1
|
Liang L, Zeng J, Liu R, Zheng Z, Lyu D, Zhang X, Wen M, Li M, Xiao H, Sun X, Li M, Huang H. Polydatin attenuates diabetic renal inflammatory fibrosis via the inhibition of STING pathway. Biochem Pharmacol 2024; 226:116373. [PMID: 38885772 DOI: 10.1016/j.bcp.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Diabetic nephropathy (DN) is a complication of diabetes and is mainly characterized by renal fibrosis, which could be attributed to chronic kidney inflammation. Stimulator of interferon genes (STING), a linker between immunity and metabolism, could ameliorate various metabolic and inflammatory diseases. However, the regulatory role of STING in DN remains largely unexplored. In this study, knockdown of STING decreased extracellular matrix (ECM), pro-inflammatory, and fibrotic factors in high glucose (HG)-induced glomerular mesangial cells (GMCs), whereas overexpression of STING triggered the inflammatory fibrosis process, suggesting that STING was a potential target for DN. Polydatin (PD) is a glucoside of resveratrol and has been reported to ameliorate DN by inhibiting inflammatory responses. Nevertheless, whether PD improved DN via STING remains unclear. Here, transcriptomic profiling implied that the STING/NF-κB pathway might be an important target for PD. We further found that PD decreased the protein expression of STING, and subsequently suppressed the activation of downstream targets including TBK1 phosphorylation and NF-κB nuclear translocation, and eventually inhibited the production of ECM, pro-inflammatory and fibrotic factors in HG-induced GMCs. Notably, results of molecular docking, molecular dynamic simulations, surface plasmon resonance, cellular thermal shift assay and Co-immunoprecipitation assay indicated that PD directly bound to STING and restored the declined proteasome-mediated degradation of STING induced by HG. In diabetic mice, PD also inhibited the STING pathway and improved the pathological changes of renal inflammatory fibrosis. Our study elucidated the regulatory role of STING in DN, and the novel mechanism of PD treating DN via inhibiting STING expression.
Collapse
Affiliation(s)
- Liyin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Renbin Liu
- Bao'an Center Hospital of Shenzhen, Shenzhen 518100, China
| | - Zhihua Zheng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Lyu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuting Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minghui Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen 518026, China.
| | - Min Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China.
| |
Collapse
|
2
|
Sun D, Wei S, Wang D, Zeng M, Mo Y, Li H, Liang C, Li L, Zhang JW, Wang L. Integrative analysis of potential diagnostic markers and therapeutic targets for glomerulus-associated diabetic nephropathy based on cellular senescence. Front Immunol 2024; 14:1328757. [PMID: 38390397 PMCID: PMC10881763 DOI: 10.3389/fimmu.2023.1328757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024] Open
Abstract
Introduction Diabetic nephropathy (DN), distinguished by detrimental changes in the renal glomeruli, is regarded as the leading cause of death from end-stage renal disease among diabetics. Cellular senescence plays a paramount role, profoundly affecting the onset and progression of chronic kidney disease (CKD) and acute kidney injuries. This study was designed to delve deeply into the pathological mechanisms between glomerulus-associated DN and cellular senescence. Methods Glomerulus-associated DN datasets and cellular senescence-related genes were acquired from the Gene Expression Omnibus (GEO) and CellAge database respectively. By integrating bioinformatics and machine learning methodologies including the LASSO regression analysis and Random Forest, we screened out four signature genes. The receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic performance of the selected genes. Rigorous experimental validations were subsequently conducted in the mouse model to corroborate the identification of three signature genes, namely LOX, FOXD1 and GJA1. Molecular docking with chlorogenic acids (CGA) was further established not only to validate LOX, FOXD1 and GJA1 as diagnostic markers but also reveal their potential therapeutic effects. Results and discussion In conclusion, our findings pinpointed three diagnostic markers of glomerulus-associated DN on the basis of cellular senescence. These markers could not only predict an increased risk of DN progression but also present promising therapeutic targets, potentially ushering in innovative treatments for DN in the elderly population.
Collapse
Affiliation(s)
- Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuqi Wei
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Dandan Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Min Zeng
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Yihao Mo
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Huafeng Li
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Caixing Liang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Lu Li
- Publicity Department, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jun Wei Zhang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| | - Li Wang
- Nephrology Department, Affiliated Hospital of Southern Medical University: Shenzhen Longhua New District People’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Su X, Guo H, Zhou Y, Cao A, Shen Q, Zhu B, Yao X, Wang Y, Wang H, Wang L. Astragaloside IV attenuates high glucose-induced NF-κB-mediated inflammation through activation of PI3K/AKT-ERK-dependent Nrf2/ARE signaling pathway in glomerular mesangial cells. Phytother Res 2023; 37:4133-4148. [PMID: 37189016 DOI: 10.1002/ptr.7875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
Inflammation is a key contributor to diabetic kidney disease pathogenesis, including reactive oxidation stress (ROS)-mediated nuclear factor-κB (NF-κB) signaling pathway. In this study, we examined the effect of Astragaloside IV (AS-IV) on anti-inflammatory and anti-oxidative properties under high glucose (HG) condition and the potential mechanism in glomerular mesangial cells (GMCs). We showed that AS-IV concentration-dependently reduced GMCs proliferation, restrained ROS release and hydrogen peroxide content, and suppressed pro-inflammatory cytokines as well as pro-fibrotic factors expression, which were associated with the inhibition of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling activation. Accordingly, both NF-κB overexpression by using RNA plasmid and Nrf2 gene silencing by using RNA interference weakened the ability of AS-IV to ameliorate HG-induced oxidative stress, inflammation, and cell proliferation. Furthermore, phosphatidylinositide 3-kinases (PI3K)/serine/threonine protein kinase (Akt) and extracellular regulated protein kinases (ERK) signaling pathway regulated the process of AS-IV-induced Nrf2 activation and antioxidant capacity, which evidenced by using PI3K inhibitor LY294002 or ERK inhibitor PD98059 that largely abolished the AS-IV efficacy. Taken together, these results indicated that AS-IV protected against HG-induced GMCs damage by inhibiting ROS/NF-kB-induced increases of inflammatory cytokines, fibrosis biomarkers, and cell proliferation via up-regulation of Nrf2-dependent antioxidant enzyme expression, which were mediated by PI3K/Akt and ERK signaling pathway activation.
Collapse
Affiliation(s)
- Xue Su
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hengjiang Guo
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuying Zhou
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aili Cao
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingbing Zhu
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingmei Yao
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Li S, Xiao H, Sun X, Chen Z, Lin Z, Li C, Zeng J, Xu Z, Cheng Y, Huang H. Connexin32 Promotes the Activation of Foxo3a to Ameliorate Diabetic Nephropathy via Inhibiting the Polyubiquitination and Degradation of Sirt1. Antioxid Redox Signal 2023; 39:241-261. [PMID: 36601735 DOI: 10.1089/ars.2022.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims: Renal oxidative stress (OSS) is the leading cause of diabetic nephropathy (DN). The silent information regulator 1/forkhead boxo3a (Sirt1/Foxo3a) pathway plays an essential role in regulating the antioxidant enzyme system. In this study, we aimed to investigate the mechanism of connexin32 (Cx32) on the antioxidant enzyme system in DN. Results: In this study, Cx32 overexpression significantly reduced reactive oxygen species generation and effectively inhibited the excessive production of extracellular matrix such as fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in high-glucose (HG)-induced glomerular mesangial cells. In addition, Cx32 overexpression reversed the downregulation of Sirt1, and promoted the nuclear transcription of Foxo3a, subsequently activating the antioxidant enzymes including catalase and manganese superoxide dismutase (MnSOD), however, Cx32 knockdown showed the opposite effects. A further mechanism study showed that Cx32 promoted the autoubiquitination and degradation of Smad ubiquitylation regulatory factor-1 (Smurf1), thereby reducing the ubiquitination of Sirt1 at Lys335 and the degradation of Sirt1. Moreover, the in vivo results showed that adenovirus-mediated Cx32 overexpression activated the Sirt1/Foxo3a pathway, and inhibited OSS in the kidney tissues, eventually improving the renal function and glomerulosclerosis in diabetic mice. Innovation: This study highlighted the antioxidant role of Cx32-Sirt1-Foxo3a axis to alleviate DN, which is a new mechanism of Cx32 alleviating DN. Conclusion: Cx32 alleviated DN via activating the Sirt1/Foxo3a antioxidant pathway. The specific mechanism was that Cx32 upregulated the Sirt1 expression through reducing the ubiquitination of Lys335 of Sirt1 by inhibiting Smurf1. Antioxid. Redox Signal. 39, 241-261.
Collapse
Affiliation(s)
- Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Liu PL, Diao JY, Wang Q, Liu H, Zhang Y, Liang JQ, Zhang F, Liang XJ, Zhao HM. Cartilage Damage Pathological Characteristics of Diabetic Neuropathic Osteoarthropathy. Anal Cell Pathol (Amst) 2023; 2023:7573165. [PMID: 37197158 PMCID: PMC10185426 DOI: 10.1155/2023/7573165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 05/19/2023] Open
Abstract
Background Diabetic neuropathic osteoarthropathy (DNOAP) is a rare and easily missed complication for diabetes that leads to increased morbidity and mortality. DNOAP is characterized by progressive destruction of bone and joint, but its pathogenesis remains elusive. We herein aimed to investigate the pathological features and pathogenesis of the cartilages damage in DNOAP patients. Methods The articular cartilages of eight patients with DNOAP and eight normal controls were included. Masson staining and safranine O/fixed green staining (S-O) were used to observe the histopathological characteristics of cartilage. The ultrastructure and morphology of chondrocytes were detected by electron microscopy and toluidine blue staining. Chondrocytes were isolated from DNOAP group and control group. The expression of receptor activator of nuclear factor kappaB ligand (RANKL), osteoprotegerin (OPG), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and Aggrecan protein was evaluated by western blot. Reactive oxygen species (ROS) levels were measured using a 2',7'-dichlorofluorescin diacetate (DCFH-DA) probe. The percentage of apoptotic cells was determined by flow cytometry (FCM). The chondrocytes were cultured with different glucose concentrations to observe the expression of RANKL and OPG. Results Compared with the control group, the DNOAP group showed fewer chondrocytes, subchondral bone hyperplasia, and structural disorder, and a large number of osteoclasts formed in the subchondral bone area. Moreover, mitochondrial and endoplasmic reticulum swellings were observed in the DNOAP chondrocytes. The chromatin was partially broken and concentrated at the edge of nuclear membrane. The ROS fluorescence intensity of chondrocyte in DNOAP group was higher than that in normal control group (28.1 ± 2.3 vs. 11.9 ± 0.7; P < 0.05). The expression of RANKL, TNF-α, IL-1β, and IL-6 protein in DNOAP group was higher than that in normal control group, whereas OPG and Aggrecan protein were lower than that in normal control group (both P < 0.05). FCM showed that the apoptotic rate of chondrocyte in DNOAP group was higher than that in normal control group (P < 0.05). The RANKL/OPG ratio showed significant upward trend when the concentration of glucose was over than 15 mM. Conclusions DNOAP patients tend to have severe destruction of articular cartilage and collapse of organelle structure including mitochondrion and endoplasm reticulum. Indicators of bone metabolism (RANKL and OPG) and inflammatory cytokines (IL-1β, IL-6, and TNF-α) play an important role in promoting the pathogenesis of DNOAP. The glucose concentration higher than 15 mM made the RANKL/OPG ratio change rapidly.
