBN induces Sgk1 in brain tissue. Sgk1 may play a part in PBN-dependent actions in acute brain ischemia.
Collapse
Affiliation(s)
- Catherine McCaig
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - Paris Ataliotis
- Institute for Medical & Biomedical
Education, St George’s University of London, London, UK
| | - Anan Shtaya
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - Ayan S Omar
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
| | - A Richard Green
- School of Life Sciences, University of
Nottingham, Nottingham, UK
| | - Clive N Kind
- Leicester School of Pharmacy,
De
Montfort University, Leicester, UK
| | - Anthony C Pereira
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
- Department of Neurology, St George’s
University Hospitals NHS Foundation Trust, London, UK
| | - Aniko Naray-Fejes-Toth
- Molecular & Systems Biology
Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Geza Fejes-Toth
- Molecular & Systems Biology
Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical
Sciences, School of Biological Sciences,
Royal
Holloway, University of London, Egham,
Surrey, UK
| | - James T Murray
- School of Biochemistry and Immunology,
Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2,
Ireland
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St Georges University of London, London, UK
- Department of Neurology, St George’s
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
46
|
Piotrowska DG, Mediavilla L, Cuarental L, Głowacka IE, Marco-Contelles J, Hadjipavlou-Litina D, López-Muñoz F, Oset-Gasque MJ. Synthesis and Neuroprotective Properties of N-Substituted C-Dialkoxyphosphorylated Nitrones. ACS OMEGA 2019; 4:8581-8587. [PMID: 31459948 PMCID: PMC6648307 DOI: 10.1021/acsomega.9b00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/16/2019] [Indexed: 05/17/2023]
Abstract
Herein, we report the synthesis and neuroprotective power of some N-substituted C-(dialkoxy)phosphorylated nitrones 4a-g, by studying their ability to increase the cell viability, as well as their capacity to reduce necrosis and apoptosis. We have identified (Z)-N-tert-butyl-1-(diethoxyphosphoryl)methanimine oxide (4e) as the most potent, nontoxic, and neuroprotective agent, with a high activity against neuronal necrotic cell death, a result that correlates very well with its great capacity for the inhibition of the superoxide production (72%), as well as with the inhibition of lipid peroxidation (62%), and the 5-lipoxygenase activity (45%) at 100 μM concentrations. Thus, nitrone 4e could be a convenient promising compound for further investigation.
Collapse
Affiliation(s)
- Dorota G. Piotrowska
- Bioorganic
Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland
- E-mail: (D.G.P.)
| | - Laura Mediavilla
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n,
Ciudad Universitaria, 28040 Madrid, Spain
| | - Leticia Cuarental
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n,
Ciudad Universitaria, 28040 Madrid, Spain
| | - Iwona E. Głowacka
- Bioorganic
Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland
| | - José Marco-Contelles
- Laboratory
of Medicinal Chemistry, Institute of Organic
Chemistry (CSIC), Juan
de la Cierva 3, 28006 Madrid, Spain
| | - Dimitra Hadjipavlou-Litina
- Department
of Pharmaceutical Chemistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Francisco López-Muñoz
- Faculty
of Health, Camilo José Cela University, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology
Unit, “Hospital 12 de Octubre”
Research Institute, 28041 Madrid, Spain
| | - María Jesús Oset-Gasque
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n,
Ciudad Universitaria, 28040 Madrid, Spain
- Instituto
de Investigación en Neuroquímica, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
- E-mail: (M.J.O.-G.)
| |
Collapse
|
47
|
Chioua M, Martínez-Alonso E, Gonzalo-Gobernado R, Ayuso MI, Escobar-Peso A, Infantes L, Hadjipavlou-Litina D, Montoya JJ, Montaner J, Alcázar A, Marco-Contelles J. New Quinolylnitrones for Stroke Therapy: Antioxidant and Neuroprotective ( Z)- N- tert-Butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine Oxide as a New Lead-Compound for Ischemic Stroke Treatment. J Med Chem 2019; 62:2184-2201. [PMID: 30715875 DOI: 10.1021/acs.jmedchem.8b01987] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe herein the synthesis and neuroprotective capacity of an array of 31 compounds comprising quinolyloximes, quinolylhydrazones, quinolylimines, QNs, and related heterocyclic azolylnitrones. Neuronal cultures subjected to oxygen-glucose deprivation (OGD), as experimental model for ischemic conditions, were treated with our molecules at the onset of recovery period after OGD and showed that most of these QNs, but not the azo molecules, improved neuronal viability 24 h after recovery. Especially, QN ( Z)- N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (23) was shown as a very potent neuroprotective agent. Antioxidant analysis based on the ability of QN 23 to trap different types of toxic radical oxygenated species supported and confirmed its strong neuroprotective capacity. Finally, QN 23 showed also neuroprotection induction in two in vivo models of cerebral ischemia, decreasing neuronal death and reducing infarct size, allowing us to conclude that QN 23 can be considered as new lead-compound for ischemic stroke treatment.
