1
|
Sharma A, Shuppara AM, Padron GC, Sanfilippo JE. Combining multiple stressors blocks bacterial migration and growth. Curr Biol 2024; 34:5774-5781.e4. [PMID: 39549703 DOI: 10.1016/j.cub.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024]
Abstract
In nature, organisms experience combinations of stressors. However, laboratory studies use batch cultures, which simplify reality and focus on population-level responses to individual stressors.1,2,3,4,5 In recent years, bacterial stress responses have been examined with single-cell resolution using microfluidics.6,7,8,9,10,11,12 Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H2O2) to the human pathogen Pseudomonas aeruginosa. By treating cells with levels of flow and H2O2 that commonly co-occur in human host tissues,13,14,15,16,17,18 we discover that previous reports significantly overestimate the H2O2 levels required to block bacterial growth. Specifically, we establish that flow increases H2O2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H2O2 levels, we identify the core H2O2 regulon, characterize OxyR-mediated dynamic regulation, and demonstrate that multiple H2O2 scavenging systems have redundant roles. By examining single-cell behavior, we serendipitously discover that the combined effects of H2O2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H2O2 and flow synergize to restrict bacterial motility and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexander M Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gilberto C Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph E Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Baussier C, Oriol C, Durand S, Py B, Mandin P. Small RNA OxyS induces resistance to aminoglycosides during oxidative stress by controlling Fe-S cluster biogenesis in Escherichia coli. Proc Natl Acad Sci U S A 2024; 121:e2317858121. [PMID: 39495911 PMCID: PMC11572966 DOI: 10.1073/pnas.2317858121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/27/2024] [Indexed: 11/06/2024] Open
Abstract
Fe-S clusters are essential cofactors involved in many reactions across all domains of life. Their biogenesis in Escherichia coli and other enterobacteria involves two machineries: Isc and Suf. Under conditions where cells operate with the Suf system, such as during oxidative stress or iron limitation, the entry of aminoglycosides is reduced, leading to resistance to these antibiotics. The transition between Isc and Suf machineries is controlled by the transcriptional regulator IscR. Here, we found that two small regulatory RNAs (sRNAs), FnrS and OxyS, control iscR expression by base pairing to the 5'-UTR of the iscR mRNA. These sRNAs act in opposite ways and in opposite conditions: FnrS, expressed in anaerobiosis, represses the expression of iscR while OxyS, expressed during oxidative stress, activates it. Using an E. coli strain experiencing protracted oxidative stress, we further demonstrate that iscR expression is rapidly and significantly enhanced in the presence of OxyS. Consequently, we further show that OxyS induces resistance to aminoglycosides during oxidative stress through regulation of Fe-S cluster biogenesis, revealing a major role for this sRNA.
Collapse
Affiliation(s)
- Corentin Baussier
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditérannée, Institut Microbiologie, Bioénergies et Biotechnologie, MarseilleF-13009, France
| | - Charlotte Oriol
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditérannée, Institut Microbiologie, Bioénergies et Biotechnologie, MarseilleF-13009, France
| | - Sylvain Durand
- CNRS–UMR8261/Université Paris Cité–Institut de Biologie Physico-Chimique, Expression Génétique Microbienne, Paris75005, France
| | - Béatrice Py
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditérannée, Institut Microbiologie, Bioénergies et Biotechnologie, MarseilleF-13009, France
| | - Pierre Mandin
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditérannée, Institut Microbiologie, Bioénergies et Biotechnologie, MarseilleF-13009, France
| |
Collapse
|
3
|
Sirithanakorn C, Imlay JA. Evidence for endogenous hydrogen peroxide production by E. coli fatty acyl-CoA dehydrogenase. PLoS One 2024; 19:e0309988. [PMID: 39436877 PMCID: PMC11495604 DOI: 10.1371/journal.pone.0309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Aerobic organisms continuously generate internal superoxide and hydrogen peroxide, which can damage enzymes and impair growth. To avoid this problem cells maintain high levels of superoxide dismutases, catalases, and peroxidases. Surprisingly, we do not know the primary sources of these reactive oxygen species (ROS) in living cells. However, in vitro studies have shown that flavoenzymes can inadvertently transfer electrons to oxygen. Therefore, it seems plausible that substantial ROS may be generated when large metabolic fluxes flow through flavoproteins. Such a situation may arise during the catabolism of fatty acids. Acyl-CoA dehydrogenase (FadE) is a flavoprotein involved in each turn of the beta-oxidation cycle. In the present study the catabolism of dodecanoic acid specifically impaired the growth of strains that lack enzymes to scavenge hydrogen peroxide. The defect was absent from fadE mutants. Direct measurements confirmed that the beta-oxidation pathway amplified the rate of intracellular hydrogen peroxide formation. Scavenging-proficient cells did not display the FadE-dependent growth defect. Those cells also did not induce the peroxide stress response during dodecanoate catabolism, indicating that the basal defenses are sufficient to cope with moderately elevated peroxide formation. In vitro work still is needed to test whether the ROS evolve specifically from the FadE flavin site and to determine whether superoxide as well as peroxide is released. At present such experiments are challenging because the natural redox partner of FadE has not been identified. This study supports the hypothesis that the degree of internal ROS production can depend upon the type of active metabolism inside cells.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Division of Molecular and Cellular Medicine, King Mongkut’s Institute of Technology Ladkrabang, Faculty of Medicine, Bangkok, Thailand
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
4
|
Sharma R, Mishanina TV. A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in Escherichia coli at alkaline pH. J Bacteriol 2024; 206:e0016824. [PMID: 38869303 PMCID: PMC11270866 DOI: 10.1128/jb.00168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Cells use transition metal ions as structural components of biomolecules and cofactors in enzymatic reactions, making transition metal ions integral cellular components. Organisms optimize metal ion concentration to meet cellular needs by regulating the expression of proteins that import and export that metal ion, often in a metal ion concentration-dependent manner. One such regulation mechanism is via riboswitches, which are 5'-untranslated regions of an mRNA that undergo conformational changes to promote or inhibit the expression of the downstream gene, commonly in response to a ligand. The yybP-ykoY family of bacterial riboswitches shares a conserved aptamer domain that binds manganese ions (Mn2+). In Escherichia coli, the yybP-ykoY riboswitch precedes and regulates the expression of two different genes: mntP, which based on genetic evidence encodes an Mn2+ exporter, and alx, which encodes a putative metal ion transporter whose cognate ligand is currently in question. The expression of alx is upregulated by both elevated concentrations of Mn2+ and alkaline pH. With metal ion measurements and gene expression studies, we demonstrate that the alkalinization of media increases the cytoplasmic manganese pool, which, in turn, enhances alx expression. The Alx-mediated Mn2+ export prevents the toxic buildup of the cellular manganese, with the export activity maximal at alkaline pH. We pinpoint a set of acidic residues in the predicted transmembrane segments of Alx that play a critical role in Mn2+ export. We propose that Alx-mediated Mn2+ export serves as a primary protective mechanism that fine tunes the cytoplasmic manganese content, especially during alkaline stress.IMPORTANCEBacteria use clever ways to tune gene expression upon encountering certain environmental stresses, such as alkaline pH in parts of the human gut and high concentration of a transition metal ion manganese. One way by which bacteria regulate the expression of their genes is through the 5'-untranslated regions of messenger RNA called riboswitches that bind ligands to turn expression of genes on/off. In this work, we have investigated the roles and regulation of alx and mntP, the two genes in Escherichia coli regulated by the yybP-ykoY riboswitches, in alkaline pH and high concentration of Mn2+. This work highlights the intricate ways through which bacteria adapt to their surroundings, utilizing riboregulatory mechanisms to maintain Mn2+ levels amidst varying environmental factors.
Collapse
Affiliation(s)
- Ravish Sharma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Green R, Wang H, Botchey C, Zhang SNN, Wadsworth C, Tyrrell F, Letton J, McBain AJ, Paszek P, Krašovec R, Knight CG. Collective peroxide detoxification determines microbial mutation rate plasticity in E. coli. PLoS Biol 2024; 22:e3002711. [PMID: 39008532 PMCID: PMC11272383 DOI: 10.1371/journal.pbio.3002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
Collapse
Affiliation(s)
- Rowan Green
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| | - Hejie Wang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Carol Botchey
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Siu Nam Nancy Zhang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Charles Wadsworth
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Francesca Tyrrell
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - James Letton
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, United Kingdom
| | - Pawel Paszek
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rok Krašovec
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| |
Collapse
|
6
|
Korshunov S, Imlay JA. Antioxidants are ineffective at quenching reactive oxygen species inside bacteria and should not be used to diagnose oxidative stress. Mol Microbiol 2024; 122:113-128. [PMID: 38889382 DOI: 10.1111/mmi.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
A wide variety of stresses have been proposed to exert killing effects upon bacteria by stimulating the intracellular formation of reactive oxygen species (ROS). A key part of the supporting evidence has often been the ability of antioxidant compounds to protect the cells. In this study, some of the most-used antioxidants-thiourea, glutathione, N-acetylcysteine, and ascorbate-have been examined. Their ability to quench superoxide and hydrogen peroxide was verified in vitro, but the rate constants were orders of magnitude too slow for them to have an impact upon superoxide and peroxide concentrations in vivo, where these species are already scavenged by highly active enzymes. Indeed, the antioxidants were unable to protect the growth and ROS-sensitive enzymes of E. coli strains experiencing authentic oxidative stress. Similar logic posits that antioxidants cannot substantially quench hydroxyl radicals inside cells, which contain abundant biomolecules that react with them at diffusion-limited rates. Indeed, antioxidants were able to protect cells from DNA damage only if they were applied at concentrations that slow metabolism and growth. This protective effect was apparent even under anoxic conditions, when ROS could not possibly be involved, and it was replicated when growth was similarly slowed by other means. Experimenters should discard the use of antioxidants as a way of detecting intracellular oxidative stress and should revisit conclusions that have been based upon such experiments. The notable exception is that these compounds can effectively degrade hydrogen peroxide from environmental sources before it enters cells.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
7
|
Sharma A, Shuppara AM, Padron GC, Sanfilippo JE. Combining multiple stressors unexpectedly blocks bacterial migration and growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595753. [PMID: 38853869 PMCID: PMC11160647 DOI: 10.1101/2024.05.27.595753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In nature, organisms experience combinations of stressors. However, laboratory studies typically simplify reality and focus on the effects of an individual stressor. Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H 2 O 2 ) to the human pathogen Pseudomonas aeruginosa . By treating cells with levels of flow and H 2 O 2 that commonly co-occur in nature, we discover that previous reports significantly overestimate the H 2 O 2 levels required to block bacterial growth. Specifically, we establish that flow increases H 2 O 2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H 2 O 2 levels, we identify the core H 2 O 2 regulon, characterize OxyR-mediated dynamic regulation, and dissect the redundant roles of multiple H 2 O 2 scavenging systems. By examining single-cell behavior, we serendipitously discover that the combined effects of H 2 O 2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H 2 O 2 and flow synergize to restrict bacterial colonization and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.