Collapse
Affiliation(s)
- Pei-Long Liu
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Jia-Yu Diao
- Cardiovascular Department, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Qiong Wang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Huan Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an 710086, China
| | - Yan Zhang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Jing-Qi Liang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Feng Zhang
- School of Public Health, Xi'an Jiaotong University, Xi'an 710086, China
| | - Xiao-Jun Liang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| | - Hong-Mou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an 710054, China
| |
Collapse
|
6
|
Roger E, Boutin L, Chadjichristos CE. The Role of Connexin 43 in Renal Disease: Insights from In Vivo Models of Experimental Nephropathy. Int J Mol Sci 2022; 23:ijms232113090. [PMID: 36361888 PMCID: PMC9656944 DOI: 10.3390/ijms232113090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Renal disease is a major public health challenge since its prevalence has continuously increased over the last decades. At the end stage, extrarenal replacement therapy and transplantation remain the only treatments currently available. To understand how the disease progresses, further knowledge of its pathophysiology is needed. For this purpose, experimental models, using mainly rodents, have been developed to unravel the mechanisms involved in the initiation and progression of renal disease, as well as to identify potential targets for therapy. The gap junction protein connexin 43 has recently been identified as a novel player in the development of kidney disease. Its expression has been found to be altered in many types of human renal pathologies, as well as in different animal models, contributing to the activation of inflammatory and fibrotic processes that lead to renal damage. Furthermore, Cx43 genetic, pharmacogenetic, or pharmacological inhibition preserved renal function and structure. This review summarizes the existing advances on the role of this protein in renal diseases, based mainly on different in vivo animal models of acute and chronic renal diseases.
Collapse
Affiliation(s)
- Elena Roger
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
| | - Louis Boutin
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, Université de Paris, 75010 Paris, France
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France
| | - Christos E. Chadjichristos
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 75020 Paris, France
- Faculty of Medicine, Sorbonne University, 75013 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Liu J, Long Z, Xue L, Li C. First Report of Didymella sinensis Causing Leaf Blight on Italian Ryegrass in China. PLANT DISEASE 2022; 107:1631. [PMID: 36302730 DOI: 10.1094/pdis-08-22-1831-pdn] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Italian ryegrass (Lolium multiflorum Lam.) is a high-yield, high-quality forage grass and is cultivated widely in southern China. In April 2021, small black spots were observed on leaves of Italian ryegrass in the field of about 300 ha located in DuShan county, Guizhou province, China (25.62056°N, 107.53139°E). Approximately 1 to 3% of plants were affected. For isolation, eleven tissue pieces (about 0.5 × 1 cm) from four symptomatic leaves were surface-disinfested in 75% ethanol solution for 40s, rinsed thrice in sterilized distilled water and air dried; then these tissues were plated on potato dextrose agar (PDA), and incubated at 25°C for 4 days in the dark. Nine fungal isolates with similar colony characteristics were obtained, and three representative isolates (LMDS1, LMDS2 and LMDS3) were selected for further study. Colonies on PDA were 47 to 57 mm diam after 5 days, margin regular, dark gray in the center surrounded by white to gray, with floccose aerial mycelia on the upper side, and dark brown to black on the reverse side. There was no fungal sporulation when these isolates were incubated under continuous ultraviolet light on PDA, oatmeal agar (OA), malt extract agar (MEA) and potato carrot agar (PCA). ITS-rDNA, LSU-rDNA, and two other protein-coding genes (RPB2 and TUB2) were amplified with primers described by Chen et al. (2017). Sequences were deposited in GenBank (ON692740 to ON692742 for ITS, ON692775 to ON692777 for LSU, ON704660 to ON704662 for RPB2, and ON704657 to ON704659 for TUB2). BLAST analysis of all these four segments showed >99.7% identity with those sequences of ex-type isolate CGMCC 3.18348 of D. sinensis (Chen et al. 2017; Hou et al. 2020). Maximum likelihood (RAxML) phylogenetic tree based on the combined ITS, LSU, RPB2 and TUB2 alignments also showed these three isolates and the other two reported D. sinensis isolates formed a subclade with 100% bootstrap support. Referring to our previous method (Xue et al. 2020), five 8-week-old healthy plants of Italian ryegrass were spray-inoculated separately with a mycelial suspension of about 1.5 × 104 CFU/ml. In addition, five plants considered as non-inoculated controls were sprayed with sterilized distilled water. All plants were individually covered with transparent polyethylene bags for 5 days to maintain high relative humidity and placed in a greenhouse at 23 to 26°C. The small black spots similar to those observed on infected plants in the field developed on leaves fifteen days after inoculation. The symptoms consisted of brown to dark brown spots when leaves were severely infected; however, symptoms were not observed on non-inoculated plants (controls). Pathogenicity tests were carried out three times. The same fungus was re-isolated from the lesions, and confirmed by morphological characterization and molecular technique as described above, thus fulfilling Koch's postulates. To the best of our knowledge, this is the first report of D. sinensis causing leaf blight on Italian ryegrass in China. The accurate identification of this pathogen would be useful for the prevention and control of leaf spot on Italian ryegrass in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Lanzhou University, 12426, State Key Laboratory of Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou, Gansu, China;
| | - Zhongfu Long
- Guizhou Academy of Agricultural Sciences, Guizhou Institute of Prataculture, Guiyang, Guizhou, China;
| | - Longhai Xue
- Lanzhou University, 12426, State Key Laboratory of Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou, China;
| | - Chunjie Li
- Lanzhou University, 12426, State Key Laboratory of Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou, Gansu, China
- Chinese Academy of Forestry, 74640, Grassland Research Center of National Forestry and Grassland Administration, Haidian District, Beijing, China;
| |
Collapse
|
8
|
Li J, Ge H, Xu Y, Xie J, Yan F, Chen W. Geniposide Alleviates Oxidative Damage in Hepatocytes through Regulating miR-27b-3p/Nrf2 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11544-11553. [PMID: 36084288 DOI: 10.1021/acs.jafc.2c03856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Geniposide (GEN), a main compound extracted from Gardenia jasminoides fruit, has various biological activities including anti-inflammation, cellular damage alleviation, neuroprotection, and others. However, the effect of GEN on oxidative stress in hepatic cells is yet to be investigated. Our study uncovered that GEN eliminated excess intracellular free radicals by activating the Nrf2/ARE signaling pathway in H2O2-treated hepatocytes, while the protective effect was blocked by ML385 (an inhibitor of Nrf2). Moreover, H2O2 led to upregulation of miR-27b-3p in L02 cells, which was restrained by GEN. Overexpression of miR-27b-3p greatly weakened the antioxidant capacity of GEN in hepatocytes via directly targeting the Nrf2 gene. Our findings indicated that GEN treatment recovered H2O2-induced oxidative stress via targeting miR-27b-3p and thereby enhanced the antioxidant capacity by stimulating nuclear translocation and accumulation of Nrf2. These findings suggest that inhibition of miR-27b-3p to activate the Nrf2/ARE pathway by GEN is a potential alternative for hepatic oxidative damage alleviation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hengju Ge
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
9
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
10
|
Neurodegeneration in Multiple Sclerosis: The Role of Nrf2-Dependent Pathways. Antioxidants (Basel) 2022; 11:antiox11061146. [PMID: 35740042 PMCID: PMC9219619 DOI: 10.3390/antiox11061146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple sclerosis (MS) encompasses a chronic, irreversible, and predominantly immune-mediated disease of the central nervous system that leads to axonal degeneration, neuronal death, and several neurological symptoms. Although various immune therapies have reduced relapse rates and the severity of symptoms in relapsing-remitting MS, there is still no cure for this devastating disease. In this brief review, we discuss the role of mitochondria dysfunction in the progression of MS, focused on the possible role of Nrf2 signaling in orchestrating the impairment of critical cellular and molecular aspects such as reactive oxygen species (ROS) management, under neuroinflammation and neurodegeneration in MS. In this scenario, we propose a new potential downstream signaling of Nrf2 pathway, namely the opening of hemichannels and pannexons. These large-pore channels are known to modulate glial/neuronal function and ROS production as they are permeable to extracellular Ca2+ and release potentially harmful transmitters to the synaptic cleft. In this way, the Nrf2 dysfunction impairs not only the bioenergetics and metabolic properties of glial cells but also the proper antioxidant defense and energy supply that they provide to neurons.
