1
|
Hebchen DM, Schröder K. Redox Signaling in Endosomes Using the Example of EGF Receptors: A Graphical Review. Antioxidants (Basel) 2024; 13:1215. [PMID: 39456468 PMCID: PMC11504029 DOI: 10.3390/antiox13101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Early endosomes represent first-line sorting compartments or even organelles for internalized molecules. They enable the transport of molecules or ligands to other compartments of the cell, such as lysosomes, for degradation or recycle them back to the membrane by various mechanisms. Moreover, early endosomes function as signaling and scaffolding platforms to initiate or prolong distinct signaling pathways. Accordingly, early endosomes have to be recognized as either part of a degradation or recycling pathway. The physical proximity of many ligand-binding receptors with other membrane-bound proteins or complexes such as NADPH oxidases may result in an interaction of second messengers, like reactive oxygen species (ROS) and early endosomes, that promote the correct recognition of individual early endosomes. In fact, redoxosomes comprise an endosomal subsection of signaling endosomes. One example of such potential interaction is epidermal growth factor receptor (EGFR) signaling. Here we summarize recent findings on EGFR signaling as a well-studied example for receptor trafficking and trans-activation and illustrate the interplay between cellular and endosomal ROS.
Collapse
Affiliation(s)
| | - Katrin Schröder
- Institute of Physiology, Medical Faculty, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
2
|
Nakamura T, Izumida M, Hans MB, Suzuki S, Takahashi K, Hayashi H, Ariyoshi K, Kubo Y. Post-Transcriptional Induction of the Antiviral Host Factor GILT/IFI30 by Interferon Gamma. Int J Mol Sci 2024; 25:9663. [PMID: 39273610 PMCID: PMC11395427 DOI: 10.3390/ijms25179663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) plays pivotal roles in both adaptive and innate immunities. GILT exhibits constitutive expression within antigen-presenting cells, whereas in other cell types, its expression is induced by interferon gamma (IFN-γ). Gaining insights into the precise molecular mechanism governing the induction of GILT protein by IFN-γ is of paramount importance for adaptive and innate immunities. In this study, we found that the 5' segment of GILT mRNA inhibited GILT protein expression regardless of the presence of IFN-γ. Conversely, the 3' segment of GILT mRNA suppressed GILT protein expression in the absence of IFN-γ, but it loses this inhibitory effect in its presence. Although the mTOR inhibitor rapamycin suppressed the induction of GILT protein expression by IFN-γ, the expression from luciferase sequence containing the 3' segment of GILT mRNA was resistant to rapamycin in the presence of IFN-γ, but not in its absence. Collectively, this study elucidates the mechanism behind GILT induction by IFN-γ: in the absence of IFN-γ, GILT mRNA is constitutively transcribed, but the translation process is hindered by both the 5' and 3' segments. Upon exposure to IFN-γ, a translation inhibitor bound to the 3' segment is liberated, and a translation activator interacts with the 3' segment to trigger the initiation of GILT translation.
Collapse
Affiliation(s)
- Taisuke Nakamura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Manya Bakatumana Hans
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Shuichi Suzuki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- San Lazaro Hospital-Nagasaki University Collaborative Research Office, Manila 1003, Philippines
| | - Kensuke Takahashi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hideki Hayashi
- Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Koya Ariyoshi
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Behzadipour Y, Hemmati S. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides. Biomed Pharmacother 2024; 176:116910. [PMID: 38852512 DOI: 10.1016/j.biopha.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach. Peptide-based delivery systems, namely cell-penetrating peptides (CPPs), have few safety concerns, and low immunogenicity, with control over administered doses. This study investigates CPP-based protein delivery systems by classifying them into CPP-protein "covalent conjugation" and CPP: protein "non-covalent complexation" categories. Covalent conjugates ensure the proximity of the CPP to the cargo, which can improve cellular uptake and endosomal escape. We will discuss various aspects of covalent conjugates through non-cleavable (stable) or cleavable bonds. Non-cleavable CPP-protein conjugates are produced by recombinant DNA technology to express the complete fusion protein in a host cell or by chemical ligation of CPP and protein, which ensures stability during the delivery process. CPP-protein cleavable bonds are classified into pH-sensitive and redox-sensitive bonds, enzyme-cleavable bonds, and physical stimuli cleavable linkers (light radiation, ultrasonic waves, and thermo-responsive). We have highlighted the key characteristics of non-covalent complexes through electrostatic and hydrophobic interactions to preserve the conformational integrity of the CPP and cargo. CPP-mediated protein delivery by non-covalent complexation, such as zippers, CPP adaptor methods, and avidin-biotin technology, are featured. Conclusively, non-covalent complexation methods are appropriate when a high number of CPP or protein samples are to be screened. In contrast, when the high biological activity of the protein is critical in the intracellular compartment, conjugation protocols are preferred.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
4
|
