1
|
Li Y, Cui H, Li D, Fu HY, Li JZ, Xu WX, Fan RF. Selenium alleviates pancreatic fibrosis in chickens caused by mercuric chloride: Involvement of the MAPK signaling pathway and selenoproteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124448. [PMID: 38942272 DOI: 10.1016/j.envpol.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Mercuric chloride (HgCl2) is a widespread inorganic mercury with digestive toxicity. The pancreas is an important digestive organ in animals, and pancreatic fibrosis (PF) is a major pathological feature of chronic pancreatitis, which can be caused by heavy metals. Selenium (Se) is an essential trace element for the animal organism, performing biological functions in the form of selenoproteins, as well as alleviating the toxicity of heavy metals. In this study, we explored the specific mechanisms underlying the protective effect of Se on HgCl2-induced pancreatic injury in chickens. Morphological observation and serum biochemical analysis showed that Se attenuated HgCl2-caused pancreatic tissue damage and elevated glucose concentration and α-amylase activity. Next, the expression of oxidative stress indicators such as MDA and GSH-Px as well as inflammation-related markers including IL-1β, IL-6, and TNF-α were detected. Results showed that Se had an inhibitory effect on HgCl2-induced oxidative stress and inflammation. Furthermore, we found that Se alleviated HgCl2-induced PF by detecting the expression of markers related to PF including TGF-β1, α-SMA, COL1A1, and FN1. Mechanistically, Se attenuated HgCl2-induced PF via the MAPK signaling pathway. Importantly, several selenoproteins, especially those with antioxidant activity, were involved in the protective effect of Se on HgCl2 toxicity. In conclusion, our findings demonstrated that Se inhibited HgCl2-induced oxidative stress and inflammation and alleviated chicken PF through the MAPK signaling pathway, in which some antioxidant selenoproteins were involved.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Dan Li
- Shandong Medicine Technician College, 999 Fengtian Road, Tai'an City, Shandong Province, 271016, China
| | - Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
2
|
Ji SY, Yin ZC, Ma CL, Bai JX, Min JY, Wang BY, Gao ML, Yang XY, Yang XJ, Lei XG. Dietary Selenium Insufficiency Induces Cardiac Inflammatory Injury in Chicks. J Nutr 2024; 154:2315-2325. [PMID: 38763264 DOI: 10.1016/j.tjnut.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Laying hens undergo intensive metabolism and are vulnerable to cardiac insults. Previous research demonstrated overt heart disorders of broiler chickens induced by dietary Se deficiency. OBJECTIVES This study aimed to reveal effects and mechanism of dietary Se insufficiency on cardiac injuries of egg-type chicks in their early life. METHODS White Leghorn chicks (0-d-old, female) were fed a corn-soy, Se-insufficient basal diet (BD, 0.05 mg Se/kg; n = 11) or the BD supplemented with 0.3 mg Se/kg (as sodium selenite; n = 8) for 35 d. Cardiac tissues were collected at the end of study for histology and to determine its relationship with heart Se contents, selenoprotein expression profiles, antioxidant and inflammatory status, and the Toll-like receptor 4/extracellular signal-regulated kinases/p38 map kinase/c-Jun N-terminal kinase (TLR4/ERK/P38/JNK) pathway. RESULTS Compared with those fed 0.35 mg Se/kg, chicks fed BD had significantly lower body weights and average daily gain, and 28% lower heart Se, and developed cardiac mononuclear inflammatory cell infiltration, along with elevated (P < 0.05) serum concentrations of creatine kinase, aldolase, and interleukin-1 (IL-1). The BD decreased (P < 0.05) body weight and heart glutathione contents and expression of selenoproteins but increased (P < 0.05) heart concentrations of malondialdehyde and reactive oxygen species. These changes were associated with increased (P < 0.05) mRNA and/or protein concentrations of cyclooxygenases, lipoxygenase-12, cytokines (IL-1β), nuclear factor (NF) κB subunit, chemokines, and receptors (CCL20, CXCR1, and CXCLI2) and increased (P < 0.1) TLR4/ERK /P38/JNK in the heart of Se-insufficient chicks. CONCLUSIONS Dietary Se insufficiency induces infiltration of mononuclear inflammatory cells in the heart of egg-type chicks. This cardiac injury was mediated by decreased functional expressions of selenoproteins, which resulted in apparent elevated oxidative stress and subsequent activations of the TLR4 pathway and NF κB.
Collapse
Affiliation(s)
- Shu Yun Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen Chen Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chun Lai Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Xia Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ji Yang Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Yan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Lu Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiang Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Jun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
3
|
Huang X, Li T, Yang SH, Zhu KD, Wang LS, Dong YL, Huang JQ. Hepatocyte-specific Selenoi deficiency predisposes mice to hepatic steatosis and obesity. FASEB J 2024; 38:e23717. [PMID: 38837270 DOI: 10.1096/fj.202400575rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shi-Hui Yang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Kong-di Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Lian-Shun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Yu-Lan Dong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Wang S, Tian B, Hu Y, Li T, Cui X, Zhang L, Luo X. Research progress on the biological regulatory mechanisms of selenium on skeletal muscle in broilers. Poult Sci 2024; 103:103646. [PMID: 38520938 PMCID: PMC10978542 DOI: 10.1016/j.psj.2024.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
As one of the indispensable trace elements for both humans and animals, selenium widely participates in multiple physiological processes and facilitates strong anti-inflammatory, antioxidant, and immune enhancing abilities. The biological functions of selenium are primarily driven by its presence in selenoproteins as a form of selenocysteine. Broilers are highly sensitive to selenium intake. Recent reports have demonstrated that selenium deficiency can adversely affect the quality of skeletal muscles and the economic value of broilers; the regulatory roles of several key selenoproteins (e.g., GPX1, GPX4, TXNRD1, TXNRD3, SelK, SelT, and SelW) have been identified. Starting from the selenium metabolism and its biological utilization in the skeletal muscle, the effect of the selenium antioxidant function on broiler meat quality is discussed in detail. The progress of research into the prevention of skeletal muscle injury by selenium and selenoproteins is also summarized. The findings emphasize the necessity of in vivo and in vitro research, and certain mechanism problems are identified, which aids their further examination. This mini-review will be helpful to provide a theoretical basis for the further study of regulatory mechanisms of selenium nutrition in edible poultry.
Collapse
Affiliation(s)
- Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Bing Tian
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
5
|
Wang L, Yin J, Liao C, Cheng R, Chen F, Yu H, Zhang X. Selenium deficiency-induced high concentration of reactive oxygen species restricts hypertrophic growth of skeletal muscle in juvenile zebrafish by suppressing TORC1-mediated protein synthesis. Br J Nutr 2023; 130:1841-1851. [PMID: 37246564 DOI: 10.1017/s0007114523000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Se deficiency causes impaired growth of fish skeletal muscle due to the retarded hypertrophy of muscle fibres. However, the inner mechanisms remain unclear. According to our previous researches, we infer this phenomenon is associated with Se deficiency-induced high concentration of reactive oxygen species (ROS), which could suppress the target of rapamycin complex 1 (TORC1) pathway-mediated protein synthesis by inhibiting protein kinase B (Akt), an upstream protein of TORC1. To test this hypothesis, juvenile zebrafish (45 d post-fertilisation) were fed a basal Se-adequate diet or a basal Se-deficient diet or them supplemented with an antioxidant (DL-α-tocopherol acetate, designed as VE) or a TOR activator (MHY1485) for 30 d. Zebrafish fed Se-deficient diets exhibited a clear Se-deficient status in skeletal muscle, which was not influenced by dietary VE and MHY1485. Se deficiency significantly elevated ROS concentrations, inhibited Akt activity and TORC1 pathway, suppressed protein synthesis in skeletal muscle, and impaired hypertrophy of skeletal muscle fibres. However, these negative effects of Se deficiency were partly (except that on ROS concentration) alleviated by dietary MHY1485 and completely alleviated by dietary VE. These data strongly support our speculation that Se deficiency-induced high concentration of ROS exerts a clear inhibiting effect on TORC1 pathway-mediated protein synthesis by regulating Akt activity, thereby restricting the hypertrophy of skeletal muscle fibres in fish. Our findings provide a mechanistic explanation for Se deficiency-caused retardation of fish skeletal muscle growth, contributing to a better understanding of the nutritional necessity and regulatory mechanisms of Se in fish muscle physiology.
Collapse
Affiliation(s)
- Li Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan430048, People's Republic of China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan430048, People's Republic of China
| | - Jiaojiao Yin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Chenlei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Rui Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Feifei Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan430070, People's Republic of China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan430070, People's Republic of China
| |
Collapse
|
6
|
Sun X, Zhang W, Shi X, Wang Y, Zhang Y, Liu X, Xu S, Zhang J. Selenium deficiency caused hepatitis in chickens via the miR-138-5p/SelM/ROS/Ca 2+ overload pathway induced by hepatocyte necroptosis. Food Funct 2023; 14:9226-9242. [PMID: 37743830 DOI: 10.1039/d3fo00683b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Selenoprotein M (SelM), a key thioredoxin like enzyme in the endoplasmic reticulum (ER), is closely related to hepatocyte degeneration. However, the role of miR-138-5p/SelM and necroptosis in chicken SelM-deficient hepatitis and the specific biological mechanism of liver inflammation caused by SelM deficiency have not been elucidated. We established an in vivo chicken liver Se deficiency model by feeding a low-Se diet. The miR-138-5p knockdown and overexpression models and SelM knockdown models were established in LMH cells for an in vitro study. Transmission electron microscopy, H&E staining, Fluo4-AM/ER staining, and flow cytometry were used to detect the morphological changes in chicken liver tissue and the expression changes of necroptosis and inflammation in chicken liver cells. We observed that Se deficiency resulted in liver inflammation, up-regulation of miR-138-5p expression and down-regulation of SelM expression in chickens. Oxidative stress, Ca2+ overload, energy metabolism disorder and necroptosis occurred in chicken liver tissue. Importantly, ROS and the Ca2+ inhibitor could effectively alleviate the energy metabolism disorder, necroptosis and inflammatory cytokine secretion caused by miR-138-5p overexpression and SelM knockdown in LMH cells. In conclusion, selenium deficiency causes hepatitis by upregulating miR-138-5p targeting SelM. Our research findings enrich our knowledge about the biological functions of SelM and provide a theoretical basis for the lack of SelM leading to liver inflammation in chickens.