Collapse
|
11
|
Chen R, Zeng J, Li C, Xiao H, Li S, Lin Z, Huang K, Shen J, Huang H. Fraxin Promotes the Activation of Nrf2/ARE Pathway via Increasing the Expression of Connexin43 to Ameliorate Diabetic Renal Fibrosis. Front Pharmacol 2022; 13:853383. [PMID: 35401165 PMCID: PMC8987976 DOI: 10.3389/fphar.2022.853383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is quickly becoming the largest cause of end-stage renal disease (ESRD) in diabetic patients, as well as a major source of morbidity and mortality. Our previous studies indicated that the activation of Nrf2/ARE pathway via Connexin43 (Cx43) considerably contribute to the prevention of oxidative stress in the procession of DN. Fraxin (Fr), the main active glycoside of Fraxinus rhynchophylla Hance, has been demonstrated to possess many potential pharmacological activities. Whereas, whether Fr could alleviate renal fibrosis through regulating Cx43 and consequently facilitating the activation of Nrf2/ARE pathway needs further investigation. The in vitro results showed that: 1) Fr increased the expression of antioxidant enzymes including SOD1 and HO-1 to inhibit high glucose (HG)-induced fibronectin (FN) and inflammatory cell adhesion molecule (ICAM-1) overexpression; 2) Fr exerted antioxidant effect through activating the Nrf2/ARE pathway; 3) Fr significantly up-regulated the expression of Cx43 in HG-induced glomerular mesangial cells (GMCs), while the knock down of Cx43 largely impaired the activation of Nrf2/ARE pathway induced by Fr; 4) Fr promoted the activation of Nrf2/ARE pathway via regulating the interaction between Cx43 and AKT. Moreover, in accordance with the results in vitro, elevated levels of Cx43, phosphorylated-AKT, Nrf2 and downstream antioxidant enzymes related to Nrf2 were observed in the kidneys of Fr-treated group compared with model group. Importantly, Fr significantly improved renal dysfunction pathological changes of renal fibrosis in diabetic db/db mice. Collectively, Fr could increase the Cx43-AKT-Nrf2/ARE pathway activation to postpone the diabetic renal fibrosis and the up-regulation of Cx43 is probably a novel mechanism in this process.
Collapse
Affiliation(s)
- Rui Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingran Zeng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chuting Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shanshan Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zeyuan Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kaipeng Huang
- Phase I Clinical Trial Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| |
Collapse
|
12
|
Luo Z, Wan Q, Han Y, Li Z, Li B. CAPE-pNO 2 ameliorates diabetic brain injury through modulating Alzheimer's disease key proteins, oxidation, inflammation and autophagy via a Nrf2-dependent pathway. Life Sci 2021; 287:119929. [PMID: 34743947 DOI: 10.1016/j.lfs.2021.119929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/22/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022]
Abstract
AIMS CAPE-pNO2, an active derivative of caffeic acid phenethyl ester, has been verified to exert protection of diabetic cardiomyopathy and diabetic nephropathy. The present study aims to explore the brain protection effects and potential mechanisms of CAPE-pNO2 on streptozotocin-induced diabetic brain injury in vivo and in vitro. MAIN METHODS Biochemical indexes including triglyceride, total cholesterol, superoxide dismutase and malondialdehyde contents were detected. The histopathological structure of hippocampus and cerebral cortex were determined. Immunofluorescence and immunoblot methods were used to assess expression of oxidative stress, inflammation and autophagy pathway-related proteins of diabetic brain in vivo. Alzheimer's disease (AD)-associated key proteins were also checked in vivo. DCFH-DA assay, immunofluorescence and immunoblot methods were applied to verify the master role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in vitro. KEY FINDINGS First, CAPE-pNO2 could rescue the diabetic brain atrophy and diminish CA1 and CA3 cells of hippocampus and cerebral cortex. Second, CAPE-pNO2 could decrease Aβ and p-tau (S396) expression through anti-oxidation, anti-inflammation and autophagy induction in vivo. Last, CAPE-pNO2 could down-regulate p-tau (S396) expression through Nrf2-related anti-oxidation mechanisms in vitro. SIGNIFICANCE CAPE-pNO2 may exert brain protection via Nrf2-dependent way in diabetes. Additionally, Nrf2 was capable of regulating p-tau (S396) expression that is critical to AD.
Collapse
Affiliation(s)
- Zhouxia Luo
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yanmin Han
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Boheng Li
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China.
| |
Collapse
|
13
|
Zhang Y, Jin D, An X, Duan L, Duan Y, Lian F. Lychee Seed as a Potential Hypoglycemic Agent, and Exploration of its Underlying Mechanisms. Front Pharmacol 2021; 12:737803. [PMID: 34690773 PMCID: PMC8531476 DOI: 10.3389/fphar.2021.737803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Food is people's primal want. A reasonable diet and healthy food not only provide nutrients for human growth but also contribute to disease prevention and treatment, while following an unhealthy diet can lead to an increased risk of many diseases, especially metabolic disorders, such as diabetes. Nature is enriched with different food sources, and it seems that purely natural products are more in line with the current concept of health, which enhance the formation of the notion that "Food/Diet Supplements from Natural Sources as a Medicine." As a delicious fruit, the medicinal values such as anticancer, antibacterial, antioxidation, and antiglycating properties of lychee have been found. Lychee (Litchi in Chinese) is a subtropical fruit plant belonging to the family Sapindaceae. It has been widely cultivated in warm climates worldwide, particularly in China, for thousands of years. In recent years, various phytochemical components such as quercetin, procyanidin A2, and (2R)-naringenin-7-O-(3-O-αL-rhamnopyranosyl-β-D-glucopyranoside) have been identified in a lychee seed, which may lend a lychee seed as a relatively safe and inexpensive adjuvant treatment for diabetes and diabetic complications. In fact, accumulating evidence has shown that lychee seed, lychee seed extracts, and related compounds have promising antihyperglycemic activities, including improving insulin resistance, anti-inflammatory effect, lipid regulation, neuroprotection, antineurotoxic effect, and renoprotection effect. In this review, we summarized publications on antiglycemic effects and mechanisms of lychee seed, lychee seed extracts, and related compounds, which included their efficacies as a cure for diabetes and diabetic complications in cells, animals, and humans, attempting to obtain a robust evidence basis for the clinical application and value of lychee seed.
Collapse
Affiliation(s)
- Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Clinical department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Gowd V, Xiao J, Wang M, Chen F, Cheng KW. Multi-Mechanistic Antidiabetic Potential of Astaxanthin: An Update on Preclinical and Clinical Evidence. Mol Nutr Food Res 2021; 65:e2100252. [PMID: 34636497 DOI: 10.1002/mnfr.202100252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/09/2021] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a cluster of physiological dysfunctions typified by persistent hyperglycemia. Diet plays a paramount role in human health, and regular consumption of a fruit- and vegetable-rich diet can delay or prevent DM and its associated complications. The promising effect of fruits and vegetables could be partly attributed to their antioxidant constituents, including carotenoids. Carotenoids are natural antioxidants that occur in many vegetables, fruits, microalgae, and other natural sources. Astaxanthin is a xanthophyll carotenoid predominantly present in microalgae and some red-colored marine organisms. It is currently marketed as a health supplement and is well-known for its antioxidant capacity. Accumulating evidence indicates that astaxanthin exerts its beneficial effects against DM by acting on various molecular targets and signaling pathways in multiple organs/tissues. Astaxanthin can lower blood glucose levels by preserving β-cell function, improving insulin resistance (IR), and increasing insulin secretion. This manuscript summarizes the connection between glucose homeostasis, oxidative stress, and DM. This is followed by a review of recent studies on astaxanthin's pharmacological effects against IR, microvascular (diabetic retinopathy, diabetic nephropathy, and neurological damage), and macrovascular DM complications emphasizing the cellular and molecular mechanisms involved. A few lines of clinical evidence supporting its antidiabetic potential are also highlighted.
Collapse
Affiliation(s)
- Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianbo Xiao
- Institute of Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, 17 University of Vigo, Vigo, Spain
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, 212013, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
15
|
PP2 Ameliorates Renal Fibrosis by Regulating the NF- κB/COX-2 and PPAR γ/UCP2 Pathway in Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7394344. [PMID: 34580604 PMCID: PMC8464423 DOI: 10.1155/2021/7394344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Renal fibrosis is characterized by glomerulosclerosis and tubulointerstitial fibrosis in diabetic nephropathy (DN). We aimed to evaluate the effects of PP2 on renal fibrosis of DN. GSE33744 and GSE86300 were downloaded from the GEO database. Firstly, 839 DEGs were identified between nondiabetic and diabetic mice renal glomerular samples. COX-2 was selected to assess the effects of PP2 on renal glomerulosclerosis. In db/db mice, PP2 decreased the expression of COX-2, phosphorylated p65, and fibrotic proteins, accompanied with attenuated renal glomerulosclerosis. In cultured glomerular mesangial cells, high glucose- (HG-) induced p65 phosphorylation and COX-2 expression were attenuated by PP2 or NF-κB inhibitor PDTC. PP2, PDTC, or COX-2 inhibitor NS-398 ameliorated abnormal proliferation and expression of fibrotic proteins induced by HG. Secondly, 238 DEGs were identified between nondiabetic and diabetic mice renal cortex samples. UCP2 was selected to assess the effects of PP2 on renal tubulointerstitial fibrosis. In db/db mice, PP2 decreased the expression of PPARγ and UCP2, accompanied with attenuated renal tubulointerstitial fibrosis and EMT. In cultured proximal tubular cells, HG-induced PPARγ and UCP2 expression was inhibited by PP2 or PPARγ antagonist GW9662. PP2, GW9662, or UCP2 shRNA ameliorated HG-induced EMT. These results indicated that PP2 ameliorated renal fibrosis in diabetic mice.
Collapse
|
16
|
Exploring the Potential Mechanism of Tang-Shen-Ning Decoction against Diabetic Nephropathy Based on the Combination of Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1025053. [PMID: 34539795 PMCID: PMC8445713 DOI: 10.1155/2021/1025053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
Background Diabetic nephropathy (DN) has become one of the leading causes of the end-stage renal disease (ESRD). Tang-Shen-Ning (TSN) decoction, an effective Traditional Chinese formula for DN, can improve the renal function and inhibit renal fibrosis in DN. However, its potential mechanism is still unexplored. Methods A network pharmacology approach was employed in this study, including screening for differential expressed genes of DN (DN-DEGs), protein-protein interaction (PPI) network analysis, and GO and KEGG enrichment analysis. Besides, a rat model was established to verify the potential effect of TSN in DN. Results Twenty-three TSN-related DN-DEGs targets were identified. These genes were associated with decreased glomerular filtration rate (GFR) DN. The enrichment analysis suggested that the inhibition of renal fibrosis and inflammation through growth factors and chemokines is the potential mechanism through which TSN improves DN. TSN reduced renal fibrosis and improved pathological damage in the kidney in vivo through the regulation of GJA1, CTGF, MMP7, and CCL5, which are genes associated with ECM deposition. Conclusion This study revealed that TSN improves DN through a multicomponent, multitarget, and multipathway synergy. We provide a scientific basis for potential targets for TSN use to treat DN, yet further experimental validation is needed to investigate these targets and mechanisms.
