1
|
Ranglani S, Hasan S, Komorowska J, Medina NM, Mahfooz K, Ashton A, Garcia-Ratés S, Greenfield S. A Novel Peptide Driving Neurodegeneration Appears Exclusively Linked to the α7 Nicotinic Acetylcholine Receptor. Mol Neurobiol 2024; 61:8206-8218. [PMID: 38483654 DOI: 10.1007/s12035-024-04079-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
T14, a 14mer peptide, is significantly increased in the pre-symptomatic Alzheimer's disease brain, and growing evidence implies its pivotal role in neurodegeneration. Here, we explore the subsequent intracellular events following binding of T14 to its target α7 nicotinic acetylcholine receptor (nAChR). Specifically, we test how various experimental manipulations of PC12 cells impact T14-induced functional outcomes. Three preparations were compared: (i) undifferentiated vs. NGF-differentiated cells; (ii) cells transfected with an overexpression of the target α7 nAChR vs. wild type cells; (iii) cells transfected with a mutant α7 nAChR containing a mutation in the G protein-binding cluster, vs. cells transfected with an overexpression of the target α7 nAChR, in three functional assays - calcium influx, cell viability, and acetylcholinesterase release. NGF-differentiated PC12 cells were less sensitive than undifferentiated cells to the concentration-dependent T14 treatment, in all the functional assays performed. The overexpression of α7 nAChR in PC12 cells promoted enhanced calcium influx when compared with the wild type PC12 cells. The α7345-348 A mutation effectively abolished the T14-triggered responses across all the readouts observed. The close relationship between T14 and the α7 nAChR was further evidenced in the more physiological preparation of ex vivo rat brain, where T30 increased α7 nAChR mRNA, and finally in human brain post-mortem, where levels of T14 and α7 nAChR exhibited a strong correlation, reflecting the progression of neurodegeneration. Taken together these data would make it hard to account for T14 binding to any other receptor, and thus interception at this binding site would make a very attractive and remarkably specific therapeutic strategy.
Collapse
Affiliation(s)
- Sanskar Ranglani
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sibah Hasan
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK.
| | - Joanna Komorowska
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | | | - Kashif Mahfooz
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Anna Ashton
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sara Garcia-Ratés
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Susan Greenfield
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| |
Collapse
|
2
|
Chen XQ, Becker A, Albay R, Nguyen PD, Karachentsev D, Roberts AJ, Rynearson KD, Tanzi RE, Mobley WC. γ-Secretase Modulator BPN15606 Reduced Aβ42 and Aβ40 and Countered Alzheimer-Related Pathologies in a Mouse Model of Down Syndrome. Ann Neurol 2024; 96:390-404. [PMID: 38747498 PMCID: PMC11236496 DOI: 10.1002/ana.26958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVES Due to increased gene dose for the amyloid precursor protein (APP), elderly adults with Down syndrome (DS) are at a markedly increased risk of Alzheimer's disease (AD), known as DS-AD. How the increased APP gene dose acts and which APP products are responsible for DS-AD is not well understood, thus limiting strategies to target pathogenesis. As one approach to address this question, we used a novel class of γ-secretase modulators that promote γ-site cleavages by the γ-secretase complex, resulting in lower levels of the Aβ42 and Aβ40 peptides. METHODS Ts65Dn mice, which serve as a model of DS, were treated via oral gavage with 10 mg/kg/weekday of BPN15606 (a potent and novel pyridazine-containing γ-secretase modulators). Treatment started at 3 months-of-age and lasted for 4 months. RESULTS Demonstrating successful target engagement, treatment with BPN15606 significantly decreased levels of Aβ40 and Aβ42 in the cortex and hippocampus; it had no effect on full-length APP or its C-terminal fragments in either 2 N or Ts65Dn mice. Importantly, the levels of total amyloid-β were not impacted, pointing to BPN15606-mediated enhancement of processivity of γ-secretase. Additionally, BPN15606 rescued hyperactivation of Rab5, a protein responsible for regulating endosome function, and normalized neurotrophin signaling deficits. BPN15606 treatment also normalized the levels of synaptic proteins and tau phosphorylation, while reducing astrocytosis and microgliosis, and countering cognitive deficits. INTERPRETATION Our findings point to the involvement of increased levels of Aβ42 and/or Aβ40 in contributing to several molecular and cognitive traits associated with DS-AD. They speak to increased dosage of the APP gene acting through heightened levels of Aβ42 and/or Aβ40 as supporting pathogenesis. These findings further the interest in the potential use of γ-secretase modulators for treating and possibly preventing AD in individuals with DS. ANN NEUROL 2024;96:390-404.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ricardo Albay
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Phuong D Nguyen
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Dmitry Karachentsev
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Kevin D Rynearson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Kang Y, Toyoda H, Saito M. Search for unknown neural link between the masticatory and cognitive brain systems to clarify the involvement of its impairment in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2024; 18:1425645. [PMID: 38994328 PMCID: PMC11236757 DOI: 10.3389/fncel.2024.1425645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Brain degenerations in sporadic Alzheimer's disease (AD) are observed earliest in the locus coeruleus (LC), a population of noradrenergic neurons, in which hyperphosphorylated tau protein expression and β-amyloid (Aβ) accumulation begin. Along with this, similar changes occur in the basal forebrain cholinergic neurons, such as the nucleus basalis of Meynert. Neuronal degeneration of the two neuronal nuclei leads to a decrease in neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex, which results in the accumulation of Aβ and hyperphosphorylated tau protein and ultimately causes neuronal cell death in those cortices. On the other hand, a large number of epidemiological studies have shown that tooth loss or masticatory dysfunction is a risk factor for dementia including AD, and numerous studies using experimental animals have also shown that masticatory dysfunction causes brain degeneration in the basal forebrain, hippocampus, and cerebral cortex similar to those observed in human AD, and that learning and memory functions are impaired accordingly. However, it remains unclear how masticatory dysfunction can induce such brain degeneration similar to AD, and the neural mechanism linking the trigeminal nervous system responsible for mastication and the cognitive and memory brain system remains unknown. In this review paper, we provide clues to the search for such "missing link" by discussing the embryological, anatomical, and physiological relationship between LC and its laterally adjoining mesencephalic trigeminal nucleus which plays a central role in the masticatory functions.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Osaka University Graduate School of Human Sciences, Osaka, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Hong H, Yu L, Cong W, Kang K, Gao Y, Guan Q, Meng X, Zhang H, Zhou Z. Cross-Talking Pathways of Rapidly Accelerated Fibrosarcoma-1 (RAF-1) in Alzheimer's Disease. Mol Neurobiol 2024; 61:2798-2807. [PMID: 37940778 DOI: 10.1007/s12035-023-03765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Alzheimer's disease (AD) becomes one of the main global burden diseases with the aging population. This study was to investigate the potential molecular mechanisms of rapidly accelerated fibrosarcoma-1 (RAF-1) in AD through bioinformatics analysis. Differential gene expression analysis was performed in GSE132903 dataset. We used weight gene correlation network analysis (WGCNA) to evaluate the relations among co-expression modules and construct global regulatory network. Cross-talking pathways of RAF-1 in AD were identified by functional enrichment analysis. Totally, 2700 differentially expressed genes (DEGs) were selected between AD versus non-dementia control and RAF-1-high versus low group. Among them, DEGs in turquoise module strongly associated with AD and high expression of RAF-1 were enriched in vascular endothelial growth factor (VEGF), neurotrophin, mitogen-activated protein kinase (MAPK) signaling pathway, oxidative phosphorylation, GABAergic synapse, and axon guidance. Moreover, cross-talking pathways of RAF-1, including MAPK, VEGF, neurotrophin signaling pathways, and axon guidance, were identified by global regulatory network. The performance evaluation of AUC was 84.2%. The gene set enrichment analysis (GSEA) indicated that oxidative phosphorylation and synapse-related biological processes were enriched in RAF-1-high and AD group. Our findings strengthened the potential roles of high RAF-1 level in AD pathogenesis, which were mediated by MAPK, VEGF, neurotrophin signaling pathways, and axon guidance.
Collapse
Affiliation(s)
- Hong Hong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Lujiao Yu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Wenqiang Cong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Kexin Kang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yazhu Gao
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Qing Guan
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, 110001, Liaoning, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
5
|
Ehtewish H, Mesleh A, Ponirakis G, Lennard K, Al Hamad H, Chandran M, Parray A, Abdesselem H, Wijten P, Decock J, Alajez NM, Ramadan M, Khan S, Ayadathil R, Own A, Elsotouhy A, Albagha O, Arredouani A, Blackburn JM, Malik RA, El-Agnaf OMA. Profiling the autoantibody repertoire reveals autoantibodies associated with mild cognitive impairment and dementia. Front Neurol 2023; 14:1256745. [PMID: 38107644 PMCID: PMC10722091 DOI: 10.3389/fneur.2023.1256745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
Background Dementia is a debilitating neurological disease affecting millions of people worldwide. The exact mechanisms underlying the initiation and progression of the disease remain to be fully defined. There is an increasing body of evidence for the role of immune dysregulation in the pathogenesis of dementia, where blood-borne autoimmune antibodies have been studied as potential markers associated with pathological mechanisms of dementia. Methods This study included plasma from 50 cognitively normal individuals, 55 subjects with MCI (mild cognitive impairment), and 22 subjects with dementia. Autoantibody profiling for more than 1,600 antigens was performed using a high throughput microarray platform to identify differentially expressed autoantibodies in MCI and dementia. Results The differential expression analysis identified 33 significantly altered autoantibodies in the plasma of patients with dementia compared to cognitively normal subjects, and 38 significantly altered autoantibodies in the plasma of patients with dementia compared to subjects with MCI. And 20 proteins had significantly altered autoantibody responses in MCI compared to cognitively normal individuals. Five autoantibodies were commonly dysregulated in both dementia and MCI, including anti-CAMK2A, CKS1B, ETS2, MAP4, and NUDT2. Plasma levels of anti-ODF3, E6, S100P, and ARHGDIG correlated negatively with the cognitive performance scores (MoCA) (r2 -0.56 to -0.42, value of p < 0.001). Additionally, several proteins targeted by autoantibodies dysregulated in dementia were significantly enriched in the neurotrophin signaling pathway, axon guidance, cholinergic synapse, long-term potentiation, apoptosis, glycolysis and gluconeogenesis. Conclusion We have shown multiple dysregulated autoantibodies in the plasma of subjects with MCI and dementia. The corresponding proteins for these autoantibodies are involved in neurodegenerative pathways, suggesting a potential impact of autoimmunity on the etiology of dementia and the possible benefit for future therapeutic approaches. Further investigations are warranted to validate our findings.