Collapse
Affiliation(s)
- Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jiuli Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Heilongjiang Polytechnic, Harbin 150030, P. R. China.
| |
Collapse
|
7
|
Zhao L, Liu M, Sun H, Yang JC, Huang YX, Huang JQ, Lei X, Sun LH. Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2056-2069. [PMID: 36795182 DOI: 10.1007/s11427-022-2226-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 02/17/2023]
Abstract
Broiler chicks are fast-growing and susceptible to dietary selenium (Se) deficiency. This study sought to reveal the underlying mechanisms of how Se deficiency induces key organ dysfunctions in broilers. Day-old male chicks (n=6 cages/diet, 6 chicks/cage) were fed with a Se-deficient diet (Se-Def, 0.047 mg Se/kg) or the Se-Def+0.3 mg Se/kg (Control, 0.345 mg Se/kg) for 6 weeks. The serum, liver, pancreas, spleen, heart, and pectoral muscle of the broilers were collected at week 6 to assay for Se concentration, histopathology, serum metabolome, and tissue transcriptome. Compared with the Control group, Se deficiency induced growth retardation and histopathological lesions and reduced Se concentration in the five organs. Integrated transcriptomics and metabolomics analysis revealed that dysregulation of immune and redox homeostasis related biological processes and pathways contributed to Se deficiency-induced multiple tissue damage in the broilers. Meanwhile, four metabolites in the serum, daidzein, epinephrine, L-aspartic acid and 5-hydroxyindoleacetic acid, interacted with differentially expressed genes with antioxidative effects and immunity among all the five organs, which contributed to the metabolic diseases induced by Se deficiency. Overall, this study systematically elucidated the underlying molecular mechanisms in the pathogenesis of Se deficiency-related diseases, which provides a better understanding of the significance of Se-mediated heath in animals.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Cui L, Zhang J, Guo J, Zhang M, Li W, Dong J, Liu K, Guo L, Li J, Wang H, Li J. Selenium suppressed the LPS-induced inflammation of bovine endometrial epithelial cells through NF-κB and MAPK pathways under high cortisol background. J Cell Mol Med 2023; 27:1373-1383. [PMID: 37042086 PMCID: PMC10183709 DOI: 10.1111/jcmm.17738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The bovine uterus is susceptible to infection, and the elevated cortisol level due to stress are common in cows after delivery. The essential trace element selenium plays a pivotal role in the antioxidant and anti-inflammatory defence system of body. This study investigated whether selenium supplementation protected endometrial cells from inflammation in the presence of high-level cortisol. The primary bovine endometrial epithelial cells were subjected to Escherichia coli lipopolysaccharide to establish cellular inflammation model. The gene expression of inflammatory mediators and proinflammatory cytokines was measured by quantitative PCR. The key proteins of NF-κB and MAPK signalling pathways were detected by Western blot and immunofluorescence. The result showed that pre-treatment of Na2 SeO3 (1, 2 and 4 μΜ) decreased the mRNA expression of proinflammatory genes, inhibited the activation of NF-κB and suppressed the phosphorylation of extracellular signal-regulated kinase, P38MAPK and c-Jun N-terminal kinase. This inhibition of inflammation was more apparent in the presence of high-level cortisol (30 ng/mL). These results indicated that selenium has an anti-inflammatory effect, which is mediated via NF-κB and MAPK signalling pathways and is augmented by cortisol in bovine endometrial epithelial cells.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Jiaqi Zhang
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Jing Guo
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Min Zhang
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Wenjie Li
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| |
Collapse
|
9
|
García-Rodríguez A, Herrero-García G, de Garnica García MG, García Esgueva Á, Balsera R, Oleaga Á, Fernández D, Amado J, Royo LJ, García Iglesias MJ, Balseiro A. Mortality Causes in Captive Cantabrian capercaillie (Tetrao urogallus cantabricus) in Spain. Animals (Basel) 2023; 13:ani13071255. [PMID: 37048511 PMCID: PMC10093503 DOI: 10.3390/ani13071255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The Cantabrian capercaillie (Tetrao urogallus cantabricus) is one of the most severely threatened subspecies of capercaillie. Its current population range is restricted to a small area of the Cantabrian Mountains (northwestern Spain), with only around 200 individuals remaining. As part of the national strategy for the conservation of the subspecies, the Cantabrian capercaillie Captive Breeding Center of Sobrescobio opened in 2009. Here, we use the information provided by the necropsies performed in this facility on 29 individuals (11 males, 13 females and 5 undetermined; 16 chicks and 13 adults) in order to describe the main mortality causes of captive-bred Cantabrian capercaillies. After necropsy, tissue samples were taken for evaluation using standard methods in histology and microbiology. The majority of the captive animals (18/29, 62.07%) died due to infectious diseases, mainly due to Escherichia coli, Clostridium perfringens, or Aspergillus fumigatus infection. The remaining 11 animals died due to stress-related processes (i.e., rupture of the heart apex and cardiomyopathy or neurogenic shock) (8/29, 27.59%), duodenal obstruction and coelomitis (1/29, 3.45%), perforation of the proventriculus and heart with a briar branch (1/29, 3.45%) or euthanasia due to a valgus leg deformity that prevented proper animal welfare (1/29, 3.45%). Young animals (i.e., younger than 2 months) died mainly due to infectious diseases (14/16, 87.5%), while stress-related causes were responsible for most adult deaths (7/13, 53.85%). We additionally report that two free-ranging adult males died due to exertional myopathy. This study provides relevant information for reducing mortality in captive capercaillies and improving both living conditions in captivity and the adaptation of these animals to the wild.
Collapse
Affiliation(s)
| | - Gloria Herrero-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| | - María Gracia de Garnica García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
- Micros Veterinaria, S.L., C/Profesor Pedro Cármenes, Campus de Veganzana, 24007 León, Spain
| | - Álvaro García Esgueva
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| | - Ramón Balsera
- Consejería de Fomento, Ordenación del Territorio y Medio Ambiente, 33007 Oviedo, Spain
| | - Álvaro Oleaga
- Sociedad de Servicios del Principado de Asturias S.A. (SERPA), La Laboral, 33203 Gijón, Spain
| | - Daniel Fernández
- Sociedad de Servicios del Principado de Asturias S.A. (SERPA), La Laboral, 33203 Gijón, Spain
| | - Javier Amado
- Consejería de Medio Rural y Cohesión Territorial, 33299 Gijón, Spain
| | - Luis José Royo
- Departamento de Biología Funcional, Genética, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| |
Collapse
|
10
|
Ferroptosis is involved in deoxynivalenol-induced intestinal damage in pigs. J Anim Sci Biotechnol 2023; 14:29. [PMID: 36922863 PMCID: PMC10018831 DOI: 10.1186/s40104-023-00841-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/13/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a widespread issue for feed and food safety, leading to animal and human health risks. The objective of this study was to determine whether ferroptosis is involved in DON-induced intestinal injury in piglets. Three groups of 21-day-old male weanling piglets (n = 7/group) were fed a control diet, or diet adding 1.0 or 3.0 mg DON/kg. At week 4, serum and small intestines were collected to assay for biochemistry, histology, redox status and ferroptosis-related genes expression. In addition, the involvement of ferroptosis and the role of FTL gene in DON-induced cell death were further verified in the IPEC-J2 cells. RESULTS Compared to the control, dietary supplementation of DON at 1.0 and 3.0 mg/kg induced different degrees of damage in the duodenum, jejunum and ileum, and increased (P < 0.05) serum lipopolysaccharide concentration by 46.2%-51.4%. Dietary DON supplementation at 1.0 and (or) 3.0 mg/kg increased (P < 0.05) concentrations of malondialdehyde (17.4%-86.5%) and protein carbonyl by 33.1%-92.3% in the duodenum, jejunum and ileum. In addition, dietary supplemented with DON upregulated (P < 0.05) ferroptotic gene (DMT1) and anti-ferroptotic genes (FTL and FTH1), while downregulated (P < 0.05) anti-ferroptotic genes (FPN, FSP1 and CISD1) in the duodenum of the porcine. Furthermore, the in vitro study has demonstrated that deferiprone, a potent ferroptotic inhibitor, mitigated (P < 0.05) DON-induced cytotoxicity in porcine small intestinal IPEC-J2 cells. Additionally, deferiprone prevented or alleviated (P < 0.05) the dysregulation of ferroptosis-related genes (ACSL4 and FTL) by DON in IPEC-J2 cells. Moreover, specific siRNA knockdown FTL gene expression compromised the DON-induced cell death in IPEC-J2 cells. CONCLUSIONS In conclusion, this study revealed that ferroptosis is involved in DON-induced intestinal damage in porcine, and sheds a new light on the toxicity of DON to piglets.
Collapse
|
11
|
Xu ZJ, Liu M, Niu QJ, Huang YX, Zhao L, Lei XG, Sun LH. Both selenium deficiency and excess impair male reproductive system via inducing oxidative stress-activated PI3K/AKT-mediated apoptosis and cell proliferation signaling in testis of mice. Free Radic Biol Med 2023; 197:15-22. [PMID: 36731804 DOI: 10.1016/j.freeradbiomed.2023.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/02/2023]
Abstract
Selenium (Se) deficiency or excess impairs testicular development and spermatogenesis, while the underlying mechanisms in this regard remain unclear. This study was designed to explore the molecular biology of Se deficiency or excess in spermatogenesis in mice. Three-week-old male mice (n = 10 mice/diet) were fed with Se-deficient diet (SeD, 0.02 mg Se/kg), adequate-Se diet (SeA, 0.2 mg Se/kg), or excess-Se diet (SeE, 2.0 mg Se/kg) for 5 months. Compared with SeA, SeD reduced (P < 0.05) the body weight (10.4%) and sperm density (84.3%) but increased (P < 0.05) sperm deformity (32.8%); SeE decreased (P < 0.05) the sperm density (78.5%) and sperm motility (35.9%) of the mice. Meanwhile, both SeD and SeE increased (P < 0.05) serum FSH concentrations (10.4-25.6%) and induced testicular damage in mice in comparison with the SeA. Compared with SeA, SeD increased (P < 0.05) the 8-OHdG concentration by 25.5%; SeE increased (P < 0.05) both MDA and 8-OHdG concentrations by 118.8-180.3% in testis. Furthermore, transcriptome analysis showed that there 1325 and 858 transcripts were altered (P < 0.05) in the testis by SeD and SeE, respectively, compared with SeA. KEGG pathway analysis revealed that these differentially expressed genes were mainly enriched in the PI3K-AKT signaling pathway, which is regulated by oxidative stress. Moreover, western blotting analysis revealed that SeD and SeE dysregulated PI3K-AKT-mediated apoptosis and cell proliferation signaling, including upregulating (P < 0.05) caspase 3, cleaved-caspase 3, BCL-2 and (or) P53 and downregulating (P < 0.05) PI3K, p-AKT, p-mTOR, 4E-BP1, p-4E-BP1 and (or) p-p70S6K in the testis of mice compared with SeA. Additionally, compared with SeA, both SeD and SeE increased (P < 0.05) GPX3 and SELENOO; SeD decreased (P < 0.05) GPX1, TXRND3 and SELENOW, but SeE increased (P < 0.05) production of three selenoproteins in the testis. Conclusively, both Se deficiency and excess impairs male reproductive system in mice, potentially with the induction of oxidative stress and activation of PI3K/AKT-mediated apoptosis and cell proliferation signaling in the testis.
Collapse
Affiliation(s)
- Zi-Jian Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qin-Jian Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
12
|
Yang JC, Huang YX, Sun H, Liu M, Zhao L, Sun LH. Selenium Deficiency Dysregulates One-Carbon Metabolism in Nutritional Muscular Dystrophy of Chicks. J Nutr 2023; 153:47-55. [PMID: 36913478 DOI: 10.1016/j.tjnut.2022.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nutritional muscular dystrophy (NMD) in animals is induced by dietary selenium (Se) deficiency. OBJECTIVES This study was conducted to explore the underlying mechanism of Se deficiency-induced NMD in broilers. METHODS One-day-old male Cobb broilers (n = 6 cages/diet, 6 birds/cage) were fed a Se-deficient diet (Se-Def, 47 μg Se/kg) or the Se-Def supplemented with 0.3 mg Se/kg (control) for 6 wk. Thigh muscles of broilers were collected at week 6 for measuring Se concentration, histopathology, and transcriptome and metabolome assays. The transcriptome and metabolome data were analyzed with bioinformatics tools and other data were analyzed with Student's t tests. RESULTS Compared with the control, Se-Def induced NMD in broilers, including reduced (P < 0.05) final body weight (30.7%) and thigh muscle size, reduced number and cross-sectional area of fibers, and loose organization of muscle fibers. Compared with the control, Se-Def decreased (P < 0.05) the Se concentration in the thigh muscle by 52.4%. It also downregulated (P < 0.05) GPX1, SELENOW, TXNRD1-3, DIO1, SELENOF, H, I, K, M, and U by 23.4-80.3% in the thigh muscle compared with the control. Multi-omics analyses indicated that the levels of 320 transcripts and 33 metabolites were significantly altered (P < 0.05) in response to dietary Se deficiency. Integrated transcriptomics and metabolomics analysis revealed that one-carbon metabolism, including the folate and methionine cycle, was primarily dysregulated by Se deficiency in the thigh muscles of broilers. CONCLUSIONS Dietary Se deficiency induced NMD in broiler chicks, potentially with the dysregulation of one-carbon metabolism. These findings may provide novel treatment strategies for muscle disease.