Collapse
|
17
|
Chenxu G, Shaoyu Z, Lili L, Dai X, Kuang Q, Qiang L, Linfeng H, Deshuai L, Jun T, Minxuan X. Betacyanins attenuates diabetic nephropathy in mice by inhibiting fibrosis and oxidative stress via the improvement of Nrf2 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
Sun XH, Xiao HM, Zhang M, Lin ZY, Yang Y, Chen R, Liu PQ, Huang KP, Huang HQ. USP9X deubiquitinates connexin43 to prevent high glucose-induced epithelial-to-mesenchymal transition in NRK-52E cells. Biochem Pharmacol 2021; 188:114562. [PMID: 33857489 DOI: 10.1016/j.bcp.2021.114562] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 01/24/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) plays an important role in diabetic nephropathy (DN). Ubiquitin-specific protease 9X (USP9X/FAM) is closely linked to TGF-β and fibrosis signaling pathway. However, it remains unknown whether USP9X is involved in the process of EMT in DN. Our previous study has shown that connexin 43 (Cx43) activation attenuated the development of diabetic renal tubulointerstitial fibrosis (RIF). Here, we showed that USP9X is a novel negative regulator of EMT and the potential mechanism is related to the deubiquitination and degradation of Cx43. To explore the potential regulatory mechanism of USP9X, the expression and activity of USP9X were studied by CRISPR/Cas9-based synergistic activation mediator (SAM) system, short hairpin RNAs, and selective inhibitor. The following findings were observed: (1) Expression of USP9X was down-regulated in the kidney tissue of db/db diabetic mice; (2) overexpression of USP9X suppressed high glucose (HG)-induced expressions of EMT markers and extra cellular matrix (ECM) in NRK-52E cells; (3) depletion of USP9X further aggravated EMT process and ECM production in NRK-52E cells; (4) USP9X deubiquitinated Cx43 and suppressed its degradation to regulate EMT process; (5) USP9X deubiquitinated Cx43 by directly binding to the C-terminal Tyr286 of Cx43. The current study determined the protective role of USP9X in the process of EMT and the molecular mechanism clarified that the protective effects of USP9X on DN were associated with the deubiquitination of Cx43.
Collapse
Affiliation(s)
- Xiao-Hong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Ming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ze-Yuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rui Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pei-Qing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kai-Peng Huang
- Phase I Clinical Trial Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China.
| | - He-Qing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Nrf2 a molecular therapeutic target for Astaxanthin. Biomed Pharmacother 2021; 137:111374. [PMID: 33761600 DOI: 10.1016/j.biopha.2021.111374] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Astaxanthin (ATX) is a red pigment carotenoid present in shrimp, salmon, crab, and asteroidean. Several studies have corroborated the anti-oxidant efficacy of ATX. In addition, ATX has anti-inflammatory, anti-apoptotic and anti-proliferative properties. In the present review, we discuss the role of Nrf2 in mediating the anti-cancer, anti-aging, neuroprotective, lung-protective, skin-protective, cardioprotective, hepatoprotective, anti-diabetic and muscloprotective effects of ATX.
Collapse
|
20
|
Connexin 43 prevents the progression of diabetic renal tubulointerstitial fibrosis by regulating the SIRT1-HIF-1α signaling pathway. Clin Sci (Lond) 2021; 134:1573-1592. [PMID: 32558900 DOI: 10.1042/cs20200171] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Hyperglycemia-induced renal epithelial-to-mesenchymal transition (EMT) is a key pathological factor in diabetic renal tubulointerstitial fibrosis (RIF). Our previous studies have shown that connexin 43 (Cx43) activation attenuated the development of diabetic renal fibrosis. However, whether Cx43 regulates the EMT of renal tubular epithelial cells (TECs) and the pathological process of RIF under the diabetic conditions remains to be elucidated. In the present study, we identified that Cx43 protein expression was down-regulated in the kidney tissues of db/db mice as well as in high glucose (HG)-induced NRK-52E cells. Overexpression of Cx43 improved renal function in db/db spontaneous diabetic model mice, increased SIRT1 levels, decreased hypoxia-inducible factor (HIF)-1α expression, and reduced production of EMT markers and extracellular matrix (ECM) components. Additionally, Cx43 overexpression inhibited the EMT process and reduced the expression of ECM components such as fibronectin (FN), Collagen I, and Collagen IV in HG-induced NRK-52E cells, whereas Cx43 deficiency had the opposite effects. Mechanistically, Cx43 in a carboxyl-terminal signal transduction-dependent manner could up-regulate SIRT1 expression and enhance SIRT1-dependent deacetylation of HIF-1α to reduce HIF-1α activity, which eventually ameliorated renal EMT and diabetic RIF. Our study indicates the essential role of Cx43 in regulating renal EMT and diabetic RIF via regulating the SIRT1-HIF-1α signaling pathway and provides an experimental basis for Cx43 as a potential target for diabetic nephropathy (DN).
Collapse
|
21
|
Lozić M, Filipović N, Jurić M, Kosović I, Benzon B, Šolić I, Kelam N, Racetin A, Watanabe K, Katsuyama Y, Ogata M, Saraga-Babić M, Vukojević K. Alteration of Cx37, Cx40, Cx43, Cx45, Panx1, and Renin Expression Patterns in Postnatal Kidneys of Dab1-/- ( yotari) Mice. Int J Mol Sci 2021; 22:1284. [PMID: 33525532 PMCID: PMC7865779 DOI: 10.3390/ijms22031284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Numerous evidence corroborates roles of gap junctions/hemichannels in proper kidney development. We analyzed how Dab1 gene functional silencing influences expression and localization of Cx37, Cx40, Cx43, Cx45, Panx1 and renin in postnatal kidneys of yotari mice, by using immunohistochemistry and electron microscopy. Dab1 Δ102/221 might lead to the activation of c-Src tyrosine kinase, causing the upregulation of Cx43 in the medulla of yotari mice. The expression of renin was more prominent in yotari mice (p < 0.001). Renin granules were unusually present inside the vascular walls of glomeruli capillaries, in proximal and distal convoluted tubules and in the medulla. Disfunction of Cx40 is likely responsible for increased atypically positioned renin cells which release renin in an uncontrolled fashion, but this doesn't rule out simultaneous involvement of other Cxs, such as Cx45 which was significantly increased in the yotari cortex. The decreased Cx37 expression in yotari medulla might contribute to hypertension reduction provoked by high renin expression. These findings imply the relevance of Cxs/Panx1 as markers of impaired kidney function (high renin) in yotari mice and that they have a role in the preservation of intercellular signaling and implicate connexopathies as the cause of premature death of yotari mice.
Collapse
Affiliation(s)
- Mirela Lozić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
| | - Marija Jurić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
| | - Ivona Kosović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
| | - Ivana Šolić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Koichiro Watanabe
- Department of Anatomy, Shiga University of Medical Science, Ötsu 520-2192, Japan; (K.W.); (Y.K.)
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Ötsu 520-2192, Japan; (K.W.); (Y.K.)
| | - Masaki Ogata
- Division of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, 981-Miyagi 8558, Japan;
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (M.L.); (N.F.); (M.J.); (I.K.); (B.B.); (I.Š.); (N.K.); (A.R.); (M.S.-B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
22
|
Yang Y, Li J, Zhang L, Lin Z, Xiao H, Sun X, Zhang M, Liu P, Huang H. CKIP-1 acts downstream to Cx43 on the activation of Nrf2 signaling pathway to protect from renal fibrosis in diabetes. Pharmacol Res 2021; 163:105333. [PMID: 33276097 DOI: 10.1016/j.phrs.2020.105333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
We previously reported that both Cx43 and CKIP-1 attenuated diabetic renal fibrosis via the activation of Nrf2 signaling pathway. However, whether CKIP-1, a scaffold protein, participates in regulating the activation of Nrf2 signaling pathway by Cx43 remains to be elucidated. In this study, the effect of adenovirus-mediated Cx43 overexpression on renal fibrosis in CKIP-1-/- diabetic mice was investigated. We found that overexpression of Cx43 could significantly alleviate renal fibrosis by activating the Nrf2 pathway in diabetic mice, but have no obvious effect in CKIP-1-/- diabetic mice. Cx43 overexpressed plasmid and CKIP-1 small interfering RNA were simultaneously transfected into glomerular mesangial cells and the result demonstrated that the effect of activation of Nrf2 signaling pathway by Cx43 was blocked by CKIP-1 depletion. The interaction between Cx43 and CKIP-1 was analyzed by immunofluorescence and immunoprecipitation assays. We found that Cx43 interacted with CKIP-1, and the interaction was weakened by high glucose treatment. Moreover, Cx43 regulated the expression of CKIP-1 and the interaction of CKIP-1 with Nrf2 via Cx43 carboxyl terminus (CT) domain, thereby activating Nrf2 signaling pathway. According to the results, we preliminary infer that CKIP-1 acts downstream to CX43 on the activation of Nrf2 signaling pathway to protect from renal fibrosis in diabetes, the mechanism of which might be related to the interaction of CKIP-1 with Nrf2 through Cx43 CT. Our study provides further experimental basis for targeting the Cx43-CKIP-1-Nrf2 axis to resist diabetic renal fibrosis.