Collapse
Affiliation(s)
- Hanan Ehtewish
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Areej Mesleh
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha, Qatar
| | - Katie Lennard
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Hanadi Al Hamad
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mani Chandran
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Houari Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Marwan Ramadan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Shafi Khan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Raheem Ayadathil
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ahmed Own
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
- Department of Neuroradiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Elsotouhy
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
- Department of Clinical Radiology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Jonathan M. Blackburn
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha, Qatar
| | - Omar M. A. El-Agnaf
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
6
|
Miller MR, Lee YF, Kastanenka KV. Calcium sensor Yellow Cameleon 3.6 as a tool to support the calcium hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:4196-4203. [PMID: 37154246 PMCID: PMC10524576 DOI: 10.1002/alz.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease with increasing relevance as dementia cases rise. The etiology of AD is widely debated. The Calcium Hypothesis of Alzheimer's disease and brain aging states that the dysfunction of calcium signaling is the final common pathway leading to neurodegeneration. When the Calcium Hypothesis was originally coined, the technology did not exist to test it, but with the advent of Yellow Cameleon 3.6 (YC3.6) we are able to test its validity. METHODS Here we review use of YC3.6 in studying Alzheimer's disease using mouse models and discuss whether these studies support or refute the Calcium Hypothesis. RESULTS YC3.6 studies showed that amyloidosis preceded dysfunction in neuronal calcium signaling and changes in synapse structure. This evidence supports the Calcium Hypothesis. DISCUSSION In vivo YC3.6 studies point to calcium signaling as a promising therapeutic target; however, additional work is necessary to translate these findings to humans.
Collapse
Affiliation(s)
- Morgan R. Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
7
|
Chen XQ, Sawa M, Becker A, Karachentsev D, Zuo X, Rynearson KD, Tanzi RE, Mobley WC. Retromer Proteins Reduced in Down Syndrome and the Dp16 Model: Impact of APP Dose and Preclinical Studies of a γ-Secretase Modulator. Ann Neurol 2023; 94:245-258. [PMID: 37042072 DOI: 10.1002/ana.26659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/11/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVE The retromer complex plays an essential role in intracellular endosomal sorting. Deficits in the retromer complex are linked to enhanced Aβ production. The levels of the components of the retromer complex are reported to be downregulated in Alzheimer disease (AD). Down syndrome (DS) shares neuropathological features with AD. Recent evidence points to dysregulation of the retromer complex in DS. The mechanisms underlying retromer deficits in DS and AD are poorly understood. METHODS We measured the levels of retromer components in the frontal cortex of cases of DS-AD (AD in DS) as well as DS; the frontal cortex of a person partially trisomic (PT-DS) for human chromosome 21 (HSA21), whose genome had only the normal 2 copies of the APP gene, was also examined. We also analyzed these proteins in the Dp16 mouse model of DS. To further explore the molecular mechanism for changes in the retromer complex, we treated Dp16 mice with a γ-secretase modulator (GSM; 776890), a treatment that reduces the levels of Aβ42 and Aβ40. RESULTS We found VPS26A, VPS26B, and VPS29, but not VPS35, were significantly reduced in both DS and DS-AD, but not in PT-DS. Downregulation of VPS26A, VPS26B, and VPS29 was recapitulated in the brains of old Dp16 mice (at 16 months of age) and required increased App gene dose. Significantly, GSM treatment completely prevented reductions of the retromer complex. INTERPRETATION Our studies point to increased APP gene dose as a compromising retromer function in DS and suggest a causal role for Aβ42 and Aβ40. ANN NEUROL 2023;94:245-258.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mariko Sawa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ann Becker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Dmitry Karachentsev
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Xinxin Zuo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
The Nerve Growth Factor Receptor (NGFR/p75 NTR): A Major Player in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24043200. [PMID: 36834612 PMCID: PMC9965628 DOI: 10.3390/ijms24043200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) represents the most prevalent type of dementia in elderly people, primarily characterized by brain accumulation of beta-amyloid (Aβ) peptides, derived from Amyloid Precursor Protein (APP), in the extracellular space (amyloid plaques) and intracellular deposits of the hyperphosphorylated form of the protein tau (p-tau; tangles or neurofibrillary aggregates). The Nerve growth factor receptor (NGFR/p75NTR) represents a low-affinity receptor for all known mammalians neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e NT-4/5) and it is involved in pathways that determine both survival and death of neurons. Interestingly, also Aβ peptides can blind to NGFR/p75NTR making it the "ideal" candidate in mediating Aβ-induced neuropathology. In addition to pathogenesis and neuropathology, several data indicated that NGFR/p75NTR could play a key role in AD also from a genetic perspective. Other studies suggested that NGFR/p75NTR could represent a good diagnostic tool, as well as a promising therapeutic target for AD. Here, we comprehensively summarize and review the current experimental evidence on this topic.
Collapse
|
9
|
Burk K. The endocytosis, trafficking, sorting and signaling of neurotrophic receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:141-165. [PMID: 36813356 DOI: 10.1016/bs.pmbts.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurotrophins are soluble factors secreted by neurons themselves as well as by post-synaptic target tissues. Neurotrophic signaling regulates several processes such as neurite growth, neuronal survival and synaptogenesis. In order to signal, neurotrophins bind to their receptors, the tropomyosin receptor tyrosine kinase (Trk), which causes internalization of the ligand-receptor complex. Subsequently, this complex is routed into the endosomal system from where Trks can start their downstream signaling. Depending on their endosomal localization, co-receptors involved, but also due to the expression patterns of adaptor proteins, Trks regulate a variety of mechanisms. In this chapter, I provide an overview of the endocytosis, trafficking, sorting and signaling of neurotrophic receptors.
Collapse
Affiliation(s)
- Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.
| |
Collapse
|
10
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Fernández A, Ramírez-Toraño F, Bruña R, Zuluaga P, Esteba-Castillo S, Abásolo D, Moldenhauer F, Shumbayawonda E, Maestú F, García-Alba J. Brain signal complexity in adults with Down syndrome: Potential application in the detection of mild cognitive impairment. Front Aging Neurosci 2022; 14:988540. [PMID: 36337705 PMCID: PMC9631477 DOI: 10.3389/fnagi.2022.988540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Down syndrome (DS) is considered the most frequent cause of early-onset Alzheimer’s disease (AD), and the typical pathophysiological signs are present in almost all individuals with DS by the age of 40. Despite of this evidence, the investigation on the pre-dementia stages in DS is scarce. In the present study we analyzed the complexity of brain oscillatory patterns and neuropsychological performance for the characterization of mild cognitive impairment (MCI) in DS. Materials and methods Lempel-Ziv complexity (LZC) values from resting-state magnetoencephalography recordings and the neuropsychological performance in 28 patients with DS [control DS group (CN-DS) (n = 14), MCI group (MCI-DS) (n = 14)] and 14 individuals with typical neurodevelopment (CN-no-DS) were analyzed. Results Lempel-Ziv complexity was lowest in the frontal region within the MCI-DS group, while the CN-DS group showed reduced values in parietal areas when compared with the CN-no-DS group. Also, the CN-no-DS group exhibited the expected pattern of significant increase of LZC as a function of age, while MCI-DS cases showed a decrease. The combination of reduced LZC values and a divergent trajectory of complexity evolution with age, allowed the discrimination of CN-DS vs. MCI-DS patients with a 92.9% of sensitivity and 85.7% of specificity. Finally, a pattern of mnestic and praxic impairment was significantly associated in MCI-DS cases with the significant reduction of LZC values in frontal and parietal regions (p = 0.01). Conclusion Brain signal complexity measured with LZC is reduced in DS and its development with age is also disrupted. The combination of both features might assist in the detection of MCI within this population.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), Hospital Universitario San Carlos, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, Madrid, Spain
- Department of Industrial Engineering & IUNE & ITB, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pilar Zuluaga
- Statistics & Operations Research Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Susanna Esteba-Castillo
- Neurodevelopmental Group, Girona Biomedical Research Institute-IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Daniel Abásolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Moldenhauer
- Adult Down Syndrome Unit, Internal Medicine Department, Health Research Institute, Hospital Universitario de La Princesa, Madrid, Spain
| | - Elizabeth Shumbayawonda
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier García-Alba
- Department of Research and Psychology in Education, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Javier García-Alba,
| |
Collapse
|
12
|
Sawa M, Overk C, Becker A, Derse D, Albay R, Weldy K, Salehi A, Beach TG, Doran E, Head E, Yu YE, Mobley WC. Impact of increased APP gene dose in Down syndrome and the Dp16 mouse model. Alzheimers Dement 2022; 18:1203-1234. [PMID: 34757693 PMCID: PMC9085977 DOI: 10.1002/alz.12463] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION People with Down syndrome (DS) are predisposed to Alzheimer's disease (AD). The amyloid hypothesis informs studies of AD. In AD-DS, but not sporadic AD, increased APP copy number is necessary, defining the APP gene dose hypothesis. Which amyloid precursor protein (APP) products contribute needs to be determined. METHODS Brain levels of full-length protein (fl-hAPP), C-terminal fragments (hCTFs), and amyloid beta (Aβ) peptides were measured in DS, AD-DS, non-demented controls (ND), and sporadic AD cases. The APP gene-dose hypothesis was evaluated in the Dp16 model. RESULTS DS and AD-DS differed from ND and AD for all APP products. In AD-DS, Aβ42 and Aβ40 levels exceeded AD. APP products were increased in the Dp16 model; increased APP gene dose was necessary for loss of vulnerable neurons, tau pathology, and activation of astrocytes and microglia. DISCUSSION Increases in APP products other than Aβ distinguished AD-DS from AD. Deciphering AD-DS pathogenesis necessitates deciphering which APP products contribute and how.