Collapse
Affiliation(s)
- Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hua Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
13
|
Shen Y, Huang H, Wang Y, Yang R, Ke X. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol 2022; 74:127048. [PMID: 35963055 DOI: 10.1016/j.jtemb.2022.127048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Oxidative damage induced by ethanol and its metabolites is one of the factors that fuels the development of alcoholic liver disease (ALD). Selenium (Se) is an effective cofactor for glutathione peroxidase (GPx), and has antioxidant effects that improve ALD. In patients with ALD, ethanol-induced oxidative damage inhibits the synthesis of related Se-containing proteins such as: selenoprotein P (Sepp1), albumin (ALB), and GPx in the liver, thus decreasing the overall Se level in patients. Both Se deficiency and excess can affect the expression of GPx, resulting in damage to the antioxidant defense system. This damage enhances oxidative stress by increasing the levels of reactive oxygen species (ROS) in the body, which aggravates the inflammatory response, lipid metabolism disorder, and lipid peroxidation and worsens ALD symptoms. A cascade of oxidative damages caused by ALD will deplete selenium deposition in the body, stimulate the expression of Gpx1, Sepp1, and Gpx4, and thus mobilize systemic selenoproteins, which can restore GPx activity in the hepatocytes of ALD patients, reduce the levels of reactive oxygen species and alleviate oxidative stress, the inflammatory response, lipid metabolism disorder, and lipid peroxidation, thus helping to mitigate ALD. This review provides a reference for future ALD studies that evaluate the regulation of Se levels and contributes to studies on the potential pathological mechanisms of Se imbalance in ALD.
Collapse
Affiliation(s)
- Yingyan Shen
- Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial, Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu University of Traditional Chinese Medicine, Chendu, China
| | - Hanmei Huang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rongping Yang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China.
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Huang JQ, Jiang YY, Ren FZ, Lei XG. Novel role and mechanism of glutathione peroxidase-4 in nutritional pancreatic atrophy of chicks induced by dietary selenium deficiency. Redox Biol 2022; 57:102482. [PMID: 36162257 PMCID: PMC9516478 DOI: 10.1016/j.redox.2022.102482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Nutritional pancreatic atrophy (NPA) is a classical Se/vitamin E deficiency disease of chicks. To reveal molecular mechanisms of its pathogenesis, we fed day-old chicks a practical, low-Se diet (14 μg Se/kg), and replicated the typical symptoms of NPA including vesiculated mitochondria, cytoplasmic vacuoles, and hyaline bodies in acinar cells of chicks as early as day 18. Target pathway analyses illustrated a > 90% depletion (P < 0.05) of glutathione peroxidase 4 (GPX4) protein and up-regulated apoptotic signaling (cytochrome C/caspase 9/caspase 3) in the pancreas and(or) acinar cells of Se deficient chicks compared with Se-adequate chicks. Subsequently, we overexpressed and suppressed GPX4 expression in the pancreatic acinar cells and observed an inverse (P < 0.05) relationship between the GPX4 production and apoptotic signaling and cell death. Applying pull down and mass spectrometry, we unveiled that GPX4 bound prothymosin alpha (ProTalpha) to inhibit formation of apoptosome in the pancreatic acinar cells. Destroying this novel protein-protein interaction by silencing either gene expression accelerated H2O2-induced apoptosis in the cells. In the end, we applied GPX4 shRNA to silence GPX4 expression in chick embryo and confirmed the physiological relevance of the GPX4 role and mechanism shown ex vivo and in the acinar cells. Altogether, our results indicated that GPX4 depletion in Se-deficient chicks acted as a major contributor to their development of NPA due to the lost binding of GPX4 to ProTalpha and its subsequent inhibition on the cytochrome c/caspase 9/caspase 3 cascade in the acinar cells. Our findings not only provide a novel molecular mechanism for explaining pathogenesis of NPA but also reveal a completely new cellular pathway in regulating apoptosis by selenoproteins.
Collapse
Affiliation(s)
- Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Yun-Yun Jiang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
15
|
Zhao L, Chu XH, Liu S, Li R, Zhu YF, Li FN, Jiang J, Zhou JC, Lei XG, Sun LH. Selenium-Enriched Cardamine violifolia Increases Selenium and Decreases Cholesterol Concentrations in Liver and Pectoral Muscle of Broilers. J Nutr 2022; 152:2072-2079. [PMID: 35728044 DOI: 10.1093/jn/nxac141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Supernutrition of selenium (Se) in an effort to produce Se-enriched meat may inadvertently cause lipid accumulation. Se-enriched Cardamine violifolia (SeCv) contains >80% of Se in organic forms. OBJECTIVES This study was to determine whether feeding chickens a high dose of SeCv could produce Se-biofortified muscle without altering their lipid metabolism. METHODS Day-old male broilers were allocated to 4 groups (6 cages/group and 6 chicks/cage) and were fed either a corn-soy base diet (BD, 0.13-0.15 mg Se/kg), the BD plus 0.5 mg Se/kg as sodium selenite (SeNa) or as SeCv, or the BD plus a low-Se Cardamine violifolia (Cv, 0.20-0.21mg Se/kg). At week 6, concentrations of Se and lipid and expression of selenoprotein and lipid metabolism-related genes were determined in the pectoral muscle and liver. RESULTS The 4 diets showed no effects on growth performance of broilers. Compared with the other 3 diets, SeCv elevated (P < 0.05) Se concentrations in the pectoral muscle and liver by 14.4-127% and decreased (P < 0.05) total cholesterol concentrations by 12.5-46.7% and/or triglyceride concentrations by 28.8-31.1% in the pectoral muscle and/or liver, respectively. Meanwhile, SeCv enhanced (P < 0.05) muscular α-linolenic acid (80.0%) and hepatic arachidonic acid (58.3%) concentrations compared with SeNa and BD, respectively. SeCv downregulated (P < 0.05) the cholesterol and triglyceride synthesis-related proteins (sterol regulatory element binding transcription factor 2 and diacylglycerol O-acyltransferase 2) and upregulated (P < 0.05) hydrolysis and β-oxidation of fatty acid-related proteins (lipoprotein lipase, fatty acid binding protein 1, and carnitine palmitoyltransferase 1A), as well as selenoprotein P1 and thioredoxin reductase activity in the pectoral muscle and/or liver compared with SeNa. CONCLUSIONS Compared with SeNa, SeCv effectively raised Se and reduced lipids in the liver and muscle of broilers. The effect was mediated through the regulation of the cholesterol and triglyceride biosynthesis and utilization-related genes.
Collapse
Affiliation(s)
- Ling Zhao
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Han Chu
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuai Liu
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rong Li
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Yun-Fen Zhu
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Feng-Na Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Lv-Hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Wang Y, Li X, Yao Y, Zhao X, Shi X, Cai Y. Selenium Deficiency Induces Apoptosis and Necroptosis Through ROS/MAPK Signal in Human Uterine Smooth Muscle Cells. Biol Trace Elem Res 2022; 200:3147-3158. [PMID: 34480665 DOI: 10.1007/s12011-021-02910-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
Selenium (Se) is one of the essential trace elements; its deficiency induces ROS production and cell death in cardiomyocytes, skeletal muscle cells, and vascular smooth muscle cells, but it is still not clear the impact of Se deficiency on human uterine smooth muscle cells (HUSMCs). To investigate the effect of low Se on the mRNA expression of selenoproteins, the mRNA and protein expression of apoptosis and necroptosis of HUSMCs and their mechanism, Se deficient HUSMCs mode was established through culturing with 1% FBS containing 0 ng/mL, 0.7 ng/mL, and 7 ng/mL Se, and 10% FBS was as the control group. Then, the apoptosis and necroptosis rates, intracellular ROS content and the expression levels of selenoproteins, apoptosis, necroptosis, MAPK pathway-related genes were examined under different Se concentrations. The results showed that Se deficiency led to the augment of cell apoptosis and necroptosis in HUSMCs (p < 0.05), downregulated (p < 0.05) 19 selenoproteins (GPX1, GPX2, GPX3, GPX4, GPX6, Dio3, Txnrd2, Txnrd3, SEPHS2, SEL15, SELH, SELI, SELM, SELN, SELO, SELS, SELT, SELV, and SELW), while Dio2, SELK, Txnrd1, and MSRB1 were not affected by Se deficiency (p ≥ 0.05). In addition, Se deficiency led to increased intracellular ROS content, p-P38 and p-JNK gene expression levels (p < 0.05), the mitochondrial apoptosis pathway Bax, Casp9 and Cle-Casp3 protein expression levels (p < 0.05), and decreased Bcl2 protein expression level (p < 0.05), simultaneously, increased necroptosis marker genes RIP1, RIP3, and MLKL protein expression levels (p < 0.05) with a dose-dependent pattern. The above results indicate that Se deficiency induces HUSMCs apoptosis and necroptosis through the ROS/MAPK pathway and is closely related to selenoproteins.
Collapse
Affiliation(s)
- Yueyang Wang
- Department of Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yan Cai
- Department of Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
17
|
Zhang Y, Xu Y, Chen B, Zhao B, Gao XJ. Selenium Deficiency Promotes Oxidative Stress-Induced Mastitis via Activating the NF-κB and MAPK Pathways in Dairy Cow. Biol Trace Elem Res 2022; 200:2716-2726. [PMID: 34455543 DOI: 10.1007/s12011-021-02882-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Selenium (Se) is an antioxidant and immunomodulator that can participate in the control of specific endocrine pathways. Disturbance of redox homeostasis is closely related to the pathogenesis of many diseases. Se is also an important nutrient element for dairy cows. First, oxidative stress (OS) induced by Se deficiency was investigated along with a possible mechanism of its induction of mammary gland inflammation. This investigation used in vivo and in vitro experiments for verification. Once the OS response was triggered, the activity of antioxidant enzymes was reduced by regulation of the concentration of Se, which led to the accumulation of ROS. TNF-α, IL-1β, and IL-6 secretion was promoted to activate the NF-κB/MAPK signaling pathway. This process further promoted the accumulation of cytokines that aggravated the inflammatory response. Herein, it was verified that Se deficiency induces OS, which leads to ROS accumulation and the secretion of inflammatory factors to activate the NF-κB/MAPK signaling pathway and promote the occurrence of mastitis.
