1
|
Zhang J, Hu X, Wang T, Xiao R, Zhu L, Ruiz M, Dupuis J, Hu Q. Extracellular vesicles in venous thromboembolism and pulmonary hypertension. J Nanobiotechnology 2023; 21:461. [PMID: 38037042 PMCID: PMC10691137 DOI: 10.1186/s12951-023-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Venous thromboembolism (VTE) is a multifactorial disease, and pulmonary hypertension (PH) is a serious condition characterized by pulmonary vascular remodeling leading with increased pulmonary vascular resistance, ultimately leading to right heart failure and death. Although VTE and PH have distinct primary etiologies, they share some pathophysiologic similarities such as dysfunctional vasculature and thrombosis. In both conditions there is solid evidence that EVs derived from a variety of cell types including platelets, monocytes, endothelial cells and smooth muscle cells contribute to vascular endothelial dysfunction, inflammation, thrombosis, cellular activation and communications. However, the roles and importance of EVs substantially differ between studies depending on experimental conditions and parent cell origins of EVs that modify the nature of their cargo. Numerous studies have confirmed that EVs contribute to the pathophysiology of VTE and PH and increased levels of various EVs in relation with the severity of VTE and PH, confirming its potential pathophysiological role and its utility as a biomarker of disease severity and as potential therapeutic targets.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Pathology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiaoyi Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
2
|
Ayati R, Manwaring KC, Allen SP, Day RW, Lewis RS. Comparison of Methemoglobin, Deoxyhemoglobin, and Ferrous Nitrosyl Hemoglobin as Potential MRI Contrast Agents. Ann Biomed Eng 2023; 51:2013-2020. [PMID: 37270456 PMCID: PMC10529426 DOI: 10.1007/s10439-023-03226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are in widespread use to enhance magnetic resonance imaging for evaluating vascular pathology. However, safety concerns and limitations regarding the use of GBCAs has led to an increased interest in alternative contrast agents. Previously, methemoglobin (metHb) and oxygen-free hemoglobin (HHb) have been shown to increase the T1-weighted signal intensity of blood, which is associated with a decrease in the T1 parameter and an enhanced contrast of the image. Thus, a lower T1 value compared to the baseline value is favorable for imaging. However, it is unknown as to whether metHb or HHb would be a stronger and more appropriate contrast agent and to what extent the T1-weighted signal is affected by concentration. This study evaluated T1-weighted images of blood samples over a range of metHb and HHb concentrations, as well as ferrous nitrosyl hemoglobin (HbIINO) concentrations. Comparison of T1 values from a baseline value of ~ 1500 ms showed that metHb is the strongest contrast agent (T1 ~ 950 ms at 20% metHb) and that HHb is a relatively weak contrast agent (T1 ~ 1450 ms at 20% HHb). This study showed for the first time that HbIINO can provide a contrast effect, although not as strong as metHb but stronger than HHb (T1 estimated as 1250 ms at 20% HbIINO). With metHb providing a viable contrast between 10 and 20%, metHb has the potential to be a safe and effective contrast agent since it can be naturally converted back to hemoglobin.
Collapse
Affiliation(s)
- Roya Ayati
- Department of Chemical Engineering, Brigham Young University, 330 Engineering Building, Provo, UT, 84602, USA
| | - Kyle C Manwaring
- Department of Chemical Engineering, Brigham Young University, 330 Engineering Building, Provo, UT, 84602, USA
| | - Steven P Allen
- Department of Electrical and Computer Engineering, Brigham Young University, 450 Engineering Building, Provo, UT, 84602, USA
| | - Ronald W Day
- Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, UT, 84113, USA
| | - Randy S Lewis
- Department of Chemical Engineering, Brigham Young University, 330 Engineering Building, Provo, UT, 84602, USA.
| |
Collapse
|
3
|
Sangha GS, Weber CM, Sapp RM, Setua S, Thangaraju K, Pettebone M, Rogers SC, Doctor A, Buehler PW, Clyne AM. Mechanical stimuli such as shear stress and piezo1 stimulation generate red blood cell extracellular vesicles. Front Physiol 2023; 14:1246910. [PMID: 37719461 PMCID: PMC10502313 DOI: 10.3389/fphys.2023.1246910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Generating physiologically relevant red blood cell extracellular vesicles (RBC-EVs) for mechanistic studies is challenging. Herein, we investigated how to generate and isolate high concentrations of RBC-EVs in vitro via shear stress and mechanosensitive piezo1 ion channel stimulation. Methods: RBC-EVs were generated by applying shear stress or the piezo1-agonist yoda1 to RBCs. We then investigated how piezo1 RBC-EV generation parameters (hematocrit, treatment time, treatment dose), isolation methods (membrane-based affinity, ultrafiltration, ultracentrifugation with and without size exclusion chromatography), and storage conditions impacted RBC-EV yield and purity. Lastly, we used pressure myography to determine how RBC-EVs isolated using different methods affected mouse carotid artery vasodilation. Results: Our results showed that treating RBCs at 6% hematocrit with 10 µM yoda1 for 30 min and isolating RBC-EVs via ultracentrifugation minimized hemolysis, maximized yield and purity, and produced the most consistent RBC-EV preparations. Co-isolated contaminants in impure samples, but not piezo1 RBC-EVs, induced mouse carotid artery vasodilation. Conclusion: This work shows that RBC-EVs can be generated through piezo1 stimulation and may be generated in vivo under physiologic flow conditions. Our studies further emphasize the importance of characterizing EV generation and isolation parameters before using EVs for mechanistic analysis since RBC-EV purity can impact functional outcomes.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Ryan M Sapp
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Morgan Pettebone
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Stephen C Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul W Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
4
|
Markwalter DJ, Primavera KD, Day RW, Lewis RS. Rapid Formation of Methemoglobin via Nitric Oxide Delivery for Potential Use as an MRI Contrast Agent. Ann Biomed Eng 2023; 51:506-516. [PMID: 36112294 PMCID: PMC10422684 DOI: 10.1007/s10439-022-03049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
Contrast-enhanced magnetic resonance angiography is a vital tool for evaluating vascular pathology. However, concerns about the limitations and safety of gadolinium-based contrast agents have led to an interest in alternative agents. Methemoglobin (metHb) increases the T1-weighted signal intensity of the magnetic resonance image of blood and could provide a safe and effective alternative. MetHb can be produced by the reaction of nitric oxide (NO) gas with oxyhemoglobin followed by natural conversion back to hemoglobin by cytochrome b5 reductase. Since rapid production of metHb via NO has not been studied, the effectiveness of producing metHb via NO delivery to blood was evaluated using a hollow-fiber module. MetHb production began immediately and > 90% conversion was achieved within 10 min. MetHb remained stable for at least 90 min when NO delivery was removed following metHb formation. Comparison of experimental data for metHb formation with model predictions showed that only a fraction of the NO delivered was utilized for metHb production, suggesting an additional fast reaction of NO with other blood constituents. Directly delivering NO to blood for the rapid formation of metHb provides a potential platform for producing metHb as an alternative contrast agent.
Collapse
Affiliation(s)
- Denton J Markwalter
- Department of Mechanical Engineering, Brigham Young University, 350 Engineering Building, Provo, UT, 84602, USA
| | - Kyle D Primavera
- Department of Chemical Engineering, Brigham Young University, 330 Engineering Building, Provo, UT, 84602, USA
| | - Ronald W Day
- Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, UT, 84113, USA
| | - Randy S Lewis
- Department of Chemical Engineering, Brigham Young University, 330 Engineering Building, Provo, UT, 84602, USA.
| |
Collapse
|
5
|
Biagiotti S, Abbas F, Montanari M, Barattini C, Rossi L, Magnani M, Papa S, Canonico B. Extracellular Vesicles as New Players in Drug Delivery: A Focus on Red Blood Cells-Derived EVs. Pharmaceutics 2023; 15:365. [PMID: 36839687 PMCID: PMC9961903 DOI: 10.3390/pharmaceutics15020365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The article is divided into several sections, focusing on extracellular vesicles' (EVs) nature, features, commonly employed methodologies and strategies for their isolation/preparation, and their characterization/visualization. This work aims to give an overview of advances in EVs' extensive nanomedical-drug delivery applications. Furthermore, considerations for EVs translation to clinical application are summarized here, before focusing the review on a special kind of extracellular vesicles, the ones derived from red blood cells (RBCEVs). Generally, employing EVs as drug carriers means managing entities with advantageous properties over synthetic vehicles or nanoparticles. Besides the fact that certain EVs also reveal intrinsic therapeutic characteristics, in regenerative medicine, EVs nanosize, lipidomic and proteomic profiles enable them to pass biologic barriers and display cell/tissue tropisms; indeed, EVs engineering can further optimize their organ targeting. In the second part of the review, we focus our attention on RBCEVs. First, we describe the biogenesis and composition of those naturally produced by red blood cells (RBCs) under physiological and pathological conditions. Afterwards, we discuss the current procedures to isolate and/or produce RBCEVs in the lab and to load a specific cargo for therapeutic exploitation. Finally, we disclose the most recent applications of RBCEVs at the in vitro and preclinical research level and their potential industrial exploitation. In conclusion, RBCEVs can be, in the near future, a very promising and versatile platform for several clinical applications and pharmaceutical exploitations.
