1
|
Kurmangaliyeva S, Baktikulova K, Tkachenko V, Seitkhanova B, Shapambayev N, Rakhimzhanova F, Almagambetova A, Kurmangaliyev K. An Overview of Hexavalent Chromium-Induced Necroptosis, Pyroptosis, and Ferroptosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04376-1. [PMID: 39287767 DOI: 10.1007/s12011-024-04376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Heavy metals are common environmental industrial pollutants. Due to anthropogenic activity, chromium, especially its hexavalent form [Cr(VI)], is a widespread environmental contaminant that poses a threat to human health. In this review paper, we summarize the currently reported molecular mechanisms involved in chromium toxicity with a focus on the induction of pro-inflammatory non-apoptotic cell death pathways such as necroptosis, pyroptosis, and ferroptosis. The review highlights the ability of chromium to induce necroptosis, pyroptosis, and ferroptosis revealing the signaling pathways involved. Cr(VI) can induce RIPK1/RIPK3-dependent necroptosis both in vitro and in vivo. Chromium toxicity is associated with pyroptotic NLRP3 inflammasome/caspase-1/gasdermin D-dependent secretion of IL-1β and IL-18. Furthermore, this review emphasizes the role of redox imbalance and intracellular iron accumulation in Cr(VI)-induced ferroptosis. Of note, the crosstalk between the investigated lethal subroutines in chromium-induced toxicity is primarily mediated by reactive oxygen species (ROS), which are suggested to act as a rheostat determining the cell death pathway in cells exposed to chromium. The current study provides novel insights into the pro-inflammatory effects of chromium, since necroptosis, pyroptosis, and ferroptosis affect inflammation owing to their immunogenic properties linked primarily with damage-associated molecular patterns. Inhibition of these non-apoptotic lethal subroutines can be considered a therapeutic strategy to reduce the toxicity of heavy metals, including chromium.
Collapse
Affiliation(s)
- Saulesh Kurmangaliyeva
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| | - Kristina Baktikulova
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan.
| | - Viktoriya Tkachenko
- State Institution "Republican Scientific and Practical Centre of Sports, " 8 Narochanskaya St, Minsk, Republic of Belarus
| | - Bibigul Seitkhanova
- Department of Microbiology, Virology and Immunology, South Kazakhstan Medical Academy, Al-Farabi Sq, Shymkent, Republic of Kazakhstan
| | - Nasriddin Shapambayev
- Department of General Practitioner - 1, Khoja Akhmet Yasawi International Kazakh-Turkish University, 7/7 Baitursynov St, Shymkent, Republic of Kazakhstan
| | - Farida Rakhimzhanova
- Department of Microbiology, NCJSC "Semey Medical University, " 103 Abay St, Semey, Republic of Kazakhstan
| | - Altyn Almagambetova
- Department of Phthisiology and Dermatovenerology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| | - Kairat Kurmangaliyev
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| |
Collapse
|
2
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Alur A, Phillips J, Xu D. Effects of hexavalent chromium on mitochondria and their implications in carcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:109-125. [PMID: 38230947 DOI: 10.1080/26896583.2024.2301899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a well-known occupational and environmental human carcinogen. The cellular effect of Cr(VI) is complex and often nonspecific due to its ability to modulate multiple cellular targets. The toxicity of Cr(VI) is strongly linked to the generation of reactive oxygen species (ROS) during its reduction process. ROS can cause oxidation of cellular macromolecules, such as proteins, lipids, and DNA, thereby altering their functions. A major genotoxic effect of Cr(VI) that contributes to carcinogenesis is the formation of DNA adducts, which can lead to DNA damage. Modulations of cellular signaling pathways and epigenetics may also contribute to the carcinogenic effects of Cr(VI). Cr(VI) has a major impact on many aspects of mitochondrial biology, including oxidative phosphorylation, mitophagy, and mitochondrial biogenesis. These effects have the potential to alter the trajectory of Cr(VI)-induced carcinogenic process. This perspective article summarizes current understandings of the effect of Cr(VI) on mitochondria and discusses the future directions of research in this area, particularly with regard to carcinogenesis.
Collapse
Affiliation(s)
- Anish Alur
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - John Phillips
- Department of Urology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dazhong Xu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| |
Collapse
|
4
|
Saroha B, Kumar A, Bhan V, Singh S, Tumba K, Singh P, Bahadur I. Interaction of heavy metals in Drosophila melanogaster larvae: Fourier transform infrared spectroscopy and single-cell electrophoresis study. J Biomol Struct Dyn 2023; 41:8810-8823. [PMID: 36411739 DOI: 10.1080/07391102.2022.2137587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
Abstract
The present study evaluates the Murraya Koenigii (CuLE) and Tinospora Crispa (TiSE) antimutagenic effect and the impact of industrial soil and solid waste leachate on Drosophila larvae. Larvae were exposed to leachate prepared at different pH (7, 4.93, 2.88) and treated with TiSE and CuLE at different concentration (4 g/L and 6 g/L) mixed with standard Drosophila medium. Emphasis was given to the binding interaction of heavy metals with proteins in Drosophila. The change in structure and molecular composition in Drosophila by leachate containing heavy metals induced toxicity has been studied by using Fourier transform infrared (FTIR) spectroscopy. Results from the study demonstrated that CuLE/TiSE administration restored the level of oxidative stress as evidenced by an enhanced antioxidant system and a decrease in lipid peroxidation and protein oxidation. The amide I and amide II bands spectral shifting revealed the binding interaction. The shift in the peak of PO2- asymmetric stretching might be due to compositional changes in nucleic acids. Single-cell electrophoresis was performed to detect the DNA damage which also proved to be ameliorated by administration of CuLE/TiSE. The result concludes that CuLE/TiSE may have great potential in the protection of Drosophila larvae from leachate induced oxidative stress through antioxidant and antimutagenic mechanisms this might help to cope with environmental toxicants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- B Saroha
- Department of Biotechnology, University Institute of Engineering and Technology, MDU, Rohtak, India
| | - A Kumar
- Department of Chemistry, SGRR (PG) College, Dehradun, India
| | - V Bhan
- Department of Biotechnology, University Institute of Engineering and Technology, MDU, Rohtak, India
| | - S Singh
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban, uMlazi, South Africa
| | - K Tumba
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban, uMlazi, South Africa
| | - P Singh