Collapse
Affiliation(s)
- Mariko Sawa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Dominique Derse
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ricardo Albay
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Kim Weldy
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ahmad Salehi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Thomas G. Beach
- Brain and Body Donation Program, Banner Sun Health Research Institute, Sun City, AZ 85351
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, CA, 92697
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624,Correspondence to: William Mobley M.D., Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, GPL 355, La Jolla, CA 92093-0624;
| |
Collapse
|
13
|
Bartesaghi R, Vicari S, Mobley WC. Prenatal and Postnatal Pharmacotherapy in Down Syndrome: The Search to Prevent or Ameliorate Neurodevelopmental and Neurodegenerative Disorders. Annu Rev Pharmacol Toxicol 2022; 62:211-233. [PMID: 34990205 PMCID: PMC9632639 DOI: 10.1146/annurev-pharmtox-041521-103641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy,Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165-00146 Rome, Italy
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Esteba-Castillo S, Garcia-Alba J, Rodríguez-Hildago E, Vaquero L, Novell R, Moldenhauer F, Castellanos MÁ. Proposed diagnostic criteria for mild cognitive impairment in Down syndrome population. JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES 2021; 35:495-505. [PMID: 34693611 DOI: 10.1111/jar.12959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite presenting higher risk of dementia, mild cognitive impairment (MCI) is not well defined in Down syndrome population. OBJECTIVE We aimed to describe cognitive and neuropsychological patterns associated with MCI in Down syndrome individuals. METHOD Two groups of adults with Down syndrome (control and prodromal) were studied throughout 3 years. Two linear mixed models and a model including the variables that best predicted group membership were built. RESULTS Behavioural Regulation Index (BRI) (Behaviour Rating Inventory of Executive Function test) and the model composed of BRI, abstraction and delayed verbal memory were the variable and model best predicting group membership, respectively. CONCLUSION Suggest a diagnosis of MCI when BRI is the earliest change perceived by caregivers and this is combined with low scores in abstract thinking, and when an amnesic pattern in delayed verbal memory is observed, but adaptive skills are preserved.
Collapse
Affiliation(s)
- Susanna Esteba-Castillo
- Specialized Service in Mental Health and Intellectual Disability, Institute of Health Assistance, Girona, Spain.,Neurodevelopmental Group [Girona Biomedical Research Institute]-IDIBGI, Institute of Health Assistance (IAS), Girona, Spain
| | - Javier Garcia-Alba
- Research and Psychology in Education Department (Faculty of Education), Complutense University of Madrid, Madrid, Spain
| | - Emili Rodríguez-Hildago
- Specialized Service in Mental Health and Intellectual Disability, Institute of Health Assistance, Girona, Spain
| | - Lucía Vaquero
- Laboratory of Cognitive and Computational Neuroscience, Department of Legal Medicine, Psychiatry and Pathology (Faculty of Medicine), Complutense University of Madrid, Madrid, Spain
| | - Ramon Novell
- Specialized Service in Mental Health and Intellectual Disability, Institute of Health Assistance, Girona, Spain.,Neurodevelopmental Group [Girona Biomedical Research Institute]-IDIBGI, Institute of Health Assistance (IAS), Girona, Spain
| | - Fernando Moldenhauer
- Adults' Section of the Down syndrome Department, Internal Medicine Department, La Princesa University Hospital, Madrid, Spain
| | - Miguel Ángel Castellanos
- Department of Methodology for Behavioral Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Potential Roles of Sestrin2 in Alzheimer's Disease: Antioxidation, Autophagy Promotion, and Beyond. Biomedicines 2021; 9:biomedicines9101308. [PMID: 34680426 PMCID: PMC8533411 DOI: 10.3390/biomedicines9101308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease. It presents with progressive memory loss, worsens cognitive functions to the point of disability, and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive generation of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function, and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been conducted up to now. In this article, we discuss current experimental evidence to demonstrate the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD. Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful conditions through counteracting oxidative stress, and may also adjust the autophagy process, these two effects together conferring neuronal resistance in cases of AD.
Collapse
|
16
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
17
|
Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet. NPJ Genom Med 2021; 6:50. [PMID: 34131148 PMCID: PMC8206141 DOI: 10.1038/s41525-021-00216-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Many of genes mediating Known Drug-Disease Association (KDDA) are escaped from experimental detection. Identifying of these genes (hidden genes) is of great significance for understanding disease pathogenesis and guiding drug repurposing. Here, we presented a novel computational tool, called KDDANet, for systematic and accurate uncovering the hidden genes mediating KDDA from the perspective of genome-wide functional gene interaction network. KDDANet demonstrated the competitive performances in both sensitivity and specificity of identifying genes in mediating KDDA in comparison to the existing state-of-the-art methods. Case studies on Alzheimer's disease (AD) and obesity uncovered the mechanistic relevance of KDDANet predictions. Furthermore, when applied with multiple types of cancer-omics datasets, KDDANet not only recapitulated known genes mediating KDDAs related to cancer, but also revealed novel candidates that offer new biological insights. Importantly, KDDANet can be used to discover the shared genes mediating multiple KDDAs. KDDANet can be accessed at http://www.kddanet.cn and the code can be freely downloaded at https://github.com/huayu1111/KDDANet .
Collapse
|
18
|
Maciejewska K, Czarnecka K, Szymański P. A review of the mechanisms underlying selected comorbidities in Alzheimer's disease. Pharmacol Rep 2021; 73:1565-1581. [PMID: 34121170 PMCID: PMC8599320 DOI: 10.1007/s43440-021-00293-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) leading to mental deterioration and devastation, and eventually a fatal outcome. AD affects mostly the elderly. AD is frequently accompanied by hypercholesterolemia, hypertension, atherosclerosis, and diabetes mellitus, and these are significant risk factors of AD. Other conditions triggered by the progression of AD include psychosis, sleep disorders, epilepsy, and depression. One important comorbidity is Down’s syndrome, which directly contributes to the severity and rapid progression of AD. The development of new therapeutic strategies for AD includes the repurposing of drugs currently used for the treatment of comorbidities. A better understanding of the influence of comorbidities on the pathogenesis of AD, and the medications used in its treatment, might allow better control of disease progression, and more effective pharmacotherapy.
Collapse
Affiliation(s)
- Karolina Maciejewska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland.
| |
Collapse
|
19
|
Burgaletto C, Di Benedetto G, Munafò A, Bernardini R, Cantarella G. Beneficial Effects of Choline Alphoscerate on Amyloid-β Neurotoxicity in an In vitro Model of Alzheimer's Disease. Curr Alzheimer Res 2021; 18:298-309. [PMID: 34102970 DOI: 10.2174/1567205018666210608093658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder characterized by cognitive impairment, which represents an urgent public health concern. Given the worldwide impact of AD, there is a compelling need for effective therapies to slow down or halt this disorder. OBJECTIVE Choline alphoscerate (α-GPC) represents a potentially effective cholinergic neurotrans- mission enhancing agent with an interesting clinical profile in cognitive dysfunctions improve- ment, although only scanty data are available about the mechanisms underlying such beneficial ef- fects. METHOD The SH-SY5Y neuronal cell line, differentiated for 1 week with 10 μm of all-trans-reti- noic acid (RA), to achieve a switch towards a cholinergic phenotype, was used as an in vitro model of AD. SH-SY5Y cells were pre-treated for 1h with α-GPC (100nM) and treated for 72 h with Aβ25-35 (10μM). RESULTS α-GPC was able to antagonize Aβ25-35 mediated neurotoxicity and attenuate the Aβ-in- duced phosphorylation of the Tau protein. Moreover, α-GPC exerted its beneficial effects by em- ploying the NGF/TrkA system, knocked down in AD and, consequently, by sustaining the expres- sion level of synaptic vesicle proteins, such as synaptophysin. CONCLUSION Taken together, our data suggest that α-GPC can have a role in neuroprotection in the course of toxic challenges with Aβ. Thus, a deeper understanding of the mechanism underlying its beneficial effect, could provide new insights into potential future pharmacological applications of its functional cholinergic enhancement, with the aim to mitigate AD and could represent the basis for innovative therapy.Recent Advances in Anti-Infective Drug Discovery.