Collapse
|
8
|
Gupta A, Imlay JA. How a natural antibiotic uses oxidative stress to kill oxidant-resistant bacteria. Proc Natl Acad Sci U S A 2023; 120:e2312110120. [PMID: 38109539 PMCID: PMC10756299 DOI: 10.1073/pnas.2312110120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Natural products that possess antibiotic and antitumor qualities are often suspected of working through oxidative mechanisms. In this study, two quinone-based small molecules were compared. Menadione, a classic redox-cycling compound, was confirmed to generate high levels of reactive oxygen species inside Escherichia coli. It inactivated iron-cofactored enzymes and blocked growth. However, despite the substantial levels of oxidants that it produced, it was unable to generate significant DNA damage and was not lethal. Streptonigrin, in contrast, was poorer at redox cycling and did not inactivate enzymes or block growth; however, even in low doses, it damaged DNA and killed cells. Its activity required iron and oxygen, and in vitro experiments indicated that its quinone moiety transferred electrons through the adjacent iron atom to oxygen. Additionally, in vitro experiments revealed that streptonigrin was able to damage DNA without inhibition by catalase, indicating that hydrogen peroxide was not involved. We infer that streptonigrin can reduce bound oxygen directly to a ferryl species, which then oxidizes the adjacent DNA, without release of superoxide or hydrogen peroxide intermediates. This scheme allows streptonigrin to kill a bacterial cell without interference by scavenging enzymes. Moreover, its minimal redox-cycling behavior avoids alerting either the OxyR or the SoxRS systems, which otherwise would block killing. This example highlights qualities that may be important in the design of oxidative drugs. These results also cast doubt on proposals that bacteria can be killed by stressors that merely stimulate intracellular O2- and H2O2 formation.
Collapse
Affiliation(s)
- Anshika Gupta
- Department of Microbiology, University of Illinois, Urbana, IL61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL61801
| |
Collapse
|
9
|
Eben SS, Imlay JA. Evidence that protein thiols are not primary targets of intracellular reactive oxygen species in growing Escherichia coli. Front Microbiol 2023; 14:1305973. [PMID: 38152379 PMCID: PMC10751367 DOI: 10.3389/fmicb.2023.1305973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
The oxidizability of cysteine residues is exploited in redox chemistry and as a source of stabilizing disulfide bonds, but it also raises the possibility that these side chains will be oxidized when they should not be. It has often been suggested that intracellular oxidative stress from hydrogen peroxide or superoxide may result in the oxidation of the cysteine residues of cytoplasmic proteins. That view seemed to be supported by the discovery that one cellular response to hydrogen peroxide is the induction of glutaredoxin 1 and thioredoxin 2. In this study we used model compounds as well as alkaline phosphatase to test this idea. Our results indicate that molecular oxygen, superoxide, and hydrogen peroxide are very poor oxidants of N-acetylcysteine and of the protein thiols of alkaline phosphatase in vitro. Copper could accelerate thiol oxidation, but iron did not. When alkaline phosphatase was engineered to remain in the cytoplasm of live cells, unnaturally high concentrations of hydrogen peroxide were required to oxidize it to its active, disulfide-dependent form, and toxic levels of superoxide had no effect. At the same time, far lower concentrations of these oxidants were sufficient to poison key metalloenzymes. The elimination of glutaredoxin 1 and thioredoxin 2 did not change these results, raising the question of why E. coli induces them during peroxide stress. In fact, when catalase/peroxidase mutants were chronically stressed with hydrogen peroxide, the absence of glutaredoxin 1 and thioredoxin 2 did not impair growth at all, even in a minimal medium over many generations. We conclude that physiological levels of reduced oxygen species are not potent oxidants of typical protein thiols. Glutaredoxin and thioredoxin must either have an alternative purpose or else play a role under culture conditions that differ from the ones we tested.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, United States
| |
Collapse
|
10
|
Sharma R, Mishanina TV. A riboswitch-controlled manganese exporter (Alx) tunes intracellular Mn 2+ concentration in E. coli at alkaline pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539761. [PMID: 37214827 PMCID: PMC10197570 DOI: 10.1101/2023.05.07.539761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells use transition metal ions as structural components of biomolecules and cofactors in enzymatic reactions, making transition metals vital cellular components. The buildup of a particular metal ion in certain stress conditions becomes harmful to the organism due to the misincorporation of the excess ion into biomolecules, resulting in perturbed enzymatic activity or metal-catalyzed formation of reactive oxygen species. Organisms optimize metal concentration by regulating the expression of proteins that import and export that metal, often in a metal concentration-dependent manner. One such regulation mechanism is via riboswitches, which are 5'-untranslated regions (UTR) of an mRNA that undergo conformational changes to promote or inhibit the expression of the downstream gene, commonly in response to a ligand. The yybP-ykoY family of bacterial riboswitches shares a conserved aptamer domain that binds manganese (Mn2+). In E. coli, the yybP-ykoY riboswitch precedes and regulates the expression of two genes: mntP, which based on extensive genetic evidence encodes an Mn2+ exporter, and alx, which encodes a putative metal ion transporter whose cognate ligand is currently in question. Expression of alx is upregulated by both elevated intracellular concentrations of Mn2+ and alkaline pH. With metal ion measurements and gene expression studies, we demonstrate that the alkalinization of media increases cytoplasmic Mn2+ content, which in turn enhances alx expression. Alx then exports excess Mn2+ to prevent toxic buildup of the metal inside the cell, with the export activity maximal at alkaline pH. Using mutational and complementation experiments, we pinpoint a set of acidic residues in the predicted transmembrane segments of Alx that play a crucial role in its Mn2+ export. We propose that Alx-mediated Mn2+ export provides a primary protective layer that fine-tunes the cytoplasmic Mn2+ levels, especially during alkaline stress.
Collapse
Affiliation(s)
- Ravish Sharma
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
11
|
Padron GC, Shuppara AM, Sharma A, Koch MD, Palalay JJS, Radin JN, Kehl-Fie TE, Imlay JA, Sanfilippo JE. Shear rate sensitizes bacterial pathogens to H 2O 2 stress. Proc Natl Acad Sci U S A 2023; 120:e2216774120. [PMID: 36888662 PMCID: PMC10089187 DOI: 10.1073/pnas.2216774120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 03/09/2023] Open
Abstract
Cells regularly experience fluid flow in natural systems. However, most experimental systems rely on batch cell culture and fail to consider the effect of flow-driven dynamics on cell physiology. Using microfluidics and single-cell imaging, we discover that the interplay of physical shear rate (a measure of fluid flow) and chemical stress trigger a transcriptional response in the human pathogen Pseudomonas aeruginosa. In batch cell culture, cells protect themselves by quickly scavenging the ubiquitous chemical stressor hydrogen peroxide (H2O2) from the media. In microfluidic conditions, we observe that cell scavenging generates spatial gradients of H2O2. High shear rates replenish H2O2, abolish gradients, and generate a stress response. Combining mathematical simulations and biophysical experiments, we find that flow triggers an effect like "wind-chill" that sensitizes cells to H2O2 concentrations 100 to 1,000 times lower than traditionally studied in batch cell culture. Surprisingly, the shear rate and H2O2 concentration required to generate a transcriptional response closely match their respective values in the human bloodstream. Thus, our results explain a long-standing discrepancy between H2O2 levels in experimental and host environments. Finally, we demonstrate that the shear rate and H2O2 concentration found in the human bloodstream trigger gene expression in the blood-relevant human pathogen Staphylococcus aureus, suggesting that flow sensitizes bacteria to chemical stress in natural environments.