Xu J, He C, Cai Y, Wang X, Yan J, Zhang J, Zhang F, Urbonaviciute V, Cheng Y, Lu S, Holmdahl R. NCF4 regulates antigen presentation of cysteine peptides by intracellular oxidative response and restricts activation of autoreactive and arthritogenic T cells. Redox Biol 2024; 72:103132. [PMID: 38547647 PMCID: PMC11096609 DOI: 10.1016/j.redox.2024.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024] Open
Abstract
Autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematous, are regulated by polymorphisms in genes contributing to the NOX2 complex. Mutations in both Ncf1 and Ncf4 affect development of arthritis in experimental models of RA, but the different regulatory pathways mediated by NOX2-derived reactive oxygen species (ROS) have not yet been clarified. Here we address the possibility that intracellular ROS, regulated by the NCF4 protein (earlier often denoted p40phox) which interacts with endosomal membranes, could play an important role in the oxidation of cysteine peptides in mononuclear phagocytic cells, thereby regulating antigen presentation and activation of arthritogenic T cells. To study the role of NCF4 we used mice with an amino acid replacing mutation (NCF4R58A), which is known to affect interaction with endosomal membranes, leading to decreased intracellular ROS production. To study the impact of NCF4 on T cell activation, we used the glucose phosphate isomerase peptide GPI325-339, which contains two cysteine residues (325-339c-c). Macrophages from mice with the NCF458A mutation efficiently presented the peptide when the two cysteines were intact and not crosslinked, leading to a strong arthritogenic T cell response. T cell priming occurred in the draining lymph nodes (LNs) within 8 days after immunization. Clodronate treatment, which depletes antigen-presenting mononuclear phagocytes, ameliorated arthritis severity, whereas treatment with FYT720, which traps activated T cells in LNs, prohibited arthritis. We conclude that NCF4-dependent intracellular ROS maintains cysteine peptides in an oxidized crosslinked state, which prevents presentation of peptides recognized by non-tolerized T cells and thereby protects against autoimmune arthritis.
Collapse
Affiliation(s)
- Jing Xu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, and Department of Rheumatology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China; Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Chang He
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China; Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Cardiology, The Second Affiliated Hospital, Zhejiang University Schoole of Medicine, Zhejiang, Hangzhou, PR China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China
| | - Xipeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, PR China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Yuanyuan Cheng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, and Department of Rheumatology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Rikard Holmdahl
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, and Department of Rheumatology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China; Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
5
|
Fernandes Fidelis C, Silva de Araújo L, Prates-Patarroyo PA, Martins-Kalks KH, Licursi de Oliveira L, Vargas Viloria MI, Tafur-Gómez GA, Patarroyo Salcedo JH. Immunisation with Neospora caninum subunits rsNcSAG4 and rsNcGRA1 (NcSAG4 and NcGRA1 epitopes construct) in BALB/c mice: the profile of the immune response and controlling the vertical transmission. Parasitol Res 2023; 123:58. [PMID: 38110570 PMCID: PMC10728228 DOI: 10.1007/s00436-023-08020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Neospora caninum is an apicomplexan protozoan that causes neosporosis, which has a high economic impact on cattle herds with no available vaccine. During infection, the secretion of dense granules and the expression of surface antigens play an important role in hosting immunomodulation. However, some epitopes of those antigens are immunogenic, and using these fractions could improve the subunit antigens in vaccine design. This study evaluates the recombinant peptides rsNcGRA1 and rsNcSAG4 derived from NcGRA1 and NcSAG4 native antigens as vaccine candidates produced by a fermentative process in the yeast culture system of Komagataella phaffii strain Km71, confirmed by colony PCR, SDS-PAGE, and western blotting. The assay was conducted in BALB/c mice using the peptides at low (25 μg) and standard (50 μg) dosages in monovalent and combined administrations at three time points with saponin as an adjuvant assessing the immunogenicity by antibodies response and cytokine production. We challenge the females after pregnancy confirmation using 2 × 105 NC-1 tachyzoites previously propagated in Vero cells. We assessed the chronic infection in dams and vertical transmission in the offspring by PCR and histopathology. Mice, especially those immunised with combined peptides and monovalent rsNcGRA1 at a standard dose, controlling the chronic infection in dams with the absence of clinical manifestations, showed an immune response with induction of IgG1, a proper balance between Th1/Th2 cytokines and reduced vertical transmission in the pups. In contrast, dams inoculated with a placebo vaccine showed clinical signs, low-scored brain lesions, augmented chronic infection with 80% positivity, 31% mortality in pups, and 81% vertical transmission. These findings indicate that rsNcGRA1 peptides in monovalent and combined with rsNCSAG4 at standard dose are potential vaccine candidates and improve the protective immune response against neosporosis in mice.