Collapse
Affiliation(s)
- Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Antonio Munafò
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| |
Collapse
|
20
|
Majdi Yazdi G, Vaezi G, Hojati V, Mohammad-Zadeh M. The Effect of 6-gingerol on Growth Factors and Apoptosis Indices in Rats Exposed to Gold Nanoparticles. Basic Clin Neurosci 2021; 12:301-307. [PMID: 34917289 PMCID: PMC8666918 DOI: 10.32598/bcn.2021.357.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 04/04/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Research has shown that gold nanoparticles (AuNPs) can damage the physiological processes of brain tissue. Given the antioxidant properties of Gingerol (GING), this study aimed to determine the protective effect of 6-gingerol on hippocampal levels of Brain-Derived Neurotrophic Factor (BDNF), Nerve Growth Factor (NGF), DNA oxidative damage, and the amount of Bax and Bcl2 apoptosis indices of rats exposed to AuNPs. METHODS A total of 42 male Wistar rats were divided into four groups: control (30 days 0.5 mL saline), AuNPs (one time injection of 0.5 mL AuNPs, 200 ppm and 60 Nm + 30 days 0.5 mL saline), AuNPs+GING 50 (one time injection of 0.5 mL AuNPs, 200 ppm and 60 Nm + 30 days 0.5 mL density of gingerol 50 mg/kg), and AuNPs+GING100 (one time injection of 0.5 mL AuNPs, 200 ppm and 60 Nm + 30 days 0.5 mL density of gingerol 100 mg/kg). At the end of the treatment period, the hippocampal levels of NGF, BDNF, 8-hydroxy-desoxyguanosine (8-HOdG), and apoptotic indices of Bax and Bcl-2 were assessed with the ELISA method. RESULTS Compared with the AuNPs group, hippocampal levels of BDNF, NGF, and Bcl-2 in rats in the AuNPs+GING 50 and AuNPs+GING 100 groups significantly increased dose-dependently. However, the hippocampal levels of Bax and 8-HOdG significantly decreased dose-dependently (P<0.05). CONCLUSION According to obtained results, gingerol may improve hippocampal BDNF and NGF levels in rats exposed to AuNPs, probably by reducing apoptosis and oxidative DNA damage.
Collapse
Affiliation(s)
- Ghasem Majdi Yazdi
- Department of Biology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mohammad Mohammad-Zadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Xiong LL, Tan YX, Du RL, Peng Y, Xue LL, Liu J, Al-Hawwas M, Bobrovskaya L, Liu DH, Chen L, Wang TH, Zhou XF. Effect of Sutellarin on Neurogenesis in Neonatal Hypoxia–Ischemia Rat Model: Potential Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:677-703. [PMID: 33704029 DOI: 10.1142/s0192415x21500312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the therapeutic efficacy of Scutellarin (SCU) on neurite growth and neurological functional recovery in neonatal hypoxic-ischemic (HI) rats. Primary cortical neurons were cultured to detect the effect of SCU on cell viability of neurons under oxygen-glucose deprivation (OGD). Double immunofluorescence staining of Tuj1 and TUNEL then observed the neurite growth and cell apoptosis in vitro,and double immunofluorescence staining of NEUN and TUNEL was performed to examine the neuronal apoptosis and cell apoptosis in brain tissues after HI in vivo. Pharmacological efficacy of SCU was also evaluated in HI rats by neurobehavioral tests, triphenyl tetrazolium chloride staining, Hematoxylin and eosin staining and Nissl staining. Astrocytes and microglia expression in damaged brain tissues were detected by immunostaining of GFAP and Iba1. A quantitative real-time polymerase chain reaction and western blot were applied to investigate the genetic expression changes and the protein levels of autophagy-related proteins in the injured cortex and hippocampus after HI. We found that SCU administration preserved cell viability, promoted neurite outgrowth and suppressed apoptosis of neurons subjected to OGD both in vitroand in vivo. Meanwhile, 20 mg/kg SCU treatment improved neurological functions and decreased the expression of astrocytes and microglia in the cortex and hippocampus of HI rats. Additionally, SCU treatment depressed the elevated levels of autophagy-related proteins and the p75 neurotrophin receptor (p75NTR) in both cortex and hippocampus. This study demonstrated the potential therapeutic efficacy of SCU by enhancing neurogenesis and restoring long-term neurological dysfunctions, which might be associated with p75NTR depletion in HI rats.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 550000, P. R. China
| | - Ya-Xin Tan
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Ruo-Lan Du
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Yuan Peng
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Lu-Lu Xue
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Mohammed Al-Hawwas
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Larisa Bobrovskaya
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Dong-Hui Liu
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Xin-Fu Zhou
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| |
Collapse
|
22
|
Chen XQ, Das U, Park G, Mobley WC. Normal levels of KIF5 but reduced KLC1 levels in both Alzheimer disease and Alzheimer disease in Down syndrome: evidence suggesting defects in anterograde transport. Alzheimers Res Ther 2021; 13:59. [PMID: 33691783 PMCID: PMC7945332 DOI: 10.1186/s13195-021-00796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impaired axonal transport may contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD) and Down syndrome (DS). Axonal transport is a complex process in which specific motor proteins move cargoes to and from neuronal cell bodies and their processes. Inconsistent reports point to the changes in AD in the levels of the classical anterograde motor protein kinesin family member 5 (KIF5) and the primary neuronal KIF regulator kinesin light chain 1 (KLC1), raising the possibility that anterograde transport is compromised in AD. METHODS AND MATERIALS To address inconsistencies and determine if the shared pathologies in AD and elderly DS subjects with dementia (AD in DS; AD-DS) extend to the changes in KIF5 and KLC1, we measured the levels of all the three KIF5 family members and KLC1 in the AD and AD-DS frontal cortex and AD temporal cortex and cerebellum in samples taken with a short postmortem interval. To support future studies to explore the cell biological basis for any changes detected, we also examined the levels of these proteins in the brains of young and aged adult mice in the Dp (16)1Yey/+ (Dp16) mouse model of DS and J20 mouse model of AD. RESULTS There were no changes in comparison with controls in KIF5 family members in either the AD or AD-DS samples when normalized to either β-actin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Interestingly, however, samples from control brains as well as from AD and AD-DS demonstrated strong positive correlations between the levels of KIF5 family members, suggesting positive co-regulated expression. Importantly, while earlier reports pointed to a negative correlation between the levels of the amyloid precursor protein (APP) and KIF5A levels, we found the opposite to be true in AD-DS; this was especially striking given triplication of the APP gene, with increased APP protein levels. AD and control samples showed positive correlations between fl-hAPP and KIF5 members, but they were less consistent. In contrast to the findings for KIF5, the levels of KLC1 were downregulated in the frontal cortex of both AD and AD-DS brains; interestingly, this change was not seen in the AD temporal cortex or cerebellum. As postmortem interval has a negative effect on the levels of KLC1, but not KIF5 members, we analyzed a subset of samples with a very short postmortem interval (PMI) (≤ 6 h), a PMI that was not significantly correlated with the levels of KLC1 in either AD or AD-DS samples; we confirmed the presence of a statistically significant reduction of KLC1 in AD and AD-DS brains as compared with control brains. Studies comparing Dp16 to its euploid control recapitulated human studies in demonstrating no change in KIF5 levels and a positive correlation between the levels of KIF5 family members. J20 mice also showed normal KIF5 levels. However, unlike the AD and AD-DS frontal cortex, KLC1 levels were not reduced in the brains of Dp16 or J20 mice. CONCLUSION These data point to significant reductions in KLC1 in AD and AD-DS. In so doing, they raise the possibility of compromised KLC1-mediated axonal transport in these conditions, a posit that can now be pursued in model systems in which KLC1 expression is reduced.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Utpal Das
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Gooho Park
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, La Jolla, CA 92093 USA
| | - William C. Mobley
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
23
|
Pathak A, Clark S, Bronfman FC, Deppmann CD, Carter BD. Long-distance regressive signaling in neural development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e382. [PMID: 32391977 PMCID: PMC7655682 DOI: 10.1002/wdev.382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Nervous system development proceeds via well-orchestrated processes involving a balance between progressive and regressive events including stabilization or elimination of axons, synapses, and even entire neurons. These progressive and regressive events are driven by functionally antagonistic signaling pathways with the dominant pathway eventually determining whether a neural element is retained or removed. Many of these developmental sculpting events are triggered by final target innervation necessitating a long-distance mode of communication. While long-distance progressive signaling has been well characterized, particularly for neurotrophic factors, there remains relatively little known about how regressive events are triggered from a distance. Here we discuss the emergent phenomenon of long-distance regressive signaling pathways. In particular, we will cover (a) progressive and regressive cues known to be employed after target innervation, (b) the mechanisms of long-distance signaling from an endosomal platform, (c) recent evidence that long-distance regressive cues emanate from platforms like death receptors or repulsive axon guidance receptors, and (d) evidence that these pathways are exploited in pathological scenarios. This article is categorized under: Nervous System Development > Vertebrates: General Principles Signaling Pathways > Global Signaling Mechanisms Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Amrita Pathak
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shayla Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Francisca C. Bronfman
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Christopher D. Deppmann
- Departments of Biology, Cell Biology, Biomedical Engineering, and Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Bruce D. Carter