Collapse
Affiliation(s)
- Gilberto C. Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Alexander M. Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Matthias D. Koch
- Department of Biology, Texas A&M University, College Station, TX77843
| | | | - Jana N. Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
12
|
Watanabe M, Igarashi K, Kato S, Kamagata Y, Kitagawa W. Self-cloning of the Catalase Gene in Environmental Isolates Improves Their Colony-forming Abilities on Agar Media. Microbes Environ 2023; 38:n/a. [PMID: 37302843 DOI: 10.1264/jsme2.me23006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Hydrogen peroxide (H2O2) inhibits microbial growth at a specific concentration. However, we previously isolated two environmental bacterial strains that exhibited sensitivity to a lower H2O2 concentration in agar plates. Putative catalase genes, which degrade H2O2, were detected in their genomes. We herein elucidated the characteristics of these putative genes and their products using a self-cloning technique. The products of the cloned genes were identified as functional catalases. The up-regulation of their expression increased the colony-forming ability of host cells under H2O2 pressure. The present results demonstrated high sensitivity to H2O2 even in microbes possessing functional catalase genes.
Collapse
Affiliation(s)
- Motoyuki Watanabe
- Graduate School of Agriculture, Hokkaido University
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST)
| | - Kensuke Igarashi
- Graduate School of Global Food Resources, Hokkaido University
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST)
| | - Souichiro Kato
- Graduate School of Agriculture, Hokkaido University
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST)
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST)
| | - Wataru Kitagawa
- Graduate School of Agriculture, Hokkaido University
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST)
| |
Collapse
|
13
|
Lagage V, Chen V, Uphoff S. Adaptation delay causes a burst of mutations in bacteria responding to oxidative stress. EMBO Rep 2022; 24:e55640. [PMID: 36397732 PMCID: PMC9827559 DOI: 10.15252/embr.202255640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the interplay between phenotypic and genetic adaptation is a focus of evolutionary biology. In bacteria, the oxidative stress response prevents mutagenesis by reactive oxygen species (ROS). We hypothesise that the stress response dynamics can therefore affect the timing of the mutation supply that fuels genetic adaptation to oxidative stress. We uncover that sudden hydrogen peroxide stress causes a burst of mutations. By developing single-molecule and single-cell microscopy methods, we determine how these mutation dynamics arise from phenotypic adaptation mechanisms. H2 O2 signalling by the transcription factor OxyR rapidly induces ROS-scavenging enzymes. However, an adaptation delay leaves cells vulnerable to the mutagenic and toxic effects of hydroxyl radicals generated by the Fenton reaction. Resulting DNA damage is counteracted by a spike in DNA repair activities during the adaptation delay. Absence of a mutation burst in cells with prior stress exposure or constitutive OxyR activation shows that the timing of phenotypic adaptation directly controls stress-induced mutagenesis. Similar observations for alkylation stress show that mutation bursts are a general phenomenon associated with adaptation delays.
Collapse
Affiliation(s)
| | - Victor Chen
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | |
Collapse
|
14
|
Rohaun SK, Imlay JA. The vulnerability of radical SAM enzymes to oxidants and soft metals. Redox Biol 2022; 57:102495. [PMID: 36240621 PMCID: PMC9576991 DOI: 10.1016/j.redox.2022.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Radical S-adenosylmethionine enzymes (RSEs) drive diverse biological processes by catalyzing chemically difficult reactions. Each of these enzymes uses a solvent-exposed [4Fe-4S] cluster to coordinate and cleave its SAM co-reactant. This cluster is destroyed during oxic handling, forcing investigators to work with these enzymes under anoxic conditions. Analogous substrate-binding [4Fe-4S] clusters in dehydratases are similarly sensitive to oxygen in vitro; they are also extremely vulnerable to reactive oxygen species (ROS) in vitro and in vivo. These observations suggested that ROS might similarly poison RSEs. This conjecture received apparent support by the observation that when E. coli experiences hydrogen peroxide stress, it induces a cluster-free isozyme of the RSE HemN. In the present study, surprisingly, the purified RSEs viperin and HemN proved quite resistant to peroxide and superoxide in vitro. Furthermore, pathways that require RSEs remained active inside E. coli cells that were acutely stressed by hydrogen peroxide and superoxide. Viperin, but not HemN, was gradually poisoned by molecular oxygen in vitro, forming an apparent [3Fe-4S]+ form that was readily reactivated. The modest rate of damage, and the known ability of cells to repair [3Fe-4S]+ clusters, suggest why these RSEs remain functional inside fully aerated organisms. In contrast, copper(I) damaged HemN and viperin in vitro as readily as it did fumarase, a known target of copper toxicity inside E. coli. Excess intracellular copper also impaired RSE-dependent biosynthetic processes. These data indicate that RSEs may be targets of copper stress but not of reactive oxygen species.
Collapse
Affiliation(s)
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Zuo Y, Li B, Guan S, Jia J, Xu X, Zhang Z, Lu Z, Li X, Pang X. EuRBG10 involved in indole alkaloids biosynthesis in Eucommia ulmoides induced by drought and salt stresses. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153813. [PMID: 36179396 DOI: 10.1016/j.jplph.2022.153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Alkaloids are natural products with many important medicinal activities. To explore the mechanism of abiotic stress promoting alkaloid biosynthesis in Eucommia ulmoides, transcriptomic analysis and metabonomic analysis were used, virus-induced gene silencing (VIGS) lines of target gene were constructed. The results showed that drought and salt stress caused wilting and blackening of leaves, decreased chlorophyll level, and significantly induced MDA and relative conductivity. To resist the damage of stress to cells, the level of secondary metabolites such as alkaloids increased significantly with the extension of stress time. Transcriptomic results showed that, were. Six alkaloid related genes (AWGs) were gathered in five modules positively correlated with either salt stress or alkaloid contents by WGCNA. Results of GO and KEGG enrichment revealed that biosynthesis of alkaloid, especially indole alkaloid was induced, and degradation of alkaloid was inhibited under salt stress. Combining the results of transcriptome and metabolomics, it was suggested that EuRBG10 promotes the production of indole alkaloids and EuAMO5 inhibits the degradation of alkaloids, which may be the core mechanism of the indole alkaloid biosynthesis pathway (map00901) induced by salt stress. The results of these hub proteins were also consistent with the chordal graph of KEGG enrichment. Hub roles of EuRGB10 was checked in E. ulmoides by VIGS. Our findings provide a preliminary understanding of abiotic stress regulating secondary metabolites such as alkaloids, and propose hub genes that can be used to improve the level of bioactive components in medicinal plant.
Collapse
Affiliation(s)
- Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Bairu Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Suixia Guan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jingyu Jia
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xinjie Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zilong Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zheng Lu
- Department of Biology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, 471000, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China.
| | - Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
16
|
Giannakis S, Gupta A, Pulgarin C, Imlay J. Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo) Fenton process and singlet oxygen. WATER RESEARCH 2022; 221:118740. [PMID: 35717710 PMCID: PMC11136163 DOI: 10.1016/j.watres.2022.118740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Solar disinfection (SODIS) was probed for its underlying mechanism. When Escherichia coli was exposed to UVA irradiation, the dominant solar fraction acting in SODIS process, cells exhibited a shoulder before death ensued. This profile resembles cell killing by hydrogen peroxide (H2O2). Indeed, the use of specialized strains revealed that UVA exposure triggers intracellular H2O2 formation. The resultant H2O2 stress was especially impactful because UVA also inactivated the processes that degrade H2O2-peroxidases through the suppression of metabolism, and catalases through direct enzyme damage. Cell killing was enhanced when water was replaced with D2O, suggesting that singlet oxygen plays a role, possibly as a precursor to H2O2 and/or as the mediator of catalase damage. UVA was especially toxic to mutants lacking miniferritin (dps) or recombinational DNA repair (recA) enzymes, indicating that reactions between ferrous iron and UVA-generated H2O2 lead to lethal DNA damage. Importantly, experiments showed that the intracellular accumulation of H2O2 alone is insufficient to kill cells; therefore, UVA must do something more to enable death. A possibility is that UVA stimulates the reduction of intracellular ferric iron to its ferrous form, either by stimulating O2•- formation or by generating photoexcited electron donors. These observations and methods open the door to follow-up experiments that can probe the mechanisms of H2O2 formation, catalase inactivation, and iron reduction. Of immediate utility, the data highlight the intracellular pathways formed under UVA light during SODIS, and that the presence of micromolar iron accelerates the rate at which radiation disinfects water.
Collapse
Affiliation(s)
- Stefanos Giannakis
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA; School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, Universidad Politécnica de Madrid (UPM), c/ Profesor Aranguren, s/n, Madrid ES-28040, Spain.
| | - Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia
| | - James Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Pape VFS, Kovács HA, Szatmári I, Ugrai I, Szikora B, Kacskovics I, May Z, Szoboszlai N, Sirokmány G, Geiszt M. Measuring peroxidasin activity in live cells using bromide addition for signal amplification. Redox Biol 2022; 54:102385. [PMID: 35803124 PMCID: PMC9287737 DOI: 10.1016/j.redox.2022.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Peroxidasin (PXDN) is involved in the crosslinking of collagen IV, a major constituent of basement membranes. Disruption of basement membrane integrity as observed in genetic alterations of collagen IV or PXDN can result in developmental defects and diverse pathologies. Hence, the study of PXDN activity in (patho)physiological contexts is highly relevant. So far, measurements of PXDN activity have been reported from purified proteins, cell lysates and de-cellularized extracellular matrix. Here, for the first time we report the measurement of PXDN activity in live cells using the Amplex Red assay with a signal amplifying modification. We observe that bromide addition enhances the obtained signal, most likely due to formation of HOBr. Abrogation of signal amplification by the HOBr scavenger carnosine supports this hypothesis. Both, pharmacological inhibition as well as complementary genetic approaches confirm that the obtained signal is indeed related to PXDN activity. We validate the modified assay by investigating the effect of Brefeldin A, to inhibit the secretory pathway and thus the access of PXDN to the extracellular Amplex Red dye. Our method opens up new possibilities to investigate the activity of PXDN in (patho)physiological contexts.