Collapse
Affiliation(s)
- Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lingqiang Zhang
- Skate Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing 100850, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
23
|
Chen ZQ, Sun XH, Li XJ, Xu ZC, Yang Y, Lin ZY, Xiao HM, Zhang M, Quan SJ, Huang HQ. Polydatin attenuates renal fibrosis in diabetic mice through regulating the Cx32-Nox4 signaling pathway. Acta Pharmacol Sin 2020; 41:1587-1596. [PMID: 32724174 PMCID: PMC7921128 DOI: 10.1038/s41401-020-0475-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
We previously found that polydatin could attenuate renal oxidative stress in diabetic mice and improve renal fibrosis. Recent evidence shows that NADPH oxidase 4 (Nox4)-derived reactive oxygen species (ROS) contribute to inflammatory and fibrotic processes in diabetic kidneys. In this study we investigated whether polydatin attenuated renal fibrosis by regulating Nox4 in vitro and in vivo. In high glucose-treated rat glomerular mesangial cells, polydatin significantly decreased the protein levels of Nox4 by promoting its K48-linked polyubiquitination, thus inhibited the production of ROS, and eventually decreasing the expression of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1), the main factors that exacerbate diabetic renal fibrosis. Overexpression of Nox4 abolished the inhibitory effects of polydatin on FN and ICAM-1 expression. In addition, the expression of Connexin32 (Cx32) was significantly decreased, which was restored by polydatin treatment. Cx32 interacted with Nox4 and reduced its protein levels. Knockdown of Cx32 abolished the inhibitory effects of polydatin on the expression of FN and ICAM-1. In the kidneys of streptozocin-induced diabetic mice, administration of polydatin (100 mg·kg-1·d-1, ig, 6 days a week for 12 weeks) increased Cx32 expression and reduced Nox4 expression, decreased renal oxidative stress levels and the expression of fibrotic factors, eventually attenuating renal injury and fibrosis. In conclusion, polydatin promotes K48-linked polyubiquitination and degradation of Nox4 by restoring Cx32 expression, thereby decreasing renal oxidative stress levels and ultimately ameliorating the pathological progress of diabetic renal fibrosis. Thus, polydatin reduces renal oxidative stress levels and attenuates diabetic renal fibrosis through regulating the Cx32-Nox4 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Quan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Hong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Juan Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Zhan-Chi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ze-Yuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Ming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shi-Jian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - He-Qing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Gao Y, Yuan D, Gai L, Wu X, Shi Y, He Y, Liu C, Zhang C, Zhou G, Yuan C. Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling. J Ginseng Res 2020; 45:408-419. [PMID: 34025134 PMCID: PMC8134850 DOI: 10.1016/j.jgr.2020.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
Background The decreased renal function is known to be associated with biological aging, of which the main pathological features are chronic inflammation and renal interstitial fibrosis. In previous studies, we reported that total saponins from Panax japonicus (SPJs) can availably protect acute myocardial ischemia. We proposed that SPJs might have similar protective effects for aging-associated renal interstitial fibrosis. Thus, in the present study, we evaluated the overall effect of SPJs on renal fibrosis. Methods Sprague-Dawley (SD) aging rats were given SPJs by gavage beginning from 18 months old, at 10 mg/kg/d and 60 mg/kg/d, up to 24 months old. After the experiment, changes in morphology, function and fibrosis of their kidneys were detected. The levels of serum uric acid (UA), β2-microglobulin (β2-MG) and cystatin C (Cys C) were assayed with ELISA kits. The levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), inflammatory factors and changes of oxidative stress parameters were examined. Results After SPJs treatment, SD rats showed significantly histopathological changes in kidneys accompanied by decreased renal fibrosis and increased renal function; As compared with those in 3-month group, the levels of serum UA, Cys C and β2-MG in 24-month group were significantly increased (p < 0.05). Compared with those in the 24-month group, the levels of serum UA, Cys C and β2-MG in the SPJ-H group were significantly decreased. While ECM was reduced and the levels of MMP-2 and MMP-9 were increased, the levels of TIMP-1, TIMP-2 and transforming growth factor-β1 (TGF-β1)/Smad signaling were decreased; the expression level of phosphorylated nuclear factor kappa-B (NF-κB) was down-regulated with reduced inflammatory factors; meanwhile, the expression of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling was aggrandized. Conclusion These results suggest that SPJs treatment can improve age-associated renal fibrosis by inhibiting TGF-β1/Smad, NFκB signaling pathways and activating Nrf2-ARE signaling pathways and that SPJs can be a potentially valuable anti-renal fibrosis drug.
Collapse
Key Words
- ARE, antioxidant response element
- Aging
- COX2, cyclooxygenase-2
- Cys C, cystatin C
- ECM, extracellular matrix
- HO-1, human heme oxygenase 1
- IL-6, interleukin-6
- IκB, inhibitor of NF-κB
- LPO, lipid peroxides
- MCP-1, monocyte chemoattractant protein-1
- MMPs, matrix metalloproteinases
- NF-κB, nuclear factor kappa-B
- NQO1, recombinant NADH dehydrogenase quinone 1
- Nrf2, nuclear factor erythroid 2-related factor 2
- Nrf2-ARE signaling pathways
- PJ, Panax japonicas
- Renal fibrosis
- SD, Sprague-Dawley
- SPJ-H, high-dose of SPJ
- SPJ-L, low-dose of SPJ
- SPJs, saponins from panax japonicus
- TGF-β1, tumor growth factor-β1
- TGF-β1/Smad
- TIMPs, tissue inhibitors of metalloproteinases
- TNF-α, tumor necrosis factor-α
- Total saponins of panax japonicus
- UA, uric acid
- α-SMA, α-smooth muscle aorta
- β2-MG, β2-microglobulin
Collapse
Affiliation(s)
- Yan Gao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Liyue Gai
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Xuelian Wu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| |
Collapse
|
25
|
Jin L, Zheng D, Yang G, Li W, Yang H, Jiang Q, Chen Y, Zhang Y, Xie X. Tilapia Skin Peptides Ameliorate Diabetic Nephropathy in STZ-Induced Diabetic Rats and HG-Induced GMCs by Improving Mitochondrial Dysfunction. Mar Drugs 2020; 18:md18070363. [PMID: 32679664 PMCID: PMC7401261 DOI: 10.3390/md18070363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes, and mitochondrial dysfunction has been observed in the kidneys of diabetic patients. Tilapia skin peptides (TSPs) are mixtures of small-molecular-weight peptides derived from tilapia skin. Rising evidence suggests that bioactive peptides from marine sources are beneficial for DN. This study aimed to investigate whether TSPs can alleviate the pathological progress in experimental DN by improving mitochondrial dysfunction through the activation of Bnip3/Nix signaling. In the current study, TSPs treatment alleviated the metabolic parameters and renal morphology in streptozotocin-induced diabetic rats. Additionally, TSPs treatment significantly activated Bnip3/Nix signaling and improved the mitochondrial morphology, reversed the over-production of mitochondrial superoxide and cellular reactive oxygen species and the decreased mitochondrial membrane potential, thereby inhibiting the expressions of fibronectin, collagen IV and intercellular cell adhesion molecule-1 in glomerular mesangial cells induced by high glucose. Collectively, our results suggest that TSPs show the renoprotective effect on DN by improving mitochondrial dysfunction, and they can be a potential therapeutic strategy for DN.
Collapse
Affiliation(s)
- Lin Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (L.J.); (D.Z.); (G.Y.); (Y.Z.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (L.J.); (D.Z.); (G.Y.); (Y.Z.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (L.J.); (D.Z.); (G.Y.); (Y.Z.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Wei Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (H.Y.); (Y.C.)
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Huan Yang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (H.Y.); (Y.C.)
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Qian Jiang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Yongjun Chen
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (H.Y.); (Y.C.)
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (L.J.); (D.Z.); (G.Y.); (Y.Z.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (L.J.); (D.Z.); (G.Y.); (Y.Z.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
- Correspondence: ; Tel.: +86-186-0895-8617
| |
Collapse
|
26
|
Fu Y, Sun X, Gu Z, Zhuang Z. Connexin 43 Modulates the Cellular Resistance to Paclitaxel via Targeting β-Tubulin in Triple-Negative Breast Cancer. Onco Targets Ther 2020; 13:5323-5335. [PMID: 32606750 PMCID: PMC7294565 DOI: 10.2147/ott.s229076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/19/2020] [Indexed: 01/06/2023] Open
Abstract
Background Triple-negative breast cancer has become an intricate part and hotspot in the clinical and experimental research. Connexins, serving as functional proteins in gap junctions, play an important role in tumorigenesis, cell proliferation and metastasis. Methods We constructed and employed the Connexin 43 (Cx43) overexpression lentiviral vectors and Cx43 siRNA in paclitaxel-treated MDA-MB-231 cells. We performed the experiments of clonal formation and flow cytometry to gauge the effect of paclitaxel on cellular behaviors and immunofluorescence and subsequent quantitative RT-PCR and Western blot to examine the expression of genes and corresponding proteins. Experiments of scrape loading/dye transfer were utilized to explore the gap junctions. The targets of Cx43 were identified via the experiments of co-immunoprecipitation (Co-IP), GST pull-down assays and proximal ligation assay (PLA). Results The results showed that Cx43 hindered cell proliferation and promoted apoptosis in the paclitaxel-treated MDA-MB-231 cells. Overexpressed Cx43 suppressed the expression of resistance genes such as BRCP, Txr-1, α-tubulin and β-tubulin and promoted the expression of apoptosis gene as TSP-1 and Bcl-2. Cx43 was also positively related to ITGα9 and negatively related to ITGαV and ITGα11. The gap junctions altered magnificently under different expressions of Cx43, which indicated that Cx43 could promote the number of intercellular gap junctions. The immunofluorescent experiment revealed that both of Cx43 and β-tubulin were mainly localized in the cytoplasm. The assays of Co-IP and GST pull-down demonstrated that there existed a direct interaction between Cx43 and β-tubulin. Furthermore, the result of PLA also showed that Cx43 interacts with β-tubulin in MDA-MB-231 cells. Conclusion Overexpression of Cx43 could modulate the cellular resistance to paclitaxel via targeting β-tubulin in triple-negative breast cancer.