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
24
|
Prasanna P, Upadhyay A. Flavonoid-Based Nanomedicines in Alzheimer's Disease Therapeutics: Promises Made, a Long Way To Go. ACS Pharmacol Transl Sci 2021; 4:74-95. [PMID: 33615162 PMCID: PMC7887745 DOI: 10.1021/acsptsci.0c00224] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by the continuous decline of the cognitive abilities manifested due to the accumulation of large aggregates of amyloid-beta 42 (Aβ42), the formation of neurofibrillary tangles of hyper-phosphorylated forms of microtubule-associated tau protein, which may lead to many alterations at the cellular and systemic level. The current therapeutic strategies primarily focus on alleviating pathological symptoms rather than providing a possible cure. AD is one of the highly studied but least understood neurological problems and remains an unresolved condition of human brain degeneration. Over the years, multiple naturally derived small molecules, including plant products, microbial isolates, and some metabolic byproducts, have been projected as supplements reducing the risk or possible treatment of the disease. However, unfortunately, none has met the expected success. One major challenge for most medications is their ability to cross the blood-brain barrier (BBB). In past decades, nanotechnology-based interventions have offered an alternative platform to address the problem of the successful delivery of the drugs to the specific targets. Interestingly, the exciting interface of natural products and nanomedicine is delivering promising results in AD treatment. The potential applications of flavonoids, the plant-derived compounds best known for their antioxidant activities, and their amalgamation with nanomedicinal approaches may lead to highly effective therapeutic strategies for treating well-known neurodegenerative diseases. In the present review, we explore the possibilities and recent developments on an exciting combination of flavonoids and nanoparticles in AD.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur, Bihar, India 844102
| | - Arun Upadhyay
- Department
of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan, India 305817
| |
Collapse
|
25
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Chen X, Salehi A, Pearn ML, Overk C, Nguyen PD, Kleschevnikov AM, Maccecchini M, Mobley WC. Targeting increased levels of APP in Down syndrome: Posiphen-mediated reductions in APP and its products reverse endosomal phenotypes in the Ts65Dn mouse model. Alzheimers Dement 2021; 17:271-292. [PMID: 32975365 PMCID: PMC7984396 DOI: 10.1002/alz.12185] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Recent clinical trials targeting amyloid beta (Aβ) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments. BACKGROUND AD and DS share several characteristic manifestations. DS is caused by trisomy of whole or part of chromosome 21; this chromosome contains about 233 protein-coding genes, including APP. Recent evidence points to a defining role for increased expression of the gene for APP and for its 99 amino acid C-terminal fragment (C99, also known as β-CTF) in dysregulating the endosomal/lysosomal system. The latter is critical for normal cellular function and in neurons for transmitting neurotrophic signals. NEW/UPDATED HYPOTHESIS We hypothesize that the increase in APP gene dose in DS initiates a process in which increased levels of full-length APP (fl-APP) and its products, including β-CTF and possibly Aβ peptides (Aβ42 and Aβ40), drive AD pathogenesis through an endosome-dependent mechanism(s), which compromises transport of neurotrophic signals. To test this hypothesis, we carried out studies in the Ts65Dn mouse model of DS and examined the effects of Posiphen, an orally available small molecule shown in prior studies to reduce fl-APP. In vitro, Posiphen lowered fl-APP and its C-terminal fragments, reversed Rab5 hyperactivation and early endosome enlargement, and restored retrograde transport of neurotrophin signaling. In vivo, Posiphen treatment (50 mg/kg/d, 26 days, intraperitoneal [i.p.]) of Ts65Dn mice was well tolerated and demonstrated no adverse effects in behavior. Treatment resulted in normalization of the levels of fl-APP, C-terminal fragments and small reductions in Aβ species, restoration to normal levels of Rab5 activity, reduced phosphorylated tau (p-tau), and reversed deficits in TrkB (tropomyosin receptor kinase B) activation and in the Akt (protein kinase B [PKB]), ERK (extracellular signal-regulated kinase), and CREB (cAMP response element-binding protein) signaling pathways. Remarkably, Posiphen treatment also restored the level of choline acetyltransferase protein to 2N levels. These findings support the APP gene dose hypothesis, point to the need for additional studies to explore the mechanisms by which increased APP gene expression acts to increase the risk for AD in DS, and to possible utility of treatments to normalize the levels of APP and its products for preventing AD in those with DS. MAJOR CHALLENGES FOR THE HYPOTHESIS Important unanswered questions are: (1) When should one intervene in those with DS; (2) would an APP-based strategy have untoward consequences on possible adaptive changes induced by chronically increased APP gene dose; (3) do other genes present on chromosome 21, or on other chromosomes whose expression is dysregulated in DS, contribute to AD pathogenesis; and (4) can one model strategies that combine the use of an APP-based treatment with those directed at other AD phenotypes including p-tau and inflammation. LINKAGE TO OTHER MAJOR THEORIES The APP gene dose hypothesis interfaces with the amyloid cascade hypothesis of AD as well as with the genetic and cell biological observations that support it. Moreover, upregulation of fl-APP protein and products may drive downstream events that dysregulate tau homeostasis and inflammatory responses that contribute to propagation of AD pathogenesis.
Collapse
Affiliation(s)
- Xu‐Qiao Chen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ahmad Salehi
- Department of Psychiatry & Behavioral SciencesStanford Medical SchoolPalo AltoCaliforniaUSA
| | - Matthew L. Pearn
- Department of AnesthesiologyUniversity of California San Diego, School of MedicineLa JollaCaliforniaUSA
- V.A. San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Cassia Overk
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Phuong D. Nguyen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | - William C. Mobley
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
27
|
Triaca V, Ruberti F, Canu N. NGF and the Amyloid Precursor Protein in Alzheimer's Disease: From Molecular Players to Neuronal Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:145-165. [PMID: 34453297 DOI: 10.1007/978-3-030-74046-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), one of the most common causes of dementia in elderly people, is characterized by progressive impairment in cognitive function, early degeneration of basal forebrain cholinergic neurons (BFCNs), abnormal metabolism of the amyloid precursor protein (APP), amyloid beta-peptide (Aβ) depositions, and neurofibrillary tangles. According to the cholinergic hypothesis, dysfunction of acetylcholine-containing neurons in the basal forebrain contributes markedly to the cognitive decline observed in AD. In addition, the neurotrophic factor hypothesis posits that the loss nerve growth factor (NGF) signalling in AD may account for the vulnerability to atrophy of BFCNs and consequent impairment of cholinergic functions. Though acetylcholinesterase inhibitors provide only partial and symptomatic relief to AD patients, emerging data from in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) studies in mild cognitive impairment (MCI) and AD patients highlight the early involvement of BFCNs in MCI and the early phase of AD. These data support the cholinergic and neurotrophic hypotheses of AD and suggest new targets for AD therapy.Different mechanisms account for selective vulnerability of BFCNs to AD pathology, with regard to altered metabolism of APP and tau. In this review, we provide a general overview of the current knowledge of NGF and APP interplay, focusing on the role of APP in regulating NGF receptors trafficking/signalling and on the involvement of NGF in modulating phosphorylation of APP, which in turn controls APP intracellular trafficking and processing. Moreover, we highlight the consequences of APP interaction with p75NTR and TrkA receptor, which share the same binding site within the APP juxta-membrane domain. We underline the importance of insulin dysmetabolism in AD pathology, in the light of our recent data showing that overlapping intracellular signalling pathways stimulated by NGF or insulin can be compensatory. In particular, NGF-based signalling is able to ameliorates deficiencies in insulin signalling in the medial septum of 3×Tg-AD mice. Finally, we present an overview of NGF-regulated microRNAs (miRNAs). These small non-coding RNAs are involved in post-transcriptional regulation of gene expression , and we focus on a subset that are specifically deregulated in AD and thus potentially contribute to its pathology.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy
| | - Francesca Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy
| | - Nadia Canu
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy. .,Department of System Medicine, Section of Physiology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
28
|
Pensalfini A, Kim S, Subbanna S, Bleiwas C, Goulbourne CN, Stavrides PH, Jiang Y, Lee JH, Darji S, Pawlik M, Huo C, Peddy J, Berg MJ, Smiley JF, Basavarajappa BS, Nixon RA. Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease. Cell Rep 2020; 33:108420. [PMID: 33238112 DOI: 10.1016/j.celrep.2020.108420] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/05/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-β secretase cleaved C-terminal fragment (APP-βCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-βCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD. Modest neuron-specific transgenic Rab5 expression inducing hyperactivation of Rab5 comparable to that in AD brain reproduces AD-related Rab5-endosomal enlargement and mistrafficking, hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis and dendritic spine loss, and tau hyperphosphorylation via activated glycogen synthase kinase-3β. Importantly, Rab5-mediated endosomal dysfunction induces progressive cholinergic neurodegeneration and impairs hippocampal-dependent memory. Aberrant neuronal Rab5-endosome signaling, therefore, drives a pathogenic cascade distinct from β-amyloid-related neurotoxicity, which includes prodromal and neurodegenerative features of AD, and suggests Rab5 overactivation as a potential therapeutic target.