Collapse
Affiliation(s)
- Yanhe Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yueqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bowen Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
18
|
Zhang K, Li S, Zhao Q, Li J, Han Y, Qin Y, Zhang J, Tang C. Multi-Omics Profiling Reveals Se Deficiency-Induced Redox Imbalance, Metabolic Reprogramming, and Inflammation in Pig Muscle. J Nutr 2022; 152:1207-1219. [PMID: 35102398 DOI: 10.1093/jn/nxac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nutritional muscle dystrophy is associated with selenium (Se) deficiency; however, the underlying mechanism remains unclear. OBJECTIVES This study aimed to understand the crosstalk among redox status, energy metabolism, and inflammation in nutritional muscle dystrophy induced by dietary Se deficiency. METHODS Eighteen castrated male pigs (Yorkshire, 45 d old) were fed Se-deficient (Se-D; 0.007 mg Se/kg) or Se-adequate (Se-A; in the form of selenomethionine, 0.3 mg Se/kg) diets for 16 wk. The muscle Se concentrations; antioxidant capacity; and gene expression, transcriptome, global proteome, metabolome, and lipidome profiles were analyzed. The transcriptome, metabolome, and proteome profiles were analyzed with biostatistics, bioinformatics, and pathway enrichment analysis; other data were analyzed with Student's 2-sided t tests. RESULTS The muscle Se content in the Se-D group was 96% lower than that in the Se-A group (P < 0.05). The activity of glutathione peroxidase (GPX) and thioredoxin reductase (TXNRD) in the Se-D group was 42%-69% lower than that in the Se-A group (P < 0.05). The mRNA levels of 10 selenoprotein genes were 25%-84% lower than those in the Se-A group (P < 0.05). Multi-omics analyses indicated that the levels of 1378 transcripts, 83 proteins, 22 metabolites, and 55 lipid molecules were significantly altered in response to Se deficiency. Se deficiency-induced redox imbalance led to muscle central carbon and lipid metabolism reprogramming, which enhanced the glycolysis pathway and decreased phospholipid synthesis. Inflammation and apoptosis were observed in response to Se deficiency-induced muscle oxidative stress, which may have been associated with extracellular matrix (ECM) remodeling, suppressed focal adhesion and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling, and activation of the NF-κB signaling pathway. CONCLUSIONS These results contributed to understanding the crosstalk among redox, energy metabolism, and inflammation in Se deficiency-induced muscle dystrophy in pigs, and may provide intervention targets for muscle disease treatment.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Gu X, Wang Y, He Y, Zhao B, Zhang Q, Li S. MiR-1656 targets GPX4 to trigger pyroptosis in broilers kidney tissues by activating NLRP3 inflammasome under Se deficiency. J Nutr Biochem 2022; 105:109001. [PMID: 35346830 DOI: 10.1016/j.jnutbio.2022.109001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/12/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is a vital minor element for the organism. Se deficiency caused inflammation in kidney tissue and regulate the expression of selenoproteins and microRNAs (miRNAs). Pyroptosis involved in the inflammatory response, however, whether microRNA targets GPX4 to regulate Se-deficient kidney tissue pyroptosis is unclear. In this study, broilers were divided into two groups, Control group with 0.3mg/kg Se diet and Se-deficient group with 0.03mg/kg Se diet. The dual luciferase reporter assay system and quantitative real-time PCR (qRT-PCR) were used to screen the specificity of miR-1656 and its target protein in Se-deficient broilers. We tested the pyroptosis-related genes of Se-deficient broilers kidney and miR-1656-transfected primary broilers kidney by qRT-PCR, Western blot (WB) and immunofluorescence staining. Our research indicated that the GPX4 is one of the target genes of miR-1656, and Se deficiency leaded to the overexpression of miR-1656 and the increased expression of pyroptosis-related genes. The overexpression of miR-1656 can induce increased expression of pyroptosis-related genes including NLRP3, Caspase-1, IL-18, and IL-1β by inhibiting the release of GPX4. This study showed that miR-1656 could increase the release of ROS by targeting GPX4, activated the NLRP3 inflammasome, and release the inflammatory factors IL-1β and IL-18 to trigger pyroptosis in the kidney tissue of Se-deficient broilers. This finding may provide new research ideas for kidney injury and cell death due to Se deficiency.
Collapse
Affiliation(s)
- Xuedie Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qing Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
20
|
Increased Ingestion of Hydroxy-Methionine by Both Sows and Piglets Improves the Ability of the Progeny to Counteract LPS-Induced Hepatic and Splenic Injury with Potential Regulation of TLR4 and NOD Signaling. Antioxidants (Basel) 2022; 11:antiox11020321. [PMID: 35204204 PMCID: PMC8868084 DOI: 10.3390/antiox11020321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Methionine, as an essential amino acid, play roles in antioxidant defense and the regulation of immune responses. This study was designed to determine the effects and mechanisms of increased consumption of methionine by sows and piglets on the capacity of the progeny to counteract lipopolysaccharide (LPS) challenge-induced injury in the liver and spleen of piglets. Primiparous sows (n = 10/diet) and their progeny were fed a diet that was adequate in sulfur amino acids (CON) or CON + 25% total sulfur amino acids as methionine from gestation day 85 to postnatal day 35. A total of ten male piglets were selected from each treatment and divided into 2 groups (n = 5/treatment) for a 2 × 2 factorial design [diets (CON, Methionine) and challenge (saline or LPS)] at 35 d old. After 24 h challenge, the piglets were euthanized to collect the liver and spleen for the histopathology, redox status, and gene expression analysis. The histopathological results showed that LPS challenge induced liver and spleen injury, while dietary methionine supplementation alleviated these damages that were induced by the LPS challenge. Furthermore, the LPS challenge also decreased the activities of GPX, SOD, and CAT and upregulated the mRNA and(or) protein expression of TLR4, MyD88, TRAF6, NOD1, NOD2, NF-kB, TNF-α, IL-8, p53, BCL2, and COX2 in the liver and (or) spleen. The alterations of GPX and SOD activities and the former nine genes were prevented or alleviated by the methionine supplementation. In conclusion, the maternal and neonatal dietary supplementation of methionine improved the ability of piglets to resist LPS challenge-induced liver and spleen injury, potentially through the increased antioxidant capacity and inhibition of TLR4 and NOD signaling pathway.
Collapse
|
21
|
Ding D, Mou D, Zhao L, Jiang X, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal organic selenium supplementation alleviates LPS induced inflammation, autophagy and ER stress in the thymus and spleen of offspring piglets by improving the expression of selenoproteins. Food Funct 2021; 12:11214-11228. [PMID: 34647565 DOI: 10.1039/d1fo01653a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The thymus and spleen are the main reservoir for T lymphocytes, which can regulate the innate immune response and provide protection against pathogens and tissue damage. Oxidative stress, excessive inflammation, abnormal autophagy and endoplasmic reticulum (ER) stress can all lead to dysfunction of the thymus and spleen. This study was conducted to investigate the effect of maternal 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, an organic Se source) supplementation during pregnancy on the selenoprotein expression, inflammation, ER stress and autophagy of their young offspring's thymus and spleen. Thirty sows were randomly assigned to receive one of the following two diets during gestation: control diet (control, basal diet, n = 15) or HMSeBA supplemented diet (HMSeBA, basal diet +0.3 mg Se kg-1 as HMSeBA, n = 15). Tissues of thymus and spleen were collected from the offspring at birth and weaning after the lipopolysaccharide challenge. Results showed that maternal HMSeBA supplementation significantly up-regulated the gene expression of selenoproteins in the thymus and spleen of newborn piglets compared with the basal diet (p < 0.05), as well as the protein abundance of GPX1 and GPX4 (p < 0.05). In addition, maternal HMSeBA supplementation effectively decreased the expression of inflammation and autophagy related proteins in the thymus and spleen of newborn piglets as compared with the control group (p < 0.05). In weaning piglets, maternal HMSeBA significantly increased the antioxidative capacity of thymus and spleen (p < 0.05), and reversed LPS induced MDA content as compared with the control group (p < 0.05). Furthermore, maternal HMSeBA supplementation during gestation reversed the activation of the MAPK/NF-κB pathway, ER stress and autophagy induced by the LPS challenge in the thymus and spleen of weaning piglets (p < 0.05). In conclusion, maternal HMSeBA supplementation during gestation could decrease the level of inflammation, autophagy and ER stress in the thymus and spleen of young offspring by improving the antioxidative capacity and selenoprotein expression in these tissues. Therefore, maternal HMSeBA supplementation during gestation might be beneficial for the immune function of their offspring by alleviating inflammation, autophagy and ER stress levels in the thymus and spleen. This study showed more evidence for the function of Se on mater-offspring integrated nutrition.
Collapse
Affiliation(s)
- Dajiang Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daolin Mou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianpeng Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
22
|
Ye R, Huang J, Wang Z, Chen Y, Dong Y. Trace Element Selenium Effectively Alleviates Intestinal Diseases. Int J Mol Sci 2021; 22:ijms222111708. [PMID: 34769138 PMCID: PMC8584275 DOI: 10.3390/ijms222111708] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Selenium (Se) is an essential trace element in the body. It is mainly used in the body in the form of selenoproteins and has a variety of biological functions. Intestinal diseases caused by chronic inflammation are among the most important threats to human health, and there is no complete cure at present. Due to its excellent antioxidant function, Se has been proven to be effective in alleviating intestinal diseases such as inflammatory bowel diseases (IBDs). Therefore, this paper introduces the role of Se and selenoproteins in the intestinal tract and the mechanism of their involvement in the mediation of intestinal diseases. In addition, it introduces the advantages and disadvantages of nano-Se as a new Se preparation and traditional Se supplement in the prevention and treatment of intestinal diseases, so as to provide a reference for the further exploration of the interaction between selenium and intestinal health.