Collapse
Affiliation(s)
- Cintia Fernandes Fidelis
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Leandro Silva de Araújo
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Pablo A Prates-Patarroyo
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Karlos H Martins-Kalks
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Leandro Licursi de Oliveira
- Laboratório de Imunoquímica e Glicobiologia, Departamento de Biologia Geral, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Marlene Isabel Vargas Viloria
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil
| | - Gabriel A Tafur-Gómez
- Universidad de Ciencias Aplicadas y Ambientales - U.D.C.A, Bogotá, 111166, Colombia.
| | - Joaquín Hernán Patarroyo Salcedo
- Laboratório de Biologia e Controle de Hematozoários e Vetores, Departamento de Veterinária, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, CEP, Viçosa, MG, 36570-900, Brazil.
- Patsos Biotecnologia, Parque tecnológico de Viçosa, CEP, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
6
|
Zhang T, Aipire A, Li Y, Guo C, Li J. Antigen cross-presentation in dendric cells: From bench to bedside. Biomed Pharmacother 2023; 168:115758. [PMID: 37866002 DOI: 10.1016/j.biopha.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Cross-presentation (XPT) is an adaptation of the cellular process in which dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules for recognition of the cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, resulting in immunity or tolerance. Recent advances in DCs have broadened our understanding of the underlying mechanisms of XPT and strengthened their application in tumor immunotherapy. In this review, we summarized the known mechanisms of XPT, including the receptor-mediated internalization of exogenous antigens, endosome escape, engagement of the other XPT-related proteins, and adjuvants, which significantly enhance the XPT capacity of DCs. Consequently, various strategies to enhance XPT can be adopted and optimized to improve outcomes of DC-based therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Changying Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
7
|
Zhang T, Wei X, Li Y, Huang S, Wu Y, Cai S, Aipire A, Li J. Dendritic cell-based vaccine prepared with recombinant Lactococcus lactis enhances antigen cross-presentation and antitumor efficacy through ROS production. Front Immunol 2023; 14:1208349. [PMID: 37711617 PMCID: PMC10498461 DOI: 10.3389/fimmu.2023.1208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Lactococcus lactis (L.L) is safe and can be used as vehicle. In this study, the immunoregulatory effect of L.L on dendritic cell (DC) activation and mechanism were investigated. The immune responses and antigen cross-presentation mechanism of DC-based vaccine prepared with OVA recombinant L.L were explored. Methods Confocal microscopy and flow cytometry were used to analyze the mechanism of L.L promoting DC maturation, phagosome membrane rupture and antigen presentation. The antitumor effect of DC vaccine prepared with L.L-OVA was assessed in the B16-OVA tumor mouse model. Results L.L significantly promoted DC maturation, which was partially dependent on TLR2 and downstream MAPK and NF-κB signaling pathways. L.L was internalized into DCs by endocytosis and did not co-localized with lysosome. OVA recombinant L.L enhanced antigen cross-presentation of DCs through the phagosome-to-cytosol pathway in a reactive oxygen species (ROS)- and proteasome-dependent manner. In mouse experiments, L.L increased the migration of DCs to draining lymph node and DC vaccine prepared with OVA recombinant L.L induced strong antigen-specific Th1 and cytotoxic T lymphocyte responses, which significantly inhibited B16-OVA tumor growth. Conclusion This study demonstrated that recombinant L.L as an antigen delivery system prepared DC vaccine can enhance the antigen cross-presentation and antitumor efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
8
|
Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol 2023; 64:102795. [PMID: 37379662 DOI: 10.1016/j.redox.2023.102795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation, University Children's Hospital Zurich - Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Centre Médical Universitaire, Rue Michel Servet 1, 1211, Genève 4, Switzerland
| | - Heiko Weyd
- Clinical Cooperation Unit Applied Tumor Immunity D120, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Giusti L, Tesi M, Ciregia F, Marselli L, Zallocco L, Suleiman M, De Luca C, Del Guerra S, Zuccarini M, Trerotola M, Eizirik DL, Cnop M, Mazzoni MR, Marchetti P, Lucacchini A, Ronci M. The Protective Action of Metformin against Pro-Inflammatory Cytokine-Induced Human Islet Cell Damage and the Mechanisms Involved. Cells 2022; 11:2465. [PMID: 35954309 PMCID: PMC9368307 DOI: 10.3390/cells11152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Metformin, a drug widely used in type 2 diabetes (T2D), has been shown to protect human β-cells exposed to gluco- and/or lipotoxic conditions and those in islets from T2D donors. We assessed whether metformin could relieve the human β-cell stress induced by pro-inflammatory cytokines (which mediate β-cells damage in type 1 diabetes, T1D) and investigated the underlying mechanisms using shotgun proteomics. Human islets were exposed to 50 U/mL interleukin-1β plus 1000 U/mL interferon-γ for 48 h, with or without 2.4 µg/mL metformin. Glucose-stimulated insulin secretion (GSIS) and caspase 3/7 activity were studied, and a shotgun label free proteomics analysis was performed. Metformin prevented the reduction of GSIS and the activation of caspase 3/7 induced by cytokines. Proteomics analysis identified more than 3000 proteins in human islets. Cytokines alone altered the expression of 244 proteins (145 up- and 99 down-regulated), while, in the presence of metformin, cytokine-exposure modified the expression of 231 proteins (128 up- and 103 downregulated). Among the proteins inversely regulated in the two conditions, we found proteins involved in vesicle motility, defense against oxidative stress (including peroxiredoxins), metabolism, protein synthesis, glycolysis and its regulation, and cytoskeletal proteins. Metformin inhibited pathways linked to inflammation, immune reactions, mammalian target of rapamycin (mTOR) signaling, and cell senescence. Some of the changes were confirmed by Western blot. Therefore, metformin prevented part of the deleterious actions of pro-inflammatory cytokines in human β-cells, which was accompanied by islet proteome modifications. This suggests that metformin, besides use in T2D, might be considered for β-cell protection in other types of diabetes, possibly including early T1D.