Collapse
Affiliation(s)
- Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Faiza Abbas
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
- AcZon s.r.l., 40050 Monte San Pietro, BO, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| |
Collapse
|
6
|
Tkachenko A, Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 2023; 69:116-126. [PMID: 38410969 DOI: 10.14712/fb2023069040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
7
|
Berezin AA, Obradovic Z, Kopp K, Berezina TA, Lichtenauer M, Wernly B, Berezin AE. The Association of Glucose Control with Circulating Levels of Red Blood Cell-Derived Vesicles in Type 2 Diabetes Mellitus Patients with Atrial Fibrillation. Int J Mol Sci 2022; 24:ijms24010729. [PMID: 36614172 PMCID: PMC9820839 DOI: 10.3390/ijms24010729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Hyperglycemia is a trigger for structural alteration of red blood cells (RBCs) and their ability to release extracellular vesicles (EVs). The aim of the study was to elucidate whether glucose control in T2DM patients with concomitant HF and AF affects a circulating number of RBC-derived EVs. We prospectively included 417 T2DM patients with HF, 51 of them had atrial fibrillation and 25 healthy volunteers and 30 T2DM non-HF individuals. Clinical assessment, echocardiography examination and biomarker measures were performed at the baseline of the study. RBC-derived EVs were determined as CD235a+ PS+ particles by flow cytometry. NT-proBNP levels were measured by ELISA. AF patients with glycosylated hemoglobin (HbA1c) < 6.9% had lower levels of CD235a+ PS+ RBC-derived vesicles than those with HbA1c ≥ 7.0%. There were no significant differences in number of CD235a+ PS+ RBC-derived vesicles between patients in entire cohort and in non-AF sub-cohort with HbA1c < 6.9% and HbA1c ≥ 7.0%, respectively. Multivariate linear regression yielded that CD235a+ PS+ RBC-derived vesicles ≥ 545 particles in µL (OR = 1.06; 95% CI = 1.01−1.11, p = 0.044) independently predicted HbA1c ≥ 7.0%. Elevated levels of CD235a+ PS+ RBC-derived EVs independently predicted poor glycaemia control in T2DM patients with HF and AF.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Zaporozhye Medical Academy of Postgraduate Education, 20 Vinter Av., 69096 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Kristen Kopp
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Tetiana A. Berezina
- Department of Internal Medicine, Vita Center, 3 Sedov Str., 69000 Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital of Oberndorf, Paracelsusstraβe 37, 5110 Oberndorf bei Salzburg, Austria
- Center for Public Health and Healthcare Research, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Correspondence:
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 26 Mayakovsky Av., 69035 Zaporozhye, Ukraine
| |
Collapse
|
8
|
Red Blood Cell Transfusions and Risk of Postoperative Venous Thromboembolism. J Am Acad Orthop Surg 2022; 30:e919-e928. [PMID: 35439203 DOI: 10.5435/jaaos-d-22-00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Postoperative venous thromboembolism (VTE) is a major risk for orthopaedic surgery and associated with notable morbidity and mortality. Knowing a patient's risk for VTE may help guide the choice of perioperative VTE prophylaxis. Recently, red blood cells (RBCs) have been implicated for their role in pathologic thrombosis. Therefore, we examine the association between perioperative RBC transfusion and postoperative VTE after orthopaedic surgery. METHODS A retrospective cohort study was done by conducting a secondary analysis of data obtained from the 2016 American College of Surgeons National Surgical Quality Improvement Program database. Our population consisted of 234,608 adults who underwent orthopaedic surgery. The exposure was whether patients received a perioperative RBC transfusion. The primary outcome was postoperative VTE within 30 days of surgery that warranted therapeutic intervention, which was subsequently split into symptomatic deep vein thrombosis (DVT) and pulmonary embolism (PE). Odds ratios (ORs) were estimated using a multivariate logistic regression model. RESULTS At baseline, 1,952 patients (0.83%) had postoperative VTE (DVT in 1,299 [0.55%], PE in 801 [0.34%], and both DVT and PE in 148 [0.06%]). Seven hundred ninety-five patients (0.3%) received preoperative RBC transfusions only, 11,587 patients (4.9%) received postoperative RBC transfusions only, and 848 patients (0.4%) received both preoperative and postoperative RBC transfusions. Postoperative RBC transfusion was associated with higher odds of VTE (adjusted OR [aOR], 1.47; 95% confidence interval [CI], 1.19-1.81), DVT (aOR, 1.40; 95% CI, 1.09-1.79), PE (aOR, 1.59; 95% CI, 1.14-2.22), and 30-day mortality (aOR, 1.21; 95% CI, 1.01-1.45) independent of various presumed risk factors. When creating subgroups within orthopaedics by Current Procedural Terminology codes, postoperative transfusions in spine (aOR, 2.03; 95% CI, 1.13-3.67) and trauma (aOR, 1.40; 95% CI, 1.06-1.86) were associated with higher odds of postoperative VTE. CONCLUSION Our results suggest that postoperative RBC transfusion may be associated with an increased risk of postoperative VTE, both symptomatic DVT and life-threatening PE, independent of confounders. Additional prospective validation in cohort studies is necessary to confirm these findings. In addition, careful perioperative planning for patients deemed to be at high risk of requiring blood transfusion may reduce these postoperative complications in orthopaedic patients. LEVEL OF EVIDENCE III.
Collapse
|
9
|
Nguyen PH, Le AH, Pek JSQ, Pham TT, Jayasinghe MK, Do DV, Phung CD, Le MT. Extracellular vesicles and lipoproteins - Smart messengers of blood cells in the circulation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e49. [PMID: 38938581 PMCID: PMC11080875 DOI: 10.1002/jex2.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 06/29/2024]
Abstract
Blood cell-derived extracellular vesicles (BCEVs) and lipoproteins are the major circulating nanoparticles in blood that play an important role in intercellular communication. They have attracted significant interest for clinical applications, given their endogenous characteristics which make them stable, biocompatible, well tolerated, and capable of permeating biological barriers efficiently. In this review, we describe the basic characteristics of BCEVs and lipoproteins and summarize their implications in both physiological and pathological processes. We also outline well accepted workflows for the isolation and characterization of these circulating nanoparticles. Importantly, we highlight the latest progress and challenges associated with the use of circulating nanoparticles as diagnostic biomarkers and therapeutic interventions in multiple diseases. We spotlight novel engineering approaches and designs to facilitate the development of these nanoparticles by enhancing their stability, targeting capability, and delivery efficiency. Therefore, the present work provides a comprehensive overview of composition, biogenesis, functions, and clinical translation of circulating nanoparticles from the bench to the bedside.
Collapse
Affiliation(s)
- Phuong H.D. Nguyen
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Anh Hong Le
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jonetta Shi Qi Pek
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Thach Tuan Pham
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeCancer Programme and Nanomedicine Translational ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dang Vinh Do
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cao Dai Phung
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Minh T.N. Le
- Department of Pharmacology and Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeCancer Programme and Nanomedicine Translational ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
10
|
Mukosera GT, Principe P, Mata-Greenwood E, Liu T, Schroeder H, Parast M, Blood AB. Iron nitrosyl complexes are formed from nitrite in the human placenta. J Biol Chem 2022; 298:102078. [PMID: 35643317 PMCID: PMC9257420 DOI: 10.1016/j.jbc.2022.102078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Placental nitric oxide (NO) is critical for maintaining perfusion in the maternal-fetal-placental circulation during normal pregnancy. NO and its many metabolites are also increased in pregnancies complicated by maternal inflammation such as preeclampsia, fetal growth restriction, gestational diabetes, and bacterial infection. However, it is unclear how increased levels of NO or its metabolites affect placental function or how the placenta deals with excessive levels of NO or its metabolites. Since there is uncertainty over the direction of change in plasma levels of NO metabolites in preeclampsia, we measured the levels of these metabolites at the placental tissue level. We found that NO metabolites are increased in placentas from patients with preeclampsia compared to healthy controls. We also discovered by ozone-based chemiluminescence and electron paramagnetic resonance that nitrite is efficiently converted into iron nitrosyl complexes (FeNOs) within the human placenta and also observed the existence of endogenous FeNOs within placentas from sheep and rats. We show these nitrite-derived FeNOs are relatively short-lived, predominantly protein-bound, heme-FeNOs. The efficient formation of FeNOs from nitrite in the human placenta hints toward the importance of both nitrite and FeNOs in placental physiology or pathology. As iron nitrosylation is an important posttranslational modification that affects the activity of multiple iron-containing proteins such as those in the electron transport chain, or those involved in epigenetic regulation, we conclude that FeNOs merit increased study in pregnancy complications.
Collapse
Affiliation(s)
- George T Mukosera
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Patricia Principe
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Eugenia Mata-Greenwood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Hobe Schroeder
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Mana Parast
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
11
|
Sharma A, Chanu TI, Nayak SK, Jahageerdar S, Krishna G. Pathogenesis of Aeromonas caviae in Clariasmagur. Microb Pathog 2022; 169:105662. [PMID: 35781004 DOI: 10.1016/j.micpath.2022.105662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Aeromonas spp. is a pathogenic bacteria that potentially cause infection in farmed fish, including Catfishes. In the present study, dominant bacteria were isolated from diseased Clarias magur and tentatively named BLBM-05. Based on morphological, physiological, and biochemical features as well as 16S rRNA gene sequence and gyrB gene sequences (Gen Bank accession number: MT973994.1 and MZ398017.1), the bacteria in the isolate was found to be Aeromonas caviae. Further, the isolate was screened for five known virulence genes, namely β-hemolysin, lafA, exu, ompA1 and ascV. Among them, three virulence genes related to pathogenicity, including aerolysin (aer), outer membrane protein (ompA1), lateral flagella (lafA), were identified in the A. caviae isolate. The median lethal dosage (LD50) of the BLBM-05 isolate for magur was determined as 1.53x106 CFU/mL. The histopathological analysis showed that the BLBM-05 isolate induced considerable histological lesions in the magur fish, including necrosis, hemolysis of erythrocytes, myolysis, hemorrhage, and desquamation in the intestinal tissue, tissue loosening, and infiltration of inflammatory cells. Drug sensitivity test showed that the isolate was susceptible to Gentamicin, Ceftazidine, Ceftrioxone, Amikacin, Tetracycline, Meropener and Oxytetracycline. The present results provide a scientific basis to identify A. caviae further, a line of treatment for magur infected by this pathogen.
Collapse
Affiliation(s)
- Arun Sharma
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, Maharashtra, 400061, India.
| | - Thongam Ibemcha Chanu
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, Maharashtra, 400061, India
| | - Sunil Kumar Nayak
- ICAR-Central Institute of Fisheries Education, Powarkheda Centre, Hoshangabad, Madhya Pradesh, 461110, India
| | - Shrinivas Jahageerdar
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, Maharashtra, 400061, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, Maharashtra, 400061, India
| |
Collapse
|
12
|
Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022; 12:803. [PMID: 35740926 PMCID: PMC9220817 DOI: 10.3390/biom12060803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, National & Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| |
Collapse
|
13
|
Yang L, Huang S, Zhang Z, Liu Z, Zhang L. Roles and Applications of Red Blood Cell-Derived Extracellular Vesicles in Health and Diseases. Int J Mol Sci 2022; 23:ijms23115927. [PMID: 35682606 PMCID: PMC9180222 DOI: 10.3390/ijms23115927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Red blood cell-derived extracellular vesicles (RBCEVs) are vesicles naturally produced by red blood cells and play multiple roles such as acting as cell-to-cell communication messengers in both normal physiological and diseased states. RBCEVs are highly promising delivery vehicles for therapeutic agents such as biomolecules and nucleic acids as they are easy to source, safe, and versatile. RBCEVs autonomously target the liver and pass the blood-brain barrier into the brain, which is highly valuable for the treatment of liver and brain diseases. RBCEVs can be modified by various functional units, including various functional molecules and nanoparticles, to improve their active targeting capabilities for tumors or other sites. Moreover, the RBCEV level is significantly shifted in many diseased states; hence, they can also serve as important biomarkers for disease diagnoses. It is clear that RBCEVs have considerable potential in multiple medical applications. In this review, we briefly introduce the biological roles of RBCEVs, presented interesting advances in RBCEV applications, and discuss several challenges that need to be addressed for their clinical translation.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Shiqi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Zhenmi Liu
- Med-X Center for Materials, West China School of Public Health, Sichuan University, Chengdu 610041, China;
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
14
|
Rother N, Yanginlar C, Pieterse E, Hilbrands L, van der Vlag J. Microparticles in Autoimmunity: Cause or Consequence of Disease? Front Immunol 2022; 13:822995. [PMID: 35514984 PMCID: PMC9065258 DOI: 10.3389/fimmu.2022.822995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
Microparticles (MPs) are small (100 nm - 1 um) extracellular vesicles derived from the plasma membrane of dying or activated cells. MPs are important mediators of intercellular communication, transporting proteins, nucleic acids and lipids from the parent cell to other cells. MPs resemble the state of their parent cells and are easily accessible when released into the blood or urine. MPs also play a role in the pathogenesis of different diseases and are considered as potential biomarkers. MP isolation and characterization is technically challenging and results in different studies are contradictory. Therefore, uniform guidelines to isolate and characterize MPs should be developed. Our understanding of MP biology and how MPs play a role in different pathological mechanisms has greatly advanced in recent years. MPs, especially if derived from apoptotic cells, possess strong immunogenic properties due to the presence of modified proteins and nucleic acids. MPs are often found in patients with autoimmune diseases where MPs for example play a role in the break of immunological tolerance and/or induction of inflammatory conditions. In this review, we describe the main techniques to isolate and characterize MPs, define the characteristics of MPs generated during cell death, illustrate different mechanism of intercellular communication via MPs and summarize the role of MPs in pathological mechanisms with a particular focus on autoimmune diseases.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
15
|
Tzounakas VL, Anastasiadi AT, Lekka ME, Papageorgiou EG, Stamoulis K, Papassideri IS, Kriebardis AG, Antonelou MH. Deciphering the Relationship Between Free and Vesicular Hemoglobin in Stored Red Blood Cell Units. Front Physiol 2022; 13:840995. [PMID: 35211035 PMCID: PMC8861500 DOI: 10.3389/fphys.2022.840995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Red blood cells (RBCs) release hemoglobin (Hb)-containing extracellular vesicles (EVs) throughout their lifespan in the circulation, and especially during senescence, by spleen-facilitated vesiculation of their membrane. During ex vivo aging under blood bank conditions, the RBCs lose Hb, both in soluble form and inside EVs that accumulate as a part of storage lesion in the supernatant of the unit. Spontaneous hemolysis and vesiculation are increasingly promoted by the storage duration, but little is known about any physiological linkage between them. In the present study, we measured the levels of total extracellular and EV-enclosed Hb (EV-Hb) in units of whole blood (n = 36) or packed RBCs stored in either CPDA-1 (n = 99) or in CPD-SAGM additive solution (n = 46), in early, middle, and late storage. The spectrophotometry data were subjected to statistical analysis to detect possible correlation(s) between storage hemolysis and EV-Hb, as well as the threshold (if any) that determines the area of this dynamic association. It seems that the percentage of EV-Hb is negatively associated with hemolysis levels from middle storage onward by showing low to moderate correlation profiles in all strategies under investigation. Moreover, 0.17% storage hemolysis was determined as the potential cut-off, above which this inverse correlation is evident in non-leukoreduced CPDA units. Notably, RBC units with hemolysis levels > 0.17% are characterized by higher percentage of nanovesicles (<100 nm) over typical microvesicles (100–400 nm) compared with the lower hemolysis counterparts. Our results suggest an ordered loss of Hb during RBC accelerated aging that might fuel targeted research to elucidate its mechanistic basis.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Marilena E Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | | | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
16
|
Ma X, Liu Y, Han Q, Han Y, Wang J, Zhang H. Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). Int J Oncol 2021; 59:108. [PMID: 34841441 DOI: 10.3892/ijo.2021.5288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusions may have a negative impact on the prognosis of patients with cancer, where transfusion‑related immunomodulation (TRIM) may be a significant contributing factor. A number of components have been indicated to be associated with TRIM. Among these, the impact of extracellular vesicles (EVs) has been garnering increasing attention from researchers. EVs are defined as nano‑scale, cell‑derived vesicles that carry a variety of bioactive molecules, including proteins, nucleic acids and lipids, to mediate cell‑to‑cell communication and exert immunoregulatory functions. RBCs in storage constitutively secrete EVs, which serve an important role in TRIM in patients with cancer receiving a blood transfusion. Therefore, the present review aimed to first summarize the available information on the biogenesis and characterization of EVs. Subsequently, the possible mechanisms of TRIM in patients with cancer and the impact of EVs on TRIM were discussed, aiming to provide an outlook for future studies, specifically for formulating recommendations for managing patients with cancer receiving RBC transfusions.