Collapse
Affiliation(s)
- Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100193, China;
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
- Correspondence:
| |
Collapse
|
23
|
Li T, Zhang J, Wang PJ, Zhang ZW, Huang JQ. Selenoproteins Protect Against Avian Liver Necrosis by Metabolizing Peroxides and Regulating Receptor Interacting Serine Threonine Kinase 1/Receptor Interacting Serine Threonine Kinase 3/Mixed Lineage Kinase Domain-Like and Mitogen-Activated Protein Kinase Signaling. Front Physiol 2021; 12:696256. [PMID: 34456747 PMCID: PMC8397447 DOI: 10.3389/fphys.2021.696256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Liver necroptosis of chicks is induced by selenium (Se)/vitamin E (VE) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms of liver necrosis, a pool of the corn-soy basal diet (10 μg Se/kg; no VE added), a basal diet plus all-rac-α-tocopheryl acetate (50 mg/kg), Se (sodium selenite at 0.3 mg/kg), or both of these nutrients were provided to day-old broiler chicks (n = 40/group) for 6 weeks. High incidences of liver necrosis (30%) of chicks were induced by -SE-VE, starting at day 16. The Se concentration in liver and glutathione peroxidase (GPX) activity were decreased (P < 0.05) by dietary Se deficiency. Meanwhile, Se deficiency elevated malondialdehyde content and decreased superoxide dismutase (SOD) activity in the liver at weeks 2 and 4. Chicks fed with the two Se-deficient diets showed lower (P < 0.05) hepatic mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, Selenoh, Selenok, Selenom, Selenon, Selenoo, Selenop, Selenot, Selenou, Selenow, and Dio1 than those fed with the two Se-supplemented diets. Dietary Se deficiency had elevated (P < 0.05) the expression of SELENOP, but decreased the downregulation (P < 0.05) of GPX1, GPX4, SELENON, and SELENOW in the liver of chicks at two time points. Meanwhile, dietary Se deficiency upregulated (P < 0.05) the abundance of hepatic proteins of p38 mitogen-activated protein kinase, phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, phospho-c-Jun N-terminal kinase, extracellular signal-regulated kinase, phospho-mitogen-activated protein kinase, receptor-interacting serine-threonine kinase 1 (RIPK1), receptor-interacting serine-threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL) at two time points. In conclusion, our data confirmed the differential regulation of dietary Se deficiency on several key selenoproteins, the RIPK1/RIPK3/MLKL, and mitogen-activated protein kinase signaling pathway in chicks and identified new molecular clues for understanding the etiology of nutritional liver necrosis.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jing Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Administrative Engineering College, Xu Zhou University of Technology, Xuzhou, China
| | - Peng-Jie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zi-Wei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Garcinol promotes hepatic gluconeogenesis by inhibiting P300/CBP-associated factor in late-pregnant sows. Br J Nutr 2021; 126:1-8. [PMID: 32967737 DOI: 10.1017/s000711452000375x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Disorder of hepatic glucose metabolism is the characteristic of late-pregnant sows. The purpose of our study was to look into the mechanism of garcinol on the improvement of hepatic gluconeogenic enzyme in late-pregnant sows. Thirty second- and third-parity sows (Duroc × Yorkshire × Landrace, n 10/diet) were fed a basal diet (control) or that diet supplemented with 100 mg/kg (Low Gar) or 500 mg/kg (High Gar) garcinol from day 90 of gestation to the end of farrowing. The livers were processed to measure enzymatic activity. Hepatocytes from pregnant sows were transfected with P300/CBP-associating factor (PCAF) small interfering RNA (siRNA) or treated with garcinol. Dietary garcinol had no effect on average daily feed intake, body weight (BW), backfat and BW gain of late-pregnant sows. Garcinol promoted plasma glucose levels in pregnant sows and newborn piglets. Garcinol up-regulated hepatic gluconeogenic enzyme expression and decreased PCAF activity. Garcinol had no effect on the expression of PPAR-γ co-activator 1α (PGC-1α) and Forkhead box O1 (FOXO1) but significantly increased their activity and decreased their acetylation in late-pregnant sows. Transfection of PCAF siRNA to hepatocytes of pregnant sows increased PGC-1α and FOXO1 activities. Furthermore, in hepatocytes of pregnant sows, garcinol treatment also up-regulated the activities of PGC-1α and FOXO1 and inhibited the acetylation of PGC-1α and FOXO1. Garcinol improves hepatic gluconeogenic enzyme expression in late-pregnant sows, and this may be due to the mechanism of down-regulating the acetylation of PGC-1α and FOXO1 induced by PCAF in isolated hepatocytes.
Collapse
|
25
|
Wang L, Yin JJ, Zhang F, Yu HD, Chen FF, Zhang ZY, Zhang XZ. Selenium Status Affects Hypertrophic Growth of Skeletal Muscle in Growing Zebrafish by Mediating Protein Turnover. J Nutr 2021; 151:1791-1801. [PMID: 33982120 DOI: 10.1093/jn/nxab082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Selenium (Se) status is closely related to skeletal muscle physiological status. However, its influence on skeletal muscle growth has not been well studied. OBJECTIVES This study aimed to analyze the impacts of overall Se status (deficient, adequate, and high) on skeletal muscle growth using a growing zebrafish model. METHODS Zebrafish (1.5-mo-old) were fed graded levels of Se (deficient: 0.10 mg Se/kg; marginally deficient: 0.22 mg Se/kg; adequate: 0.34 mg Se/kg; high: 0.44, 0.57, and 0.69 mg Se/kg) as Se-enriched yeast for 30 d. Zebrafish growth, and Se accumulation, selenoenzyme activity, selenotranscriptome profiles, and oxidative status in the whole body, and selenotranscriptome profiles, histological characteristics, biochemicals, and gene and protein expression profiles related to muscle growth in the skeletal muscle were analyzed by model fitting and/or 1-factor ANOVA. RESULTS Se status biomarkers within the whole body and skeletal muscle indicated that 0.34 mg Se/kg was adequate for growing zebrafish. For biomarkers related to skeletal muscle growth, compared with 0.34 mg Se/kg, 0.10 mg Se/kg decreased the white muscle cross-sectional area (WMCSA) and the mean diameter of white muscle fibers (MDWMF) by 14.4%-15.1%, inhibited protein kinase B-target of rapamycin complex 1 signaling by 63.7%-68.5%, and stimulated the autophagy-lysosome pathway by 1.07 times and the ubiquitin-proteasome pathway (UPP) by 96.0% (P < 0.05), whereas 0.22 mg Se/kg only decreased the WMCSA by 7.8% (P < 0.05); furthermore, 0.44 mg Se/kg had no clear effects on skeletal muscle biomarkers, whereas 0.57-0.69 mg Se/kg decreased the WMCSA and MDWMF by 6.3%-25.9% and 5.1%-21.3%, respectively, and stimulated the UPP by 2.23 times (P < 0.05). CONCLUSIONS A level of 0.34 mg Se/kg is adequate for the growth of zebrafish skeletal muscle, whereas ≤0.10 and ≥0.57 mg Se/kg are too low or too high, respectively, for maintaining efficient protein accretion and normal hypertrophic growth.
Collapse
Affiliation(s)
- Li Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jiao-Jiao Yin
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Feng Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Hao-Dong Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Fei-Fei Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Zi-Yi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Xue-Zhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| |
Collapse
|
26
|
Chen LL, Huang JQ, Wu YY, Chen LB, Li SP, Zhang X, Wu S, Ren FZ, Lei XG. Loss of Selenov predisposes mice to extra fat accumulation and attenuated energy expenditure. Redox Biol 2021; 45:102048. [PMID: 34167027 PMCID: PMC8227834 DOI: 10.1016/j.redox.2021.102048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein V (SELENOV) is a new and the least conserved member of the selenoprotein family. Herein we generated Selenov knockout (KO) mice to determine its in vivo function. The KO led to 16-19% increases (P < 0.05) in body weight that were largely due to 54% higher (P < 0.05) fat mass accumulation, compared with the wild-type (WT) controls. The extra fat accumulation in the KO mice was mediated by up-regulations of genes and proteins involved in lipogenesis (Acc, Fas, Dgat, and Lpl; up by 40%-1.1-fold) and down-regulations of lipolysis (Atgl, Hsl, Ces1d, and Cpt1a; down by 36-89%) in the adipose tissues. The KO also decreased (P < 0.05) VO2 consumption (14-21%), VCO2 production (14-16%), and energy expenditure (14-23%), compared with the WT controls. SELENOV and O-GlcNAc transferase (OGT) exhibited a novel protein-protein interaction that explained the KO-induced decreases (P < 0.05) of OGT protein (15-29%), activity (33%), and function (O-GlcNAcylation, 10-21%) in the adipose tissues. A potential cascade of SELENOV-OGT-AMP-activated protein kinase might serve as a central mechanism to link the biochemical and molecular responses to the KO. Overall, our data revealed a novel in vivo function and mechanism of SELENOV as a new inhibitor of body fat accumulation, activator of energy expenditure, regulator of O-GlcNAcylation, and therapeutic target of such related disorders.
Collapse
Affiliation(s)
- Ling-Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yuan-Yuan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Liang-Bing Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Life Science and Agriculture Department, Zhoukou Normal University, Zhoukou, Henan, 466001, China
| | - Shu-Ping Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Xin-Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
27
|
Zhao L, Feng Y, Xu ZJ, Zhang NY, Zhang WP, Zuo G, Khalil MM, Sun LH. Selenium mitigated aflatoxin B1-induced cardiotoxicity with potential regulation of 4 selenoproteins and ferroptosis signaling in chicks. Food Chem Toxicol 2021; 154:112320. [PMID: 34116104 DOI: 10.1016/j.fct.2021.112320] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023]
Abstract
The aim of the present study was to explore the underlying mechanism of selenium (Se)-mediated detoxification of aflatoxin B1 (AFB1)-induced cardiotoxicity in chicks. A Se-deficient, corn-soybean meal-basal diet (36 μg Se/kg, BD) and three test diets (BD+1.0 mg AFB1/kg, 0.3 mg Se/kg, or 1.0 mg AFB1/kg+0.3 mg Se/kg) were used in a 3-wk 2 × 2 factorial design trial (n = 30 chicks/group). Dietary AFB1 led to induced (P < 0.05) serum creatine kinase and creatine kinase MB isoenzyme activities and heart histopathologic lesions. However, Se deficiency aggravated most of these alterations induced by AFB1. Moreover, mRNA levels of two ferroptosis activators (solute carrier family 11 Member 2 and transferrin) were upregulated (P < 0.05) in the AFB1-treated groups. Additionally, Se deficiency reduced (P < 0.05) glutathione peroxidase (GPX) 3 and thioredoxin reductase 3 mRNA and GPX activity but increased (P < 0.05) selenoprotein M and selenophosphate synthetase 2 mRNA in the heart in AFB1-administered groups. The in vitro study showed that Se alleviated (P < 0.05) AFB1-reduced cell viability and induced (P < 0.05) ROS and ferroptosis in H9C2 cardiac cells. It also downregulated (P < 0.05) two ferroptosis activators (long-chain acyl-CoA synthetase 4 and solute carrier family 11 Member 2) in the AFB1-treated groups in the H9C2 cells. In conclusion, this study illustrated that Se alleviates AFB1-induced cardiotoxicity and cardiomyocyte damage potentially related to the regulation of redox status, 4 selenoproteins, and ferroptosis-related signaling.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yue Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zi-Jian Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Zuo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Mahmoud Mohamed Khalil
- Animal Production Department, Faculty of Agriculture, Benha University, 13736, Egypt; Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
28
|
Dietary selenium sources differentially regulate selenium concentration, mRNA and protein expression of representative selenoproteins in various tissues of yellow catfish Pelteobagrus fulvidraco. Br J Nutr 2021; 127:490-502. [PMID: 34085611 DOI: 10.1017/s000711452100194x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The study was conducted to determine the effects of three dietary Se sources, such as sodium-selenite (S-S), seleno-yeast (S-Y) and seleno-methionine (S-M), on Se concentration, glutathione peroxidase (GPX) and TXNRD activities, and mRNA expression of fifteen representative selenoproteins, and protein expression of four endoplasmic reticulum-resided selenoproteins in a wide range of tissues of yellow catfish. Compared with S-S and S-M groups, dietary S-Y significantly decreased growth performance and feed utilisation of yellow catfish. Dietary Se sources significantly influenced Se contents in the spleen, dorsal muscle and the kidney, GPX activities in spleen, kidney, intestine, muscle and mesenteric fat, and TXNRD activities in the heart, intestine and mesenteric fat. Among ten tested tissues, dietary Se sources influenced mRNA expression of GPX4 and SELENOK in three tissues; GPX3, SELENOS and TXNRD2 in four tissues; SELENOF, SELENON and DIO2 in five tissues; SELENOM, GPX1/2 and TXNRD3 in six tissues; SELENOW in seven tissue and SELENOP and SELENOT in eight tissues. Based on these observations above, S-S and S-M seem to be suitable Se sources for improving growth performance and feed utilisation of yellow catfish. Dietary Se sources differentially influence the expression of selenoproteins in various tissues of yellow catfish. For the first time, we determined the expression of selenoproteins in fish in responses to dietary Se sources, which contributes to a better understanding of the functions and regulatory mechanisms of selenoporteins.