Collapse
Affiliation(s)
- Veronika F S Pape
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
| | - Hajnal A Kovács
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Imre Ugrai
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | | | | | - Zoltán May
- Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, H-1117, Budapest, Hungary
| | - Norbert Szoboszlai
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Gábor Sirokmány
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
| |
Collapse
|
18
|
Salmonella Central Carbon Metabolism Enhances Bactericidal Killing by Fluoroquinolone Antibiotics. Antimicrob Agents Chemother 2022; 66:e0234421. [PMID: 35658490 DOI: 10.1128/aac.02344-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficacy of killing by bactericidal antibiotics has been reported to depend in large part on the ATP levels, with low levels of ATP leading to increased persistence after antibiotic challenge. Here, we show that an atp operon deletion strain of Salmonella enterica serovar Typhimurium lacking the ATP synthase was at least 10-fold more sensitive to killing by the fluoroquinolone antibiotic ciprofloxacin and yet showed either increased survival or no significant difference compared with the wild-type strain when challenged with aminoglycoside or β-lactam antibiotics, respectively. The increased cell killing and reduced bacterial survival (persistence) after fluoroquinolone challenge were found to involve metabolic compensation for the loss of the ATP synthase through central carbon metabolism reactions and increased NAD(P)H levels. We conclude that the intracellular ATP levels per se do not correlate with bactericidal antibiotic persistence to fluoroquinolone killing; rather, the central carbon metabolic pathways active at the time of challenge and the intracellular target of the antibiotic determine the efficacy of treatment.
Collapse
|
19
|
Lin L, Zou M, Lu Z. The aerobic electron flux is deficient in fumarate respiration of a strict anaerobe Bacteroides thetaiotaomicron. Biochem Biophys Res Commun 2022; 614:213-218. [PMID: 35623108 DOI: 10.1016/j.bbrc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Why oxygen ceases the growth of strictly anaerobic bacteria is a longstanding question, yet the answer remains unclear. Studies have confirmed that the dehydratase-fumarase containing an iron-sulfur cluster ([4Fe-4S]) is inactivated upon exposure to oxygen in the intestinal obligate anaerobe, Bacteroides thetaiotaomicron (B. thetaiotaomicron); this blocks fumarate respiration, which is the essential energy-producing pathway in anaerobes. Here, we substituted the [4Fe-4S]-dependent fumarase in B. thetaiotaomicron with an iron-free isozyme from E. coli (Ec-FumC). Results show that Ec-FumC successfully performed the catalytic function of fumarase in B. thetaiotaomicron, as the fum-mutant strain that expressed Ec-FumC exhibited succinate-producing ability under anaerobic growth conditions. Ec-FumC is oxygen-resistant and remains active to produce fumarate upon aeration; however, B. thetaiotaomicron mutant that expressed Ec-FumC did not convert fumarate to succinate during air exposure. Biochemical assays of inverted membrane vesicles from wild-type B. thetaiotaomicron confirmed that the electron flux from NADH to fumarate was less efficient in the presence of air as compared to that without oxygen. Our findings suggest that the anaerobic fumarate respiration might be paralyzed due to electron dissipations upon aeration of the obligate anaerobe.
Collapse
Affiliation(s)
- Luyou Lin
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Meng Zou
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Zheng Lu
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
20
|
Ran M, Li Q, Xin Y, Ma S, Zhao R, Wang M, Xun L, Xia Y. Rhodaneses minimize the accumulation of cellular sulfane sulfur to avoid disulfide stress during sulfide oxidation in bacteria. Redox Biol 2022; 53:102345. [PMID: 35653932 PMCID: PMC9163753 DOI: 10.1016/j.redox.2022.102345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 10/27/2022] Open
|
21
|
Omar NM, Prášil O, McCain JSP, Campbell DA. Diffusional Interactions among Marine Phytoplankton and Bacterioplankton: Modelling H 2O 2 as a Case Study. Microorganisms 2022; 10:821. [PMID: 35456871 PMCID: PMC9030875 DOI: 10.3390/microorganisms10040821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phytoplankton vary widely in size across taxa, and in cell suspension densities across habitats and growth states. Cell suspension density and total biovolume determine the bulk influence of a phytoplankton community upon its environment. Cell suspension density also determines the intercellular spacings separating phytoplankton cells from each other, or from co-occurring bacterioplankton. Intercellular spacing then determines the mean diffusion paths for exchanges of solutes among co-occurring cells. Marine phytoplankton and bacterioplankton both produce and scavenge reactive oxygen species (ROS), to maintain intracellular ROS homeostasis to support their cellular processes, while limiting damaging reactions. Among ROS, hydrogen peroxide (H2O2) has relatively low reactivity, long intracellular and extracellular lifetimes, and readily crosses cell membranes. Our objective was to quantify how cells can influence other cells via diffusional interactions, using H2O2 as a case study. To visualize and constrain potentials for cell-to-cell exchanges of H2O2, we simulated the decrease of [H2O2] outwards from representative phytoplankton taxa maintaining internal [H2O2] above representative seawater [H2O2]. [H2O2] gradients outwards from static cell surfaces were dominated by volumetric dilution, with only a negligible influence from decay. The simulated [H2O2] fell to background [H2O2] within ~3.1 µm from a Prochlorococcus cell surface, but extended outwards 90 µm from a diatom cell surface. More rapid decays of other, less stable ROS, would lower these threshold distances. Bacterioplankton lowered simulated local [H2O2] below background only out to 1.2 µm from the surface of a static cell, even though bacterioplankton collectively act to influence seawater ROS. These small diffusional spheres around cells mean that direct cell-to-cell exchange of H2O2 is unlikely in oligotrophic habits with widely spaced, small cells; moderate in eutrophic habits with shorter cell-to-cell spacing; but extensive within phytoplankton colonies.
Collapse
Affiliation(s)
- Naaman M. Omar
- Department of Biology, Mount Allison University, Sackville, NB E4L1G7, Canada;
| | - Ondřej Prášil
- Center Algatech, Laboratory of Photosynthesis, Novohradska 237, CZ 37981 Trebon, Czech Republic;
| | - J. Scott P. McCain
- Department of Biology, Massachusetts Institute of Technology, Boston, MA 02142, USA;
| | - Douglas A. Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L1G7, Canada;
| |
Collapse
|
22
|
Gupta A, Imlay JA. Escherichia coli induces DNA repair enzymes to protect itself from low-grade hydrogen peroxide stress. Mol Microbiol 2022; 117:754-769. [PMID: 34942039 PMCID: PMC9018492 DOI: 10.1111/mmi.14870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Escherichia coli responds to hydrogen peroxide (H2 O2 ) by inducing defenses that protect H2 O2 -sensitive enzymes. DNA is believed to be another important target of oxidation, and E. coli contains enzymes that can repair oxidative lesions in vitro. However, those enzymes are not known to be induced by H2 O2 , and experiments have indicated that they are not necessary for the cell to withstand natural (low-micromolar) concentrations. In this study, we used H2 O2 -scavenging mutants to impose controlled doses of H2 O2 for extended time. Transcriptomic analysis revealed that in the presence of 1 µM cytoplasmic H2 O2 , the OxyR transcription factor-induced xthA, encoding exonuclease III. The xthA mutants survived a conventional 15-min exposure to even 100 times this level of H2 O2 . However, when these mutants were exposed to 1 µM H2 O2 for hours, they accumulated DNA lesions, failed to propagate, and eventually died. Although endonuclease III (nth) was not induced, nth mutants struggled to grow. Low-grade H2 O2 stress also activated the SOS regulon, and when this induction was blocked, cell replication stopped. Collectively, these data indicate that physiological levels of H2 O2 are a real threat to DNA, and the engagement of the base-excision-repair and SOS systems is necessary to enable propagation during protracted stress.
Collapse
Affiliation(s)
- Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
23
|
Li B, Jo M, Liu J, Tian J, Canfield R, Bridwell-Rabb J. Structural and mechanistic basis for redox sensing by the cyanobacterial transcription regulator RexT. Commun Biol 2022; 5:275. [PMID: 35347217 PMCID: PMC8960804 DOI: 10.1038/s42003-022-03226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Organisms have a myriad of strategies for sensing, responding to, and combating reactive oxygen species, which are unavoidable consequences of aerobic life. In the heterocystous cyanobacterium Nostoc sp. PCC 7120, one such strategy is the use of an ArsR-SmtB transcriptional regulator RexT that senses H2O2 and upregulates expression of thioredoxin to maintain cellular redox homeostasis. Different from many other members of the ArsR-SmtB family which bind metal ions, RexT has been proposed to use disulfide bond formation as a trigger to bind and release DNA. Here, we present high-resolution crystal structures of RexT in the reduced and H2O2-treated states. These structures reveal that RexT showcases the ArsR-SmtB winged-helix-turn-helix fold and forms a vicinal disulfide bond to orchestrate a response to H2O2. The importance of the disulfide-forming Cys residues was corroborated using site-directed mutagenesis, mass spectrometry, and H2O2-consumption assays. Furthermore, an entrance channel for H2O2 was identified and key residues implicated in H2O2 activation were pinpointed. Finally, bioinformatics analysis of the ArsR-SmtB family indicates that the vicinal disulfide “redox switch” is a unique feature of cyanobacteria in the Nostocales order, presenting an interesting case where an ArsR-SmtB protein scaffold has been evolved to showcase peroxidatic activity and facilitate redox-based regulation. The DNA binding and H2O2 sensing mechanisms are revealed for RexT, a transcriptional regulator found in cyanobacteria of the Nostocales order.