Collapse
Affiliation(s)
- Xingyu Ma
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yanxi Liu
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qianlan Han
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hongwei Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
17
|
Tang ASO, Soo XY, Yeo ST, Mansor NA, Chew LP, Chua HH. The mystery of 'saturation gap' and falsely normal G6PD: a case of primaquine-induced haemolysis in Plasmodium vivax malaria infection. J R Coll Physicians Edinb 2021; 51:146-148. [PMID: 34131671 DOI: 10.4997/jrcpe.2021.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eradication therapy in Plasmodium vivax in variants of glucose-6-phosphate dehydrogenase (G6PD) deficiency individuals remains a clinical challenge. We present a case of primaquine-induced methaemoglobinaemia and haemolytic anaemia in a patient with falsely normal qualitative G6PD result during initial presentation, which was complicated with clinical sequelae of thrombosis. Further investigations showed moderate degree of G6PD deficiency. Our patient responded well to vitamin C and a modified weekly regimen of primaquine with no evidence of malaria relapse.
Collapse
Affiliation(s)
- Andy Sing Ong Tang
- Department of Internal Medicine, Miri Hospital, Jalan Cahaya, 98000 Miri, Sarawak, Malaysia,
| | - Xin Yin Soo
- Infectious Disease Unit, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health, Malaysia
| | - Siaw Tze Yeo
- Infectious Disease Unit, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health, Malaysia
| | - Nor Ainiza Mansor
- Infectious Disease Unit, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health, Malaysia
| | - Lee Ping Chew
- Infectious Disease Unit, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health, Malaysia
| | - Hock Hin Chua
- Infectious Disease Unit, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health, Malaysia
| |
Collapse
|
18
|
Smith RA, Mankelow TJ, Drizou D, Bullock T, Latham T, Trompeter S, Blair A, Anstee DJ. Large red cell-derived membrane particles are major contributors to hypercoagulability in sickle cell disease. Sci Rep 2021; 11:11035. [PMID: 34040079 PMCID: PMC8155063 DOI: 10.1038/s41598-021-90477-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common inherited single gene disorders. Polymerisation of sickle hemoglobin results in erythrocytes that are inflexible and adherent, leading to coagulation, vascular and cellular activation and resultant blood vessel blockage. Previous studies have observed elevated numbers of red cell-derived particles (RCDP), also denoted extracellular vesicles, in SCD plasma. Here, imaging flow cytometry was used to quantify all RCDP in SCD plasma. A more heterogenous population of RCDP was observed than previously reported. Significantly, large right side-out red cell macrovesicles (MaV), 7 µm in diameter, were identified. Most RCDP were right side-out but a minor population of inside-out vesicles was also present. Electron micrographs confirmed the heterogenous nature of the RCDP detected. All MaV are decorated with prothrombotic phosphatidylserine (PS) and their removal from plasma lengthened clotting times by more than three-fold. Removal of all right side-out RCDP from SCD patient plasma samples resulted in a seven-fold increase in clotting time. These results indicate that MaV comprise a large area of prothrombotic membrane and are thus major contributors to hypercoagulation in SCD. Consequently, controlled removal of MaV and PS exposed RCDP from plasma could provide a novel therapy for managing this disease.
Collapse
Affiliation(s)
- Rachel A Smith
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Tosti J Mankelow
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK.
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK.
| | - Despoina Drizou
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Thomas Bullock
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
| | - Tom Latham
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
| | - Sara Trompeter
- Joint Red Cell Unit, Haematology Department, University College London National Health Service Foundation Trust, London, UK
| | - Allison Blair
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Hermida-Nogueira L, García Á. Extracellular vesicles in the transfusion medicine field: The potential of proteomics. Proteomics 2021; 21:e2000089. [PMID: 33754471 DOI: 10.1002/pmic.202000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 11/07/2022]
Abstract
In transfusion centres, blood components are divided and stored following specific guidelines. The storage temperature and time vary among the blood cells but all of them release extracellular vesicles (EVs) under blood bank conditions. The clinical impact of such vesicles in blood components for transfusion is an object of debate, but should be considered and is being investigated. In this context, proteomics is an excellent tool to study the cargo and composition of EVs derived from red blood cells and platelets, since such vesicles are enriched in lipids and proteins. The development of quantitative mass spectrometry techniques and the evolution of bioinformatics have allowed the identification of novel EVs biomarkers for different diseases. In this context, the application of high coverage proteomic tools to the analysis of EVs in the transfusion medicine field would provide information about storage lesions and possible transfusion adverse reactions. This viewpoint article approaches the potential of proteomics to investigate the impact of EVs in blood bank transfusion components, especially red blood cells and platelets.
Collapse
Affiliation(s)
- Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
20
|
Bedside Allogeneic Erythrocyte Washing with a Cell Saver to Remove Cytokines, Chemokines, and Cell-derived Microvesicles. Anesthesiology 2021; 134:395-404. [PMID: 33503656 DOI: 10.1097/aln.0000000000003689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Removal of cytokines, chemokines, and microvesicles from the supernatant of allogeneic erythrocytes may help mitigate adverse transfusion reactions. Blood bank-based washing procedures present logistical difficulties; therefore, we tested the hypothesis that on-demand bedside washing of allogeneic erythrocyte units is capable of removing soluble factors and is feasible in a clinical setting. METHODS There were in vitro and prospective, observation cohort components to this a priori planned substudy evaluating bedside allogeneic erythrocyte washing, with a cell saver, during cardiac surgery. Laboratory data were collected from the first 75 washed units given to a subset of patients nested in the intervention arm of a parent clinical trial. Paired pre- and postwash samples from the blood unit bags were centrifuged. The supernatant was aspirated and frozen at -70°C, then batch-tested for cell-derived microvesicles, soluble CD40 ligand, chemokine ligand 5, and neutral lipids (all previously associated with transfusion reactions) and cell-free hemoglobin (possibly increased by washing). From the entire cohort randomized to the intervention arm of the trial, bedside washing was defined as feasible if at least 75% of prescribed units were washed per protocol. RESULTS Paired data were available for 74 units. Washing reduced soluble CD40 ligand (median [interquartile range]; from 143 [1 to 338] ng/ml to zero), chemokine ligand 5 (from 1,314 [715 to 2,551] to 305 [179 to 488] ng/ml), and microvesicle numbers (from 6.90 [4.10 to 20.0] to 0.83 [0.33 to 2.80] × 106), while cell-free hemoglobin concentration increased from 72.6 (53.6 to 171.6) mg/dl to 210.5 (126.6 to 479.6) mg/dl (P < 0.0001 for each). There was no effect on neutral lipids. Bedside washing was determined as feasible for 80 of 81 patients (99%); overall, 293 of 314 (93%) units were washed per protocol. CONCLUSIONS Bedside erythrocyte washing was clinically feasible and greatly reduced concentrations of soluble factors thought to be associated with transfusion-related adverse reactions, increasing concentrations of cell-free hemoglobin while maintaining acceptable (less than 0.8%) hemolysis. EDITOR’S PERSPECTIVE
Collapse
|
21
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol Sci 2020; 22:E153. [PMID: 33375718 PMCID: PMC7796437 DOI: 10.3390/ijms22010153] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.
Collapse
Affiliation(s)
- Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Manabe E, Ito S, Ohno Y, Tanaka T, Naito Y, Sasaki N, Asakura M, Masuyama T, Ishihara M, Tsujino T. Reduced lifespan of erythrocytes in Dahl/Salt sensitive rats is the cause of the renal proximal tubule damage. Sci Rep 2020; 10:22023. [PMID: 33328561 PMCID: PMC7744793 DOI: 10.1038/s41598-020-79146-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
We studied the mechanisms of anemia and the influence of anemia on renal pathology in Dahl/Salt Sensitive (Dahl/SS) rat, a model of cardio-renal-anemia syndrome. Erythrocyte lifespan was shortened and associated with decreased hemoglobin level in the Dahl/SS rats given high-salt diet. Serum haptoglobin decreased, reticulocytes increased, and erythropoiesis in the bone marrow and extramedullary hematopoiesis in the spleen was markedly stimulated by increased serum erythropoietin in them. As a mechanism of hemolysis, we investigated the incidence of eryptosis, suicidal death of erythrocytes. Eryptosis was increased, and red blood cell-derived microparticles, small particle which are generated in hemolytic disease, were also increased in Dahl/SS rats fed with high-salt diet. Deposition of hemosiderin and mitochondrial morphologic abnormality, a sign of ferroptosis, in proximal renal tubules was associated with intravascular hemolysis. Treatment with deferasirox, an oral iron chelator, reduced the renal proximal tubular injury and the glomerular sclerosis in Dahl/SS rats fed with high-salt diet. In conclusion, reduced half-life of erythrocytes induced by hemolysis is the major cause of anemia in Dahl/SS rat. Iron accumulation induced by hemolysis causes renal proximal tubule injury and accelerates renal damage in this model.