Collapse
|
29
|
Zhao L, Deng J, Xu ZJ, Zhang WP, Khalil MM, Karrow NA, Sun LH. Mitigation of Aflatoxin B 1 Hepatoxicity by Dietary Hedyotis diffusa Is Associated with Activation of NRF2/ARE Signaling in Chicks. Antioxidants (Basel) 2021; 10:878. [PMID: 34070870 PMCID: PMC8229166 DOI: 10.3390/antiox10060878] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to explore the mechanism of Hedyotis diffusa (HD) in mediating the detoxification of aflatoxin B1 (AFB1)-induced hepatic injury in chicks. A total of 144 one-day-old male broilers (Cobb 500) were randomly assigned to four treatment groups (n = 6 cages/diet, 6 chicks/cage). After three days of acclimation, the broilers were fed either a control diet (Control), Control plus 0.5 mg/kg of AFB1, or Control plus 0.5 mg/kg AFB1 with 500 or 1000 mg/kg HD for two weeks. Both serum and liver were collected at the end of the feeding trial for biochemistry, histology, and NF-E2-related nuclear factor 2 (NRF2)/antioxidant response element (ARE) signaling analysis. Compared with Control, the AFB1 treatment caused liver injury and decreased (p < 0.05) body weight gain, feed intake, feed conversion ratio, and serum albumin and total protein by 6.2-20.7%. AFB1 also induced swelling, necrosis, and severe vacuolar degeneration in chicks' livers. Notably, HD supplementation at 500 and 1000 mg/kg mitigated (p < 0.05) the alterations induced by AFB1. HD supplementation alleviated (p < 0.05) AFB1-induced impairment in hepatic glutathione peroxidase activity, protein carbonyl, and exo-AFB1-8,9-epoxide (AFBO)-DNA concentrations by 57.7-100% and increased (p < 0.05) the activities of superoxide dismutase and catalase by 23.1-40.9% more than those of AFB1 treatment alone. Furthermore, HD supplementation at the two doses upregulated (p < 0.05) NRF2, NAD(P)H: quinone oxidoreductase-1, heme oxygenase-1, glutathione cysteine ligase catalytic subunit, and glutathione-S transferase A2 and A3 in livers relative to the AFB1 group by 0.99-3.4-fold. Overall, dietary supplementation of HD at a high dose displayed better protection effects against aflatoxicosis. In conclusion, a dietary HD supplementation at 500 and 1000 mg/kg protected broilers from AFB1-induced hepatotoxicity, potentially due to the activation of NRF2/ARE signaling in the chicks.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (J.D.); (Z.-J.X.)
| | - Jiang Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (J.D.); (Z.-J.X.)
| | - Zi-Jian Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (J.D.); (Z.-J.X.)
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Mahmoud Mohamed Khalil
- Animal Production Department, Faculty of Agriculture, Benha University, Cairo 13736, Egypt;
| | | | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (J.D.); (Z.-J.X.)
| |
Collapse
|
30
|
Huang X, Dong YL, Li T, Xiong W, Zhang X, Wang PJ, Huang JQ. Dietary Selenium Regulates microRNAs in Metabolic Disease: Recent Progress. Nutrients 2021; 13:1527. [PMID: 34062793 PMCID: PMC8147315 DOI: 10.3390/nu13051527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.
Collapse
Affiliation(s)
- Xin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yu-Lan Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Wei Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
| | - Peng-Jie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
31
|
Mou D, Ding D, Yan H, Qin B, Dong Y, Li Z, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Briens M, Wu D, Feng B. Maternal supplementation of organic selenium during gestation improves sows and offspring antioxidant capacity and inflammatory status and promotes embryo survival. Food Funct 2021; 11:7748-7761. [PMID: 32794529 DOI: 10.1039/d0fo00832j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential trace element in humans and sows, having a biological function mediated in part by its incorporation into selenoproteins. This study was conducted to investigate the effects of maternal 2-hydroxy-4-methylselenobutanoic acid (HMSeBA), an organic Se source, on reproductive performance, antioxidant capacity and inflammatory status of sows and their offspring. Forty-three Landrace × Yorkshire sows were randomly allocated to receive one of the following three diets during gestation: control diet (control, basal diet, n = 15), sodium selenite (Na2SeO3) supplemented diet (Na2SeO3, basal diet + Na2SeO3 at 0.3 mg Se per kg, n = 13), and HMSeBA supplemented diet (HMSeBA, basal diet + HMSeBA at 0.3 mg Se per kg, n = 15). Blood samples of sows and piglets, placentas and piglet liver samples were analyzed for selenium status, antioxidant capacity and inflammatory cytokines. Results showed that, as compared to the control group, HMSeBA supplementation increased the number of born alive piglets and plasma concentrations of total selenium and selenoprotein P in both sows and piglets. Besides, the activities of antioxidant enzymes in the blood of sows, umbilical cord and piglets, placentas and piglets' liver were increased by dietary HMSeBA supplementation as compared to the control group, while malondialdehyde concentration (p < 0.05) was decreased in the blood of sows, umbilical cord and newborn piglets. In addition, maternal HMSeBA intake during gestation up-regulated antioxidant-related selenoprotein gene expression in the placenta (GPx2, GPx3, p < 0.05) and in the liver of newborn piglets (GPx1, GPx2, GPx3, TXNRD2, p < 0.05). Moreover, as compared to the control group, sows and newborn piglets in the Na2SeO3 and HMSeBA groups had a lower serum interleukin-6 (p < 0.05) concentration, and placentas in the HMSeBA group had lower IL-1β, IL-6 and IL-8 gene expression (p < 0.05). In conclusion, maternal supplementation of HMSeBA during pregnancy improved antioxidant capacities and reduced the inflammation level in mater, placenta, and fetus. This finding may highlight the important role of selenoproteins (especially GPXs) in preventing negative consequences of over-production of free radicals and inflammatory cytokines during gestation and at births.
Collapse
Affiliation(s)
- Daolin Mou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dajiang Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hui Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Binting Qin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanpeng Dong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | | | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
32
|
Arnaut PR, da Silva Viana G, da Fonseca L, Alves WJ, Muniz JCL, Pettigrew JE, E Silva FF, Rostagno HS, Hannas MI. Selenium source and level on performance, selenium retention and biochemical responses of young broiler chicks. BMC Vet Res 2021; 17:151. [PMID: 33836766 PMCID: PMC8033718 DOI: 10.1186/s12917-021-02855-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
Background Selenium (Se) has been recognized as an essential micronutrient for nearly all forms of life. In recent decades, broiler responses to dietary Se supplemental levels and sources have received considerable attention. On environmental grounds, organic trace mineral utilization in practical broiler feeds has been defended due to its higher bioavailability. In such feeds, trace minerals are provided simultaneously in the same supplement as inorganic salts or organic chelates, a fact commonly ignored in assays conducted to validate organic trace mineral sources. The current assay aimed to investigate growth and biochemical responses, as well as Se retention of growing chicks fed diets supplemented with organic and inorganic Se levels and where the trace minerals (zinc, copper, manganese, and iron) were provided as organic chelates or inorganic salts according to Se source assessed. In so doing, a 2 × 5 factorial arrangement was used to investigate the effects of sodium selenite (SS) and selenium-yeast (SY) supplemented in feeds to provide the levels of 0, 0.08, 0.16, 0.24, and 0.32 mg Se/kg. Results Chicks fed selenium-yeast diets had body weight (BW), and average daily gain (ADG) maximized at 0.133 and 0.130 mg Se/kg, respectively. Both Se sources linearly increased (P < 0.05) the glutathione peroxidase (GSH-Px) activity in chick blood but higher values were observed in sodium selenite fed chicks (P < 0.05). Both Se sources influenced thyroid hormone serum concentrations (P < 0.05). Chicks fed SY exhibited greater retention of Se in the feathers (P < 0.05). Relative bioavailability of selenium yeast compared with SS for the Se content in carcass, feathers, total and Se retention were, 126, 116, 125 and 125%, respectively. SY supplementation resulted in lower liver Se concentration as Se supplementation increased (P < 0.05). Conclusions Based on performance traits, the supplemental level of organic Se as SY in organic trace minerals supplement to support the maximal growth of broiler chicks is 0.133 mg Se/kg.
Collapse
Affiliation(s)
- Pedro Righetti Arnaut
- Department of Animal Science, Federal University of Viçosa, Viçosa, 36570900, Brazil
| | - Gabriel da Silva Viana
- Production Systems, Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland.
| | - Lucimauro da Fonseca
- Department of Animal Science, Federal University of Viçosa, Viçosa, 36570900, Brazil
| | - Warley Junior Alves
- Department of Animal Science, Federal University of Viçosa, Viçosa, 36570900, Brazil
| | | | | | | | | | - Melissa Izabel Hannas
- Department of Animal Science, Federal University of Viçosa, Viçosa, 36570900, Brazil
| |
Collapse
|
33
|
Zhu SY, Liu LL, Huang YQ, Li XW, Talukder M, Dai XY, Li YH, Li JL. In silico analysis of selenoprotein N (Gallus gallus): absence of EF-hand motif and the role of CUGS-helix domain in antioxidant protection. Metallomics 2021; 13:6132312. [PMID: 33693771 DOI: 10.1093/mtomcs/mfab004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Selenoprotein N (SEPN1) is critical to the normal muscular physiology. Mutation of SEPN1 can raise congenital muscular disorder in human. It is also central to maturation and structure of skeletal muscle in chicken. However, human SEPN1 contained an EF-hand motif, which was not found in chicken. And the biochemical and molecular characterization of chicken SEPN1 remains unclear. Hence, protein domains, transcription factors, and interactions of Ca2+ in SEPN1 were analyzed in silico to provide the divergence and homology between chicken and human in this work. The results showed that vertebrates' SEPN1 evolved from a common ancestor. Human and chicken's SEPN1 shared a conserved CUGS-helix domain with function in antioxidant protection. SEPN1 might be a downstream target of JNK pathway, and it could respond to multiple stresses. Human's SEPN1 might not combine with Ca2+ with a single EF-hand motif in calcium homeostasis, and chicken SEPN1 did not have the EF-hand motif in the prediction, indicating the EF-hand motif malfunctioned in chicken SEPN1.