Collapse
|
24
|
Roth M, Jaquet V, Lemeille S, Bonetti EJ, Cambet Y, François P, Krause KH. Transcriptomic Analysis of E. coli after Exposure to a Sublethal Concentration of Hydrogen Peroxide Revealed a Coordinated Up-Regulation of the Cysteine Biosynthesis Pathway. Antioxidants (Basel) 2022; 11:antiox11040655. [PMID: 35453340 PMCID: PMC9026346 DOI: 10.3390/antiox11040655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a key defense component of host-microbe interaction. However, H2O2 concentrations generated by immune cells or epithelia are usually insufficient for bacterial killing and rather modulate bacterial responses. Here, we investigated the impact of sublethal H2O2 concentration on gene expression of E. coli BW25113 after 10 and 60 min of exposure. RNA-seq analysis revealed that approximately 12% of bacterial genes were strongly dysregulated 10 min following exposure to 2.5 mM H2O2. H2O2 exposure led to the activation of a specific antioxidant response and a general stress response. The latter was characterized by a transient down-regulation of genes involved in general metabolism, such as nucleic acid biosynthesis and translation, with a striking and coordinated down-regulation of genes involved in ribosome formation, and a sustained up-regulation of the SOS response. We confirmed the rapid transient and specific response mediated by the transcription factor OxyR leading to up-regulation of antioxidant systems, including the catalase-encoding gene (katG), that rapidly degrade extracellular H2O2 and promote bacterial survival. We documented a strong and transient up-regulation of genes involved in sulfur metabolism and cysteine biosynthesis, which are under the control of the transcription factor CysB. This strong specific transcriptional response to H2O2 exposure had no apparent impact on bacterial survival, but possibly replenishes the stores of oxidized cysteine and glutathione. In summary, our results demonstrate that different stress response mechanisms are activated by H2O2 exposure and highlight the cysteine synthesis as an antioxidant response in E. coli.
Collapse
Affiliation(s)
- Myriam Roth
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
- Correspondence: ; Tel.: +41-223-794-257
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
- REaders, Assay Development & Screening Unit (READS Unit), Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland;
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
| | - Eve-Julie Bonetti
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals Geneva Medical Center, Michel-Servet 1, 1211 Geneva, Switzerland; (E.-J.B.); (P.F.)
| | - Yves Cambet
- REaders, Assay Development & Screening Unit (READS Unit), Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland;
| | - Patrice François
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals Geneva Medical Center, Michel-Servet 1, 1211 Geneva, Switzerland; (E.-J.B.); (P.F.)
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
| |
Collapse
|
25
|
Chakravarty D, Bihani SC, Banerjee M, Kalwani P, Ballal A. Unique functional insights into the antioxidant response of the cyanobacterial Mn-catalase (KatB). Free Radic Biol Med 2022; 179:266-276. [PMID: 34793931 DOI: 10.1016/j.freeradbiomed.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 01/06/2023]
Abstract
KatB, a hexameric Mn-catalase, plays a vital role in overcoming oxidative and salinity stress in the ecologically important, N2-fixing cyanobacterium, Anabaena. The 5 N-terminal residues of KatB, which show a high degree of conservation in cyanobacteria, form an antiparallel β-strand at the subunit interface of the KatB hexamer. In this study, the contribution of these N-terminal non-active site residues, towards the maintenance of the structure, biochemical properties, and redox balance was evaluated. Each N-terminal amino acid residue from the 2nd to the 7th position of KatB was individually mutated to Ala (to express KatBF2A/KatBF3A/KatBH4A/KatBK5E/KatBK6A/KatBE7A) or this entire 6 amino acid stretch was deleted (to yield KatBTrunc). All the above-mentioned KatB variants, along with the wild-type KatB protein (KatBWT), were overproduced in E. coli and purified. In comparison to KatBWT, the KatBF2A/KatBH4A/KatBTrunc proteins were less compact, more prone to chemical/thermal denaturation, and were unexpectedly inactive. KatBF3A/KatBK5E/KatBK6A showed biophysical/biochemical properties that were in between that of KatBWT and KatBF2A/KatBH4A/KatBTrunc. Surprisingly, KatBE7A was more thermostable with higher activity than KatBWT. On exposure to H2O2, E. coli expressing KatBWT/KatBE7A showed considerably reduced formation of ROS and increased survival than the other KatB variants. Utilizing the KatB structure, the molecular basis responsible for the altered stability/activity of the KatB mutants was delineated. This study demonstrates the physiological importance of the N-terminal β-strand of Mn-catalases in combating H2O2 stress and shows that the non-active site residues can be used for rational protein engineering to develop Mn-catalases with improved characteristics.
Collapse
Affiliation(s)
- Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology & Health Sciences Division, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
26
|
Yun B, King M, Draz MS, Kline T, Rodriguez-Palacios A. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods. Free Radic Biol Med 2022; 178:97-110. [PMID: 34843918 DOI: 10.1016/j.freeradbiomed.2021.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species play a major role in the induction of programmed cell death and numerous diseases. Production of reactive oxygen species is ubiquitous in biological systems such as humans, bacteria, fungi/yeasts, and plants. Although reactive oxygen species are known to cause diseases, little is known about the importance of the combined oxidative stress burden in the gut. Understanding the dynamics and the level of oxidative stress 'reactivity' across kingdoms could help ascertain the combined consequences of free radical accumulation in the gut lumen. Here, we present fundamental similarities of oxidative stress derived from the host immune cells, bacteria, yeasts, plants, and the therein-derived diets, which often accentuate the burden of free radicals by accumulation during storage and cooking conditions. Given the described similarities, oxidative stress could be better understood and minimized by monitoring the levels of oxidative stress in the feces to identify pro-inflammatory factors. However, we illustrate that dietary studies rarely monitor oxidative stress markers in the feces, and therefore our knowledge on fecal oxidative stress monitoring is limited. A more holistic approach to understanding oxidative stress 'reactivity' in the gut could help improve strategies to use diet and microbiota to prevent intestinal diseases.
Collapse
Affiliation(s)
- Bahda Yun
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maria King
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Terence Kline
- Veterinary Technology Program, Cuyahoga Community College, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
27
|
When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol 2021; 19:774-785. [PMID: 34183820 PMCID: PMC9191689 DOI: 10.1038/s41579-021-00583-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The defining trait of obligate anaerobes is that oxygen blocks their growth, yet the underlying mechanisms are unclear. A popular hypothesis was that these microorganisms failed to evolve defences to protect themselves from reactive oxygen species (ROS) such as superoxide and hydrogen peroxide, and that this failure is what prevents their expansion to oxic habitats. However, studies reveal that anaerobes actually wield most of the same defences that aerobes possess, and many of them have the capacity to tolerate substantial levels of oxygen. Therefore, to understand the structures and real-world dynamics of microbial communities, investigators have examined how anaerobes such as Bacteroides, Desulfovibrio, Pyrococcus and Clostridium spp. struggle and cope with oxygen. The hypoxic environments in which these organisms dwell - including the mammalian gut, sulfur vents and deep sediments - experience episodic oxygenation. In this Review, we explore the molecular mechanisms by which oxygen impairs anaerobes and the degree to which bacteria protect their metabolic pathways from it. The emergent view of anaerobiosis is that optimal strategies of anaerobic metabolism depend upon radical chemistry and low-potential metal centres. Such catalytic sites are intrinsically vulnerable to direct poisoning by molecular oxygen and ROS. Observations suggest that anaerobes have evolved tactics that either minimize the extent to which oxygen disrupts their metabolism or restore function shortly after the stress has dissipated.
Collapse
|
28
|
Li X, Zhang Y, Zhao S, Li B, Cai L, Pang X. Omics analyses indicate the routes of lignin related metabolites regulated by trypsin during storage of pitaya (Hylocereus undatus). Genomics 2021; 113:3681-3695. [PMID: 34509619 DOI: 10.1016/j.ygeno.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The storage quality of Hylocereus undatus was significantly improved by trypsin, a novel preservative. The transcriptomic results revealed that antioxidant signal pathways were induced, while lignin catabolic process was impeded by trypsin. In addition, the results of protein-protein interaction (PPI) network networks suggested that flavone 3'-O-methyltransferase 1 (OMT1), ferulic acid 5-hydroxylase 1 (CYP84A1), cellulose synthase isomer (CEV1), and 4-coumarate-CoA ligase 3 (4CL3) act as hubs of peroxidases, lignin related proteins, and proteins involved in the phenylpropanoid metabolism (PLPs) induced by trypsin. Trypsin also regulated the biosynthesis of lignin, chlorogenic acid, and flavonoids. Caffeic acid might be the hub in the metabolic network of the early pathways of phenylpropanoid biosynthesis. It has been hypothesized that trypsin might quickly induce lignin biosynthesis and then up-regulated bioactive metabolites to enhance storage quality of H. undatus.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Key Laboratory of Microbial Resources Exploitation and Utilization, Luoyang 471023, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471000, China
| | - Yinyin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shoujing Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Bairu Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Luning Cai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
29
|
Molecular Biology and Genetic Tools to Investigate Functional Redundancy Among Fe-S Cluster Carriers in E. coli. Methods Mol Biol 2021. [PMID: 34292541 DOI: 10.1007/978-1-0716-1605-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Iron-sulfur (Fe-S) clusters are among the oldest protein cofactors, and Fe-S cluster-based chemistry has shaped the cellular metabolism of all living organisms. Over the last 30 years, thanks to molecular biology and genetic approaches, numerous actors for Fe-S cluster assembly and delivery to apotargets have been uncovered. In prokaryotes, Escherichia coli is the best-studied for its convenience of growth and its genetic amenability. During evolution, redundant ways to secure the supply of Fe-S clusters to the client proteins have emerged in E. coli. Disrupting gene expression is essential for gene function exploration, but redundancy can blur the interpretations as it can mask the role of important biogenesis components. This chapter describes molecular biology and genetic strategies that have permitted to reveal the E. coli Fe-S cluster conveying component network, composition, organization, and plasticity. In this chapter, we will describe the following genetic methods to investigate the importance of E. coli Fe-S cluster carriers: one-step inactivation of chromosomal genes in E. coli using polymerase chain reaction (PCR) products, P1 transduction, arabinose-inducible expression system, mevalonate (MVA) genetic by-pass, sensitivity tests to oxidative stress and iron starvation, β-galactosidase assay, gentamicin survival test, and Hot Fusion cloning method.