Collapse
Affiliation(s)
- Eri Manabe
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Satoyasu Ito
- Division of Pharmaceutical Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Yoshiya Ohno
- Division of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Toshiyuki Tanaka
- Division of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Yoshiro Naito
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Naoko Sasaki
- Division of Pharmaceutical Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Masanori Asakura
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tohru Masuyama
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
- Hoshigaoka Medical Center, Japan Community Health Care Organization, Hirakata, Osaka, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Takeshi Tsujino
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
- Division of Pharmaceutical Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| |
Collapse
|
24
|
Dembélé AK, Lapoumeroulie C, Diaw M, Tessougue O, Offredo L, Diallo DA, Diop S, Elion J, Colin-Aronovicz Y, Tharaux PL, Jouven X, Romana M, Ranque B, Le Van Kim C. Cell-derived microparticles and sickle cell disease chronic vasculopathy in sub-Saharan Africa: A multinational study. Br J Haematol 2020; 192:634-642. [PMID: 33249569 DOI: 10.1111/bjh.17242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/26/2020] [Indexed: 01/01/2023]
Abstract
Although most individuals with sickle cell disease (SCD) live in sub-Saharan Africa, the natural history of the disease on this continent remains largely unknown. Intravascular haemolysis results in activation of circulating blood cells and release of microparticles (MPs) that exert pro-inflammatory effects and contribute to vascular damage. We designed a case-control study nested in the CADRE cohort (Coeur-Artère-DRÉpanocytose, clinical trials.gov identifier NCTO3114137) and based on extreme phenotypes, to analyse blood cell-derived MPs in 232 adult SS patients at steady state in Bamako and Dakar. Thirty-six healthy adult controls matched by age and sex were recruited in Bamako. The MPs concentrations were higher in SS patients compared to AA controls with a predominance of erythrocyte- and reticulocyte-derived MPs. These erythroid-derived MPs were significantly lower in patients with retinopathy (P = 0·022). Reticulocyte-derived MPs were significantly negatively and positively associated with a history of priapism (P = 0·020) and leg ulcers (P = 0·041) respectively. We describe for the first time the comparative patterns of plasma MPs in healthy subjects and patients with SCD living in sub-Saharan Africa and exhibiting various complications. Because our present results show no clear pattern of correlation between erythroid MPs and the classical hyper-haemolytic complications, we hypothesise a weak relevance of the hyper-haemolysis versus hyper-viscous paradigm in Africa.
Collapse
Affiliation(s)
- Abdoul K Dembélé
- Université de Paris, UMR_S1134, Biologie Intégrée du Globule Rouge (BIGR), INSERM, Paris, France.,Institut National de Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Centre de Recherche et de Lutte contre la Drépanocytose (CRLD), Bamako, Mali
| | - Claudine Lapoumeroulie
- Université de Paris, UMR_S1134, Biologie Intégrée du Globule Rouge (BIGR), INSERM, Paris, France.,Institut National de Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Mor Diaw
- Université Cheikh Anta Diop de Dakar (UCAD), Laboratoire de Physiologie et Explorations Fonctionnelles, Dakar, Sénégal.,Unité Mixte Internationale (UMI 3189), 'Environnement, Santé, Sociétés' CNRS, UCAD, CNRST, USTTB, UGB, Dakar, Sénégal
| | - Oumarou Tessougue
- Centre de Recherche et de Lutte contre la Drépanocytose (CRLD), Bamako, Mali
| | - Lucile Offredo
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM, Paris Cardiovascular Centre - PARCC, Paris, France
| | - Dapa A Diallo
- Centre de Recherche et de Lutte contre la Drépanocytose (CRLD), Bamako, Mali
| | - Saliou Diop
- Centre National de Transfusion Sanguine (CNTS), Dakar, Sénégal
| | - Jacques Elion
- Université de Paris, UMR_S1134, Biologie Intégrée du Globule Rouge (BIGR), INSERM, Paris, France.,Institut National de Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Yves Colin-Aronovicz
- Université de Paris, UMR_S1134, Biologie Intégrée du Globule Rouge (BIGR), INSERM, Paris, France.,Institut National de Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Pierre-Louis Tharaux
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM, Paris Cardiovascular Centre - PARCC, Paris, France
| | - Xavier Jouven
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM, Paris Cardiovascular Centre - PARCC, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université des Antilles, UMR_S1134, BIGR, INSERM, Pointe-à-Pitre, France
| | - Brigitte Ranque
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM, Paris Cardiovascular Centre - PARCC, Paris, France
| | - Caroline Le Van Kim
- Université de Paris, UMR_S1134, Biologie Intégrée du Globule Rouge (BIGR), INSERM, Paris, France.,Institut National de Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
25
|
Noomuna P, Risinger M, Zhou S, Seu K, Man Y, An R, Sheik DA, Wan J, Little JA, Gurkan UA, Turrini FM, Kalfa T, Low PS. Inhibition of Band 3 tyrosine phosphorylation: a new mechanism for treatment of sickle cell disease. Br J Haematol 2020; 190:599-609. [PMID: 32346864 PMCID: PMC7606656 DOI: 10.1111/bjh.16671] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Many hypotheses have been proposed to explain how a glutamate to valine substitution in sickle haemoglobin (HbS) can cause sickle cell disease (SCD). We propose and document a new mechanism in which elevated tyrosine phosphorylation of Band 3 initiates sequelae that cause vaso-occlusion and the symptoms of SCD. In this mechanism, denaturation of HbS and release of heme generate intracellular oxidants which cause inhibition of erythrocyte tyrosine phosphatases, thus permitting constitutive tyrosine phosphorylation of Band 3. This phosphorylation in turn induces dissociation of the spectrin-actin cytoskeleton from the membrane, leading to membrane weakening, discharge of membrane-derived microparticles (which initiate the coagulation cascade) and release of cell-free HbS (which consumes nitric oxide) and activates the endothelium to express adhesion receptors). These processes promote vaso-occlusive events which cause SCD. We further show that inhibitors of Syk tyrosine kinase block Band 3 tyrosine phosphorylation, prevent release of cell-free Hb, inhibit discharge of membrane-derived microparticles, increase sickle cell deformability, reduce sickle cell adhesion to human endothelial cells, and enhance sickle cell flow through microcapillaries. In view of reports that imatinib (a Syk inhibitor) successfully treats symptoms of sickle cell disease, we suggest that Syk tyrosine kinase inhibitors warrant repurposing as potential treatments for SCD.
Collapse
Affiliation(s)
- Panae Noomuna
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Mary Risinger
- College of Nursing, University of Cincinnati, Cincinnati, OH
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, CA
| | - Katie Seu
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Daniel A. Sheik
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, CA
| | - Jane A. Little
- Department of Medicine, Division of Hematology/Oncology and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Theodosia Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
26
|
Long B, Koyfman A, Gottlieb M. Complications in the adult asplenic patient: A review for the emergency clinician. Am J Emerg Med 2020; 44:452-457. [PMID: 32247651 DOI: 10.1016/j.ajem.2020.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The spleen performs several important physiologic functions. However, patients can have functional asplenia or have their spleen removed for a number of reasons, which can put them at risk for several dangerous complications. OBJECTIVE This narrative review provides a focused evaluation of adult asplenic patients and complications in the emergency departing setting. DISCUSSION The spleen plays integral roles in the immune and reticuloendothelial systems and also modulates the inflammatory and coagulation cascades. Asplenia refers to the anatomic or physiologic loss of splenic function, which may be due to trauma, immunological, hematological, or oncological etiologies. Asplenic patients are at risk for several complications including infection, arterial and venous thrombosis, and pulmonary hypertension. Fever in an asplenic patient and overwhelming post-splenectomy infection (OPSI) are medical emergencies with a high mortality and require rapid evaluation and management with broad-spectrum antibiotics. Asplenic patients are at increased risk of arterial thrombosis, such as coronary artery disease, and venous thrombosis including deep venous thrombosis, pulmonary embolism, and splenic and portal vein thrombosis. Management of venous thrombosis includes anticoagulation. Pulmonary hypertension with associated right ventricular dysfunction may also occur in asplenia. These patients require hemodynamic stabilization with an emphasis on inciting causes and treatment of the pulmonary hypertension. CONCLUSIONS The spleen is an integral organ involved in several physiologic functions. Asplenia, or absence of spleen function, is associated with severe complications. Knowledge of these complications can improve the care of these patients.
Collapse
Affiliation(s)
- Brit Long
- Brooke Army Medical Center, Department of Emergency Medicine, 3841 Roger Brooke Dr, Fort Sam Houston, TX 78234, United States.
| | - Alex Koyfman
- The University of Texas Southwestern Medical Center, Department of Emergency Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, United States
| |
Collapse
|
27
|
Su H, Liu X, Du J, Deng X, Fan Y. The role of hemoglobin in nitric oxide transport in vascular system. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
28
|
Kim J, Nguyen TTT, Li Y, Zhang CO, Cha B, Ke Y, Mazzeffi MA, Tanaka KA, Birukova AA, Birukov KG. Contrasting effects of stored allogeneic red blood cells and their supernatants on permeability and inflammatory responses in human pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L533-L548. [PMID: 31913681 DOI: 10.1152/ajplung.00025.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transfusion of red blood cells (RBCs) is a common life-saving clinical practice in severely anemic or hemorrhagic patients; however, it may result in serious pathological complications such as transfusion-related acute lung injury. The factors mediating the deleterious effects of RBC transfusion remain unclear. In this study, we tested the effects of washed long-term (RBC-O; >28 days) versus short-term (RBC-F; <14 days) stored RBCs and their supernatants on lung endothelial (EC) permeability under control and inflammatory conditions. RBCs enhanced basal EC barrier function as evidenced by an increase in transendothelial electrical resistance and decrease in permeability for macromolecules. RBCs also attenuated EC hyperpermeability and suppressed secretion of EC adhesion molecule ICAM-1 and proinflammatory cytokine IL-8 in response to LPS or TNF-α. In both settings, RBC-F had slightly higher barrier protective effects as compared with RBC-O. In contrast, supernatants from both RBC-F and RBC-O disrupted the EC barrier. The early phase of EC permeability response caused by RBC supernatants was partially suppressed by antioxidant N-acetyl cysteine and inhibitor of Src kinase family PP2, while addition of heme blocker and inhibition of NOD-like receptor family pyrin domain containing protein 3 (NLRP3), stress MAP kinases, receptor for advanced glycation end-products (RAGE), or Toll-like receptor-4 (TLR4) signaling were without effect. Morphological analysis revealed that RBC supernatants increased LPS- and TNF-α-induced breakdown of intercellular junctions and formation of paracellular gaps. RBC supernatants augmented LPS- and TNF-α-induced EC inflammation reflected by increased production of IL-6, IL-8, and soluble ICAM-1. These findings demonstrate the deleterious effects of RBC supernatants on EC function, which may have a major impact in pathological consequences associated with RBC transfusion.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Trang T T Nguyen
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yue Li
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Boyoung Cha
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael A Mazzeffi
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna A Birukova
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Hu J, Spina S, Zadek F, Kamenshchikov NO, Bittner EA, Pedemonte J, Berra L. Effect of nitric oxide on postoperative acute kidney injury in patients who underwent cardiopulmonary bypass: a systematic review and meta-analysis with trial sequential analysis. Ann Intensive Care 2019; 9:129. [PMID: 31754841 PMCID: PMC6872705 DOI: 10.1186/s13613-019-0605-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The effect of nitric oxide (NO) on renal function is controversial in critical illness. We performed a systematic meta-analysis and trial sequential analysis to determine the effect of NO gas on renal function and other clinical outcomes in patients requiring cardiopulmonary bypass (CPB). The primary outcome was the relative risk (RR) of acute kidney injury (AKI), irrespective of the AKI stage. The secondary outcome was the mean difference (MD) in the length of ICU and hospital stay, the RR of postoperative hemorrhage, and the MD in levels of methemoglobin. Trial sequential analysis (TSA) was performed for the primary outcome. RESULTS 54 trials were assessed for eligibility and 5 studies (579 patients) were eligible for meta-analysis. NO was associated with reduced risk of AKI (RR 0.76, 95% confidential interval [CI], 0.62 to 0.93, I2 = 0%). In the subgroup analysis by NO initiation timing, NO did not decrease the risk of AKI when started at the end of CPB (RR 1.20, 95% CI 0.52-2.78, I2 = 0%). However, NO did significantly reduce the risk of AKI when started from the beginning of CPB (RR 0.71, 95% CI 0.54-0.94, I2 = 10%). We conducted TSA based on three trials (400 patients) using KDIGO criteria and with low risk of bias. TSA indicated a CI of 0.50-1.02 and an optimal information size of 589 patients, suggesting a lack of definitive conclusion. Furthermore, NO does not affect the length of ICU and hospital stay or the risk of postoperative hemorrhage. NO slightly increased the level of methemoglobin at the end of CPB (MD 0.52%, 95% CI 0.27-0.78%, I2 = 90%), but it was clinically negligible. CONCLUSIONS NO appeared to reduce the risk of postoperative AKI in patients undergoing CPB. Additional studies are required to ascertain the finding and further determine the dosage, timing and duration of NO administration.