Collapse
Affiliation(s)
- Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Li-Li Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
34
|
Zhang X, Xiong W, Chen LL, Huang JQ, Lei XG. Selenoprotein V protects against endoplasmic reticulum stress and oxidative injury induced by pro-oxidants. Free Radic Biol Med 2020; 160:670-679. [PMID: 32846216 DOI: 10.1016/j.freeradbiomed.2020.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Selenoprotein V (SELENOV) contains a thioredoxin-like fold and a conserved CxxU motif with a potential redox function. This study was to assess its in vivo and in vitro roles and mechanisms in coping with different oxidant insults. In Experiment (Expt.)1, SELENOV knockout (KO) and wild type (WT) mice (male, 8-wk old) were given an ip injection of saline, diquat (DQ, 12.5 mg/kg), or N-acetyl-para-aminophenol (APAP, 300 mg/kg) (n = 10), and killed 5 h after the injection. In Expt. 2, primary hepatocytes of WT and KO were treated with DQ (0-0.75 mM) or APAP (0-6 mM) for 12 h. In Expt. 3, 293 T cells overexpressing Selenov gene (OE) were treated with APAP (0-4 mM) for 24 h or H2O2 (0-0.4 mM) for 12 h. Compared with the WT, the DQ- and APAP-injected KO mice had higher (P < 0.05) serum alanine aminotransferase activities and hepatic malondialdehyde (MDA), protein carbonyl, endoplasmic reticulum (ER) stress-related proteins (BIP and CHOP), apoptosis-related proteins (FAK and caspase-9), and 3-nitrotyrosine, along with lower total anti-oxidizing-capability (T-AOC) and severer hepatic necrosis. Likewise, the DQ and APAP-treated KO hepatocytes had elevated (P < 0.05) cell death (10-40%), decreased (P < 0.05) T-AOC (63-83%), glutathione (26-87%), superoxide dismutase (SOD) activity (28-36%), mRNA levels of redox enzymes (Cat, Gcs, Gpx3, and Sod) and (or) sharper declines (P < 0.05) in cellular respiration and ATP production than that of the WT cells. In contrast, the OE cells had greater viability and T-AOC and lower MDA, and carbonyl contents after the APAP and H2O2 exposures (all at P < 0.05) than the controls. Moreover, the OE cells had greater (P < 0.05) redox enzyme activities (GPX, TrxR, and SOD), and lower (P < 0.05) expressions of ER stress-related genes (Atf4, Atf6, Bip, Xbp1t, Xbp1s, and Chop) and proteins (BIP, CHOP, FAK, and caspase-9) than the control cells after the treatment of H2O2 (0.4 mM). In conclusion, SELENOV conferred protections in vivo and in vitro against the reactive oxygen and nitrogen species-mediated ER stress-related signaling and oxidative injuries.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Biological Sciences, China Agricultural University, Beijing, 100083, China
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ling-Li Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
35
|
Dickey B, Madhu LN, Shetty AK. Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Pharmacol Ther 2020; 220:107716. [PMID: 33164782 DOI: 10.1016/j.pharmthera.2020.107716] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Gulf War Illness (GWI), a chronic multisymptom health problem, afflicts ~30% of veterans served in the first GW. Impaired brain function is among the most significant symptoms of GWI, which is typified by persistent cognitive and mood impairments, concentration problems, headaches, chronic fatigue, and musculoskeletal pain. This review aims to discuss findings from animal prototypes and veterans with GWI on mechanisms underlying its pathophysiology and emerging therapeutic strategies for alleviating brain dysfunction in GWI. Animal model studies have linked brain impairments to incessantly elevated oxidative stress, chronic inflammation, inhibitory interneuron loss, altered lipid metabolism and peroxisomes, mitochondrial dysfunction, modified expression of genes relevant to cognitive function, and waned hippocampal neurogenesis. Furthermore, the involvement of systemic alterations such as the increased intensity of reactive oxygen species and proinflammatory cytokines in the blood, transformed gut microbiome, and activation of the adaptive immune response have received consideration. Investigations in veterans have suggested that brain dysfunction in GWI is linked to chronic activation of the executive control network, impaired functional connectivity, altered blood flow, persistent inflammation, and changes in miRNA levels. Lack of protective alleles from Class II HLA genes, the altered concentration of phospholipid species and proinflammatory factors in the circulating blood have also been suggested as other aiding factors. While some drugs or combination therapies have shown promise for alleviating symptoms in clinical trials, larger double-blind, placebo-controlled trials are needed to validate such findings. Based on improvements seen in animal models of GWI, several antioxidants and anti-inflammatory compounds are currently being tested in clinical trials. However, reliable blood biomarkers that facilitate an appropriate screening of veterans for brain pathology need to be discovered. A liquid biopsy approach involving analysis of brain-derived extracellular vesicles in the blood appears efficient for discerning the extent of neuropathology both before and during clinical trials.
Collapse
Affiliation(s)
- Brandon Dickey
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA; Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA.
| |
Collapse
|
36
|
Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. WATER 2020. [DOI: 10.3390/w12072071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discharge of aquaculture wastewater and the excessive selenium in aquaculture effluent caused by selenium addition to aquatic feed are posing a serious risk for the marine environment. In this study, batch tests were carried out to investigate the feasibility of utilizing algal–bacterial biofilm for the treatment of selenium-rich aquaculture wastewater. The effects of four different types of commercial biofilm carriers on the attached growth of biofilms and the contaminant removal capacity were examined. The braided cotton biofilm carrier had the best performance on biofilm growth, while in an exponential growth period the dry weight density of the biofilm was above 2.0 g L−1. By utilizing the braided cotton carrier with a hydraulic retention time (HRT) of 6 days, the removal rate of N and P from the raw aquaculture wastewater was 88.5 ± 6.2% and 99.8 ± 0.2%, respectively. After that, the effects of different initial wastewater load ratios (IWLR) and HRT on the effluent quality of the treatment process were studied. The decrease in IWLR and the extension of HRT could improve the treatment performance. The effluent N, P and Se concentrations in the group with 50% IWLR and 6-day HRT were 0.75 ± 0.10 mg L−1, 0.015 ± 0.02 mg L−1, 35.2 ± 3.2 μg L−1, respectively, indicating an effective removal of the main contaminants. The algal–bacterial biofilm harvested from the batch test was rich in N, P and Se, where the Se content was 21.8 ± 3.4 mg kg−1, which has the potential to be used as an Se-rich biofertilizer.
Collapse
|
37
|
Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent. Food Chem Toxicol 2020; 138:111187. [DOI: 10.1016/j.fct.2020.111187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
|
38
|
Chen LL, Huang JQ, Xiao Y, Wu YY, Ren FZ, Lei XG. Knockout of Selenoprotein V Affects Regulation of Selenoprotein Expression by Dietary Selenium and Fat Intakes in Mice. J Nutr 2020; 150:483-491. [PMID: 31773160 DOI: 10.1093/jn/nxz287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The metabolic function of selenoprotein V (SELENOV) remains unknown. OBJECTIVES Two experiments were conducted to determine effects of the Selenov knockout (KO) on selenium concentration and mRNA, protein, and/or activity of 4 major selenoproteins [glutathione peroxidase (GPX) 1, GPX4, thioredoxin reductase-1 (TXNRD1), and selenoprotein P (SELENOP)] in the serum, liver, testis, and/or white adipose tissue (WAT) of mice fed different dietary selenium and fat concentrations. METHODS In Experiment (Expt) 1, 40 KO and 40 wild-type (WT) mice (males, 8 wk old) were fed (n = 10/genotype) a casein-sucrose basal diet plus 0, 0.3, 1, or 3 mg Se/kg (as sodium selenite) for 32 wk . In Expt 2, 20 KO and 20 WT mice (males, 8 wk old) were fed (n = 10/genotype) a normal-fat diet (NF; 10% calories from fat) or a high-fat diet (HF; 60% calories from fat) for 19 wk. RESULTS In Expt 1, the KO caused consistent or substantial decreases (P < 0.05) of mRNA amounts of Gpx1, Txnrd1, and Selenop in the testis (≤52%), but selenium concentrations (19-29%) and GPX activities (≤ 50%) were decreased in the liver across different dietary selenium concentrations . Hepatic and testis GPX1 protein was elevated (≤31%) and decreased (≤45%) by the KO, respectively. In Expt 2, the genotype and dietary fat intake exerted interaction effects ( P < 0.05) on Gpx1 mRNA amounts in the WAT; Gpx1, Txnrd1, and Selenop mRNA amounts and TXNRD activities in the testis; and selenium concentrations in the serum and liver. However, these 2 treatments produced largely independent or additive effects (P < 0.05) on the GPX1 and SELENOP protein amounts in the liver and testis (up to ± 50% changes). CONCLUSIONS The KO-mediated changes in the tissue selenium concentrations and functional expression of 3 major selenoproteins implied potential for SELENOV in regulating body selenium metabolism in the mouse.
Collapse
Affiliation(s)
- Ling-Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yuan-Yuan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China
| | - Fa-Zheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
39
|
Phillips RA, Kraev I, Lange S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. BIOLOGY 2020; 9:E15. [PMID: 31936359 PMCID: PMC7168935 DOI: 10.3390/biology9010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Pelagic seabirds are amongst the most threatened of all avian groups. They face a range of immunological challenges which seem destined to increase due to environmental changes in their breeding and foraging habitats, affecting prey resources and exposure to pollution and pathogens. Therefore, the identification of biomarkers for the assessment of their health status is of considerable importance. Peptidylarginine deiminases (PADs) post-translationally convert arginine into citrulline in target proteins in an irreversible manner. PAD-mediated deimination can cause structural and functional changes in target proteins, allowing for protein moonlighting in physiological and pathophysiological processes. PADs furthermore contribute to the release of extracellular vesicles (EVs), which play important roles in cellular communication. In the present study, post-translationally deiminated protein and EV profiles of plasma were assessed in eight seabird species from the Antarctic, representing two avian orders: Procellariiformes (albatrosses and petrels) and Charadriiformes (waders, auks, gulls and skuas). We report some differences between the species assessed, with the narrowest EV profiles of 50-200 nm in the northern giant petrel Macronectes halli, and the highest abundance of larger 250-500 nm EVs in the brown skua Stercorarius antarcticus. The seabird EVs were positive for phylogenetically conserved EV markers and showed characteristic EV morphology. Post-translational deimination was identified in a range of key plasma proteins critical for immune response and metabolic pathways in three of the bird species under study; the wandering albatross Diomedea exulans, south polar skua Stercorarius maccormicki and northern giant petrel. Some differences in Gene Ontology (GO) biological and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins were observed between these three species. This indicates that target proteins for deimination may differ, potentially contributing to a range of physiological functions relating to metabolism and immune response, as well as to key defence mechanisms. PAD protein homologues were identified in the seabird plasma by Western blotting via cross-reaction with human PAD antibodies, at an expected 75 kDa size. This is the first study to profile EVs and to identify deiminated proteins as putative novel plasma biomarkers in Antarctic seabirds. These biomarkers may be further refined to become useful indicators of physiological and immunological status in seabirds-many of which are globally threatened.
Collapse
Affiliation(s)
- Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
40
|
Quantitative proteomic analysis reveals that the Rap1/MAPK/ERK pathway is inhibited through selenomethionine strengthening antioxidant activity. Biometals 2019; 33:45-64. [PMID: 31834558 DOI: 10.1007/s10534-019-00229-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/28/2019] [Indexed: 01/21/2023]
Abstract
To investigate the influence on the proteome of chicken skeletal muscles of Selenomethionine (SeMet) use, 36 chicks were fed with SeMet feeding for 35 days. A total of 72 1-day old broiler chicks were randomly allocated into two groups (n = 36/group): the control group (C group), the SeMet supplemented group (SeMet group). The Selenium (Se) concentrations of skeletal muscles from the chicks with basal diet (negative control group) and SeMet feeding were found to be 0.01 mg/kg and 0.40 mg/kg, respectively. The skeletal muscles from the two groups were investigated using isobaric Tags for Relative and Absolute Quantitation (iTRAQ), coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. This proteomic analysis identified proteins that were differentially expressed between the two groups. A total of 3564 proteins from the SeMet and the control (C) groups at 35 days were analyzed. 86 proteins were found by iTRAQ to be differentially expressed in the SeMet group, including 38 up-regulated proteins and 48 down-regulated proteins. These differential proteins were later identified as being mainly involved in antioxidant and enzyme-regulating activities. Fluorescent quantitative PCR(qPCR) and Western blot analyse proved to be consistent with the results of iTRAQ identification. The differentially expressed proteins (DEPs) identified in our work could be specific biomarkers related to SeMet intake in chicks. SeMet intake may strengthen antioxidant activity through Rap1/mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) signal pathways.