Collapse
Affiliation(s)
- Yun Fu
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoyin Sun
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhangyuan Gu
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Chen X, Liang H, Xi Z, Yang Y, Shan H, Wang B, Zhong Z, Xu C, Yang GY, Sun Q, Sun Y, Bian L. BM-MSC Transplantation Alleviates Intracerebral Hemorrhage-Induced Brain Injury, Promotes Astrocytes Vimentin Expression, and Enhances Astrocytes Antioxidation via the Cx43/Nrf2/HO-1 Axis. Front Cell Dev Biol 2020; 8:302. [PMID: 32457903 PMCID: PMC7227447 DOI: 10.3389/fcell.2020.00302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly severe form of stroke, and reactive astrogliosis is a common response following injury to the central nervous system (CNS). Mesenchymal stem cells (MSCs) are reported to promote neurogenesis and alleviate the late side effects in injured brain regions. Gap junctions (Gjs) are abundant in the brain, where the richest connexin (Cx) is Cx43, most prominently expressed in astrocytes. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor regulating antioxidant reactions. Here, we aimed to explore whether bone marrow MSCs (BM-MSCs) could alleviate brain injury and protect astrocytes from apoptosis, by regulating Cx43 and Nrf2. We validated the effect of BM-MSC transplantation in an ICH model in vivo and in vitro and detected changes using immunofluorescence, as well as protein and mRNA expression of glial fibrillary acidic protein (GFAP), vimentin (VIM), Cx43, Nrf2, and heme oxygenase-1 (HO-1). Our results showed that BM-MSC transplantation attenuated brain injury after ICH and upregulated VIM expression in vivo and in vitro. Additionally, Cx43 upregulation and Nrf2 nuclear translocation were observed in astrocytes cocultured with BM-MSC. Knockdown of Cx43 by siRNA restrained Nrf2 nuclear translocation. Cx43 and Nrf2 had a connection as determined by immunofluorescence and coimmunoprecipitation. We demonstrated that astrocytes undergo astroglial-mesenchymal phenotype switching and have anti-apoptotic abilities after BM-MSC transplantation, where Cx43 upregulation triggers Nrf2 nuclear translocation and promotes its phase II enzyme expression. The Cx43/Nrf2 interaction of astrocytes after BM-MSC transplantation may provide an important therapeutic target in the management of ICH.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huaibin Liang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huimin Shan
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Canxin Xu
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Li B, Cheng Z, Sun X, Si X, Gong E, Wang Y, Tian J, Shu C, Ma F, Li D, Meng X. Lonicera caerulea L. Polyphenols Alleviate Oxidative Stress-Induced Intestinal Environment Imbalance and Lipopolysaccharide-Induced Liver Injury in HFD-Fed Rats by Regulating the Nrf2/HO-1/NQO1 and MAPK Pathways. Mol Nutr Food Res 2020; 64:e1901315. [PMID: 32250024 DOI: 10.1002/mnfr.201901315] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/06/2020] [Indexed: 12/12/2022]
Abstract
SCOPE This study investigates the modulatory effects of Lonicera caerulea L. polyphenols (LCPs) on the intestinal environment and lipopolysaccharide (LPS)-induced liver injury via the nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (HO-1)/NQO1 and mitogen-activated protein kinase (MAPK) pathways in a rat model of oxidative stress damage (OSD). METHODS AND RESULTS To examine the prebiotic properties of LCP, a model of high-fat-diet-induced OSD is established using Sprague Dawley rats. In the colon, treatment with LCP for 8 weeks ameliorates enhanced intestinal permeability (glucagon-like peptide-2 content and occludin protein increase, whereas claudin-2 protein decreases), intestinal inflammation (levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, cyclooxygenase-2, and nuclear factor kappa-B p65 (NF-κB p65), decrease), and intestinal OSD (through regulation of the Nrf2/HO-1/NQO1 pathway). Moreover, LCP alleviates LPS-induced liver injury by suppressing the nuclear translocation of NF-κB p65 and activation of the MAPK signaling pathway. Additionally, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus, Akkermansia, Actinobacteria, Proteobacteria, Rothia, and Blautia are found to be the key intestinal microbial taxa related to intestinal OSD and LPS-induced liver injury in rats. CONCLUSION LCP treatment potentially modulates the intestinal environment and alleviates liver injury by suppressing oxidative-stress-related pathways and altering the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Ersheng Gong
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China.,Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning, College of Food Science, Shenyang Agricultural University, Shenyang, 110161, P. R. China
| |
Collapse
|
29
|
Eftekhari A, Vahed SZ, Kavetskyy T, Rameshrad M, Jafari S, Chodari L, Hosseiniyan SM, Derakhshankhah H, Ahmadian E, Ardalan M. Cell junction proteins: Crossing the glomerular filtration barrier in diabetic nephropathy. Int J Biol Macromol 2020; 148:475-482. [PMID: 31962072 DOI: 10.1016/j.ijbiomac.2020.01.168] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy as a deleterious complication of diabetes mellitus and an important cause of end-stage renal failure is characterized by changes in the molecular and cellular levels. Cell-cell communication via the gap and tight junctions are involved in the pathogenesis of diseases such as diabetes and kidney failure. Studying cell junctions including gap junctions, tight junctions, and anchoring junctions within the nephron can be used as an early sign of diabetic nephropathy. Furthermore, cell junctions may be an upcoming target by pharmacological methods to improve treatments of diabetic nephropathy and pave the way to introduce promising therapeutic strategies based on cell-cell communications effects and its translation into clinical studies for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Taras Kavetskyy
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine; The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
30
|
Chen Z, Sun X, Chen Q, Lan T, Huang K, Xiao H, Lin Z, Yang Y, Liu P, Huang H. Connexin32 ameliorates renal fibrosis in diabetic mice by promoting K48-linked NADPH oxidase 4 polyubiquitination and degradation. Br J Pharmacol 2020; 177:145-160. [PMID: 31465542 PMCID: PMC6976783 DOI: 10.1111/bph.14853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Nox4 is the major isoform of NADPH oxidase found in the kidney and contributes to the pathogenesis of diabetic nephropathy. However, the molecular mechanisms of increased Nox4 expression induced by hyperglycaemia remain to be elucidated. Here, the role of the connexin32-Nox4 signalling axis in diabetic nephropathy and its related mechanisms were investigated. EXPERIMENTAL APPROACH Diabetes was induced in mice by low-dose streptozotocin (STZ) combined with a high-fat diet. Effects of connexin32 on Nox4 expression and on renal function and fibrosis in STZ-induced diabetic mice were investigated using adenovirus-overexpressing connexin32 and connexin32-deficient mice. Interactions between connexin32 and Nox4 were analysed by co-immunoprecipitation and immunofluorescence assays. KEY RESULTS Connexin32 was down-regulated in the kidneys of STZ-induced diabetic mice. Overexpression of connexin32 reduced expression of Nox4 and improved renal function and fibrosis in diabetic mice, whereas connexin32 deficiency had opposite effects. Down-regulation of fibronectin expression by connexin32 was not dependent on gap junctional intercellular communication involving connexin32. Connexin32 interacted with Nox4 and reduced the generation of hydrogen peroxide, leading to the down-regulation of fibronectin expression. Mechanistically, connexin32 decreased Nox4 expression by promoting its K48-linked polyubiquitination. Interestingly, Smurf1 overexpression inhibited K48-linked polyubiquitination of Nox4. Furthermore, connexin32 interacted with Smurf1 and inhibited its expression. CONCLUSION AND IMPLICATIONS Connexin32 ameliorated renal fibrosis in diabetic mice by promoting K48-linked Nox4 polyubiquitination and degradation via inhibition of Smurf1 expression. Targeting the connexin32-Nox4 signalling axis may contribute to the development of novel treatments for diabetic nephropathy.
Collapse
Affiliation(s)
- Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Department of Pharmacology, School of PharmacyGuangxi Medical UniversityNanningChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| | - Xiaohong Sun
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| | - Qiuhong Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Tian Lan
- Department of Pharmacology, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Kaipeng Huang
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zeyuan Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yan Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
31
|
Yang G, Jin L, Zheng D, Tang X, Yang J, Fan L, Xie X. Fucoxanthin Alleviates Oxidative Stress through Akt/Sirt1/FoxO3α Signaling to Inhibit HG-Induced Renal Fibrosis in GMCs. Mar Drugs 2019; 17:md17120702. [PMID: 31842414 PMCID: PMC6950607 DOI: 10.3390/md17120702] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
As one of the main marine carotenoids, fucoxanthin has strong antioxidant activity. FoxO3α, a member of the forkhead box O family of transcription factors, plays an important role in DN by regulating oxidative stress. The activity of FoxO3α is related to its phosphorylation and acetylation status, regulated by Akt and Sirt1, a lysine deacetylase. Our study aimed to investigate whether fucoxanthin could alleviate oxidative stress and fibrosis via FoxO3α in DN and whether Akt and Sirt1 were involved. We found that in GMCs cultured in HG, fucoxanthin treatment significantly reduced the expression of FN and collagen IV, as well as reactive oxygen species generation, suggesting that fucoxanthin is beneficial to alleviate both fibrosis and oxidative stress in DN. In addition, we found that fucoxanthin decreased the phosphorylation and acetylation level of FoxO3α, reversed the protein level of FoxO3α inhibited by HG, and then promoted the nuclear transport of FoxO3α. Besides, fucoxanthin promoted the expression of manganese superoxide dismutase, a downstream target of FoxO3α. Furthermore, we found that fucoxanthin reversed the activation of Akt and inhibition of Sirt1. However, the enhancement of fucoxanthin in FoxO3α expression and nuclear transport was significantly decreased by pretreatment with Akt activator SC79 or Sirt1 inhibitor EX527. In summary, our study explored fucoxanthin alleviated oxidative stress and fibrosis induced by HG through Akt/Sirt1/FoxO3α signaling in GMCs, suggesting fucoxanthin is a potential therapeutic strategy for DN.
Collapse
Affiliation(s)
- Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lin Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiaoliang Tang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Junwei Yang
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lingxuan Fan
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; (G.Y.)