Collapse
Affiliation(s)
- Jie Hu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
- Department of Critical Care Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Stefano Spina
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Francesco Zadek
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Nikolay O Kamenshchikov
- Department of Anesthesia and Critical Care Medicine, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk, 634012, Russia
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Juan Pedemonte
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
- División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA.
| |
Collapse
|
30
|
Goel R, Patel EU, Cushing MM, Frank SM, Ness PM, Takemoto CM, Vasovic LV, Sheth S, Nellis ME, Shaz B, Tobian AAR. Association of Perioperative Red Blood Cell Transfusions With Venous Thromboembolism in a North American Registry. JAMA Surg 2019; 153:826-833. [PMID: 29898202 DOI: 10.1001/jamasurg.2018.1565] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Importance Increasing evidence supports the role of red blood cells (RBCs) in physiological hemostasis and pathologic thrombosis. Red blood cells are commonly transfused in the perioperative period; however, their association with postoperative thrombotic events remains unclear. Objective To examine the association between perioperative RBC transfusions and postoperative venous thromboembolism (VTE) within 30 days of surgery. Design, Setting, and Participants This analysis used prospectively collected registry data from the American College of Surgery National Surgical Quality Improvement Program (ACS-NSQIP) database, a validated registry of 525 teaching and nonteaching hospitals in North America. Participants included patients in the ACS-NSQIP registry who underwent a surgical procedure from January 1 through December 31, 2014. Data were analyzed from July 1, 2016, through March 15, 2018. Main Outcomes and Measures Risk-adjusted odds ratios (aORs) were estimated using multivariable logistic regression. The primary outcome was the development of postoperative VTE (deep venous thrombosis [DVT] and pulmonary embolism [PE]) within 30 days of surgery that warranted therapeutic intervention; DVT and PE were also examined separately as secondary outcomes. Subgroup analyses were performed by surgical subtypes. Propensity score matching was performed for sensitivity analyses. Results Of 750 937 patients (56.8% women; median age, 58 years; interquartile range, 44-69 years), 47 410 (6.3%) received at least 1 perioperative RBC transfusion. Postoperative VTE occurred in 6309 patients (0.8%) (DVT in 4336 [0.6%]; PE in 2514 [0.3%]; both DVT and PE in 541 [0.1%]). Perioperative RBC transfusion was associated with higher odds of VTE (aOR, 2.1; 95% CI, 2.0-2.3), DVT (aOR, 2.2; 95% CI, 2.1-2.4), and PE (aOR, 1.9; 95% CI, 1.7-2.1), independent of various putative risk factors. A significant dose-response effect was observed with increased odds of VTE as the number of intraoperative and/or postoperative RBC transfusion events increased (aOR, 2.1 [95% CI, 2.0-2.3] for 1 event; 3.1 [95% CI, 1.7-5.7] for 2 events; and 4.5 [95% CI, 1.0-19.4] for ≥3 events vs no intraoperative or postoperative RBC transfusion; P < .001 for trend). In subgroup analyses, the association between any perioperative RBC transfusion and postoperative VTE remained statistically significant across all surgical subspecialties analyzed. The association between any perioperative RBC transfusion and the development of postoperative VTE also remained robust after 1:1 propensity score matching (47 142 matched pairs; matched OR, 1.9; 95% CI, 1.8-2.1). Conclusions and Relevance The results of this study suggest that perioperative RBC transfusions may be significantly associated with the development of new or progressive postoperative VTE, independent of several putative confounders. These findings, if validated, should reinforce the importance of rigorous perioperative management of blood transfusion practices.
Collapse
Affiliation(s)
- Ruchika Goel
- Division of Transfusion Medicine, Department of Pathology, New York Presbyterian Hospital, Weill Cornell Medicine, New York.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, New York Presbyterian Hospital, Weill Cornell Medicine, New York
| | - Eshan U Patel
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Melissa M Cushing
- Division of Transfusion Medicine, Department of Pathology, New York Presbyterian Hospital, Weill Cornell Medicine, New York
| | - Steven M Frank
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Paul M Ness
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Clifford M Takemoto
- Division of Pediatric Hematology, Johns Hopkins University, Baltimore, Maryland
| | - Ljiljana V Vasovic
- Division of Transfusion Medicine, Department of Pathology, New York Presbyterian Hospital, Weill Cornell Medicine, New York
| | - Sujit Sheth
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, New York Presbyterian Hospital, Weill Cornell Medicine, New York
| | - Marianne E Nellis
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, New York Presbyterian Hospital, Weill Cornell Medicine, New York
| | | | - Aaron A R Tobian
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
31
|
Olatunya OS, Lanaro C, Longhini AL, Penteado CFF, Fertrin KY, Adekile A, Saad STO, Costa FF. Red blood cells microparticles are associated with hemolysis markers and may contribute to clinical events among sickle cell disease patients. Ann Hematol 2019; 98:2507-2521. [DOI: 10.1007/s00277-019-03792-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023]
|
32
|
Hariri G, Bourcier S, Marjanovic Z, Joffre J, Lemarié J, Lavillegrand JR, Charue D, Duflot T, Bigé N, Baudel JL, Maury E, Mohty M, Guidet B, Bellien J, Blanc-Brude O, Ait-Oufella H. Exploring the microvascular impact of red blood cell transfusion in intensive care unit patients. Crit Care 2019; 23:292. [PMID: 31470888 PMCID: PMC6717366 DOI: 10.1186/s13054-019-2572-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Red blood cell (RBC) transfusion is a common treatment for hospitalized patients. However, the effects of RBC transfusion on microvascular function remain controversial. METHODS In a medical ICU in a tertiary teaching hospital, we prospectively included anemic patients requiring RBC transfusion. Skin microvascular reactivity was measured before and 30 min after RBC transfusion. Plasma was collected to analyze intravascular hemolysis and draw the lipidomic and cytokine profiles. RESULTS In a cohort of 59 patients, the median age was 66 [55-81] years and SAPS II was 38 [24-48]. After RBC transfusion, endothelium-dependent microvascular reactivity improved in 35 (59%) patients, but worsened in 24 others (41%). Comparing clinical and biological markers revealed that baseline blood leucokyte counts distinguished improving from worsening patients (10.3 [5.7; 19.7] vs. 4.6 [2.1; 7.3] × 109/L; p = 0.001) and correlated with variations of microvascular reactivity (r = 0.36, p = 0.005). Blood platelet count was also higher in improving patients (200 [97; 280] vs 160 [40; 199] × 103/mL, p = 0.03) but did not correlate with variations of microvascular reactivity. We observed no intravascular hemolysis (HbCO, heme, bilirubin, LDH), but recorded a significant increase in RBC microparticle levels specific to improving patients after transfusion (292 [108; 531] vs. 53 [34; 99] MP/μL; p = 0.03). The improvement in microvascular dilation was positively correlated with RBC microparticle levels (R = 0.83, p < 0.001) and conversion of arachidonic acid into vasodilating eicosanoids. CONCLUSIONS Patients displaying an improved microvascular reactivity after RBC transfusion had high blood leukocyte counts, increased RBC microparticle formation, and enhanced metabolism of arachidonic acid into vasodilating lipids. Our data suggested a contribution of recipient leukocytes to the vascular impact of RBC transfusion.
Collapse
Affiliation(s)
- Geoffroy Hariri
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Simon Bourcier
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Zora Marjanovic
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’hématologie, 75571 Paris Cedex 12, France
| | - Jérémie Joffre
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Jérémie Lemarié
- Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Jean-Rémi Lavillegrand
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Dominique Charue
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| | - Thomas Duflot
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000 Rouen, France
- Laboratory of Pharmacokinetics, Toxicology and Pharmacogenomics, Rouen University Hospital, 76000 Rouen, France
| | - Naïke Bigé
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Jean-Luc Baudel
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Eric Maury
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Mohamad Mohty
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’hématologie, 75571 Paris Cedex 12, France
| | - Bertrand Guidet
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
- Inserm U1136, F-75012 Paris, France
| | - Jeremy Bellien
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000 Rouen, France
- Department of Pharmacology, Rouen University Hospital, 76000 Rouen, France
| | - Olivier Blanc-Brude
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| | - Hafid Ait-Oufella
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| |
Collapse
|
33
|
Rogers SC, Moynihan FT, McDonough R, Timm DD, Hovmand-Warner E, Frazier E, Thomas KA, Spinella PC, Doctor A. Effect of plasma processing and storage on microparticle abundance, nitric oxide scavenging, and vasoactivity. Transfusion 2019; 59:1568-1577. [PMID: 30980740 DOI: 10.1111/trf.15214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND We set out to define the impact of collection, processing, and storage on plasma product microparticle (MP) abundance, potential for nitric oxide (NO) scavenging, and vasoactivity. STUDY DESIGN AND METHODS Three currently US licensed products were tested: liquid plasma (LP), fresh frozen plasma (FFP), and solvent detergent plasma (SDP), along with a product under development, spray-dried solvent detergent plasma (SD-SDP) with/without beads. Vasoactivity was assessed in vitro using rabbit aortic vascular rings; MP abundance was determined by flow cytometry; and NO scavenging capacity/rate was determined using a biochemical NO consumption assay. All samples were analyzed unprocessed and following centrifugation at two speeds (2,500× g to remove platelets, and 25,000× g to remove microparticles). RESULTS Significant differences in vasoactivity were observed, with SD-SDP minus beads demonstrating the greatest constriction and FFP the lowest constriction response. All products exhibited the same total NO scavenging capacity; however, significant differences were observed in the maximal rate of scavenging, with SD-SDP minus beads and FFP reacting fastest and SDP the slowest. Across all products, platelet and microparticle depletion had no effect on vasoactivity or NO scavenging (total or rate). Microparticles (RBC derived) were found only in FFP and LP, with relative abundance (LP > FFP). Additionally, storage had no effect on total or RBC-derived MP abundance, NO scavenging, or vasoactivity. CONCLUSION Although vasoactivity differed between plasma products, we did not find similar differences in either total or RBC-derived MP abundance or NO scavenging capacity/rate.