- Department of Chemistry, Atma Ram Sanatan Dharma (ARSD) College, University of Delhi, New Delhi, India
| | - I Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho, South Africa
| |
Collapse
|
5
|
Cuevas-Magaña MY, Vega-García CC, León-Contreras JC, Hernández-Pando R, Zazueta C, García-Niño WR. Ellagic acid ameliorates hexavalent chromium-induced renal toxicity by attenuating oxidative stress, suppressing TNF-α and protecting mitochondria. Toxicol Appl Pharmacol 2022; 454:116242. [PMID: 36108929 DOI: 10.1016/j.taap.2022.116242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Nephrotoxicity is an important adverse effect of oxidative stress induced by hexavalent chromium [Cr(VI)]. The effect of ellagic acid, a dietary polyphenolic compound with potent antioxidant activity, was investigated in Cr(VI)-induced kidney injury. Six groups of male Wistar rats were treated intragastrically with vehicle or ellagic acid (15 and 30 mg/kg) for 10 days. On day 10, rats received saline or Cr(VI) (K2Cr2O7 15 mg/kg) subcutaneously. Cr(VI) significantly increased kidney weight, affected kidney function assessed by biomarkers in blood and urine (protein, creatinine and urea nitrogen), caused histological changes (tubular injury and glomerular capillary tuft damage), increased markers of oxidative stress and reduced the activity of antioxidant enzymes. In addition, Cr(VI) altered mitochondrial ultrastructure, impaired mitochondrial respiration, increased lipid peroxidation, and inhibited the function of mitochondrial enzymes. Pretreatment with ellagic acid (30 mg/kg) attenuated all the aforementioned alterations. Furthermore, we explored whether ellagic acid might regulate the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 3 (RIPK3) pathway, reducing Cr(VI)-induced tubular necrosis. Cr(VI) upregulated both TNF-α and RIPK3, but ellagic acid only decreased TNF-α levels, having no effect on RIPK3 content. Therefore, understanding the mechanisms through which Cr(VI) promotes necroptosis is crucial for future studies, in order to design strategies to mitigate kidney damage. In conclusion, ellagic acid attenuated Cr(VI)-induced renal alterations by preventing oxidative stress, supporting enzymatic activities, suppressing TNF-α, and preserving mitochondrial ultrastructure and function, most likely due to its antioxidant properties.
Collapse
Affiliation(s)
- Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico
| | - Claudia Cecilia Vega-García
- Department of Biology of Reproduction, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico
| | - Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| |
Collapse
|
6
|
Samet JM, Chen H, Pennington ER, Bromberg PA. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic Biol Med 2020; 151:26-37. [PMID: 31877355 PMCID: PMC7803379 DOI: 10.1016/j.freeradbiomed.2019.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Metallic compounds contribute to the oxidative stress of ambient particulate matter (PM) exposure. The toxicity of redox inert ions of cadmium, mercury, lead and zinc, as well as redox-active ions of vanadium and chromium is underlain by dysregulation of mitochondrial function and loss of signaling quiescence. Central to the initiation of these effects is the interaction of metal ions with cysteinyl thiols on glutathione and key regulatory proteins, which leads to impaired mitochondrial electron transport and persistent pan-activation of signal transduction pathways. The mitochondrial and signaling effects are linked by the production of H2O2, generated from mitochondrial superoxide anion or through the activation of NADPH oxidase, which extends the range and amplifies the magnitude of the oxidative effects of the metals. This oxidative burden can be further potentiated by inhibitory effects of the metals on the enzymes of the glutathione and thioredoxin systems. Along with the better-known Fenton-based mechanisms, the non-redox cycling mechanisms of oxidative stress induced by metals constitute significant pathways for cellular injury induced by PM inhalation.
Collapse
Affiliation(s)
- James M Samet
- Environmental Public Health Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Zhang Q, Cheng G, Pan J, Zielonka J, Xiong D, Myers CR, Feng L, Shin SS, Kim YH, Bui D, Hu M, Bennett B, Schmainda K, Wang Y, Kalyanaraman B, You M. Magnolia extract is effective for the chemoprevention of oral cancer through its ability to inhibit mitochondrial respiration at complex I. Cell Commun Signal 2020; 18:58. [PMID: 32264893 PMCID: PMC7140380 DOI: 10.1186/s12964-020-0524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/29/2020] [Indexed: 11/29/2022] Open
Abstract
Background Magnolia extract (ME) is known to inhibit cancer growth and metastasis in several cell types in vitro and in animal models. However, there is no detailed study on the preventive efficacy of ME for oral cancer, and the key components in ME and their exact mechanisms of action are not clear. The overall goal of this study is to characterize ME preclinically as a potent oral cancer chemopreventive agent and to determine the key components and their molecular mechanism(s) that underlie its chemopreventive efficacy. Methods The antitumor efficacy of ME in oral cancer was investigated in a 4-nitroquinoline-1-oxide (4NQO)-induced mouse model and in two oral cancer orthotopic models. The effects of ME on mitochondrial electron transport chain activity and ROS production in mouse oral tumors was also investigated. Results ME did not cause detectable side effects indicating that it is a promising and safe chemopreventive agent for oral cancer. Three major key active compounds in ME (honokiol, magnolol and 4-O-methylhonokiol) contribute to its chemopreventive effects. ME inhibits mitochondrial respiration at complex I of the electron transport chain, oxidizes peroxiredoxins, activates AMPK, and inhibits STAT3 phosphorylation, resulting in inhibition of the growth and proliferation of oral cancer cells. Conclusion Our data using highly relevant preclinical oral cancer models, which share histopathological features seen in human oral carcinogenesis, suggest a novel signaling and regulatory role for mitochondria-generated superoxide and hydrogen peroxide in suppressing oral cancer cell proliferation, progression, and metastasis. Video abstract
Collapse
Affiliation(s)
- Qi Zhang
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Cheng
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jing Pan
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Donghai Xiong
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Charles R Myers
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Liang Feng
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | | | | | - Dinh Bui
- College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Ming Hu
- College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Brian Bennett
- Department of Physics, Marquette University, Milwaukee, WI, 53233, USA
| | - Kathleen Schmainda
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yian Wang
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ming You