Collapse
Affiliation(s)
- Anna Pensalfini
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Seonil Kim
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO 80523, USA; Cellular and Molecular Biology Training Program, New York University Langone Health, New York, NY 10003, USA
| | - Shivakumar Subbanna
- Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Cynthia Bleiwas
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Philip H Stavrides
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Peddy
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Martin J Berg
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John F Smiley
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Health, New York, NY 10003, USA; NYU Neuroscience Institute, New York, NY 10003, USA.
| |
Collapse
|
29
|
Islam T, Majumder M, Kalita B, Bhattacharjee A, Mukhopadhyay R, Mukherjee AK. Transcriptomic, proteomic, and biochemical analyses reveal a novel neuritogenesis mechanism of
Naja naja
venom α‐elapitoxin post binding to TrkA receptor of rat pheochromocytoma cells. J Neurochem 2020; 155:612-637. [DOI: 10.1111/jnc.15153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Munmi Majumder
- Cellular, Molecular, and Environmental Biotechnology Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Atanu Bhattacharjee
- Department of Biotechnology and Bioinformatics North Eastern Hill University Shillong Meghalaya India
| | - Rupak Mukhopadhyay
- Cellular, Molecular, and Environmental Biotechnology Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| |
Collapse
|
30
|
Wu Q, Chen Y, Gu Y, Fang S, Li W, Wang Q, Fang J, Cai C. Systems pharmacology-based approach to investigate the mechanisms of Danggui-Shaoyao-san prescription for treatment of Alzheimer's disease. BMC Complement Med Ther 2020; 20:282. [PMID: 32948180 PMCID: PMC7501700 DOI: 10.1186/s12906-020-03066-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, characterized by a progressive and irreversible loss of memory and cognitive abilities. Currently, the prevention and treatment of AD still remains a huge challenge. As a traditional Chinese medicine (TCM) prescription, Danggui-Shaoyao-san decoction (DSS) has been demonstrated to be effective for alleviating AD symptoms in animal experiments and clinical applications. However, due to the complex components and biological actions, its underlying molecular mechanism and effective substances are not yet fully elucidated. Methods In this study, we firstly systematically reviewed and summarized the molecular effects of DSS against AD based on current literatures of in vivo studies. Furthermore, an integrated systems pharmacology framework was proposed to explore the novel anti-AD mechanisms of DSS and identify the main active components. We further developed a network-based predictive model for identifying the active anti-AD components of DSS by mapping the high-quality AD disease genes into the global drug-target network. Results We constructed a global drug-target network of DSS consisting 937 unique compounds and 490 targets by incorporating experimental and computationally predicted drug–target interactions (DTIs). Multi-level systems pharmacology analyses revealed that DSS may regulate multiple biological pathways related to AD pathogenesis, such as the oxidative stress and inflammatory reaction processes. We further conducted a network-based statistical model, drug-likeness analysis, human intestinal absorption (HIA) and blood-brain barrier (BBB) penetration prediction to uncover the key ani-AD ingredients in DSS. Finally, we highlighted 9 key ingredients and validated their synergistic role against AD through a subnetwork. Conclusion Overall, this study proposed an integrative systems pharmacology approach to disclose the therapeutic mechanisms of DSS against AD, which also provides novel in silico paradigm for investigating the effective substances of complex TCM prescription.
Collapse
Affiliation(s)
- Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570000, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570000, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Chuipu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China. .,School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
31
|
Deyts C, Clutter M, Pierce N, Chakrabarty P, Ladd TB, Goddi A, Rosario AM, Cruz P, Vetrivel K, Wagner SL, Thinakaran G, Golde TE, Parent AT. APP-Mediated Signaling Prevents Memory Decline in Alzheimer's Disease Mouse Model. Cell Rep 2020; 27:1345-1355.e6. [PMID: 31042463 DOI: 10.1016/j.celrep.2019.03.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
Amyloid precursor protein (APP) and its metabolites play key roles in Alzheimer's disease (AD) pathophysiology. Whereas short amyloid-β (Aβ) peptides derived from APP are pathogenic, the APP holoprotein serves multiple purposes in the nervous system through its cell adhesion and receptor-like properties. Our studies focused on the signaling mediated by the APP cytoplasmic tail. We investigated whether sustained APP signaling during brain development might favor neuronal plasticity and memory process through a direct interaction with the heterotrimeric G-protein subunit GαS (stimulatory G-protein alpha subunit). Our results reveal that APP possesses autonomous regulatory capacity within its intracellular domain that promotes APP cell surface residence, precludes Aβ production, facilitates axodendritic development, and preserves cellular substrates of memory. Altogether, these events contribute to strengthening cognitive functions and are sufficient to modify the course of AD pathology.
Collapse
Affiliation(s)
- Carole Deyts
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Mary Clutter
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Nicholas Pierce
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Thomas B Ladd
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Anna Goddi
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Awilda M Rosario
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pedro Cruz
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kulandaivelu Vetrivel
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Gopal Thinakaran
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Angèle T Parent
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Sun H, Hu H, Xu X, Tao T, Liang Z. Key miRNAs associated with memory and learning disorder upon exposure to sevoflurane determined by RNA sequencing. Mol Med Rep 2020; 22:1567-1575. [PMID: 32626949 PMCID: PMC7339763 DOI: 10.3892/mmr.2020.11199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The study aimed to identify differentially expressed microRNAs (miRNAs/miRs) and explore the mechanisms governing impaired memory and learning ability in developing brains exposed to sevoflurane. A total of six 7‑day‑old male ICR mice were randomly assigned into the sevoflurane anesthesia group (treated with 2.4% sevoflurane) or control group (treated with normal saline solution at the same dose). After 14 days, the mice were subjected to a Morris water maze experiment. Then, the animals were sacrificed and hippocampus tissues were isolated. RNAs in hippocampus tissues were sequenced and the differential miRNA expression profiles were identified by a bioinformatics approach. The learning and memory function of mice were significantly affected by sevoflurane exposure. A total of 18 miRNAs were found to be significantly affected by sevoflurane administration. Their target genes clustered into different functional groups, such as 'dephosphorylation', 'vesicle localization' and the 'Wnt signaling pathway'. miR‑101b‑3p was closely related with 'chromatin binding' and 'protein serine/threonine kinase activity'. The most represented pathways for miRNAs included 'neuroactive ligand‑receptor interaction' (miR‑1187), 'long‑term depression' (miR‑425‑5p), 'FoxO signaling pathway' (miR‑425‑5p) and the 'neurotrophin signaling pathway' (miR‑467a‑3p). miR‑467a‑3p (degree=89), miR‑101b‑3p (degree=59), and miR‑1187 (degree=51) were the hub nodes in the miRNA regulatory network. The Wnt signaling pathway, miR‑467a‑3p, miR‑1187 and miR‑101b‑3p may be therapeutic targets for preventing cognitive impairments induced by sevoflurane.
Collapse
Affiliation(s)
- Huaqin Sun
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Hongyi Hu
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaoping Xu
- Laboratory Animal Research Center/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Tao Tao
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhehao Liang
- Department of Ultrasound, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
33
|
Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, Gelb BD, Ginsburg GS, Hassenstab J, Ho CM, Mobley WC, Nolan GP, Rosen ST, Tan P, Yen Y, Zarrinpar A. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol 2020; 38:497-518. [PMID: 31980301 PMCID: PMC7924935 DOI: 10.1016/j.tibtech.2019.12.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection. This work highlights key breakthroughs in the development of enabling technologies that further the goal of personalized and precision medicine, and remaining challenges that, when addressed, may forge unprecedented capabilities in realizing truly individualized patient care.
Collapse
Affiliation(s)
- Dean Ho
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, CA, USA; Department of Applied Physics, Stanford University, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Wee Joo Chng
- Department of Haematology and Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Edward K Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xianting Ding
- Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University, NC, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA
| | - Chih-Ming Ho
- Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University, CA, USA
| | - Steven T Rosen
- Comprehensive Cancer Center and Beckman Research Institute, City of Hope, CA, USA
| | - Patrick Tan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yun Yen
- College of Medical Technology, Center of Cancer Translational Research, Taipei Cancer Center of Taipei Medical University, Taipei, Taiwan
| | - Ali Zarrinpar
- Department of Surgery, Division of Transplantation & Hepatobiliary Surgery, University of Florida, FL, USA
| |
Collapse
|
34
|
Wen C, Huang C, Yang M, Fan C, Li Q, Zhao J, Gan D, Li A, Zhu L, Lu D. The Secretion from Bone Marrow Mesenchymal Stem Cells Pretreated with Berberine Rescues Neurons with Oxidative Damage Through Activation of the Keap1-Nrf2-HO-1 Signaling Pathway. Neurotox Res 2020; 38:59-73. [PMID: 32108297 DOI: 10.1007/s12640-020-00178-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a potential pathological mechanism of Alzheimer's disease (AD). Berberine (BBR) can improve antioxidative capacity and inhibit Aβ protein aggregation and tau protein hyperphosphorylation in AD, and stem cell therapy is also increasingly recognized as a therapy for AD. Bone marrow mesenchymal stem cells (BMSCs) have many advantages, as they exhibit antioxidant and anti-inflammatory activity and secrete a variety of neurotrophic factors, and play important roles in neurodegenerative disease treatment. In this study, we investigated the antioxidant effects of secretions from BMSCs pretreated with BBR on tert-butyl hydroperoxide (t-BHP)-damaged neurons. We demonstrated that BBR can enhance BMSC viability and the secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), both of which are vital neurotrophic factors that maintain neuronal growth. Moreover, conditioned medium from BBR-treated BMSCs (BBR-BMSC-CM) reduced reactive oxygen species (ROS) production, attenuated a decrease in the mitochondrial membrane potential, and ameliorated neuronal apoptosis by decreasing levels of the apoptotic proteins Bax/Bcl-2, cytochrome c, and cleaved caspase-3/caspase-3. In addition, increased synaptophysin (SYP) and postsynaptic density protein 95 (PSD95) levels indicated that neuronal synaptic function was restored. Further study revealed that BBR-BMSC-CM activated the antioxidant proteins Keap1, Nrf2, and HO-1. In conclusion, our results showed that BBR-BMSC-CM attenuated apoptosis and oxidative damage in neurons by activating the Keap1-Nrf2-HO-1 signaling pathway. Taken together, these results also suggest BBR as a drug to stimulate the secretion of nutritional cytokines with the potential to treat AD.