Collapse
|
30
|
Sachla AJ, Luo Y, Helmann JD. Manganese impairs the QoxABCD terminal oxidase leading to respiration-associated toxicity. Mol Microbiol 2021; 116:729-742. [PMID: 34097790 DOI: 10.1111/mmi.14767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Cell physiology relies on metalloenzymes and can be easily disrupted by imbalances in metal ion pools. Bacillus subtilis requires manganese for growth and has highly regulated mechanisms for import and efflux that help maintain homeostasis. Cells defective for manganese (Mn) efflux are highly sensitive to intoxication, but the processes impaired by Mn excess are often unknown. Here, we employed a forward genetics approach to identify pathways affected by manganese intoxication. Our results highlight a central role for the membrane-localized electron transport chain in metal intoxication during aerobic growth. In the presence of elevated manganese, there is an increased generation of reactive radical species associated with dysfunction of the major terminal oxidase, the cytochrome aa3 heme-copper menaquinol oxidase (QoxABCD). Intoxication is suppressed by diversion of menaquinol to alternative oxidases or by a mutation affecting heme A synthesis that is known to convert QoxABCD from an aa3 to a bo3 -type oxidase. Manganese sensitivity is also reduced by derepression of the MhqR regulon, which protects cells against reactive quinones. These results suggest that dysfunction of the cytochrome aa3 -type quinol oxidase contributes to metal-induced intoxication.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Yuanchan Luo
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Fasnacht M, Polacek N. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Front Mol Biosci 2021; 8:671037. [PMID: 34041267 PMCID: PMC8141631 DOI: 10.3389/fmolb.2021.671037] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Ever since the "great oxidation event," Earth's cellular life forms had to cope with the danger of reactive oxygen species (ROS) affecting the integrity of biomolecules and hampering cellular metabolism circuits. Consequently, increasing ROS levels in the biosphere represented growing stress levels and thus shaped the evolution of species. Whether the ROS were produced endogenously or exogenously, different systems evolved to remove the ROS and repair the damage they inflicted. If ROS outweigh the cell's capacity to remove the threat, we speak of oxidative stress. The injuries through oxidative stress in cells are diverse. This article reviews the damage oxidative stress imposes on the different steps of the central dogma of molecular biology in bacteria, focusing in particular on the RNA machines involved in transcription and translation.
Collapse
Affiliation(s)
- Michel Fasnacht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Sen A, Imlay JA. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. Front Immunol 2021; 12:667343. [PMID: 33995399 PMCID: PMC8115020 DOI: 10.3389/fimmu.2021.667343] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes rely upon iron as a cofactor for many enzymes in their central metabolic processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide react rapidly with iron, and inside cells they can generate both enzyme and DNA damage. ROS are formed in some bacterial habitats by abiotic processes. The vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host defense systems and bacterial competitors. Phagocyte-derived O 2 - can toxify captured bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies to defend themselves against incoming H2O2. Most bacteria sense the H2O2via OxyR or PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the intracellular iron pools, and repair the H2O2-mediated damage. However, individual organisms have tailored these transcription factors and their regulons to suit their particular environmental niches. Some bacteria even contain both OxyR and PerR, raising the question as to why they need both systems. In lab experiments these regulators can also respond to nitric oxide and disulfide stress, although it is unclear whether the responses are physiologically relevant. The next step is to extend these studies to natural environments, so that we can better understand the circumstances in which these systems act. In particular, it is important to probe the role they may play in enabling host infection by microbial pathogens.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
34
|
Li H, Zhou X, Huang Y, Liao B, Cheng L, Ren B. Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Front Microbiol 2021; 11:622534. [PMID: 33613470 PMCID: PMC7889972 DOI: 10.3389/fmicb.2020.622534] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are attractive weapons in both antibiotic-mediated killing and host-mediated killing. However, the involvement of ROS in antibiotic-mediated killing and complexities in host environments challenge the paradigm. In the case of bacterial pathogens, the examples of some certain pathogens thriving under ROS conditions prompt us to focus on the adaption mechanism that pathogens evolve to cope with ROS. Based on these, we here summarized the mechanisms of ROS-mediated killing of either antibiotics or the host, the examples of bacterial adaption that successful pathogens evolved to defend or thrive under ROS conditions, and the potential side effects of ROS in pathogen clearance. A brief section for new antibacterial strategies centered around ROS was also addressed.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Pang X, Zhao S, Zhang M, Cai L, Zhang Y, Li X. Catechin gallate acts as a key metabolite induced by trypsin in Hylocereus undatus during storage indicated by omics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:497-507. [PMID: 33257230 DOI: 10.1016/j.plaphy.2020.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Trypsin is a novel superoxide scavenger. The storage quality of H. undatus was significantly improved by trypsin. To investigate the mechanism of flavonoid metabolism regulated by trypsin, combined analysis of widely targeted metabolomic and transcriptome were performed. GO and KEGG enrichment analyses of the transcriptome profiles of H. undatus revealed that some of the flavonoid related biosynthesis pathways were regulated by up or down patterns with the treatment of trypsin. Correlation analysis of flavonoid related genes expression in H. undatus provided a rationale for the functional significance of them. Furthermore, it has been revealed that the most significantly regulated flavonoid was catechin gallate in metabolomic profiles of H. undatus. The major route of flavonoid biosynthesis regulated by trypsin was also illustrated by both transcriptomic and metabolomic data. Finally, the results of PPI network revealed that C4H, HCT, and CYP75B1 acted as hub proteins involved in flavonoid metabolism regulated by trypsin.
Collapse
Affiliation(s)
- Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shoujing Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Min Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Luning Cai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yinyin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, 471000, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China.
| |
Collapse
|
36
|
Shi X, Yang Y, Li Z, Wang X, Liu Y. Moisture transfer and microstructure change of banana slices during contact ultrasound strengthened far-infrared radiation drying. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Ballal A, Chakravarty D, Bihani SC, Banerjee M. Gazing into the remarkable world of non-heme catalases through the window of the cyanobacterial Mn-catalase 'KatB'. Free Radic Biol Med 2020; 160:480-487. [PMID: 32858159 DOI: 10.1016/j.freeradbiomed.2020.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Catalases, enzymes that decompose H2O2, are broadly categorized as heme catalases or non-heme catalases. The non-heme catalases are also known as Mn-catalases as they have Mn atoms in their active sites. However, unlike the well characterized heme-catalases, the study of Mn-catalases has gained importance only in the last few years. The filamentous, heterocystous, N2-fixing cyanobacterium Anabaena PCC 7120, shows the presence of two Mn-catalases, KatA and KatB, but lacks heme catalases. Of the two Mn-catalases, KatB, which is induced by salt/desiccation, plays a major role in overcoming salinity/oxidative stress. In this mini review, we have summarized the recent advances made in the field of Mn-catalases, particularly KatB, and have interpreted these results in the larger context of stress physiology. These aspects bring to the fore the distinctive biochemical/structural properties of Mn-catalases and furthermore highlight the in vivo importance of these enzymes in adapting to oxidative stresses.