Collapse
Affiliation(s)
- Stephen C Rogers
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri.,The Department of Biochemistry & Molecular Biophysics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Francis T Moynihan
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri.,The Department of Biochemistry & Molecular Biophysics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Ryan McDonough
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - David D Timm
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri.,The Department of Biochemistry & Molecular Biophysics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Eyvind Hovmand-Warner
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Elfaridah Frazier
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Kimberly A Thomas
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Philip C Spinella
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Allan Doctor
- Department of Pediatrics, Divisions of Critical Care Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri.,The Department of Biochemistry & Molecular Biophysics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| |
Collapse
|
34
|
Symons JD, Deeter L, Deeter N, Bonn T, Cho JM, Ferrin P, McCreath L, Diakos NA, Taleb I, Alharethi R, McKellar S, Wever-Pinzon O, Navankasattusas S, Selzman CH, Fang JC, Drakos SG. Effect of Continuous-Flow Left Ventricular Assist Device Support on Coronary Artery Endothelial Function in Ischemic and Nonischemic Cardiomyopathy. Circ Heart Fail 2019; 12:e006085. [DOI: 10.1161/circheartfailure.119.006085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
The coronary vasculature encounters a reduction in pulsatility after implementing durable continuous-flow left ventricular assist device (CF-LVAD) circulatory support. Evidence exists that appropriate pulsatility is required to maintain endothelial cell homeostasis. We hypothesized that coronary artery endothelial function would be impaired after CF-LVAD intervention.
Methods and Results:
Coronary arteries from patients with end-stage heart failure caused by ischemic cardiomyopathy (ICM; n=16) or non-ICM (n=22) cardiomyopathy were isolated from the left ventricular apical core, which was removed for the CF-LVAD implantation. In 11 of these patients, paired coronary arteries were obtained from an adjacent region of myocardium after the CF-LVAD intervention (n=6 ICM, 5 non-ICM). Vascular function was assessed ex vivo using isometric tension procedures in these patients and in 7 nonfailing donor controls. Maximal endothelium-dependent vasorelaxation to BK (bradykinin; 10
−
6
–10
−
10
M) was blunted (
P
<0.05) in arteries from patients with ICM compared with non-ICM and donor controls, whereas responses to sodium nitroprusside (10
−4
–10
−9
M) were similar among the groups. Contrary to our hypothesis, vasorelaxation responses to BK and sodium nitroprusside were similar before and 219±37 days after CF-LVAD support. Of these patients, an exploratory subgroup analysis revealed that BK-induced coronary artery vasorelaxation was greater (
P
<0.05) after (87±6%) versus before (54±14%) CF-LVAD intervention in ICM patients, whereas sodium nitroprusside–evoked responses were similar.
Conclusions:
Coronary artery endothelial function is not impaired by durable CF-LVAD support and in ICM patients appears to be improved. Investigating coronary endothelial function using in vivo approaches in a larger patient population is warranted.
Collapse
Affiliation(s)
- J. David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City (J.D.S., L.D., N.D., T.B., J.M.C., S.G.D.)
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Diabetes (J.D.S.), University of Utah, Salt Lake City
- Molecular Medicine Program (J.D.S., P.F., L.M., N.A.D., I.T., S.N., S.G.D.), University of Utah, Salt Lake City
| | - Lance Deeter
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City (J.D.S., L.D., N.D., T.B., J.M.C., S.G.D.)
| | - Nicholas Deeter
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City (J.D.S., L.D., N.D., T.B., J.M.C., S.G.D.)
| | - Trevor Bonn
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City (J.D.S., L.D., N.D., T.B., J.M.C., S.G.D.)
| | - Jae Min Cho
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City (J.D.S., L.D., N.D., T.B., J.M.C., S.G.D.)
| | - Peter Ferrin
- Molecular Medicine Program (J.D.S., P.F., L.M., N.A.D., I.T., S.N., S.G.D.), University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (P.F., L.M., N.A.D., I.T., S.N., C.H.S., S.G.D.), University of Utah, Salt Lake City
| | - Lauren McCreath
- Molecular Medicine Program (J.D.S., P.F., L.M., N.A.D., I.T., S.N., S.G.D.), University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (P.F., L.M., N.A.D., I.T., S.N., C.H.S., S.G.D.), University of Utah, Salt Lake City
| | - Nikolaos A. Diakos
- Molecular Medicine Program (J.D.S., P.F., L.M., N.A.D., I.T., S.N., S.G.D.), University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (P.F., L.M., N.A.D., I.T., S.N., C.H.S., S.G.D.), University of Utah, Salt Lake City
| | - Iosif Taleb
- Molecular Medicine Program (J.D.S., P.F., L.M., N.A.D., I.T., S.N., S.G.D.), University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (P.F., L.M., N.A.D., I.T., S.N., C.H.S., S.G.D.), University of Utah, Salt Lake City
- UTAH Cardiac Transplant Program, Intermountain Medical Center, Salt Lake VA Medical Center (I.T., R.A., S.M., O.W.-P., C.H.S., J.C.F., S.G.D.), University of Utah, Salt Lake City
| | - Rami Alharethi
- UTAH Cardiac Transplant Program, Intermountain Medical Center, Salt Lake VA Medical Center (I.T., R.A., S.M., O.W.-P., C.H.S., J.C.F., S.G.D.), University of Utah, Salt Lake City
| | - Stephen McKellar
- UTAH Cardiac Transplant Program, Intermountain Medical Center, Salt Lake VA Medical Center (I.T., R.A., S.M., O.W.-P., C.H.S., J.C.F., S.G.D.), University of Utah, Salt Lake City
| | - Omar Wever-Pinzon
- UTAH Cardiac Transplant Program, Intermountain Medical Center, Salt Lake VA Medical Center (I.T., R.A., S.M., O.W.-P., C.H.S., J.C.F., S.G.D.), University of Utah, Salt Lake City
| | - Sutip Navankasattusas
- Molecular Medicine Program (J.D.S., P.F., L.M., N.A.D., I.T., S.N., S.G.D.), University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (P.F., L.M., N.A.D., I.T., S.N., C.H.S., S.G.D.), University of Utah, Salt Lake City
| | - Craig H. Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute (P.F., L.M., N.A.D., I.T., S.N., C.H.S., S.G.D.), University of Utah, Salt Lake City
- UTAH Cardiac Transplant Program, Intermountain Medical Center, Salt Lake VA Medical Center (I.T., R.A., S.M., O.W.-P., C.H.S., J.C.F., S.G.D.), University of Utah, Salt Lake City
| | - James C. Fang
- UTAH Cardiac Transplant Program, Intermountain Medical Center, Salt Lake VA Medical Center (I.T., R.A., S.M., O.W.-P., C.H.S., J.C.F., S.G.D.), University of Utah, Salt Lake City
| | - Stavros G. Drakos
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City (J.D.S., L.D., N.D., T.B., J.M.C., S.G.D.)
- Molecular Medicine Program (J.D.S., P.F., L.M., N.A.D., I.T., S.N., S.G.D.), University of Utah, Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute (P.F., L.M., N.A.D., I.T., S.N., C.H.S., S.G.D.), University of Utah, Salt Lake City
- UTAH Cardiac Transplant Program, Intermountain Medical Center, Salt Lake VA Medical Center (I.T., R.A., S.M., O.W.-P., C.H.S., J.C.F., S.G.D.), University of Utah, Salt Lake City
| |
Collapse
|
35
|
Dybas J, Berkowicz P, Proniewski B, Dziedzic-Kocurek K, Stanek J, Baranska M, Chlopicki S, Marzec KM. Spectroscopy-based characterization of Hb-NO adducts in human red blood cells exposed to NO-donor and endothelium-derived NO. Analyst 2019; 143:4335-4346. [PMID: 30109873 DOI: 10.1039/c8an00302e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The work presents the complementary approach to characterize the formation of various Hb species inside isolated human RBCs exposed to NO, with a focus on the formed Hb-NO adducts. This work presents a complementary approach based on Resonance Raman Spectroscopy (RRS) supported by Blood Gas Analysis, Electron Paramagnetic Resonance Spectroscopy, UV-Vis Absorption Spectroscopy and Mössbauer Spectroscopy to characterize the formation of various Hb species, with a focus on the Hb-NO adducts formed inside isolated human RBCs exposed to NO, under the experimental conditions of low and high levels of oxygen Hb saturation. In the present work, we induced Hb-NO adducts using PAPA-NONOate, a NO-donor with known chemistry and kinetics of NO release, and confirmed the formation of Hb-NO adducts in RBCs incubated with Human Aortic Endothelial Cells (HAECs) stimulated to produce NO. Our results provide a new insight into the formation of Hb-NO adducts after the exposure of RBCs with high oxyHb content to exogenous NO with special attention to the formation of LSHbIIINO in addition to LSHbIINO and metHb (HS/LSHbIIIH2O). We also point out that reliable characterization of Hb-NO adducts requires complementary techniques. Among them, RRS, as a label-free and non-destructive tool, appears to be an important discrimination technique in the studies of Hb-NO adducts inside intact RBCs.
Collapse
Affiliation(s)
- Jakub Dybas
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:27-52. [PMID: 30653459 PMCID: PMC6343598 DOI: 10.2450/2019.0217-18] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
Red blood cells (RBCs) are a specialised organ that enabled the evolution of multicellular organisms by supplying a sufficient quantity of oxygen to cells that cannot obtain oxygen directly from ambient air via diffusion, thereby fueling oxidative phosphorylation for highly efficient energy production. RBCs have evolved to optimally serve this purpose by packing high concentrations of haemoglobin in their cytosol and shedding nuclei and other organelles. During their circulatory lifetimes in humans of approximately 120 days, RBCs are poised to transport oxygen by metabolic/redox enzymes until they accumulate damage and are promptly removed by the reticuloendothelial system. These elaborate evolutionary adaptions, however, are no longer effective when RBCs are removed from the circulation and stored hypothermically in blood banks, where they develop storage-induced damages ("storage lesions") that accumulate over the shelf life of stored RBCs. This review attempts to provide a comprehensive view of the literature on the subject of RBC storage lesions and their purported clinical consequences by incorporating the recent exponential growth in available data obtained from "omics" technologies in addition to that published in more traditional literature. To summarise this vast amount of information, the subject is organised in figures with four panels: i) root causes; ii) RBC storage lesions; iii) physiological effects; and iv) reported outcomes. The driving forces for the development of the storage lesions can be roughly classified into two root causes: i) metabolite accumulation/depletion, the target of various interventions (additive solutions) developed since the inception of blood banking; and ii) oxidative damages, which have been reported for decades but not addressed systemically until recently. Downstream physiological consequences of these storage lesions, derived mainly by in vitro studies, are described, and further potential links to clinical consequences are discussed. Interventions to postpone the onset and mitigate the extent of the storage lesion development are briefly reviewed. In addition, we briefly discuss the results from recent randomised controlled trials on the age of stored blood and clinical outcomes of transfusion.