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
8
|
Cheng G, Pan J, Podsiadly R, Zielonka J, Garces AM, Dias Duarte Machado LG, Bennett B, McAllister D, Dwinell MB, You M, Kalyanaraman B. Increased formation of reactive oxygen species during tumor growth: Ex vivo low-temperature EPR and in vivo bioluminescence analyses. Free Radic Biol Med 2020; 147:167-174. [PMID: 31874251 PMCID: PMC6948008 DOI: 10.1016/j.freeradbiomed.2019.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
Previous studies have shown that reactive oxygen species (ROS) such as superoxide or hydrogen peroxide generated at low levels can exert a tumor-promoting role via a redox-signaling mechanism. Reports also suggest that both tumorigenesis and tumor growth are associated with enhanced ROS formation. However, whether ROS levels or ROS-derived oxidative marker levels increase during tumor growth remains unknown. In this study, in vivo bioluminescence imaging with a boronate-based pro-luciferin probe was used to assess ROS formation. Additionally, probe-free cryogenic electron paramagnetic resonance was used to quantify a characteristic aconitase [3Fe4S]+ center that arises in the tumor tissue of mouse xenografts from the reaction of the native [4Fe4S]2+ cluster with superoxide. Results indicated that tumor growth is accompanied by increased ROS formation, and revealed differences in oxidant formation in the inner and outer sections of tumor tissue, respectively, demonstrating redox heterogeneity. Studies using luciferin and pro-luciferin probes enabled the assessment of tumor size, ROS formation, and bioenergetic status (e.g., ATP) in luciferase-transfected mice tumor xenografts. Probe-free ex vivo low-temperature electron paramagnetic resonance can also be translated to clinical studies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Jing Pan
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Radoslaw Podsiadly
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Alexander M Garces
- Department of Physics, Marquette University, 1420 West Clybourn Street, Milwaukee, WI 53233, United States
| | | | - Brian Bennett
- Department of Physics, Marquette University, 1420 West Clybourn Street, Milwaukee, WI 53233, United States
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Michael B Dwinell
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Ming You
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
9
|
Antholine WE, Vasquez-Vivar J, Quirk BJ, Whelan HT, Wu PK, Park JI, Myers CR. Treatment of Cells and Tissues with Chromate Maximizes Mitochondrial 2Fe2S EPR Signals. Int J Mol Sci 2019; 20:E1143. [PMID: 30845710 PMCID: PMC6429069 DOI: 10.3390/ijms20051143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/25/2022] Open
Abstract
In a previous study on chromate toxicity, an increase in the 2Fe2S electron paramagnetic resonance (EPR) signal from mitochondria was found upon addition of chromate to human bronchial epithelial cells and bovine airway tissue ex vivo. This study was undertaken to show that a chromate-induced increase in the 2Fe2S EPR signal is a general phenomenon that can be used as a low-temperature EPR method to determine the maximum concentration of 2Fe2S centers in mitochondria. First, the low-temperature EPR method to determine the concentration of 2Fe2S clusters in cells and tissues is fully developed for other cells and tissues. The EPR signal for the 2Fe2S clusters N1b in Complex I and/or S1 in Complex II and the 2Fe2S cluster in xanthine oxidoreductase in rat liver tissue do not change in intensity because these clusters are already reduced; however, the EPR signals for N2, the terminal cluster in Complex I, and N4, the cluster preceding the terminal cluster, decrease upon adding chromate. More surprising to us, the EPR signals for N3, the cluster preceding the 2Fe2S cluster in Complex I, also decrease upon adding chromate. Moreover, this method is used to obtain the concentration of the 2Fe2S clusters in white blood cells where the 2Fe2S signal is mostly oxidized before treatment with chromate and becomes reduced and EPR detectable after treatment with chromate. The increase of the g = 1.94 2Fe2S EPR signal upon the addition of chromate can thus be used to obtain the relative steady-state concentration of the 2Fe2S clusters and steady-state concentration of Complex I and/or Complex II in mitochondria.
Collapse
Affiliation(s)
- William E Antholine
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | - Brendan J Quirk
- Departments of Neurology and Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Harry T Whelan
- Departments of Neurology and Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pui Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Charles R Myers
- Department of Pharmacology and Toxicology, Medical College Wisconsin, Wauwatosa, WI 53226, USA.
| |
Collapse
|
10
|
Gupta P, Bhargava A, Kumari R, Lodhi L, Tiwari R, Gupta PK, Bunkar N, Samarth R, Mishra PK. Impairment of Mitochondrial-Nuclear Cross Talk in Lymphocytes Exposed to Landfill Leachate. ENVIRONMENTAL HEALTH INSIGHTS 2019; 13:1178630219839013. [PMID: 31168291 PMCID: PMC6484670 DOI: 10.1177/1178630219839013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 05/05/2023]
Abstract
Landfill leachate, a complex mixture of different solid waste compounds, is widely known to possess toxic properties. However, the fundamental molecular mechanisms engaged with landfill leachate exposure inducing cellular and sub-cellular ramifications are not well explicated. Therefore, we aim to examine the potential of leachate to impair mitochondrial machinery and its associated mechanisms in human peripheral blood lymphocytes. On assessment, the significant increase in the dichlorofluorescein (DCF) fluorescence, accumulation of 8-Oxo-2'-deoxyguanosine (8-oxo-dG), and levels of nuclear factor erythroid 2-related factor 2 (Nrf-2) strongly indicated the ability of the leachate to induce a pro-oxidant state inside the cell. The decrease in the mitochondrial membrane potential and alterations in the mitochondrial genome observed in leachate-exposed cells further suggested the disturbances in mitochondrial machinery. Moreover, these mitochondrial-associated redox imbalances were accompanied by the increased level of NF-κβ, pro-inflammatory cytokines, and DNA damage. In addition, the higher DNA fragmentation, release of nucleosomes, levels of polyadenosine diphosphate ADP-ribose polymerase (PARP), and activity of caspase-3 suggested the involvement of mitochondrial mediated apoptosis in leachate exposed cells. These observations were accompanied by the low proliferative index of the exposed cells. Conclusively, our results clearly indicate the ability of landfill leachate to disturb mitochondrial redox homeostasis, which might be a probable source for the immunotoxic consequences leading to plausible patho-physiological conditions in humans susceptible to such environmental exposures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pradyumna Kumar Mishra
- Pradyumna Kumar Mishra, Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal 462001, Madhya Pradesh, India.