Collapse
Affiliation(s)
- Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
38
|
Li X, Li B, Guan S, Cai L, Xinyue P. Hub genes and sub-networks of stoma-related genes in Hylocereus undatus through trypsin treatment during storage revealed by transcriptomic analysis. J Food Biochem 2020; 45:e13538. [PMID: 33152799 DOI: 10.1111/jfbc.13538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023]
Abstract
To further investigate the preservation mechanisms of trypsin, the synergistic mechanisms of trypsin and stoma-related genes were evaluated in Hylocereus undatus. Trypsin significantly induced the stoma closure and improved the storage quality of H. undatus. Transcriptomic analyses of H. undatus revealed that important antioxidant signal pathway, such as SREBP signaling pathway, cellular response to H2 O2 or cellular response to molecule of bacterial origin, were induced; while responses to water deprivation were impeded by trypsin. These results indicated that trypsin relieved pitaya of pressure of water deprivation and exhibited the protection on pitaya during storage. Furthermore, the analyses of networks of protein-protein interaction suggested that OST1, HK5, AT4G27585, and HIR1 act as hubs of stoma-related proteins induced by trypsin during storage of H. undatus. PRACTICAL APPLICATIONS: Preservation of fruit is becoming increasingly important to the world. Keep the balance of production and scavenging of reactive oxygen species is efficient to improve the storage quality of fruit. Trypsin had a novel superoxide anion scavenging activity and protect fruit cells from cellular injury induced by excess ROS. This article investigates the hub genes and interaction mechanisms of stoma closure induced by trypsin during the storage of H. undatus. The application of trypsin provides a new strategy for the quality control of fruit storage. Trypsin will have a broad market and development potential in the area of food additives.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan Engineering Research Center of Food Microbiology, Luoyang, China.,National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Bairu Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Suixia Guan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Luning Cai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Pang Xinyue
- Medical Technology and Engineering College, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
39
|
The role of AMPK in metabolism and its influence on DNA damage repair. Mol Biol Rep 2020; 47:9075-9086. [PMID: 33070285 PMCID: PMC7674386 DOI: 10.1007/s11033-020-05900-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
One of the most complex health disproportions in the human body is the metabolic syndrome (MetS). It can result in serious health consequences such as type 2 diabetes mellitus, atherosclerosis or insulin resistance. The center of energy regulation in human is AMP-activated protein kinase (AMPK), which modulates cells' metabolic pathways and protects them against negative effects of metabolic stress, e.g. reactive oxygen species. Moreover, recent studies show the relationship between the AMPK activity and the regulation of DNA damage repair such as base excision repair (BER) system, which is presented in relation to the influence of MetS on human genome. Hence, AMPK is studied not only in the field of counteracting MetS but also prevention of genetic alterations and cancer development. Through understanding AMPK pathways and its role in cells with damaged DNA it might be possible to improve cell's repair processes and develop new therapies. This review presents AMPK role in eukaryotic cells and focuses on the relationship between AMPK activity and the regulation of BER system through its main component-8-oxoguanine glycosylase (OGG1).
Collapse
|
40
|
Xuan G, Lü C, Xu H, Chen Z, Li K, Liu H, Liu H, Xia Y, Xun L. Sulfane Sulfur is an intrinsic signal activating MexR-regulated antibiotic resistance in Pseudomonas aeruginosa. Mol Microbiol 2020; 114:1038-1048. [PMID: 32875640 DOI: 10.1111/mmi.14593] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa PAO1, an opportunistic human pathogen, deploys several strategies to resist antibiotics. It uses multidrug efflux pumps, including the MexAB-OprM pump, for antibiotic resistance, and it also produces hydrogen sulfide (H2 S) that provides some defense against antibiotics. MexR functions as a transcriptional repressor of the mexAB-oprM operon. MexR responds to oxidative stresses caused by antibiotic exposure, and it also displays a growth phase-dependent derepression of the mexAB-oprM operon. However, the intrinsic inducer has not been identified. Here, we report that P. aeruginosa PAO1 produced sulfane sulfur, including glutathione persulfide and inorganic polysulfide, produced from either H2 S oxidation or from L-cysteine metabolism. Sulfane sulfur directly reacted with MexR, forming di- and trisulfide cross-links between two Cys residues, to derepress the mexAB-oprM operon. Levels of cellular sulfane sulfur and mexAB-oprM expression varied during growth, and both reached the maximum during the stationary phase of growth. Thus, self-produced H2 S and sulfane sulfur may facilitate antibiotic resistance via inducing the expression of antibiotic resistance genes.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Zhigang Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
41
|
During Oxidative Stress the Clp Proteins of Escherichia coli Ensure that Iron Pools Remain Sufficient To Reactivate Oxidized Metalloenzymes. J Bacteriol 2020; 202:JB.00235-20. [PMID: 32601069 DOI: 10.1128/jb.00235-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 11/20/2022] Open
Abstract
Hydrogen peroxide (H2O2) is formed in natural environments by both biotic and abiotic processes. It easily enters the cytoplasms of microorganisms, where it can disrupt growth by inactivating iron-dependent enzymes. It also reacts with the intracellular iron pool, generating hydroxyl radicals that can lethally damage DNA. Therefore, virtually all bacteria possess H2O2-responsive transcription factors that control defensive regulons. These typically include catalases and peroxidases that scavenge H2O2 Another common component is the miniferritin Dps, which sequesters loose iron and thereby suppresses hydroxyl-radical formation. In this study, we determined that Escherichia coli also induces the ClpS and ClpA proteins of the ClpSAP protease complex. Mutants that lack this protease, plus its partner, ClpXP protease, cannot grow when H2O2 levels rise. The growth defect was traced to the inactivity of dehydratases in the pathway of branched-chain amino acid synthesis. These enzymes rely on a solvent-exposed [4Fe-4S] cluster that H2O2 degrades. In a typical cell the cluster is continuously repaired, but in the clpSA clpX mutant the repair process is defective. We determined that this disability is due to an excessively small iron pool, apparently due to the oversequestration of iron by Dps. Dps was previously identified as a substrate of both the ClpSAP and ClpXP proteases, and in their absence its levels are unusually high. The implication is that the stress response to H2O2 has evolved to strike a careful balance, diminishing iron pools enough to protect the DNA but keeping them substantial enough that critical iron-dependent enzymes can be repaired.IMPORTANCE Hydrogen peroxide mediates the toxicity of phagocytes, lactic acid bacteria, redox-cycling antibiotics, and photochemistry. The underlying mechanisms all involve its reaction with iron atoms, whether in enzymes or on the surface of DNA. Accordingly, when bacteria perceive toxic H2O2, they activate defensive tactics that are focused on iron metabolism. In this study, we identify a conundrum: DNA is best protected by the removal of iron from the cytoplasm, but this action impairs the ability of the cell to reactivate its iron-dependent enzymes. The actions of the Clp proteins appear to hedge against the oversequestration of iron by the miniferritin Dps. This buffering effect is important, because E. coli seeks not just to survive H2O2 but to grow in its presence.
Collapse
|
42
|
Cesinger MR, Thomason MK, Edrozo MB, Halsey CR, Reniere ML. Listeria monocytogenes SpxA1 is a global regulator required to activate genes encoding catalase and heme biosynthesis enzymes for aerobic growth. Mol Microbiol 2020; 114:230-243. [PMID: 32255216 PMCID: PMC7496741 DOI: 10.1111/mmi.14508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
An imbalance of cellular oxidants and reductants causes redox stress, which must be rapidly detected to restore homeostasis. In bacteria, the Firmicutes encode conserved Spx-family transcriptional regulators that modulate transcription in response to redox stress. SpxA1 is an Spx-family orthologue in the intracellular pathogen Listeria monocytogenes that is essential for aerobic growth and pathogenesis. Here, we investigated the role of SpxA1 in growth and virulence by identifying genes regulated by SpxA1 in broth and during macrophage infection. We found SpxA1-activated genes encoding heme biosynthesis enzymes and catalase (kat) were required for L. monocytogenes aerobic growth in rich medium. An Spx-recognition motif previously defined in Bacillus subtilis was identified in the promoters of SpxA1-activated genes and proved necessary for the proper activation of two genes, indicating this regulation by SpxA1 is likely direct. Together, these findings elucidated the mechanism of spxA1 essentiality in vitro and demonstrated that SpxA1 is required for basal expression of scavenging enzymes to combat redox stress generated in the presence of oxygen.
Collapse
Affiliation(s)
- Monica R. Cesinger
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Maureen K. Thomason
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mauna B. Edrozo
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Cortney R. Halsey
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Michelle L. Reniere
- Department of MicrobiologySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
43
|
Li X, Liu X, Pang X, Yin Y, Yu H, Yuan Y, Li B. Transcriptomic analysis reveals hub genes and subnetworks related to ROS metabolism in Hylocereus undatus through novel superoxide scavenger trypsin treatment during storage. BMC Genomics 2020; 21:437. [PMID: 32590938 PMCID: PMC7318492 DOI: 10.1186/s12864-020-06850-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND It was demonstrated in our previous research that trypsin scavenges superoxide anions. In this study, the mechanisms of storage quality improvement by trypsin were evaluated in H. undatus. RESULTS Trypsin significantly delayed the weight loss and decreased the levels of ROS and membrane lipid peroxidation. Transcriptome profiles of H. undatus treated with trypsin revealed the pathways and regulatory mechanisms of ROS genes that were up- or downregulated following trypsin treatment by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The current results showed that through the regulation of the expression of hub redox enzymes, especially thioredoxin-related proteins, trypsin can maintain low levels of endogenous active oxygen species, reduce malondialdehyde content and delay fruit aging. In addition, the results of protein-protein interaction networks suggested that the downregulated NAD(P) H and lignin pathways might be the key regulatory mechanisms governed by trypsin. CONCLUSIONS Trypsin significantly prolonged the storage life of H. undatus through regulatory on the endogenous ROS metabolism. As a new biopreservative, trypsin is highly efficient, safe and economical. Therefore, trypsin possesses technical feasibility for the quality control of fruit storage.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang city, 471023, Henan, China. .,State Key Laboratory of Cotton Biology, Henan University, Kaifeng, 455000, China. .,Key Laboratory of Desert and Desertification, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China. .,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China.