Collapse
Affiliation(s)
- Caiyan Wen
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Cuiqin Huang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mei Yang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongzhu Fan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qin Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiayi Zhao
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Danhui Gan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - An Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
35
|
Antonarakis SE, Skotko BG, Rafii MS, Strydom A, Pape SE, Bianchi DW, Sherman SL, Reeves RH. Down syndrome. Nat Rev Dis Primers 2020; 6:9. [PMID: 32029743 PMCID: PMC8428796 DOI: 10.1038/s41572-019-0143-7] [Citation(s) in RCA: 375] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Trisomy 21, the presence of a supernumerary chromosome 21, results in a collection of clinical features commonly known as Down syndrome (DS). DS is among the most genetically complex of the conditions that are compatible with human survival post-term, and the most frequent survivable autosomal aneuploidy. Mouse models of DS, involving trisomy of all or part of human chromosome 21 or orthologous mouse genomic regions, are providing valuable insights into the contribution of triplicated genes or groups of genes to the many clinical manifestations in DS. This endeavour is challenging, as there are >200 protein-coding genes on chromosome 21 and they can have direct and indirect effects on homeostasis in cells, tissues, organs and systems. Although this complexity poses formidable challenges to understanding the underlying molecular basis for each of the many clinical features of DS, it also provides opportunities for improving understanding of genetic mechanisms underlying the development and function of many cell types, tissues, organs and systems. Since the first description of trisomy 21, we have learned much about intellectual disability and genetic risk factors for congenital heart disease. The lower occurrence of solid tumours in individuals with DS supports the identification of chromosome 21 genes that protect against cancer when overexpressed. The universal occurrence of the histopathology of Alzheimer disease and the high prevalence of dementia in DS are providing insights into the pathology and treatment of Alzheimer disease. Clinical trials to ameliorate intellectual disability in DS signal a new era in which therapeutic interventions based on knowledge of the molecular pathophysiology of DS can now be explored; these efforts provide reasonable hope for the future.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | - Brian G Skotko
- Down Syndrome Program, Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael S Rafii
- Keck School of Medicine of University of Southern California, California, CA, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sarah E Pape
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Botté A, Potier MC. Focusing on cellular biomarkers: The endo-lysosomal pathway in Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:209-243. [PMID: 32057308 DOI: 10.1016/bs.pbr.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is the most frequent chromosomal disorder. It is caused by the triplication of human chromosome 21, leading to increased dosage of a variety of genes including APP (Amyloid Precursor Protein). Mainly for this reason, individuals with DS are at high risk to develop Alzheimer's disease (AD). Extensive literature identified various morphological and molecular abnormalities in the endo-lysosomal pathway both in DS and AD. Most studies in this field investigated the causative role of APP (Amyloid Precursor Protein) in endo-lysosomal dysfunctions, thus linking phenotypes observed in DS and AD. In DS context, several lines of evidence and emerging hypotheses suggest that other molecular players and pathways may be implicated in these complex phenotypes. In this review, we outline the normal functioning of endosomal trafficking and summarize the research on endo-lysosomal dysfunction in DS in light of AD findings. We emphasize the role of genes of chromosome 21 implicated in endocytosis to explain endosomal abnormalities and set the limitations and perspectives of models used to explore endo-lysosomal dysfunction in DS and find new biomarkers. The review highlights the complexity of endo-lysosomal dysfunction in DS and suggests directions for future research in the field.
Collapse
Affiliation(s)
- Alexandra Botté
- Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
37
|
Fast-diffusing p75 NTR monomers support apoptosis and growth cone collapse by neurotrophin ligands. Proc Natl Acad Sci U S A 2019; 116:21563-21572. [PMID: 31515449 PMCID: PMC6815156 DOI: 10.1073/pnas.1902790116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins (NTs) are homodimeric growth factors displaying fundamental roles in the nervous system. Their activity stems from binding and activation of 3 different receptor types in nervous cell membranes. The p75 NT receptor (p75NTR) was the first to be discovered in 1986; nevertheless, for the numerous structural and functional facets so far reported, its activation mechanisms have remained elusive. Here, we demonstrate that its pleiotropic functions are regulated by different redistributions of the receptors, which crucially depend on the available NT and on the involved subcellular compartment but are unrelated to its oligomerization state. Single-particle studies proved receptors to be monomers with a fast-diffusive behavior in the membrane with, at most, transient self-interactions on the millisecond time scale. The p75 neurotrophin (NT) receptor (p75NTR) plays a crucial role in balancing survival-versus-death decisions in the nervous system. Yet, despite 2 decades of structural and biochemical studies, a comprehensive, accepted model for p75NTR activation by NT ligands is still missing. Here, we present a single-molecule study of membrane p75NTR in living cells, demonstrating that the vast majority of receptors are monomers before and after NT activation. Interestingly, the stoichiometry and diffusion properties of the wild-type (wt) p75NTR are almost identical to those of a receptor mutant lacking residues previously believed to induce oligomerization. The wt p75NTR and mutated (mut) p75NTR differ in their partitioning in cholesterol-rich membrane regions upon nerve growth factor (NGF) stimulation: We argue that this is the origin of the ability of wt p75NTR , but not of mut p75NTR, to mediate immature NT (proNT)-induced apoptosis. Both p75NTR forms support proNT-induced growth cone retraction: We show that receptor surface accumulation is the driving force for cone collapse. Overall, our data unveil the multifaceted activity of the p75NTR monomer and let us provide a coherent interpretative frame of existing conflicting data in the literature.
Collapse
|
38
|
Chen XQ, Mobley WC. Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Front Neurosci 2019; 13:659. [PMID: 31293377 PMCID: PMC6598402 DOI: 10.3389/fnins.2019.00659] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary human and financial burdens. Studies of pathogenesis are essential for defining targets for discovering disease-modifying treatments. Past studies of AD neuropathology provided valuable, albeit limited, insights. Nevertheless, building on these findings, recent studies have provided an increasingly rich harvest of genetic, molecular and cellular data that are creating unprecedented opportunities to both understand and treat AD. Among the most significant are those documenting the presence within the AD brain of toxic oligomeric species of Aβ and tau. Existing data support the view that such species can propagate and spread within neural circuits. To place these findings in context we first review the genetics and neuropathology of AD, including AD in Down syndrome (AD-DS). We detail studies that support the existence of toxic oligomeric species while noting the significant unanswered questions concerning their precise structures, the means by which they spread and undergo amplification and how they induce neuronal dysfunction and degeneration. We conclude by offering a speculative synthesis for how oligomers of Aβ and tau initiate and drive pathogenesis. While 100 years after Alzheimer's first report there is much still to learn about pathogenesis and the discovery of disease-modifying treatments, the application of new concepts and sophisticated new tools are poised to deliver important advances for combatting AD.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
39
|
Chen XQ, Mobley WC. Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: Converging Insights From Alternative Hypotheses. Front Neurosci 2019; 13:446. [PMID: 31133787 PMCID: PMC6514132 DOI: 10.3389/fnins.2019.00446] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary financial and emotional burdens (Apostolova, 2016). Studies of pathogenesis are essential for defining critical molecular and cellular events and for discovering therapies to prevent or mitigate their effects. Through studies of neuropathology, genetic and cellular, and molecular biology recent decades have provided many important insights. Several hypotheses have been suggested. Documentation in the 1980s of selective loss of cholinergic neurons of the basal forebrain, followed by clinical improvement in those treated with inhibitors of acetylycholinesterase, supported the "cholinergic hypothesis of age-related cognitive dysfunction" (Bartus et al., 1982). A second hypothesis, prompted by the selective loss of cholinergic neurons and the discovery of central nervous system (CNS) neurotrophic factors, including nerve growth factor (NGF), prompted the "deficient neurotrophic hypothesis" (Chen et al., 2018). The most persuasive hypothesis, the amyloid cascade hypothesis first proposed more than 25 years ago (Selkoe and Hardy, 2016), is supported by a wealth of observations. Genetic studies were exceptionally important, pointing to increased dose of the gene for the amyloid precursor protein (APP) in Down syndrome (DS) and a familial AD (FAD) due to duplication of APP and to mutations in APP and in the genes for Presenilin 1 and 2 (PSEN1, 2), which encode the γ-secretase enzyme that processes APP (Dorszewska et al., 2016). The "tau hypothesis" noted the prominence of tau-related pathology and its correlation with dementia (Kametani and Hasegawa, 2018). Recent interest in induction of microglial activation in the AD brain, as well as other manifestations of inflammation, supports the "inflammatory hypothesis" (Mcgeer et al., 2016). We place these findings in the context of the selective, but by no means unique, involvement of BFCNs and their trophic dependence on NGF signaling and speculate as to how pathogenesis in these neurons is initiated, amplified and ultimately results in their dysfunction and death. In so doing we attempt to show how the different hypotheses for AD may interact and reinforce one another. Finally, we address current attempts to prevent and/or treat AD in light of advances in understanding pathogenetic mechanisms and suggest that studies in the DS population may provide unique insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
40
|
Abstract
Virtually all adults with Down syndrome (DS) show the neuropathological changes of Alzheimer disease (AD) by the age of 40 years. This association is partially due to overexpression of amyloid precursor protein, encoded by APP, as a result of the location of this gene on chromosome 21. Amyloid-β accumulates in the brain across the lifespan of people with DS, which provides a unique opportunity to understand the temporal progression of AD and the epigenetic factors that contribute to the age of dementia onset. This age dependency in the development of AD in DS can inform research into the presentation of AD in the general population, in whom a longitudinal perspective of the disease is not often available. Comparison of the risk profiles, biomarker profiles and genetic profiles of adults with DS with those of individuals with AD in the general population can help to determine common and distinct pathways as well as mechanisms underlying increased risk of dementia. This Review evaluates the similarities and differences between the pathological cascades and genetics underpinning DS and AD with the aim of providing a platform for common exploration of these disorders.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA, USA.