| |
Collapse
|
11
|
The Role of Oxidative Stress and Bioenergetic Dysfunction in Sulfite Oxidase Deficiency: Insights from Animal Models. Neurotox Res 2018; 35:484-494. [DOI: 10.1007/s12640-018-9986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
|
12
|
Elolimy AA, Abdelmegeid MK, McCann JC, Shike DW, Loor JJ. Residual feed intake in beef cattle and its association with carcass traits, ruminal solid-fraction bacteria, and epithelium gene expression. J Anim Sci Biotechnol 2018; 9:67. [PMID: 30258628 PMCID: PMC6151901 DOI: 10.1186/s40104-018-0283-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background Residual feed intake (RFI) describes an animal’s feed efficiency independent of growth performance. The objective of this study was to determine differences in growth performance, carcass traits, major bacteria attached to ruminal solids-fraction, and ruminal epithelium gene expression between the most-efficient and the least-efficient beef cattle. One-hundred and forty-nine Red Angus cattle were allocated to three contemporary groups according to sex and herd origin. Animals were fed a finishing diet in confinement for 70 d to determine the RFI category for each. Within each group, the two most-efficient (n = 6; RFI coefficient = − 2.69 ± 0.58 kg dry matter intake (DMI)/d) and the two least-efficient animals (n = 6; RFI coefficient = 3.08 ± 0.55 kg DMI/d) were selected. Immediately after slaughter, ruminal solids-fraction and ruminal epithelium were collected for bacteria relative abundance and epithelial gene expression analyses, respectively, using real-time PCR. Results The most-efficient animals consumed less feed (P = 0.01; 5.03 kg less DMI/d) compared with the least-efficient animals. No differences (P > 0.10) in initial body weight (BW), final BW, and average daily gain (ADG) were observed between the two RFI classes. There were no significant RFI × sex effects (P > 0.10) on growth performance. Compared with the least-efficient group, hot carcass weight (HCW), ribeye area (REA), and kidney, pelvic, and heart fat (KPH) were greater (P ≤ 0.05) in the most-efficient cattle. No RFI × sex effect (P > 0.10) for carcass traits was detected between RFI groups. Of the 10 bacterial species evaluated, the most-efficient compared with least efficient cattle had greater (P ≤ 0.05) relative abundance of Eubacterium ruminantium, Fibrobacter succinogenes, and Megasphaera elsdenii, and lower (P ≤ 0.05) Succinimonas amylolytica and total bacterial density. No RFI × sex effect on ruminal bacteria was detected between RFI groups. Of the 34 genes evaluated in ruminal epithelium, the most-efficient cattle had greater (P ≤ 0.05) abundance of genes involved in VFA absorption, metabolism, ketogenesis, and immune/inflammation-response. The RFI × sex interactions indicated that responses in gene expression between RFI groups were due to differences in sex. Steers in the most-efficient compared with least-efficient group had greater (P ≤ 0.05) expression of SLC9A1, HIF1A, and ACO2. The most-efficient compared with least-efficient heifers had greater (P ≤ 0.05) mRNA expression of BDH1 and lower expression (P ≤ 0.05) of SLC9A2 and PDHA1. Conclusions The present study revealed that greater feed efficiency in beef cattle is associated with differences in bacterial species and transcriptional adaptations in the ruminal epithelium that might enhance nutrient delivery and utilization by tissues. The lack of RFI × sex interaction for growth performance and carcass traits indicates that sex may not play a major role in improving these phenotypes in superior RFI beef cattle. However, it is important to note that this result should not be considered a solid biomarker of efficient beef cattle prior to further examination due to the limited number of heifers compared with steers used in the study. Electronic supplementary material The online version of this article (10.1186/s40104-018-0283-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- 1Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, IL USA.,2Department of Animal Sciences, University of Illinois, Urbana, IL USA
| | - Mohamed K Abdelmegeid
- 1Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, IL USA.,2Department of Animal Sciences, University of Illinois, Urbana, IL USA.,3Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, 33516 Egypt
| | - Joshua C McCann
- 2Department of Animal Sciences, University of Illinois, Urbana, IL USA
| | - Daniel W Shike
- 2Department of Animal Sciences, University of Illinois, Urbana, IL USA
| | - Juan J Loor
- 1Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, IL USA.,2Department of Animal Sciences, University of Illinois, Urbana, IL USA.,4Division of Nutritional Sciences, Illinois Informatics Institute, University of Illinois, Urbana, IL USA
| |
Collapse
|
13
|
Cheng G, Zielonka M, Dranka B, Kumar SN, Myers CR, Bennett B, Garces AM, Dias Duarte Machado LG, Thiebaut D, Ouari O, Hardy M, Zielonka J, Kalyanaraman B. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. J Biol Chem 2018; 293:10363-10380. [PMID: 29739855 DOI: 10.1074/jbc.ra118.003044] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.