Collapse
Affiliation(s)
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Faculté de Biologie et de Médicine, Université de Lausanne, Lausanne, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado, Denver, CO, United States of America
| |
Collapse
|
37
|
Manakeng K, Prasertphol P, Phongpao K, Chuncharunee S, Tanyong D, Worawichawong S, Svasti S, Chaichompoo P. Elevated levels of platelet- and red cell-derived extracellular vesicles in transfusion-dependent β-thalassemia/HbE patients with pulmonary arterial hypertension. Ann Hematol 2018; 98:281-288. [PMID: 30334069 DOI: 10.1007/s00277-018-3518-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/06/2018] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious complication in β-thalassemia. The mechanism of PAH development is believed to be through chronic platelet activation and red cell (RBC) membrane abnormality contributing to a hypercoagulable state and thrombosis, which consequently leads to the development of PAH. Extracellular vesicles (EVs) shed from the plasma membrane of platelets and RBCs are found to be associated with thrombotic risk. This study aimed to investigate the involvement of phosphatidylserine (PS)-bearing cells and EVs in accelerating the progression of the hypercoagulable state in transfusion-dependent thalassemia (TDT) patients. Fresh whole blood samples from splenectomized TDT-β-thalassemia/HbE patients (11 with PAH and 14 without PAH) and 15 normal subjects were analyzed for platelet activation by measuring P-selectin expression using flow cytometry and the number of dense granular using an electron microscope. The amounts of PS-bearing RBCs, large RBC-EVs, platelets, and medium EVs were determined by flow cytometry. Platelet activation in PAH patients was not significantly different from other groups; however, the amounts of PS-bearing large RBC-EVs, platelets, and medium platelet-derived EVs were significantly increased in PAH patients as compared to normal subjects, but they were not different from patients without PAH. This could be affected by antiplatelet therapy that reduced the levels of platelet activation and the amount of PS-bearing cells, including EVs, in PAH patients as well as in patients without PAH.
Collapse
Affiliation(s)
- Kanchana Manakeng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.,Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Phongsak Prasertphol
- Electron Microscopy Unit, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kunwadee Phongpao
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Suporn Chuncharunee
- Division of Hematology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Suchin Worawichawong
- Electron Microscopy Unit, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pornthip Chaichompoo
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 RamaVI Rd., Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
38
|
Weir NA, Conrey A, Lewis D, Mehari A. Riociguat use in sickle cell related chronic thromboembolic pulmonary hypertension: A case series. Pulm Circ 2018; 8:2045894018791802. [PMID: 30033820 PMCID: PMC6083805 DOI: 10.1177/2045894018791802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adults with sickle cell disease can develop pulmonary hypertension from a multitude of etiologies. Classified as WHO Group 5, there are no therapies approved for the treatment of sickle cell disease-pulmonary hypertension. Thromboembolic disease is prevalent in sickle cell disease and can lead to pulmonary hypertension. The only approved medical therapy for chronic thromboembolic pulmonary hypertension is riociguat. We report the experience, safety and tolerability of riociguat use in a series of sickle cell disease patients with chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- Nargues A Weir
- 1 Cardiovascular and Pulmonary Branch and Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA.,2 Inova Advanced Lung Disease Program, Falls Church, USA
| | - Anna Conrey
- 1 Cardiovascular and Pulmonary Branch and Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Denise Lewis
- 2 Inova Advanced Lung Disease Program, Falls Church, USA
| | - Alem Mehari
- 3 Howard University College of Medicine, Washington DC, USA
| |
Collapse
|
39
|
Leal JKF, Adjobo-Hermans MJW, Bosman GJCGM. Red Blood Cell Homeostasis: Mechanisms and Effects of Microvesicle Generation in Health and Disease. Front Physiol 2018; 9:703. [PMID: 29937736 PMCID: PMC6002509 DOI: 10.3389/fphys.2018.00703] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Red blood cells (RBCs) generate microvesicles to remove damaged cell constituents such as oxidized hemoglobin and damaged membrane constituents, and thereby prolong their lifespan. Damage to hemoglobin, in combination with altered phosphorylation of membrane proteins such as band 3, lead to a weakening of the binding between the lipid bilayer and the cytoskeleton, and thereby to membrane budding and microparticle shedding. Microvesicle generation is disturbed in patients with RBC-centered diseases, such as sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, spherocytosis or malaria. A disturbance of the membrane-cytoskeleton interaction is likely to be the main underlying mechanism, as is supported by data obtained from RBCs stored in blood bank conditions. A detailed proteomic, lipidomic and immunogenic comparison of microvesicles derived from different sources is essential in the identification of the processes that trigger vesicle generation. The contribution of RBC-derived microvesicles to inflammation, thrombosis and autoimmune reactions emphasizes the need for a better understanding of the mechanisms and consequences of microvesicle generation.
Collapse
Affiliation(s)
- Joames K F Leal
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Giel J C G M Bosman
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
40
|
Danesh A, Inglis HC, Abdel-Mohsen M, Deng X, Adelman A, Schechtman KB, Heitman JW, Vilardi R, Shah A, Keating SM, Cohen MJ, Jacobs ES, Pillai SK, Lacroix J, Spinella PC, Norris PJ. Granulocyte-Derived Extracellular Vesicles Activate Monocytes and Are Associated With Mortality in Intensive Care Unit Patients. Front Immunol 2018; 9:956. [PMID: 29867942 PMCID: PMC5951932 DOI: 10.3389/fimmu.2018.00956] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
To understand how extracellular vesicle (EV) subtypes differentially activate monocytes, a series of in vitro studies were performed. We found that plasma-EVs biased monocytes toward an M1 profile. Culturing monocytes with granulocyte-, monocyte-, and endothelial-EVs induced several pro-inflammatory cytokines. By contrast, platelet-EVs induced TGF-β and GM-CSF, and red blood cell (RBC)-EVs did not activate monocytes in vitro. The scavenger receptor CD36 was important for binding of RBC-EVs to monocytes, while blockade of CD36, CD163, CD206, TLR1, TLR2, and TLR4 did not affect binding of plasma-EVs to monocytes in vitro. To identify mortality risk factors, multiple soluble factors and EV subtypes were measured in patients' plasma at intensive care unit admission. Of 43 coagulation factors and cytokines measured, two were significantly associated with mortality, tissue plasminogen activator and cystatin C. Of 14 cellular markers quantified on EVs, 4 were early predictors of mortality, including the granulocyte marker CD66b. In conclusion, granulocyte-EVs have potent pro-inflammatory effects on monocytes in vitro. Furthermore, correlation of early granulocyte-EV levels with mortality in critically ill patients provides a potential target for intervention in management of the pro-inflammatory cascade associated with critical illness.
Collapse
Affiliation(s)
- Ali Danesh
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Heather C Inglis
- Blood Systems Research Institute, San Francisco, CA, United States
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Avril Adelman
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Kenneth B Schechtman
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - John W Heitman
- Blood Systems Research Institute, San Francisco, CA, United States
| | - Ryan Vilardi
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Avani Shah
- Blood Systems Research Institute, San Francisco, CA, United States
| | - Sheila M Keating
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mitchell J Cohen
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Evan S Jacobs
- Blood Systems Research Institute, San Francisco, CA, United States
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jacques Lacroix
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Philip C Spinella
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
41
|
Romana M, Connes P, Key NS. Microparticles in sickle cell disease. Clin Hemorheol Microcirc 2018; 68:319-329. [DOI: 10.3233/ch-189014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marc Romana
- Unité Biologie Intégrée du Globule Rouge, Université des Antilles, Inserm 1134, laboratoire d’Excellence GR-Ex, Paris, France
| | - Philippe Connes
- Unité Biologie Intégrée du Globule Rouge, Université des Antilles, Inserm 1134, laboratoire d’Excellence GR-Ex, Paris, France
- Laboratoire LIBM EA7424, Equipe « Biologie Vasculaire et du Globule Rouge», Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Nigel S. Key
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Abstract
Erythrocytes regulate vascular function through the modulation of oxygen delivery and the scavenging and generation of nitric oxide (NO). First, hemoglobin inside the red blood cell binds oxygen in the lungs and delivers it to tissues throughout the body in an allosterically regulated process, modulated by oxygen, carbon dioxide and proton concentrations. The vasculature responds to low oxygen tensions through vasodilation, further recruiting blood flow and oxygen carrying erythrocytes. Research has shown multiple mechanisms are at play in this classical hypoxic vasodilatory response, with a potential role of red cell derived vasodilatory molecules, such as nitrite derived nitric oxide and red blood cell ATP, considered in the last 20 years. According to these hypotheses, red blood cells release vasodilatory molecules under low oxygen pressures. Candidate molecules released by erythrocytes and responsible for hypoxic vasodilation are nitric oxide, adenosine triphosphate and S-nitrosothiols. Our research group has characterized the biochemistry and physiological effects of the electron and proton transfer reactions from hemoglobin and other ferrous heme globins with nitrite to form NO. In addition to NO generation from nitrite during deoxygenation, hemoglobin has a high affinity for NO. Scavenging of NO by hemoglobin can cause vasoconstriction, which is greatly enhanced by cell free hemoglobin outside of the red cell. Therefore, compartmentalization of hemoglobin inside red blood cells and localization of red blood cells in the blood stream are important for healthy vascular function. Conditions where erythrocyte lysis leads to cell free hemoglobin or where erythrocytes adhere to the endothelium can result in hypertension and vaso constriction. These studies support a model where hemoglobin serves as an oxido-reductase, inhibiting NO and promoting higher vessel tone when oxygenated and reducing nitrite to form NO and vasodilate when deoxygenated.
Collapse
Affiliation(s)
- Christine C Helms
- Physics Department, University of Richmond, Richmond, VA, United States
| | - Mark T Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel B Kim-Shapiro
- Physics Department, Wake Forest University, Winston-Salem, NC, United States.,Translational Science Center, Wake Forest University, Winston-Salem, NC, United States
| |
Collapse
|
43
|
Said AS, Rogers SC, Doctor A. Physiologic Impact of Circulating RBC Microparticles upon Blood-Vascular Interactions. Front Physiol 2018; 8:1120. [PMID: 29379445 PMCID: PMC5770796 DOI: 10.3389/fphys.2017.01120] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Here, we review current data elucidating the role of red blood cell derived microparticles (RMPs) in normal vascular physiology and disease progression. Microparticles (MPs) are submicron-size, membrane-encapsulated vesicles derived from various parent cell types. MPs are produced in response to numerous stimuli that promote a sequence of cytoskeletal and membrane phospholipid changes and resulting MP genesis. MPs were originally considered as potential biomarkers for multiple disease processes and more recently are recognized to have pleiotropic biological effects, most notably in: promotion of coagulation, production and handling of reactive oxygen species, immune modulation, angiogenesis, and in initiating apoptosis. RMPs, specifically, form normally during RBC maturation in response to injury during circulation, and are copiously produced during processing and storage for transfusion. Notably, several factors during RBC storage are known to trigger RMP production, including: increased intracellular calcium, increased potassium leakage, and energy failure with ATP depletion. Of note, RMP composition differs markedly from that of intact RBCs and the nature/composition of RMP components are affected by the specific circumstances of RMP genesis. Described RMP bioactivities include: promotion of coagulation, immune modulation, and promotion of endothelial adhesion as well as influence upon vasoregulation via influence upon nitric oxide (NO) bioavailability. Of particular relevance, RMPs scavenge NO more avidly than do intact RBCs; this physiology has been proposed to contribute to the impaired oxygen delivery homeostasis that may be observed following transfusion. In summary, RMPs are submicron particles released from RBCs, with demonstrated vasoactive properties that appear to disturb oxygen delivery homeostasis. The clinical impact of RMPs in normal and patho-physiology and in transfusion recipients is an area of continued investigation.