Collapse
|
41
|
Metabolite profile based on 1H NMR of broiler chicken breasts affected by wooden breast myodegeneration. Food Chem 2019; 310:125852. [PMID: 31735464 DOI: 10.1016/j.foodchem.2019.125852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 11/23/2022]
Abstract
The objective was to characterize the effect of wooden breast (WB) myodegeneration on the metabolite profile of chicken meat by 1H NMR and multivariate data analysis. The results displayed that the metabonome of chicken breast consisted predominantly of 30 metabolites, including amino acids, organic acids, carbohydrates, alkaloids, nucleosides and their derivatives. WB-affected samples showed higher leucine, valine, alanine, glutamate, lysine, lactate, succinate, taurine, glucose, and 5'-IMP levels, but lower histidine, β-alanine, acetate, creatine, creatinine, anserine and nicotinamide adenine dinucleotide levels compared to normal fillets (p < 0.05). In conclusion, results indicated that WB-affected fillets possessed a unique biochemical signature. This unique profile could identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into biochemical processes leading to WB myopathy in commercial broiler chickens.
Collapse
|
42
|
Sun LH, Huang JQ, Deng J, Lei XG. Avian selenogenome: response to dietary Se and vitamin E deficiency and supplementation. Poult Sci 2019; 98:4247-4254. [DOI: 10.3382/ps/pey408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
43
|
Glutathione peroxidases in poultry biology: Part 2. Modulation of enzymatic activities. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933918000260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Liu Z, Zhang F, Lu P, Zhao R, Zhang H, Song B, Li L, Wu Z, Wu R. Selenium-Yeast Alleviated Inflammatory Damage Caused by Lead via Inhibiting Ras/ERK Pathway and Inflammatory Factors in Chicken Skeletal Muscles. Biol Trace Elem Res 2019; 190:493-500. [PMID: 30604133 DOI: 10.1007/s12011-018-1558-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the ameliorative effects of selenium-enriched yeast (Se-yeast) on the inflammatory damage induced by lead (Pb) in chicken skeletal muscles. A total of 108 1-day-old broiler chickens were randomly allocated into four groups (n = 27/group): the control group (C group), the Se-yeast-supplemented group (Se group), the lead-treated group (Pb group), and finally the Se- and Pb-combined group (Pb/Se group). The C group was fed with a basic diet comprising 0.049 mg/kg Se and 0.1 mg/kg Pb while the Se group was fed a Se-yeast diet containing 0.30 mg/kg Se and 0.1 mg/kg Pb. Similarly, the Pb group was fed a Pb acetate diet containing 0.049 mg/kg Se and 350 mg/kg Pb while the Pb/Se group was fed with a Se-yeast diet containing 0.30 mg/kg Se and 350 mg/kg Pb. On days 7, 21, and 35 after commencing the experiment, nine chicks belonging to each group were euthanized and the samples were analyzed by employing the techniques of inductively coupled plasma mass spectrometry and real-time quantitative PCR, along with Western blotting. The results indicated that excess Pb increased the nitric oxide concentration, enhanced the activity of inducible nitric oxide synthase (iNOS), and the mRNA levels of interleukin 1β (IL-1β), interleukin 4 (IL-4), interleukin 10 (IL-10), and interferon gamma (IFN-γ) in a time-dependent manner. Further, it was found that Se reduced damage caused by Pb by decreasing the expression of inflammatory factors in chicken skeletal muscles. Taken together, the results from this study provide the theoretical basis for an alleviate effect of Se on Pb-induced inflammatory damage in chicken skeletal muscles, mediated by inhibiting the Ras/extracellular signal-regulated kinase (ERK) pathway and the inflammatory factors.
Collapse
Affiliation(s)
- Zhe Liu
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Feng Zhang
- Department of Osteology, The Daqing Oil Field General Hospital, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Ping Lu
- China Animal Health And Epidemiology Center, Qingdao, 266000, People's Republic of China
| | - Rui Zhao
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Hua Zhang
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Baifen Song
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Liyang Li
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Zhijun Wu
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, People's Republic of China.
| |
Collapse
|
45
|
Avian Stress-Related Transcriptome and Selenotranscriptome: Role during Exposure to Heavy Metals and Heat Stress. Antioxidants (Basel) 2019; 8:antiox8070216. [PMID: 31295914 PMCID: PMC6680911 DOI: 10.3390/antiox8070216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium, through incorporation into selenoproteins, is one of the key elements of the antioxidant system. Over the past few years there has been increased interest in exploring those molecular mechanisms in chicken, responsible for the development of this protection system. In more detail, Cd/Pb poisoning and heat stress increase oxidation, mRNA levels of inflammatory proteins, and apoptotic proteins. Selenium seems to enhance the antioxidant status and alleviates these effects via upregulation of antioxidant proteins and other molecular effects. In this review, we analyze avian transcriptome key elements with particular emphasis on interactions with heavy metals and on relation to heat stress.
Collapse
|
46
|
Zhao L, Feng Y, Deng J, Zhang NY, Zhang WP, Liu XL, Rajput SA, Qi DS, Sun LH. Selenium Deficiency Aggravates Aflatoxin B1-Induced Immunotoxicity in Chick Spleen by Regulating 6 Selenoprotein Genes and Redox/Inflammation/Apoptotic Signaling. J Nutr 2019; 149:894-901. [PMID: 31070734 DOI: 10.1093/jn/nxz019] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Selenium (Se) plays a protective role in aflatoxin B1 (AFB1)-induced splenic immunotoxicity in chicks. OBJECTIVE This study was designed to reveal the underlying mechanism of Se-mediated protection against AFB1-induced splenic injury in broilers. METHODS Four groups of 1-d-old Cobb male broilers (n = 5 cages/diet, 6 chicks/cage) were arranged in a 3-wk 2 × 2 factorial design trial whereby they were fed an Se-deficient, corn- and soy-based diet [base diet (BD), 36 μg Se/kg], BD plus 1.0 mg AFB1/kg, BD plus 0.3 mg Se/kg, or BD plus 1.0 mg AFB1/kg and 0.3 mg Se/kg (as 2-hydroxy-4-methylselenobutanoic acid). Serum and spleen were collected at week 3 to assay for cytokines, histology, redox status, selected inflammation- and apoptosis-related genes and proteins, and the selenogenome. RESULTS Dietary AFB1 induced growth retardation and spleen injury, decreasing (P < 0.05) body weight gain, feed intake, feed conversion efficiency, and serum interleukin-1β by 17.8-98.1% and increasing (P < 0.05) the spleen index and serum interleukin-6 by 37.6-113%. It also reduced the splenic lymphocyte number, the white pulp region, and histiocyte proliferation in Se-adequate groups. However, Se deficiency aggravated (P < 0.05) these AFB1-induced alterations by 16.2-103%. Moreover, Se deficiency decreased (P < 0.05) splenic glutathione peroxidase (GPX) activity and glutathione-S transferase and glutathione concentrations by 35.6-89.4% in AFB1-exposed groups. Furthermore, Se deficiency upregulated (P < 0.05) the apoptotic (Caspase 3 and Caspase 9) and antimicrobial (β defensin 1 and 2) genes, but downregulated (P < 0.05) antiapoptotic (B-cell lymphoma 2) and inflammatory (E3 ubiquitin-protein ligase CBL-B) genes at the mRNA and/or protein level in AFB1 supplementation groups. Additionally, Se deficiency downregulated (P < 0.05) GPX3, thioredoxin reductase 1 (TXNRD 1), GPX4, and selenoprotein (SELENO) S, and upregulated (P < 0.05) SELENOT and SELENOU in spleen in AFB1 administered groups. CONCLUSIONS Dietary Se deficiency exacerbated AFB1-induced spleen injury in chicks, partially through the regulation of oxidative stress, inflammatory and apoptotic signaling, and 6 selenoproteins.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Yue Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Jiang Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Li Liu
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| |
Collapse
|
47
|
Huang JQ, Zhou JC, Wu YY, Ren FZ, Lei XG. Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic Biol Med 2018; 127:108-115. [PMID: 29800654 PMCID: PMC6168395 DOI: 10.1016/j.freeradbiomed.2018.05.077] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 01/14/2023]
Abstract
Glutathione peroxidase 1 (GPX1) is a selenium-dependent enzyme that reduces intracellular hydrogen peroxide and lipid peroxides. While past research explored regulations of gene expression and biochemical function of this selenoperoxidase, GPX1 has recently been implicated in the onset and development of chronic diseases. Clinical data have shown associations of human GPX1 gene variants with elevated risks of diabetes. Knockout and overexpression of Gpx1 in mice may induce types 1 and 2 diabetes-like phenotypes, respectively. This review assembles the latest advances in this new field of selenium biology, and attempts to postulate signal and molecular mechanisms mediating the role of GPX1 in glucose and lipid metabolism-related diseases. Potential therapies by harnessing the beneficial effects of this ubiquitous redox-modulating enzyme are briefly discussed.
Collapse
Affiliation(s)
- Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518100, China; Molecular Biology Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Yuan-Yuan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, China
| | - Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
48
|
Lei XG, Burk RF. 90th Anniversary Commentary: Beginning of the Selenoprotein Era. J Nutr 2018; 148:1652-1655. [PMID: 30281110 DOI: 10.1093/jn/nxy118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
49
|
Liu T, Yang T, Xu Z, Tan S, Pan T, Wan N, Li S. MicroRNA-193b-3p regulates hepatocyte apoptosis in selenium-deficient broilers by targeting MAML1. J Inorg Biochem 2018; 186:235-245. [DOI: 10.1016/j.jinorgbio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 02/08/2023]
|
50
|
Ye Q, Yuan X, Zhou J, Yuan C, Yang X. Effect of Zishenpingchan granule prepared from Chinese medicinal substances on the c-Jun N-terminal protein kinase pathway in mice
with Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J TRADIT CHIN MED 2018; 37:244-51. [PMID: 29960635 DOI: 10.1016/s0254-6272(17)30051-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the regulatory mechanism of the c-Jun N-terminal protein kinase (JNK)
signaling pathway in substantia nigra (SN) dopaminergic neurons inflammation and apoptosis, and
the neuroprotective effect of Zishenpingchan granules in mice with Parkinson's disease (PD) induced
by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). METHODS PD model mice were established by intraperitoneally injecting MPTP. Sixty mice were divided
into a model group, Traditional Chinese Medicine (TCM) group and control group. The mice of
the TCM group were administered Zishenpingchan granules 7 days before PD induction. Seven days after
PD induction, we examined locomotor activity, and performed the rotarod test and swimming test,
to evaluate limb movement function. Furthermore, we used immunohistochemistry and western blotting
to examine the expression of tyrosine hydroxylase (TH), cyclooxygenase-2 (Cox-2), caspase-3 and
p-JNK. The terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) method
was used to examine neuron apoptosis in the SN. RESULTS Compared with the control group, the mean score of locomotor activity, rotarod test and
swimming test was significantly lower in the model group (P < 0.05); the TH-positive neuron expression
was significantly decreased in the SN pars compacta (SNpc); the protein expression levels of Cox-2,
caspase-3 and p-JNK was obviously increased; and the number of TUNEL-positive neurons in the SN
was increased (P < 0.01). Compared with the model group, the mean score of neurobehavioral tests in
the TCM group was obviously higher, the loss of TH-positive neurons ignificantly decreased, the protein
expression levels of Cox-2, caspase-3 and p-JNK obviously decreased, and the number of TUNEL-
positive neurons in the SN clearly decreased (P < 0.01). CONCLUSION The JNK pathway plays an important role in the regulation of inflammation and
apoptosis in nigral cells in PD mice. TCM can suppress the over-activation of the JNK pathway in the
SN, and alleviate the inflammatory response in nigral cells and dopaminergic neuron apoptosis in PD mice.
Collapse
|