Collapse
Affiliation(s)
- Gang Cheng
- From the Department of Biophysics.,Free Radical Research Center
| | - Monika Zielonka
- From the Department of Biophysics.,Free Radical Research Center
| | - Brian Dranka
- the Cell Analysis Division, Agilent Technologies, Santa Clara, California 95051
| | | | - Charles R Myers
- Pharmacology and Toxicology, and.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brian Bennett
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | - Alexander M Garces
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | | | - David Thiebaut
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Micael Hardy
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Jacek Zielonka
- From the Department of Biophysics.,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Balaraman Kalyanaraman
- From the Department of Biophysics, .,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
14
|
Abreu PL, Cunha-Oliveira T, Ferreira LMR, Urbano AM. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells. Biometals 2018; 31:477-487. [DOI: 10.1007/s10534-018-0093-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
|
15
|
Bhargava A, Tamrakar S, Aglawe A, Lad H, Srivastava RK, Mishra DK, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:406-419. [PMID: 29202419 DOI: 10.1016/j.envpol.2017.11.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 05/28/2023]
Abstract
Particulate matter (PM), broadly defined as coarse (2.5-10 μm), fine (0.1-2.5 μm) and ultrafine particles (≤0.1 μm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response pathway, an unknown molecular paradigm of ultrafine PM exposure. Our findings also indicate that maneuvering through the mitochondrial function might be a viable, indirect method to modulate lymphocyte homeostasis in air pollution associated immune disorders.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Shivani Tamrakar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Aniket Aglawe
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Harsha Lad
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Dinesh Kumar Mishra
- School of Pharmacy and Technology Management, Narsee Moonjee Institute of Management Studies, Shirpur, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
16
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 2017; 15:347-362. [PMID: 29306792 PMCID: PMC5756055 DOI: 10.1016/j.redox.2017.12.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) have been implicated in tumorigenesis (tumor initiation, tumor progression, and metastasis). Of the many cellular sources of ROS generation, the mitochondria and the NADPH oxidase family of enzymes are possibly the most prevalent intracellular sources. In this article, we discuss the methodologies to detect mitochondria-derived superoxide and hydrogen peroxide using conventional probes as well as newly developed assays and probes, and the necessity of characterizing the diagnostic marker products with HPLC and LC-MS in order to rigorously identify the oxidizing species. The redox signaling roles of mitochondrial ROS, mitochondrial thiol peroxidases, and transcription factors in response to mitochondria-targeted drugs are highlighted. ROS generation and ROS detoxification in drug-resistant cancer cells and the relationship to metabolic reprogramming are discussed. Understanding the subtle role of ROS in redox signaling and in tumor proliferation, progression, and metastasis as well as the molecular and cellular mechanisms (e.g., autophagy) could help in the development of combination therapies. The paradoxical aspects of antioxidants in cancer treatment are highlighted in relation to the ROS mechanisms in normal and cancer cells. Finally, the potential uses of newly synthesized exomarker probes for in vivo superoxide and hydrogen peroxide detection and the low-temperature electron paramagnetic resonance technique for monitoring oxidant production in tumor tissues are discussed.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix Marseille Univ CNRS ICR UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- Aix Marseille Univ CNRS ICR UMR 7273, Marseille 13013, France
| | - Brian Bennett
- Department of Physics, Marquette University, 540 North 15th Street, Milwaukee, WI 53233, United States
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
17
|
Sforzini S, Moore MN, Mou Z, Boeri M, Banni M, Viarengo A. Mode of action of Cr(VI) in immunocytes of earthworms: Implications for animal health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:298-308. [PMID: 28086183 DOI: 10.1016/j.ecoenv.2017.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/16/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Chromium (Cr) is one of the major and most detrimental pollutant, widely present in the environment as a result of several anthropogenic activities. In mammalian cells, Cr(VI) is known to enhance reactive oxygen species (ROS) production and to cause toxic and genotoxic effects. Less commonly investigated are the effects and mode of action of this contaminant in invertebrates, particularly in soil organisms. In this work, earthworms of the species Eisenia andrei were exposed for 1 and 3 days to various sublethal concentrations of Cr(VI) (2, 15, 30µgmL-1) using the paper contact toxicity test. In amoeboid leukocytes we investigated intracellular ROS and lipoperoxide production, oxidative DNA damage, and the effects on different cell functions. The analysis of the results shows that Cr(VI) triggered severe adverse reactions; the first events were an increase of intracellular ROS levels, generating in the cells oxidative stress conditions leading to membrane lipid peroxidation and oxidative DNA damage. Lysosomes showed relevant changes such as a strong membrane destabilization, which was accompanied by an increased catabolism of cytoplasmic proteins and accumulation of lipofuscin. With an increase in the dose and/or time of exposure, the physiological status of intracellular organelles (such as lysosomes, nucleus and mitochondria) showed further impairment and amoebocyte immune functions were adversely affected, as shown by the decrease of the phagocytic activity. By mapping the responses of the different parameters evaluated, diagnostic of (oxidative) stress events, against lysosomal membrane stability, a "health status" indicator (able to describe the stress syndrome from its early phase to pathology), we have shown that this biomarker is suitable as a prognostic test for health of earthworms. This is viewed as a crucial step toward the derivation of explanatory frameworks for prediction of pollutant impact on animal health.
Collapse
Affiliation(s)
- Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Michael N Moore
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Truro TR1 3HD, UK; Plymouth Marine Laboratory, Plymouth PL1 3DH, UK
| | - Zhuofan Mou
- Plymouth Marine Laboratory, Plymouth PL1 3DH, UK
| | - Marta Boeri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
18
|
Stiban J, So M, Kaguni LS. Iron-Sulfur Clusters in Mitochondrial Metabolism: Multifaceted Roles of a Simple Cofactor. BIOCHEMISTRY (MOSCOW) 2017; 81:1066-1080. [PMID: 27908232 DOI: 10.1134/s0006297916100059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron-sulfur metabolism is essential for cellular function and is a key process in mitochondria. In this review, we focus on the structure and assembly of mitochondrial iron-sulfur clusters and their roles in various metabolic processes that occur in mitochondria. Iron-sulfur clusters are crucial in mitochondrial respiration, in which they are required for the assembly, stability, and function of respiratory complexes I, II, and III. They also serve important functions in the citric acid cycle, DNA metabolism, and apoptosis. Whereas the identification of iron-sulfur containing proteins and their roles in numerous aspects of cellular function has been a long-standing research area, that in mitochondria is comparatively recent, and it is likely that their roles within mitochondria have been only partially revealed. We review the status of the field and provide examples of other cellular iron-sulfur proteins to highlight their multifarious roles.