Collapse
Affiliation(s)
- Ahmed S Said
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - Stephen C Rogers
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - Allan Doctor
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States.,Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
44
|
Abstract
Damage-associated molecular patterns (DAMPs) or alarmins are endogenous danger signals that are derived from damaged cells and extracellular matrix degradation, capable of triggering innate immune response to promote tissue damage repair. Hemolytic or hemorrhagic episodes are often associated with inflammation, even when infectious agents are absent, suggesting that damaged red blood cells (RBCs) release DAMPs.Hemoglobin (Hb) composes 96% of the dry weight of RBCs; therefore upon hemolysis, tremendous amounts of Hb are released into the extracellular milieu. Hb oxidation occurs outside the protective environment of RBCs, leading to the formation of different Hb oxidation products and heme. Heme acts as a prototypic DAMP participating in toll-like receptor as well as intracellular nucleotide-binding oligomerization domain-like receptor signaling. Oxidized Hb forms also possess some inflammatory actions independently of their heme releasing capability. Non-Hb-derived DAMPs such as ATP, interleukin-33, heat shock protein 70, as well as RBC membrane-derived microparticles might also contribute to the innate immune response triggered by hemolysis/hemorrhage.In this chapter we will discuss the inflammatory properties of RBC-derived DAMPs with a particular focus on Hb derivatives, as well as therapeutic potential of the endogenous Hb and heme-binding proteins haptoglobin and hemopexin in the prevention of hemolysis/hemorrhage-associated inflammation.
Collapse
Affiliation(s)
- Viktória Jeney
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
45
|
Vostal JG, Buehler PW, Gelderman MP, Alayash AI, Doctor A, Zimring JC, Glynn SA, Hess JR, Klein H, Acker JP, Spinella PC, D'Alessandro A, Palsson B, Raife TJ, Busch MP, McMahon TJ, Intaglietta M, Swartz HM, Dubick MA, Cardin S, Patel RP, Natanson C, Weisel JW, Muszynski JA, Norris PJ, Ness PM. Proceedings of the Food and Drug Administration's public workshop on new red blood cell product regulatory science 2016. Transfusion 2017; 58:255-266. [PMID: 29243830 DOI: 10.1111/trf.14435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
The US Food and Drug Administration (FDA) held a workshop on red blood cell (RBC) product regulatory science on October 6 and 7, 2016, at the Natcher Conference Center on the National Institutes of Health (NIH) Campus in Bethesda, Maryland. The workshop was supported by the National Heart, Lung, and Blood Institute, NIH; the Department of Defense; the Office of the Assistant Secretary for Health, Department of Health and Human Services; and the Center for Biologics Evaluation and Research, FDA. The workshop reviewed the status and scientific basis of the current regulatory framework and the available scientific tools to expand it to evaluate innovative and future RBC transfusion products. A full record of the proceedings is available on the FDA website (http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/ucm507890.htm). The contents of the summary are the authors' opinions and do not represent agency policy.
Collapse
Affiliation(s)
- Jaroslav G Vostal
- Division of Blood Components and Devices, OBRR, CBER, Food and Drug Administration, Silver Spring, Maryland
| | - Paul W Buehler
- Division of Blood Components and Devices, OBRR, CBER, Food and Drug Administration, Silver Spring, Maryland
| | - Monique P Gelderman
- Division of Blood Components and Devices, OBRR, CBER, Food and Drug Administration, Silver Spring, Maryland
| | - Abdu I Alayash
- Division of Blood Components and Devices, OBRR, CBER, Food and Drug Administration, Silver Spring, Maryland
| | - Alan Doctor
- Department of Pediatric Critical Care, St Louis Children's Hospital, St Louis, Missouri
| | | | - Simone A Glynn
- Division of Blood Diseases and Resources, NHLBI, NIH, Bethesda, Maryland
| | - John R Hess
- Department of Laboratory Medicine and Hematology, University of Washington, School of Medicine, Seattle, Washington
| | - Harvey Klein
- Department of Transfusion Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Jason P Acker
- Department of Research & Development, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Philip C Spinella
- Department of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Denver, Colorado
| | - Bernhard Palsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Thomas J Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Timothy J McMahon
- Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, Duke University Medical Center, and the Durham VA Medical Center, Durham, North Carolina
| | - Marcos Intaglietta
- Department of Bioengineering, University of California at San Diego, San Diego, California
| | - Harold M Swartz
- Department of Radiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | | | - Sylvain Cardin
- Naval Medical Research Unit-San Antonio, San Antonio, Texas
| | - Rakesh P Patel
- Center for Free Radical Biology and Translational and Molecular Sciences Certificate Program, University of Alabama, Birmingham, Alabama
| | | | - John W Weisel
- Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer A Muszynski
- Division of Critical Care Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Philip J Norris
- Blood Systems Research Institute, Blood Systems, Inc., San Francisco, California
| | - Paul M Ness
- Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
46
|
Krittayaphong R, Viprakasit V, Saiviroonporn P, Siritanaratkul N, Siripornpitak S, Meekaewkunchorn A, Kirawittaya T, Sripornsawan P, Jetsrisuparb A, Srinakarin J, Wong P, Phalakornkul N, Sinlapamongkolkul P, Wood J. Prevalence and predictors of cardiac and liver iron overload in patients with thalassemia: A multicenter study based on real-world data. Blood Cells Mol Dis 2017; 66:24-30. [PMID: 28806577 DOI: 10.1016/j.bcmd.2017.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/19/2023]
Abstract
Prevalence of cardiac and liver iron overload in patients with thalassemia in real-world practice may vary among different regions especially in the era of widely-used iron chelation therapy. The aim of this study was to determine the prevalence of cardiac and liver iron overload in and the management patterns of patients with thalassemia in real-world practice in Thailand. We established a multicenter registry for patients with thalassemia who underwent magnetic resonance imaging (MRI) as part of their clinical evaluation. All enrolled patients underwent cardiac and liver MRI for assessment of iron overload. There were a total of 405 patients enrolled in this study. The mean age of patients was 18.8±12.5years and 46.7% were male. Two hundred ninety-six (73.1%) of patients received regular blood transfusion. Prevalence of cardiac iron overload (CIO) and liver iron overload (LIO) was 5.2% and 56.8%, respectively. Independent predictors for iron overload from laboratory information were serum ferritin and transaminase for both CIO and LIO. Serum ferritin can be used as a screening tool to rule-out CIO and to diagnose LIO. Iron chelation therapy was given in 74.6%; 15.3% as a combination therapy.
Collapse
Affiliation(s)
- Rungroj Krittayaphong
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Vip Viprakasit
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pairash Saiviroonporn
- Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Noppadol Siritanaratkul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suvipaporn Siripornpitak
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Pornpun Sripornsawan
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Arunee Jetsrisuparb
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jiraporn Srinakarin
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Peerapon Wong
- Division of Hematology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Nuttaporntira Phalakornkul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Bhumibol Adulyadej Hospital, Royal Thai Air Force, Bangkok, Thailand
| | - Phakatip Sinlapamongkolkul
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - John Wood
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, California, United States
| |
Collapse
|
47
|
Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat-George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DFJ, Nieuwland R, Toti F, Tunon J, Weber C, Hoefer IE. Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost 2017; 117:1296-1316. [PMID: 28569921 DOI: 10.1160/th16-12-0943] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as "microparticles". There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research.
Collapse
Affiliation(s)
| | - Chantal M Boulanger
- Victoria Ridger, PhD, Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK, E-mail: , or, Chantal M. Boulanger, PhD, INSERM UMR-S 970, Paris Cardiovascular Research Center - PARCC, 56 rue Leblanc, 75015 Paris, France, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hod EA, Francis RO, Spitalnik SL. Red Blood Cell Storage Lesion-Induced Adverse Effects. Anesth Analg 2017; 124:1752-1754. [DOI: 10.1213/ane.0000000000001879] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Influence of red blood cell-derived microparticles upon vasoregulation. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:522-534. [PMID: 28686154 DOI: 10.2450/2017.0353-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Here we review recent data and the evolving understanding of the role of red blood cell-derived microparticles (RMPs) in normal physiology and in disease progression. Microparticles (MPs) are small membrane vesicles derived from various parent cell types. MPs are produced in response to a variety of stimuli through several cytoskeletal and membrane phospholipid changes. MPs have been investigated as potential biomarkers for multiple disease processes and are thought to have biological effects, most notably in: promotion of coagulation, production and handling of reactive oxygen species, immune modulation, angiogenesis, and in apoptosis. Specifically, RMPs are produced normally during RBC maturation and their production is accelerated during processing and storage for transfusion. Several factors during RBC storage are known to trigger RMP production, including: increased intracellular calcium, increased potassium leakage, and energy failure with ATP depletion. Of note, RMP composition differs from that of intact RBCs, and the nature and composition of RMP components are affected by both storage duration and the character of storage solutions. Recognised RMP bioactivities include: promotion of coagulation, immune modulation, and promotion of endothelial adhesion, as well as influence upon vasoregulation via nitric oxide (NO) scavenging. Of particular relevance, RMPs are more avid NO scavengers than intact RBCs and this feature has been proposed as a mechanism for the impaired oxygen delivery homeostasis that has been observed following transfusion. Preliminary human studies demonstrate that circulating RMP abundance increases with RBC transfusion and is associated with altered plasma vasoactivity and abnormal vasoregulation. In summary, RMPs are submicron particles released from stored RBCs, with demonstrated vasoactive properties that appear to disturb oxygen delivery homeostasis. The clinical impact of RMPs in transfusion recipients is an area of continued investigation.
Collapse
|
50
|
Cho CH, Yun SG, Koh YE, Lim CS. Effect of Irradiation on Microparticles in Red Blood Cell Concentrates. Ann Lab Med 2017; 36:362-6. [PMID: 27139610 PMCID: PMC4855057 DOI: 10.3343/alm.2016.36.4.362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/20/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022] Open
Abstract
Changes in microparticles (MP) from red blood cell (RBC) concentrates in the context of irradiation have not been investigated. The aim of this study was to evaluate how irradiation affects the number of MPs within transfusion components. Twenty RBC concentrates, within 14 days after donation, were exposed to gamma rays (dose rate: 25 cGy) from a cesium-137 irradiator. Flow cytometry was used to determine the numbers of MPs derived from RBC concentrates before and 24 hr after irradiation. The mean number of MPs (±standard deviation) in RBC concentrates was 21.9×109/L (±22.7×109/L), and the total number of MPs ranged from 2.6×109/L to 96.9×109/L. The mean number of MPs increased to 22.6×109/L (±31.6×109/L) after irradiation. Before irradiation, the CD41-positive and CD235a-positive MPs constituted 9.5% (1.0×109/L) and 2.2% (263×106/L) of total MPs, respectively. After irradiation, CD41-positive MPs increased to 12.1% (1.5×109/L) (P=0.014), but the CD235a-positive MPs decreased to 2.0% (214×106/L) of the total MPs (P=0.369). Irradiation increases the number of CD41-positive MPs within RBC concentrates, suggesting the irradiation of RBC concentrates could be associated with thrombotic risk of circulating blood through the numerical change.
Collapse
Affiliation(s)
- Chi Hyun Cho
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | | | - Young Eun Koh
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea.
| |
Collapse
|