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
41
|
Chen XQ. Involvement of T-complex protein 1-ring complex/chaperonin containing T-complex protein 1 (TRiC/CCT) in retrograde axonal transport through tau phosphorylation. Neural Regen Res 2019; 14:588-590. [PMID: 30632495 PMCID: PMC6352588 DOI: 10.4103/1673-5374.247460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
Dias FJ, Fazan VPS, Cury DP, de Almeida SRY, Borie E, Fuentes R, Coutinho-Netto J, Watanabe IS. Growth factors expression and ultrastructural morphology after application of low-level laser and natural latex protein on a sciatic nerve crush-type injury. PLoS One 2019; 14:e0210211. [PMID: 30625210 PMCID: PMC6326513 DOI: 10.1371/journal.pone.0210211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The effects of low-level laser therapy (LLLT) and natural latex protein (F1, Hevea brasiliensis) were evaluated on crush-type injuries (15kg) to the sciatic nerve in the expressions of nerve growth factor (NGF) and vascular endothelium growth factor (VEGF) and ultrastructural morphology to associate with previous morphometric data using the same protocol of injury and treatment. Thirty-six male rats were allocated into six experimental groups (n = 6): 1-Control; 2-Exposed nerve; 3-Injured nerve; 4-LLLT (15J/cm2, 780nm, 30mW, Continuous Wave) treated injured nerve; 5-F1 (0,1mg) treated injured nerve; and 6-LLLT&F1 treated injured nerve. Four or eight weeks after, sciatic nerve samples were processed for analysis. NGF expression were higher (p<0.05) four weeks after in all injured groups in comparison to Control (Med:0.8; Q1:0; Q3:55.5%area). Among them, the Injured (Med:70.7; Q1:64.4; Q3:77.5%area) showed the highest expression, and F1 (Med:17.3; Q1:14.1; Q3:21.7%area) had the lowest. At week 8, NGF expressions decreased in the injured groups. VEGF was expressed in all groups; its higher expression was observed in the injured groups 4 weeks after (Injured. Med:29.5; F1. Med:17.7 and LLLT&F1. Med:19.4%area). At week 8, a general reduction of VEGF expression was noted, remaining higher in F1 (Med:35.1; Q1.30.6; Q3.39.6%area) and LLLT&F1 (Med:18.5; Q1:16; Q3:25%area). Ultrastructural morphology revealed improvements in the treated groups; 4 weeks after, the F1 group presented greater quantity and diameter of the nerve fibers uniformly distributed. Eight weeks after, the F1 and LLLT&F1 showed similar characteristics to the non-injured groups. In summary, these results and our previous studies indicated that F1 and LLLT may favorably influence the healing of nerve crush injury. Four weeks after nerve injury F1 group showed the best results suggesting recovery acceleration; at 8th week F1 and LLLT&F1 groups presented better features and higher vascularization that could be associated with VEGF maintenance.
Collapse
Affiliation(s)
- Fernando José Dias
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
- * E-mail:
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Diego Pulzatto Cury
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eduardo Borie
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Ramón Fuentes
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Joaquim Coutinho-Netto
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ii-sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
43
|
Latina V, Caioli S, Zona C, Ciotti MT, Borreca A, Calissano P, Amadoro G. NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model. Front Cell Neurosci 2018; 12:487. [PMID: 30618634 PMCID: PMC6300588 DOI: 10.3389/fncel.2018.00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.
Collapse
Affiliation(s)
| | | | - Cristina Zona
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonella Borreca
- Institute of Cellular Biology and Neurobiology – National Research Council, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology – National Research Council, Rome, Italy
| |
Collapse
|
44
|
Xu W, Fang F, Ding J, Wu C. Dysregulation of Rab5-mediated endocytic pathways in Alzheimer's disease. Traffic 2018; 19:253-262. [PMID: 29314494 PMCID: PMC5869093 DOI: 10.1111/tra.12547] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
Increasing evidence has pointed to that dysregulation of the endo-lysosomal system is an early cellular phenotype of pathogenesis for Alzheimer's disease (AD). Rab5, a small GTPase, plays a critical role in mediating these processes. Abnormal overactivation of Rab5 has been observed in post-mortem brain samples of Alzheimer's patients as well as brain samples of mouse models of AD. Recent genome-wide association studies of AD have identified RIN3 (Ras and Rab interactor 3) as a novel risk factor for the disease. RIN3 that functions as a guanine nucleotide exchange factor for Rab5 may serve as an important activator for Rab5 in AD pathogenesis. In this review, we present recent research highlights on the possible roles of dysregulation of Rab5-mediated endocytic pathways in contributing to early pathogenesis of AD.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Fang Fang
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jianqing Ding
- Institute of Neurology and Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
45
|
Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci 2018; 91:25-33. [PMID: 29596897 DOI: 10.1016/j.mcn.2018.03.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
In neurons, long-distance communication between axon terminals and cell bodies is a critical determinant in establishing and maintaining neural circuits. Neurotrophins are soluble factors secreted by post-synaptic target tissues that retrogradely control axon and dendrite growth, survival, and synaptogenesis of innervating neurons. Neurotrophins bind Trk receptor tyrosine kinases in axon terminals to promote endocytosis of ligand-bound phosphorylated receptors into signaling endosomes. Trk-harboring endosomes function locally in axons to acutely promote growth events, and can also be retrogradely transported long-distances to remote cell bodies and dendrites to stimulate cytoplasmic and transcriptional signaling necessary for neuron survival, morphogenesis, and maturation. Neuronal responsiveness to target-derived neurotrophins also requires the precise axonal targeting of newly synthesized Trk receptors. Recent studies suggest that anterograde delivery of Trk receptors is regulated by retrograde neurotrophin signaling. In this review, we summarize current knowledge on the functions and mechanisms of retrograde trafficking of Trk signaling endosomes, and highlight recent discoveries on the forward trafficking of nascent receptors.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
46
|
Zachariou M, Minadakis G, Oulas A, Afxenti S, Spyrou GM. Integrating multi-source information on a single network to detect disease-related clusters of molecular mechanisms. J Proteomics 2018; 188:15-29. [PMID: 29545169 DOI: 10.1016/j.jprot.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 02/08/2023]
Abstract
The abundance of available information for each disease from multiple sources (e.g. as genetic, regulatory, metabolic, and protein-protein interaction) constitutes both an advantage and a challenge in identifying disease-specific underlying mechanisms. Integration of multi-source data is a rising topic and a great challenge in precision medicine and is crucial in enhancing disease understanding, identifying meaningful clusters of molecular mechanisms and increasing precision and personalisation towards the goal of Predictive, Preventive and Personalised Medicine (PPPM). The overall aim of this work was to develop a novel network-based integration methodology with the following characteristics: (i) maximise the number of data sources, (ii) utilise holistic approaches to integrate these sources (iii) be simple, flexible and extendable, (iv) be conclusive. Here, we present the case of Alzheimer's disease as a paradigm for illustrating our novel approach. SIGNIFICANCE In this work we present an integration methodology, which aggregates a large number of the available data sources and types by exploiting the holistic nature of network approaches. It is simple, flexible and extendable generating solid conclusions regarding the molecular mechanisms that underlie the input data. We have illustrated the strength of our proposed methodology using Alzheimer's disease as a paradigm. This method is expected to serve as a stepping-stone for further development of integration methods of multi-source omic-data and to contribute to progress towards the goal of Predictive, Preventive and Personalised Medicine (PPPM). The output of this methodology may act as a reference map of implicated pathways in the disease under investigation, where pathways related to additional omics data from any kind of experiment may be projected. This will increase the precision in the understanding of the disease and may contribute to personalised approaches for patients with different disease-related pathway profile, leading to a more precise, personalised and ideally preventive management of the disease.
Collapse
Affiliation(s)
- Margarita Zachariou
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus
| | - George Minadakis
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus
| | - Anastasis Oulas
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus
| | - Sotiroula Afxenti
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus
| | - George M Spyrou
- The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, P.O.Box 23462, 2370 Nicosia, Cyprus.
| |
Collapse
|
47
|
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown, Center on Aging, University of Kentucky, Lexington, KY 40506 USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|