Collapse
Affiliation(s)
- Johnny Stiban
- Birzeit University, Department of Biology and Biochemistry, West Bank Birzeit, 627, Palestine.
| | | | | |
Collapse
|
19
|
Zhang XM, Zhao YQ, Yan H, Liu H, Huang GW. Inhibitory effect of homocysteine on rat neural stem cell growth in vitro is associated with reduced protein levels and enzymatic activities of aconitase and respiratory complex III. J Bioenerg Biomembr 2016; 49:131-138. [PMID: 27914013 DOI: 10.1007/s10863-016-9688-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022]
Abstract
Increased blood plasma concentration of the sulphur amino acid homocysteine (Hcy) is considered as an independent risk factor of the neurodegenerative diseases. However, the detailed molecular mechanisms by which Hcy leads to neurotoxicity have yet to be clarified. Recent research has suggested that neurotoxicity of Hcy may involve negative regulation of neural stem cell (NSC) proliferation. In the current study, primary NSCs were isolated from neonatal rat brain hippocampus and the inhibition in cell growth was observed after exposure to l50 μM and 500 μM L-Hcy. The changes in protein expression were monitored with densitometric 2D-gel electrophoresis coupled with MALDI-TOF mass spectrometry. Proteomic analysis revealed that the expression levels of two mitochondrial proteins, cytochrome bc1 complex2 (UQCRC2, the major component of electron transport chain complex III) and aconitase (an enzyme involved in the tricarboxylic acid cycle), were decreased in Hcy treatment group, compared to control group. Protein expression was further verified by Western blot, and their enzymatic activities were also down-regulated in NSCs after Hcy treatment. Restoration of aconitase and UQCRC2 protein levels using their expression vectors could partly rescue the cell viability inhibition caused by Hcy. Moreover, Hcy caused the increase in the intracellular levels of reactive oxygen species (ROS) and the decrease in ATP content, which are known to play important roles in the cellular stress response of the cell growth. Altogether, the results suggest that the decreased expression and enzymatic activities of the mitochondrial proteins may be possible causes of the overproduction of ROS and depletion of ATP. The inhibition in cell growth at the end of Hcy treatment was probably due to the changes in protein expression and mitochondrial dysfunction in vitro cultures of NSCs.
Collapse
Affiliation(s)
- Xu-Mei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Ya-Qian Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Hai Yan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guo-Wei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
20
|
Bennett B, Helbling D, Meng H, Jarzembowski J, Geurts AM, Friederich MW, Van Hove JLK, Lawlor MW, Dimmock DP. Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome. Free Radic Biol Med 2016; 92:141-151. [PMID: 26773591 PMCID: PMC5047058 DOI: 10.1016/j.freeradbiomed.2016.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model recapitulates the pathologic and biochemical signatures of the human disease. The application of electron paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormalities in situ and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic pathophysiological studies of mitochondrial disease and could be used to study the impact of new treatment modalities or as an additional diagnostic tool.
Collapse
Affiliation(s)
- Brian Bennett
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Daniel Helbling
- Human Molecular Genetics Center and Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Jason Jarzembowski
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Marisa W Friederich
- Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Mailstop 8400, 13121 East 17th Avenue, Aurora, CO 80045, USA.
| | - Johan L K Van Hove
- Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Mailstop 8400, 13121 East 17th Avenue, Aurora, CO 80045, USA.
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - David P Dimmock
- Human Molecular Genetics Center and Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
21
|
Yi X, Zhang Y, Zhong C, Zhong X, Xiao F. The role of STIM1 in the Cr(vi)-induced [Ca2+]iincrease and cell injury in L-02 hepatocytes. Metallomics 2016; 8:1273-1282. [DOI: 10.1039/c6mt00204h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Evaluation of the In Vivo and In Vitro Effects of Fructose on Respiratory Chain Complexes in Tissues of Young Rats. DISEASE MARKERS 2015; 2015:312530. [PMID: 26770008 PMCID: PMC4684876 DOI: 10.1155/2015/312530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
Hereditary fructose intolerance (HFI) is an autosomal-recessive disorder characterized by fructose and fructose-1-phosphate accumulation in tissues and biological fluids of patients. This disease results from a deficiency of aldolase B, which metabolizes fructose in the liver, kidney, and small intestine. We here investigated the effect of acute fructose administration on the activities of mitochondrial respiratory chain complexes, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) in cerebral cortex, liver, kidney, and skeletal muscle of male 30-day-old Wistar rats. The rats received subcutaneous injection of sodium chloride (0.9%; control group) or fructose solution (5 μmol/g; treated group). One hour later, the animals were euthanized and the cerebral cortex, liver, kidney, and skeletal muscle were isolated and homogenized for the investigations. Acute fructose administration increased complex I-III activity in liver. On the other hand, decreased complexes II and II-III activities in skeletal muscle and MDH in kidney were found. Interestingly, none of these parameters were affected in vitro. Our present data indicate that fructose administration elicits impairment of mitochondrial energy metabolism, which may contribute to the pathogenesis of the HFI patients.
Collapse
|
23
|
Chandra S, Pandey A, Chowdhuri DK. MiRNA profiling provides insights on adverse effects of Cr(VI) in the midgut tissues of Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:558-567. [PMID: 25464296 DOI: 10.1016/j.jhazmat.2014.09.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/25/2014] [Accepted: 09/27/2014] [Indexed: 06/04/2023]
Abstract
Cr(VI), a well-known environmental chemical, is reported to cause various adverse effects on exposed organisms including genomic instability and carcinogenesis. Despite available information on the underlying mechanism of Cr(VI) induced toxicity, studies regarding toxicity modulation by epigenetic mechanisms are limited. It was therefore, hypothesized that the global miRNA profiling in Cr(VI) exposed Drosophila, a genetically tractable model organism, will provide information about mis-regulated miRNAs along with their targeted genes and relevant processes. Third instar larvae of Drosophila melanogaster (Oregon R(+)) were exposed to 5.0-20.0 μg/ml of Cr(VI) for 24 and 48 h. Following miRNA profile analysis on an Agilent platform, 28 of the 36 differentially expressed miRNAs were found to be significantly mis-regulated targeting major biological processes viz., DNA damage repair, oxidation-reduction processes, development and differentiation. Down-regulation of mus309 and mus312 under DNA repair, acon to oxidation-reduction and pyd to stress activated MAPK cascade respectively belonging to these gene ontology classes concurrent with up-regulation of dme-miR-314-3p, dme-miR-79-3p and dme-miR-12-5p confirm their functional involvement against Cr(VI) exposure. These findings assume significance since majority of the target genes in Drosophila have functional homologues in humans. The study further recommends Drosophila as a model to explore the role of miRNAs in xenobiotic induced toxicity.