Collapse
Affiliation(s)
- Mourad Chioua
- Laboratory of Medicinal Chemistry , IQOG, CSIC , C/Juan de la Cierva 3 , Madrid 28006 , Spain
| | - Emma Martínez-Alonso
- Department of Investigation , IRYCIS, Hospital Ramón y Cajal , Ctra. Colmenar km 9.1 , Madrid 28034 , Spain
| | - Rafael Gonzalo-Gobernado
- Neurovascular Research Group , Institute of Biomedicine of Seville, IBiS, Hospital Universitario Virgen del Rocío , Av. Manuel Siurot s/n , Seville 41013 , Spain
| | - Maria I Ayuso
- Neurovascular Research Group , Institute of Biomedicine of Seville, IBiS, Hospital Universitario Virgen del Rocío , Av. Manuel Siurot s/n , Seville 41013 , Spain
| | - Alejandro Escobar-Peso
- Laboratory of Medicinal Chemistry , IQOG, CSIC , C/Juan de la Cierva 3 , Madrid 28006 , Spain.,Department of Investigation , IRYCIS, Hospital Ramón y Cajal , Ctra. Colmenar km 9.1 , Madrid 28034 , Spain
| | - Lourdes Infantes
- Institute of Physical-Chemistry Rocasolano, CSIC , C/Serrano 119 , Madrid 28006 , Spain
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy , Aristotle University of Thessaloniki , Thessaloniki 54124 , Greece
| | - Juan J Montoya
- Isquaemia Biotech SL , Scientific Technological Park, C/Astrónoma Cecilia Payne s/n , Córdoba 14014 , Spain
| | - Joan Montaner
- Neurovascular Research Group , Institute of Biomedicine of Seville, IBiS, Hospital Universitario Virgen del Rocío , Av. Manuel Siurot s/n , Seville 41013 , Spain.,Department of Neurology , Hospital Universitario Virgen Macarena , Av. Doctor Fedriani 3 , Seville 41007 , Spain
| | - Alberto Alcázar
- Department of Investigation , IRYCIS, Hospital Ramón y Cajal , Ctra. Colmenar km 9.1 , Madrid 28034 , Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry , IQOG, CSIC , C/Juan de la Cierva 3 , Madrid 28006 , Spain
| |
Collapse
|
48
|
Saito K, Sail D, Yamamoto K, Matsumoto S, Blackman B, Kishimoto S, Brender JR, Swenson RE, Mitchell JB, Krishna MC. Synthesis and evaluation of 13C-labeled 5-5-dimethyl-1-pyrroline-N-oxide aimed at in vivo detection of reactive oxygen species using hyperpolarized 13C-MRI. Free Radic Biol Med 2019; 131:18-26. [PMID: 30471347 PMCID: PMC6983923 DOI: 10.1016/j.freeradbiomed.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
Effective means to identify the role of reactive oxygen species (ROS) mediating several diseases including cancer, ischemic heart disease, stroke, Alzheimer's and other inflammatory conditions in in vivo models would be useful. The cyclic nitrone 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) is a spin trap frequently used to detect free radicals in vitro using Electron Paramagnetic Resonance (EPR) spectroscopy. In this study, we synthesized 13C-labeled DMPO for hyperpolarization by dynamic nuclear polarization, in which 13C NMR signal increases more than 10,000-fold. This allows in vivo 13C MRI to investigate the feasibility of in vivo ROS detection by the 13C-MRI. DMPO was 13C-labeled at C5 position, and deuterated to prolong the T1 relaxation time. The overall yield achieved for 5-13C-DMPO-d9 was 15%. Hyperpolarized 5-13C-DMPO-d9 provided a single peak at 76 ppm in the 13C-spectrum, and the T1 was 60 s in phosphate buffer making it optimal for in vivo 13C MRI. The buffered solution of hyperpolarized 5-13C-DMPO-d9 was injected into a mouse placed in a 3 T scanner, and 13C-spectra were acquired every 1 s. In vivo studies showed the signal of 5-13C-DMPO-d9 was detected in the mouse, and the T1 decay of 13C signal of hyperpolarized 5-13C-DMPO-d9 was 29 s. 13C-chemical shift imaging revealed that 5-13C-DMPO-d9 was distributed throughout the body in a minute after the intravenous injection. A strong signal of 5-13C-DMPO-d9 was detected in heart/lung and kidney, whereas the signal in liver was small compared to other organs. The results indicate hyperpolarized 5-13C-DMPO-d9 provided sufficient 13C signal to be detected in the mouse in several organs, and can be used to detect ROS in vivo.
Collapse
Affiliation(s)
- Keita Saito
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Deepak Sail
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, Rockville, MD, USA
| | | | - Shingo Matsumoto
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Burchelle Blackman
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, Rockville, MD, USA
| | - Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Rolf E Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, Rockville, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
49
|
Aliphatic nitro compounds chemistry: oximes–nitrones tunable production through directed tandem synthesis. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Synthesis, neuroprotective and antioxidant capacity of PBN-related indanonitrones. Bioorg Chem 2019; 86:445-451. [PMID: 30771691 DOI: 10.1016/j.bioorg.2019.01.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
In this work six PBN-related indanonitrones 1-6 have been designed, synthesized, and their neuroprotection capacity tested in vitro, under OGD conditions, in SH-SY5Y human neuroblastoma cell cultures. As a result, we have identified indanonitrones 1, 3 and 4 (EC50 = 6.64 ± 0.28 μM) as the most neuroprotective agents, and in particular, among them, indanonitrone 4 was also the most potent and balanced nitrone, showing antioxidant activity in three experiments [LOX (100 μM), APPH (51%), DPPH (36.5%)], being clearly more potent antioxidant agent than nitrone PBN. Consequently, we have identified (Z)-5-hydroxy-N-methyl-2,3-dihydro-1H-inden-1-imine oxide (4) as a hit-molecule for further investigation.
Collapse
|