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Correspondence: ; Tel.: +86-18-6089-58-617
| |
Collapse
|
32
|
Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol Res 2019; 151:104559. [PMID: 31759089 DOI: 10.1016/j.phrs.2019.104559] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Abstract
Our previous studies indicated that the G-protein-coupled bile acid receptor, Gpbar1 (TGR5), inhibits inflammation by inhibiting the NF-κB signalling pathway, eventually attenuating diabetic nephropathy (DN). Gentiopicroside (GPS), the main active secoiridoid glycoside of Gentiana manshurica Kitagawa, has been demonstrated to inhibit inflammation in various diseases via inhibiting the inflammatory signalling pathways. However, whether GPS inhibits the NF-κB signalling pathway by activating TGR5 and regulates the pathological progression of diabetic renal fibrosis requires further investigation. In this study, we found that GPS significantly reversed the downregulation of TGR5 and inhibited the overproduction of fibronectin (FN), transforming growth factor β1 (TGF-β1), intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in glomerular mesangial cells (GMCs) exposed to high glucose (HG). Additionally, GPS prevented the phosphorylation and degradation of IκBα, and subsequently inhibited the activation of the NF-κB signalling pathway. Further investigation found that GPS enhanced the stabilization of IκBα by promoting the interaction of β-arrestin2 with IκBα via TGR5 activation, which contributed to the inhibition of NF-κB signalling pathway. Importantly, the depletion of TGR5 blocked the inhibition of the NF-κB signalling pathway and reversed the downregulation of FN, ICAM-1, VCAM-1 and TGF-β1 by GPS in HG-induced GMCs. Moreover, GPS increased the TGR5 protein levels and promoted the interaction between IκBα and β-arrestin2, thereby inhibiting the reduction of IκBα and blocked NF-κB p65 nuclear translocation in the kidneys of STZ-induced diabetic mice. Collectively, these data suggested that GPS regulates the TGR5-β-arrestin2-NF-κB signalling pathway to prevent inflammation in the kidneys of diabetic mice, and ultimately ameliorates the pathological progression of diabetic renal fibrosis.
Collapse
|
33
|
Chen YY, Yu XY, Chen L, Vaziri ND, Ma SC, Zhao YY. Redox signaling in aging kidney and opportunity for therapeutic intervention through natural products. Free Radic Biol Med 2019; 141:141-149. [PMID: 31199964 DOI: 10.1016/j.freeradbiomed.2019.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Kidney diseases are serious public problems with high morbidity and mortality in the general population and heavily retard renal function with aging regardless of the cause. Although myriad strategies have been assigned to prevent or harness disease progression, unfortunately, thus far, there is a paucity of effective therapies partly due to an insufficient knowledge of underlying pathological mechanisms, indicating deeper studies are urgently needed. Additionally, natural products are increasingly recognized as an alternative source for disease intervention owing to the potent safety and efficacy, which might be exploited for novel drug discovery. In this review, we primarily expatiate the new advances on mediators that might be amenable to targeting aging kidney and kidney diseases, including nicotinamide adenine dinucleotide phosphate oxidase (NOX), transforming growth factor-β (TGF-β), renin-angiotensin system (RAS), nuclear factor-erythroid 2 related factor 2 (Nrf2), peroxisome proliferator-activated γ receptor (PPARγ), advanced glycation endproducts (AGEs) as well as microRNAs and vitagenes. Of note, we conclude by highlighting some natural products which have the potential to facilitate the development of novel treatment for patients with myriad renal diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
34
|
Wang J, Zhu H, Huang L, Zhu X, Sha J, Li G, Ma G, Zhang W, Gu M, Guo Y. Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways. Exp Mol Pathol 2019; 111:104296. [PMID: 31449784 DOI: 10.1016/j.yexmp.2019.104296] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise. METHODS The relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2-/- mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2-/- + UUO, Nrf2-/- + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed. RESULTS The Nrf2-/- + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2-/- + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2-/- + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2-/- + UUO group. CONCLUSIONS The results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Haobo Zhu
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Liqu Huang
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaojiang Zhu
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jintong Sha
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Guogen Li
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Geng Ma
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Yunfei Guo
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
35
|
Ma B, Zhang J, Zhu Z, Zhao A, Zhou Y, Ying H, Zhang Q. Luteolin Ameliorates Testis Injury and Blood–Testis Barrier Disruption through the Nrf2 Signaling Pathway and by Upregulating Cx43. Mol Nutr Food Res 2019; 63:e1800843. [DOI: 10.1002/mnfr.201800843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/21/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Bo Ma
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Jie Zhang
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Zhiming Zhu
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Ang Zhao
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Yanfen Zhou
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Hanjie Ying
- School of Life Science & Pharmaceutical EngineeringNanjing University of Technology Nanjing 210009 P. R. China
| | - Qi Zhang
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
36
|
Lai Y, Liang X, Zhong F, Wu W, Zeng T, Huang J, Duan X, Li S, Zeng G, Wu W. Allicin attenuates calcium oxalate crystal deposition in the rat kidney by regulating gap junction function. J Cell Physiol 2018; 234:9640-9651. [PMID: 30378099 DOI: 10.1002/jcp.27651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yongchang Lai
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Xiongfa Liang
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Fangling Zhong
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Weizhou Wu
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Tao Zeng
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Jian Huang
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Xiaolu Duan
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Shujue Li
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Guohua Zeng
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Wenqi Wu
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| |
Collapse
|
37
|
Schmidt A, Bekeschus S. Redox for Repair: Cold Physical Plasmas and Nrf2 Signaling Promoting Wound Healing. Antioxidants (Basel) 2018; 7:E146. [PMID: 30347767 PMCID: PMC6210784 DOI: 10.3390/antiox7100146] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic wounds and ulcers are major public health threats. Being a substantial burden for patients and health care systems alike, better understanding of wound pathophysiology and new avenues in the therapy of chronic wounds are urgently needed. Cold physical plasmas are particularly effective in promoting wound closure, irrespective of its etiology. These partially ionized gases deliver a therapeutic cocktail of reactive oxygen and nitrogen species safely at body temperature and without genotoxic side effects. This field of plasma medicine reanimates the idea of redox repair in physiological healing. This review compiles previous findings of plasma effects in wound healing. It discusses new links between plasma treatment of cells and tissues, and the perception and intracellular translation of plasma-derived reactive species via redox signaling pathways. Specifically, (i) molecular switches governing redox-mediated tissue response; (ii) the activation of the nuclear E2-related factor (Nrf2) signaling, together with antioxidative and immunomodulatory responses; and (iii) the stabilization of the scaffolding function and actin network in dermal fibroblasts are emphasized in the light of wound healing.
Collapse
Affiliation(s)
- Anke Schmidt
- Plasma Life Science, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Sander Bekeschus
- ZIK-PRE, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
38
|
Chen Q, Tao J, Li G, Zheng D, Tan Y, Li R, Tian L, Li Z, Cheng H, Xie X. Astaxanthin ameliorates experimental diabetes-induced renal oxidative stress and fibronectin by upregulating connexin43 in glomerular mesangial cells and diabetic mice. Eur J Pharmacol 2018; 840:33-43. [PMID: 30268666 DOI: 10.1016/j.ejphar.2018.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022]
Abstract
Oxidative stress is the major cause of renal fibrosis in the progression of DN. Connexin43 (Cx43) exerts an anti-fibrosis effect on diabetic kidneys. The current study aimed to investigate whether astaxanthin (AST) could ameliorate the pathological progression of DN by upregulating Cx43 and activating the Nrf2/ARE signaling, which is a pivotal anti-oxidative stress system, to strengthen the cellular anti-oxidative capacity and diminish fibronectin (FN) accumulation in HG-induced glomerular mesangial cells (GMCs). Our hypothesis was verified in GMCs and the kidneys from db/db mice by western blot, immunofluorescence, immunohistochemistry, immunoprecipitation, dual luciferase reporter assay and reactive oxygen related detection kits. Results showed that AST simultaneously upregulated the Cx43 protein level and promoted the Nrf2/ARE signaling activity in the kidney of db/db mice and HG-treated GMCs. However, Cx43 depletion abrogated the Nrf2/ARE signaling activation induced by AST. AST reduced the interaction between c-Src and Nrf2 in the nuclei of GMCs cultured with HG, thereby enhancing the Nrf2 accumulation in the nuclei of GMCs. Our data suggested that AST promoted the Nrf2/ARE signaling by upregulating the Cx43 protein level to prevent renal fibrosis triggered by HG in GMCs and db/db mice. c-Src acted as a mediator in these processes.
Collapse
Affiliation(s)
- Qing Chen
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou 570228, China; School of Life Science, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jun Tao
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou 570228, China; School of Life Science, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Guoping Li
- Department of Urology, Hainan General Hospital, Haikou 570311, China
| | - Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Yao Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Ruibo Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Li Tian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Zhanghao Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Haotian Cheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228.
| |
Collapse
|
39
|
Amelioratory Effects of Testosterone Propionate on Age-related Renal Fibrosis via Suppression of TGF-β1/Smad Signaling and Activation of Nrf2-ARE Signaling. Sci Rep 2018; 8:10726. [PMID: 30013094 PMCID: PMC6048025 DOI: 10.1038/s41598-018-29023-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Androgen plays a pivotal role in the progression of renal fibrosis. However, whether exogenous androgen treatment to aged male rats can improve the age-related renal fibrosis was not explored. In our study, the changes of morphological structure, renal fibrosis, ultrastructure and renal function, the expressions of extracellular matrix (ECM), matrix metalloproteinases (MMPs) and its tissue inhibitors of metalloproteinases (TIMPs), the expressions of tumor growth factor β1 (TGF-β1)/Smad signaling and oxidative stress parameters as well as nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling were tested in kidney of aged male Wistar rats after subcutaneous testosterone propionate (TP, 2 mg/kg/d, 84-day) injection. Aged rats showed significantly renal histopathological changes, increased renal fibrosis, increased thickening of the glomerular basement membrane and the Bowman’s capsule basement membrane, declined renal functional, increased ECM, lower expressions of MMP-2 and MMP-9 and higher expressions of TIMP-1 and TIMP-2 in renal tissues and higher expressions of TGF-β1/Smad signaling, as well as lower expressions of Nrf2-ARE signaling compared to young rats. TP treatment significantly improved age-related above indexes. These results suggested that TP supplement may alleviate age-related renal fibrosis via suppression of TGF-β1/Smad signaling and activation of Nrf2-ARE signaling in aged rats.