Collapse
Affiliation(s)
- Swati Chandra
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| | - Ashutosh Pandey
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
24
|
García-Niño WR, Zazueta C, Tapia E, Pedraza-Chaverri J. Curcumin attenuates Cr(VI)-induced ascites and changes in the activity of aconitase and F(1)F(0) ATPase and the ATP content in rat liver mitochondria. J Biochem Mol Toxicol 2014; 28:522-7. [PMID: 25130536 DOI: 10.1002/jbt.21595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
Abstract
Occupational and environmental exposure to potassium dichromate (K2Cr2O7), a hexavalent chromium compound, can result in liver damage associated with oxidative stress and mitochondrial dysfunction. The purpose of this study was to evaluate the effect of the antioxidant curcumin (400 mg/kg b.w.) on the K2Cr2O7-induced injury, with special emphasis on ascitic fluid accumulation and oxidative phosphorylation mitochondrial enzymes and the adenosine triphosphate (ATP) levels in isolated mitochondria from livers of rats treated with K2Cr2O7 (15 mg/kg b.w.). Thus, curcumin attenuated the ascites generation, prevented the decrease in the activities of aconitase and F1F0 ATPase, and maintained the ATP levels. The activity of complex II was not completely reestablished by curcumin, whereas complexes III and IV activities were unchanged.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Faculty of Chemistry, Department of Biology, National Autonomous University of Mexico (UNAM), University City, 04510, DF, Mexico.
| | | | | | | |
Collapse
|
25
|
Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature. FEBS Open Bio 2014; 4:594-601. [PMID: 25161867 PMCID: PMC4141194 DOI: 10.1016/j.fob.2014.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 12/24/2022] Open
Abstract
Chromium(VI) impaired respiration and increased glycolytic flux in BEAS-2B cells. Cr(VI)-exposed cells shifted to a more fermentative metabolism. This metabolic shift was in line with a decreased β-F1-ATPase/GAPDH protein ratio. Increased oxidative stress levels suggest impairment of antioxidant defenses.
Previous studies on the impact of hexavalent chromium [Cr(VI)] on mammalian cell energetics revealed alterations suggestive of a shift to a more fermentative metabolism. Aiming at a more defined understanding of the metabolic effects of Cr(VI) and of their molecular basis, we assessed the impact of a mild Cr(VI) exposure on critical bioenergetic parameters (lactate production, oxygen consumption and intracellular ATP levels). Cells derived from normal human bronchial epithelium (BEAS-2B cell line), the main in vivo target of Cr(VI) carcinogenicity, were subjected for 48 h to 1 μM Cr(VI). We could confirm a shift to a more fermentative metabolism, resulting from the simultaneous inhibition of respiration and stimulation of glycolysis. This shift was accompanied by a decrease in the protein levels of the catalytic subunit (subunit β) of the mitochondrial H+-ATP synthase (β-F1-ATPase) and a concomitant marked increase in those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The corresponding alteration in the β-F1-ATPase/GAPDH protein ratio (viewed as a bioenergetic signature) upon Cr(VI) exposure was in agreement with the observed attenuation of cellular respiration and enhancement of glycolytic flux. Altogether, these results constitute a novel finding in terms of the molecular mechanisms of Cr(VI) effects.
Collapse
Key Words
- 2,4-DNP, 2,4-dinitrophenol
- 2-DG, 2-deoxyglucose
- Aerobic glycolysis
- Cellular bioenergetic index
- Cellular energy status
- Cellular respiration
- Chromate lung cancer
- Cr(III), trivalent chromium
- Cr(IV), tetravalent chromium
- Cr(V), pentavalent chromium
- Cr(VI), hexavalent chromium
- DCF, 2′,7′-dichlorofluorescein
- EDTA, ethylenediaminetetracetic acid
- ETC, mitochondrial electron transport chain
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- IARC, International Agency for Research on Cancer
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation
- PBS, phosphate-buffered saline
- PI, propidium iodide
- ROS, reactive oxygen species
- TCA, tricarboxylic acid
- Warburg effect
- β-F1-ATPase, catalytic subunit (subunit β) of the mitochondrial H+-ATP synthase
Collapse
|
26
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
27
|
Abreu PL, Ferreira LMR, Alpoim MC, Urbano AM. Impact of hexavalent chromium on mammalian cell bioenergetics: phenotypic changes, molecular basis and potential relevance to chromate-induced lung cancer. Biometals 2014; 27:409-43. [DOI: 10.1007/s10534-014-9726-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
|
28
|
Grings M, Moura AP, Parmeggiani B, Marcowich GF, Amaral AU, de Souza Wyse AT, Wajner M, Leipnitz G. Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: Potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene 2013; 531:191-8. [DOI: 10.1016/j.gene.2013.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 01/04/2023]
|
29
|
Zanatta A, Viegas CM, Tonin AM, Busanello ENB, Grings M, Moura AP, Leipnitz G, Wajner M. Disturbance of redox homeostasis by ornithine and homocitrulline in rat cerebellum: a possible mechanism of cerebellar dysfunction in HHH syndrome. Life Sci 2013; 93:161-8. [PMID: 23806752 DOI: 10.1016/j.lfs.2013.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 06/10/2013] [Indexed: 12/14/2022]
Abstract
AIMS Cerebellar ataxia is commonly observed in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, an inherited metabolic disorder biochemically characterized by ornithine (Orn), homocitrulline (Hcit) and ammonia accumulation. Since the pathophysiology of cerebellum damage in this disorder is still unknown, we investigated the effects of Hcit and Orn on important parameters of redox and energy homeostasis in cerebellum of young rats. MATERIAL AND METHODS We determined thiobarbituric acid-reactive substance (TBA-RS) levels, carbonyl content, nitrate and nitrite production, hydrogen peroxide production, GSH concentrations, sulfhydryl content, as well as activities of respiratory chain complexes I-IV, creatine kinase, Na(+),K(+)-ATPase, aconitase and α-ketoglutarate dehydrogenase. KEY FINDINGS Orn and Hcit significantly increased TBA-RS levels (lipid oxidation), that was totally prevented by melatonin and reduced glutathione (GSH). We also found that nitrate and nitrite production was not altered by any of the metabolites, in contrast to hydrogen peroxide production which was significantly enhanced by Hcit. Furthermore, GSH concentrations were significantly reduced by Orn and Hcit and sulfhydryl content by Orn, implying an impairment of antioxidant defenses. As regards energy metabolism, Orn and Hcit provoked a significant reduction of aconitase activity, without altering the other parameters. Furthermore, Orn-elicited reduction of aconitase activity was totally prevented by GSH, indicating that the critical groups of this enzyme were susceptible to oxidation caused by this amino acid. SIGNIFICANCE Taken together, our data indicate that redox homeostasis is disturbed by the major metabolites accumulating in HHH syndrome and that this mechanism may be implicated in the ataxia and cerebellar abnormalities observed in this disorder.