| | - Xueru Liu
- College of Food and Bioengineering, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang city, 471023, Henan, China.,State Key Laboratory of Cotton Biology, Henan University, Kaifeng, 455000, China
| | - Xinyue Pang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China.,College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yong Yin
- College of Food and Bioengineering, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang city, 471023, Henan, China
| | - Huichun Yu
- College of Food and Bioengineering, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang city, 471023, Henan, China
| | - Yunxia Yuan
- College of Food and Bioengineering, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang city, 471023, Henan, China
| | - Bairu Li
- College of Food and Bioengineering, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang city, 471023, Henan, China
| |
Collapse
|
44
|
Zhang J, Liu Y, Sun Z, Bai X, Chen Y. Drying characteristics and optimization of ultrasound‐strengthened cold air drying combined with sequential far‐infrared radiation drying on potato. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jiayi Zhang
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Yunhong Liu
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Zhenke Sun
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Xiting Bai
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Yunfei Chen
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| |
Collapse
|
45
|
Nikolaidis MG, Margaritelis NV, Matsakas A. Quantitative Redox Biology of Exercise. Int J Sports Med 2020; 41:633-645. [PMID: 32455453 DOI: 10.1055/a-1157-9043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biology is rich in claims that reactive oxygen and nitrogen species are involved in every biological process and disease. However, many quantitative aspects of redox biology remain elusive. The important quantitative parameters you need to address the feasibility of redox reactions in vivo are: rate of formation and consumption of a reactive oxygen and nitrogen species, half-life, diffusibility and membrane permeability. In the first part, we explain the basic chemical kinetics concepts and algebraic equations required to perform "street fighting" quantitative analysis. In the second part, we provide key numbers to help thinking about sizes, concentrations, rates and other important quantities that describe the major oxidants (superoxide, hydrogen peroxide, nitric oxide) and antioxidants (vitamin C, vitamin E, glutathione). In the third part, we present the quantitative effect of exercise on superoxide, hydrogen peroxide and nitric oxide concentration in mitochondria and whole muscle and calculate how much hydrogen peroxide concentration needs to increase to transduce signalling. By taking into consideration the quantitative aspects of redox biology we can: i) refine the broad understanding of this research area, ii) design better future studies and facilitate comparisons among studies, and iii) define more efficiently the "borders" between cellular signaling and stress.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece.,General Military Hospital of Thessaloniki, Dialysis Unit, Thessaloniki, Greece
| | - Antonios Matsakas
- Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, Hull, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
46
|
Transcriptomic Analysis Reveals Cu/Zn SODs Acting as Hub Genes of SODs in Hylocereus undatus Induced by Trypsin during Storage. Antioxidants (Basel) 2020; 9:antiox9020162. [PMID: 32079316 PMCID: PMC7070240 DOI: 10.3390/antiox9020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
It has been revealed by us that superoxide scavenging is a new activity of trypsin. In this study, the synergistic mechanisms of trypsin and superoxide dismutases (SODs) were evaluated in Hylocereus undatus (pitaya). Trypsin significantly improved the storage quality of H. undatus, including weight loss impediment and decrease of cellular injury. The regulatory mechanisms of 16 SOD genes by trypsin were revealed using transcriptomic analysis on H. undatus. Results revealed that important physiological metabolisms, such as antioxidant activities or metal ion transport were induced, and defense responses were inhibited by trypsin. Furthermore, the results of protein–protein interaction (PPI) networks showed that besides the entire ROS network, the tiny SODs sub-network was also a scale-free network. Cu/Zn SODs acted as the hub that SODs synergized with trypsin during the storage of H. undatus.
Collapse
|
47
|
Chakravarty D, Banerjee M, Ballal A. Facile generation of a biotechnologically-relevant catalase showcases the efficacy of a blue-green algal biomass as a suitable bioresource for protein overproduction. BIORESOURCE TECHNOLOGY 2019; 293:122013. [PMID: 31494434 DOI: 10.1016/j.biortech.2019.122013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Here, we show the utility of a cyanobacterial biomass for overproduction and easy downstream processing of the thermostable protein KatB (a Mn-catalase). The nitrogen-fixing blue-green alga, Anabaena, was bioengineered to overexpress the KatB protein (An-KatB). Interestingly, pure An-KatB could be isolated from Anabaena by a simple physical process, obviating the need of expensive resins or chromatographic steps. An-KatB was an efficient H2O2-detoxifying protein that retained all the properties of Mn-catalases. Surprisingly, the purified An-KatB showed improved characteristics than the corresponding KatB (Ec-KatB) protein purified after over-expression in E. coli. An-KatB was unaffected by exposure to high temperature (85 °C), whereas a commercially procured heme-catalase showed an appreciable drop in activity beyond 50 °C. These data convincingly demonstrate the utility of Anabaena as a competent microbial bioresource for overproduction of proteins and further highlight the advantage of An-KatB over heme-catalases in bioprocesses where H2O2 is to be decomposed at elevated temperatures.
Collapse
Affiliation(s)
- Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
48
|
Korshunov S, Imlay KRC, Imlay JA. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol Microbiol 2019; 113:22-39. [PMID: 31612555 PMCID: PMC7007315 DOI: 10.1111/mmi.14403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
The structure of free cysteine makes it vulnerable to oxidation by molecular oxygen; consequently, organisms that live in oxic habitats have acquired the ability to import cystine as a sulfur source. We show that cystine imported into Escherichia coli can transfer disulfide bonds to cytoplasmic proteins. To minimize this problem, the imported cystine is rapidly reduced. However, this conversion of cystine to cysteine precludes product inhibition of the importer, so cystine import continues into cells that are already sated with cysteine. The burgeoning cysteine pool is itself hazardous, as cysteine promotes the formation of reactive oxygen species, triggers sulfide production and competitively inhibits a key enzyme in the isoleucine biosynthetic pathway. The Lrp transcription factor senses the excess cysteine and induces AlaE, an export protein that pumps cysteine back out of the cell until transcriptional controls succeed in lowering the amount of the importer. While it lasts, the overall phenomenon roughly doubles the NADPH demand of the cell. It comprises another example of the incompatibility of the reduced cytoplasms of microbes with the oxic world in which they dwell. It also reveals one natural source of cytoplasmic disulfide stress and sheds light on a role for broad-spectrum amino acid exporters.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | | | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
49
|
Lu Z, Imlay JA. A conserved motif liganding the [4Fe-4S] cluster in [4Fe-4S] fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress. Redox Biol 2019; 26:101296. [PMID: 31465957 PMCID: PMC6831887 DOI: 10.1016/j.redox.2019.101296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022] Open
Abstract
Organisms have evolved two different classes of the ubiquitous enzyme fumarase: the [4Fe–4S] cluster-containing class I enzymes are oxidant-sensitive, whereas the class II enzymes are iron-free and therefore oxidant-resistant. When hydrogen peroxide (H2O2) attacks the most-studied [4Fe–4S] fumarases, only the cluster is damaged, and thus the cell can rapidly repair the enzyme. However, this study shows that when elevated levels of H2O2 oxidized the class I fumarase of the obligate anaerobe Bacteroides thetaiotaomicron (Bt-Fum), a hydroxyl-like radical species was produced that caused irreversible covalent damage to the polypeptide. Unlike the fumarase of oxygen-tolerant bacteria, Bt-Fum lacks a key cysteine residue in the typical “CXnCX2C″ motif that ligands [4Fe–4S] clusters. Consequently H2O2 can access and oxidize an iron atom other than the catalytic one in its cluster. Phylogenetic analysis showed that certain clades of bacteria may have evolved the full “CXnCX2C″ motif to shield the [4Fe–4S] cluster of fumarase. This effect was reproduced by the construction of a chimeric enzyme. These data demonstrate the irreversible oxidation of Fe–S cluster enzymes and may recapitulate evolutionary steps that occurred when microorganisms originally confronted oxidizing environments. It is also suggested that, if H2O2 is generated within the colon as a consequence of inflammation or the action of lactic acid bacteria, the inactivation of fumarase could potentially impair the central fermentation pathway of Bacteroides species and contribute to gut dysbiosis.
Collapse
Affiliation(s)
- Zheng Lu
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Shantou University, Shantou, 515063, China.
| | - James A Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| |
Collapse
|
50
|
Chakravarty D, Bihani SC, Banerjee M, Ballal A. Novel molecular insights into the anti-oxidative stress response and structure-function of a salt-inducible cyanobacterial Mn-catalase. PLANT, CELL & ENVIRONMENT 2019; 42:2508-2521. [PMID: 30993731 DOI: 10.1111/pce.13563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
KatB, a salt-inducible Mn-catalase, protects the cyanobacterium Anabaena from salinity/oxidative stress. In this report, we provide distinctive insights into the biological-biochemical function of KatB at the molecular level. Anabaena overexpressing the wild-type KatB protein (KatBWT) detoxified H2 O2 efficiently, showing reduced burden of reactive oxygen species compared with the strain overproducing KatBF2V (wherein F-2 is replaced by V). Correspondingly, the KatBWT protein also displayed several folds more activity than KatBF2V. Interestingly, the KatB variants with large hydrophobic amino acids (F/W/Y) were more compact, showed enhanced activity, and were resistant to thermal/chemical denaturation than variants with smaller residues (G/A/V) at the second position. X-ray crystallography-based analysis showed that F-2 was required for appropriate interactions between two subunits. These contacts provided stability to the hexamer, making it more compact. F-2, through its interaction with F-66 and W-43, formed the proper hydrophobic pocket that held the active site together. Consequently, only residues that supported activity (i.e., F/Y/W) were selected at the second position in Mn-catalases during evolution. This study (a) demonstrates that modification of nonactive site residues can alter the response of catalases to environmental stress and (b) has expanded the scope of amino acids that can be targeted for rational protein engineering in plants.
Collapse
Affiliation(s)
- Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|