Collapse
|
40
|
Zhang L, Chen Z, Gong W, Zou Y, Xu F, Chen L, Huang H. Paeonol Ameliorates Diabetic Renal Fibrosis Through Promoting the Activation of the Nrf2/ARE Pathway via Up-Regulating Sirt1. Front Pharmacol 2018; 9:512. [PMID: 29867511 PMCID: PMC5968333 DOI: 10.3389/fphar.2018.00512] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023] Open
Abstract
Diabetic nephropathy (DN) is rapidly becoming the leading cause of end-stage renal disease worldwide and a major cause of morbidity and mortality in patients of diabetes. The main pathological change of DN is renal fibrosis. Paeonol (PA), a single phenolic compound extracted from the root bark of Cortex Moutan, has been demonstrated to have many potential pharmacological activities. However, the effects of PA on DN have not been fully elucidated. In this study, high glucose (HG)-treated glomerular mesangial cells (GMCs) and streptozotocin (STZ)-induced diabetic mice were analyzed in exploring the potential mechanisms of PA on DN. Results in vitro showed that: (1) PA inhibited HG-induced fibronectin (FN) and ICAM-1 overexpressions; (2) PA exerted renoprotective effect through activating the Nrf2/ARE pathway; (3) Sirt1 mediated the effects of PA on the activation of Nrf2/ARE pathway. What is more, in accordance with the in vitro results, significant elevated levels of Sirt1, Nrf2 and downstream proteins related to Nrf2 were observed in the kidneys of PA treatment group compared with model group. Taken together, our study shows that PA delays the progression of diabetic renal fibrosis, and the underlying mechanism is probably associated with regulating the Nrf2 pathway. The effect of PA on Nrf2 is at least partially dependent on Sirt1 activation.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenyan Gong
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yezi Zou
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Futian Xu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihao Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Astaxanthin Promotes Nrf2/ARE Signaling to Inhibit HG-Induced Renal Fibrosis in GMCs. Mar Drugs 2018; 16:md16040117. [PMID: 29621130 PMCID: PMC5923404 DOI: 10.3390/md16040117] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 01/15/2023] Open
Abstract
Oxidative stress is the main cause of diabetic nephropathy (DN) progression. Nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling is a crucial cellular defense system to cope with oxidative stress. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid with remarkable antioxidative capacity. AST exerted renal protective in diabetic rats. This study aimed to determine whether AST could alleviate the pathological progress of DN by activating Nrf2/ARE signaling and diminishing the excessive oxidative stress and fibronectin (FN) accumulation in glomerular mesangial cells (GMCs) challenged with high glucose (HG). In the current study, we found that AST treatment alleviated the metabolic parameters, renal morphology and extracellular matrix (ECM) accumulation in streptozotocin-induced diabetic rats. Additionally, HG induced the adaptively activated Nrf2/ARE signaling and increased the expression of FN, intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-β1 (TGF-β1), as well as the intracellular reactive oxygen species (ROS) generation in GMCs. However, AST treatment strongly promoted the nuclear translocation and transcriptional activity of Nrf2 as well as upregulated the expression of superoxide dismutase (SOD1), NAD(P)H: quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1), ultimately quenching the higher level of ROS and inhibiting the FN, ICAM-1 and TGF-β1 expression induced by HG. Collectively, our data suggest that the renoprotective effect of AST on DN depends on Nrf2/ARE signaling activation, which could be a potentially therapeutic strategy in the treatment of DN.
Collapse
|
42
|
DL-3-n-butylphthalide improves ventricular function, and prevents ventricular remodeling and arrhythmias in post-MI rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:627-637. [DOI: 10.1007/s00210-018-1490-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/23/2018] [Indexed: 11/27/2022]
|
43
|
Zhu X, Chen Y, Chen Q, Yang H, Xie X. Astaxanthin Promotes Nrf2/ARE Signaling to Alleviate Renal Fibronectin and Collagen IV Accumulation in Diabetic Rats. J Diabetes Res 2018; 2018:6730315. [PMID: 29744366 PMCID: PMC5884145 DOI: 10.1155/2018/6730315] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/19/2018] [Indexed: 12/24/2022] Open
Abstract
Astaxanthin (AST), a natural keto-carotenoid classified as a xanthophyll, is well known for its antioxidant properties. AST can ameliorate the pathological characteristics of diabetic nephropathy (DN). However, the underlying mechanisms remain to be explored. This study was aimed at exploring whether AST exerts a protective effect on DN via activating nuclear factor erythroid 2-related factor 2- (Nrf2-) antioxidative response element (ARE) signaling. Streptozotocin-induced diabetic rats were treated with AST for 12 weeks. We found that AST treatment ameliorated renal morphological injury. Reduced fibronectin and collagen IV protein expression were found in the kidneys of diabetic rats. Furthermore, AST promoted the nuclear translocation of Nrf2 and increased its downstream protein heme oxygenase-1 and superoxide dismutase 1 expression. AST also increased the activity of SOD and decreased malondialdehyde generation in the serum of diabetic rats. These results suggest that the renoprotective effect of AST on DN partly depends on Nrf2-ARE signaling. The antioxidative stress effect of AST is responsible for the activation of Nrf2-ARE signaling in DN.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, China
| | - Yongjun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Qing Chen
- School of Life Science, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Huiyuan Yang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
44
|
Chen Z, Chen Q, Huang J, Gong W, Zou Y, Zhang L, Liu P, Huang H. CK2α promotes advanced glycation end products-induced expressions of fibronectin and intercellular adhesion molecule-1 via activating MRTF-A in glomerular mesangial cells. Biochem Pharmacol 2017; 148:41-51. [PMID: 29223351 DOI: 10.1016/j.bcp.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/04/2017] [Indexed: 01/30/2023]
Abstract
Advanced glycation end products' (AGEs) modification of extracellular matrix proteins induces crosslinking, which results in thickening of the basement membrane and activating several intracellular signaling cascades, eventually promoting the pathological progression of diabetic nephropathy (DN). We have previously confirmed that casein kinase 2α (CK2α) activates the nuclear factor of kappaB (NF-κB) signaling pathway to enhance high glucose-induced expressions of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in glomerular mesangial cells (GMCs). However, to date, the mechanism by which CK2α regulates diabetic renal fibrosis is not fully understood. In view of the regulation of inflammation and fibrosis by myocardin-related transcription factor A (MRTF-A), we are highly concerned whether CK2α promotes AGEs-induced expressions of FN and ICAM-1 in glomerular mesangial cells via activation of MRTF-A, thus affecting the pathogenesis of DN. We found that CK2α and MRTF-A proteins were overexpressed in AGEs-induced diabetic kidneys. Inhibition of CK2α kinase activity or knockdown of CK2α protein expression suppressed the upregulation of FN and ICAM-1 expressions in GMCs induced by AGEs. MRTF-A knockdown compromised the expressions of FN and ICAM-1 in GMCs induced by AGEs. Moreover, inhibition of CK2α kinase activity or knockdown of CK2α protein expression restrained the protein expression and nuclear aggregation of MRTF-A. CK2α interacted with MRTF-A. Furthermore, knockdown of MRTF-A while overexpression of CK2α blocked the upregulation effect of CK2α on the protein expressions of FN and ICAM-1. These findings suggest that CK2α promotes diabetic renal fibrosis via activation of MRTF-A and upregulation of inflammatory genes.
Collapse
Affiliation(s)
- Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiuhong Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yezi Zou
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Yang Z, Zhu ML, Li DH, Zeng R, Han BN. N-Me-trichodermamide B isolated from Penicillium janthinellum, with antioxidant properties through Nrf2-mediated signaling pathway. Bioorg Med Chem 2017; 25:6614-6622. [PMID: 29153548 DOI: 10.1016/j.bmc.2017.10.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
A new trichodermamide-like alkaloid, N-Me-trichodermamide B (compound 1), was isolated from a marine fungus Penicillium janthinellum HDN13-309. The structure and absolute configuration of compound 1 were determined by extensive NMR analysis and the modified Mosher's method. This new alkaloid exhibited cellular protection from the H2O2-induced oxidative damage, and the mechanism study revealed that this antioxidant activity was regulated through Nrf2-mediated signaling pathway in HaCaT human keratinocytes. In addition, the inhibitor of p38 abrogated compound 1-induced phosphorylation of p38, up-expression of HO-1, and the nuclear localization of Nrf2. As a result, it suggested that this new alkaloid-induced antioxidant signaling pathway might be initiated through activation of p38.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacy, Graduate School, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China
| | - Mei-Lin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - De-Hai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China.
| | - Rong Zeng
- Department of Pharmacy, Graduate School, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China.
| | - Bing-Nan Han
- Department of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
46
|
O -GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 up-regulation in endothelial cells. Biochem Biophys Res Commun 2017; 484:79-84. [DOI: 10.1016/j.bbrc.2017.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/14/2017] [Indexed: 01/18/2023]
|
47
|
Cui W, Min X, Xu X, Du B, Luo P. Role of Nuclear Factor Erythroid 2-Related Factor 2 in Diabetic Nephropathy. J Diabetes Res 2017; 2017:3797802. [PMID: 28512642 PMCID: PMC5420438 DOI: 10.1155/2017/3797802] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/09/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
Diabetic nephropathy (DN) is manifested as increased urinary protein level, decreased glomerular filtration rate, and final renal dysfunction. DN is the leading cause of end-stage renal disease worldwide and causes a huge societal healthcare burden. Since satisfied treatments are still limited, exploring new strategies for the treatment of this disease is urgently needed. Oxidative stress takes part in the initiation and development of DN. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in the cellular response to oxidative stress. Thus, activation of Nrf2 seems to be a new choice for the treatment of DN. In current review, we discussed and summarized the therapeutic effects of Nrf2 activation on DN from both basic and clinical studies.
Collapse
Affiliation(s)
- Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xu Min
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xiaohong Xu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Bing Du
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130031, China
- *Bing Du: and
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
- *Ping Luo:
| |
Collapse
|