Collapse
Affiliation(s)
- Angela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Myers CR. The effects of chromium(VI) on the thioredoxin system: implications for redox regulation. Free Radic Biol Med 2012; 52:2091-107. [PMID: 22542445 PMCID: PMC3955998 DOI: 10.1016/j.freeradbiomed.2012.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
31
|
Gadicherla AK, Stowe DF, Antholine WE, Yang M, Camara AKS. Damage to mitochondrial complex I during cardiac ischemia reperfusion injury is reduced indirectly by anti-anginal drug ranolazine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:419-29. [PMID: 22178605 DOI: 10.1016/j.bbabio.2011.11.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/23/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022]
Abstract
Ranolazine, an anti-anginal drug, is a late Na(+) channel current blocker that is also believed to attenuate fatty acid oxidation and mitochondrial respiratory complex I activity, especially during ischemia. In this study, we investigated if ranolazine's protective effect against cardiac ischemia/reperfusion (IR) injury is mediated at the mitochondrial level and specifically if respiratory complex I (NADH Ubiquinone oxidoreductase) function is protected. We treated isolated and perfused guinea pig hearts with ranolazine just before 30 min ischemia and then isolated cardiac mitochondria at the end of 30 min ischemia and/or 30 min ischemia followed by 10 min reperfusion. We utilized spectrophotometric and histochemical techniques to assay complex I activity, Western blot analysis for complex I subunit NDUFA9, electron paramagnetic resonance for activity of complex I Fe-S clusters, enzyme linked immuno sorbent assay (ELISA) for determination of protein acetylation, native gel histochemical staining for respiratory supercomplex assemblies, and high pressure liquid chromatography for cardiolipin integrity; cardiac function was measured during IR. Ranolazine treated hearts showed higher complex I activity and greater detectable complex I protein levels compared to untreated IR hearts. Ranolazine treatment also led to more normalized electron transfer via Fe-S centers, supercomplex assembly and cardiolipin integrity. These improvements in complex I structure and function with ranolazine were associated with improved cardiac function after IR. However, these protective effects of ranolazine are not mediated by a direct action on mitochondria, but rather indirectly via cytosolic mechanisms that lead to less oxidation and better structural integrity of complex I.
Collapse
Affiliation(s)
- Ashish K Gadicherla
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
32
|
Molina-Jijón E, Tapia E, Zazueta C, El Hafidi M, Zatarain-Barrón ZL, Hernández-Pando R, Medina-Campos ON, Zarco-Márquez G, Torres I, Pedraza-Chaverri J. Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radic Biol Med 2011; 51:1543-57. [PMID: 21839166 DOI: 10.1016/j.freeradbiomed.2011.07.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 07/11/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
We report the role of mitochondria in the protective effects of curcumin, a well-known direct and indirect antioxidant, against the renal oxidant damage induced by the hexavalent chromium [Cr(VI)] compound potassium dichromate (K(2)Cr(2)O(7)) in rats. Curcumin was given daily by gavage using three different schemes: (1) complete treatment (100, 200, and 400 mg/kg bw 10 days before and 2 days after K(2)Cr(2)O(7) injection), (2) pretreatment (400 mg/kg bw for 10 days before K(2)Cr(2)O(7) injection), and (3) posttreatment (400 mg/kg bw 2 days after K(2)Cr(2)O(7) injection). Rats were sacrificed 48 h later after a single K(2)Cr(2)O(7) injection (15 mg/kg, sc) to evaluate renal and mitochondrial function and oxidant stress. Curcumin treatment (schemes 1 and 2) attenuated K(2)Cr(2)O(7)-induced renal dysfunction, histological damage, oxidant stress, and the decrease in antioxidant enzyme activity both in kidney tissue and in mitochondria. Curcumin pretreatment attenuated K(2)Cr(2)O(7)-induced mitochondrial dysfunction (alterations in oxygen consumption, ATP content, calcium retention, and mitochondrial membrane potential and decreased activity of complexes I, II, II-III, and V) but was unable to modify renal and mitochondrial Cr(VI) content or to chelate chromium. Curcumin posttreatment was unable to prevent K(2)Cr(2)O(7)-induced renal dysfunction. In further experiments performed in curcumin (400 mg/kg)-pretreated rats it was found that this antioxidant accumulated in kidney and activated Nrf2 at the time when K(2)Cr(2)O(7) was injected, suggesting that both direct and indirect antioxidant effects are involved in the protective effects of curcumin. These findings suggest that the preservation of mitochondrial function plays a key role in the protective effects of curcumin pretreatment against K(2)Cr(2)O(7)-induced renal oxidant damage.
Collapse
Affiliation(s)
- Eduardo Molina-Jijón
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510 University City, DF, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Myers JM, Antholine WE, Myers CR. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control. Toxicology 2011; 281:37-47. [PMID: 21237240 DOI: 10.1016/j.tox.2011.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/22/2010] [Accepted: 01/04/2011] [Indexed: 01/14/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival.
Collapse
Affiliation(s)
- Judith M Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|