Collapse
Affiliation(s)
- Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Guerra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mariachiara Zuccarini
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Trerotola
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Zhang H, Zhang R, Wang F, Li G, Wen Y, Shan H. Comparative proteomic analysis of PK15 swine kidney cells infected with a pseudorabies pathogenic variant and the Bartha-K/61 vaccine strain. Microb Pathog 2022; 170:105698. [DOI: 10.1016/j.micpath.2022.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
|
11
|
Xu YC, Liu GH, Xu YH, Zhao T, Zheng H, Tan XY. Physiological and transcriptomic analyses reveal the toxicological mechanism and risk assessment of environmentally-relevant waterborne tetracycline exposure on the gills of tilapia (Oreochromis niloticus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151290. [PMID: 34743874 DOI: 10.1016/j.scitotenv.2021.151290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
With the increasing application of tetracycline (TC) in medical treatment, animal husbandry and aquaculture in recent decades, high quantities of TC have been frequently detected in the aquatic environment, and accordingly TC-related toxicity and environmental pollution have become a global concern. The present study was performed to explore the toxicological influences of TC exposure at its environmentally relevant concentrations on the gills of tilapia Oreochromis niloticus, based on the alteration in histopathology, oxidative stress, inflammatory response, cell cycle, mitochondrial function, apoptosis, and transcriptomic analysis. Our findings revealed that TC exposure damaged the structure and function, induced oxidative stress, affected inflammatory responses, and reduced Na+/K+-ATPase (NKA) activity in the gills. TC also caused the inhibition in cell cycle, resulted in mitochondrial dysfunction and activated apoptosis. Further transcriptomic analysis indicated the extensive influences of TC exposure on the gill function, and immune system was the main target to waterborne TC exposure. These results elucidated that environmental TC had more complex toxicological effects on gills of fish than previously assessed, and provided novel insight into molecular toxicology of TC on fish and good basis for assessing the environmental risk of TC.
Collapse
Affiliation(s)
- Yi-Chuang Xu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang-Hui Liu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
12
|
Izumida M, Hayashi H, Smith C, Ishibashi F, Suga K, Kubo Y. Antivirus activity, but not thiolreductase activity, is conserved in interferon-gamma-inducible GILT protein in arthropod. Mol Immunol 2021; 140:240-249. [PMID: 34773863 DOI: 10.1016/j.molimm.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
We have previously reported that gamma-interferon inducible lysosomal thiolreductase (GILT) functions as a host defense factor against retroviruses by digesting disulfide bonds on viral envelope proteins. GILT is widely conserved even in plants and fungi as well as animals. The thiolreductase active site of mammalian GILT is composed of a CXXC amino acid motif, whereas the C-terminal cysteine residue is changed to serine in arthropods including shrimps, crabs, and flies. GILT from Penaeus monodon (PmGILT) also has the CXXS motif instead of the CXXC active site. We demonstrate here that a human GILT mutant (GILT C75S) with the CXXS motif and PmGILT significantly inhibit amphotropic murine leukemia virus vector infection in human cells without alterning its expression level and lysosomal localization, showing that the C-terminal cysteine residue of the active site is not required for the antiviral activity. We have reported that human GILT suppresses HIV-1 particle production by digestion of disulfide bonds on CD63. However, GILT C75S mutant and PmGILT did not digest CD63 disulfide bonds, and had no effect on HIV-1 virion production, suggesting that they do not have thiolreductase activity. Taken together, this study found that antiviral activity, but not thiolreductase activity, is conserved in arthropod GILT proteins. This finding provides a new insight that the common function of GILT is antiviral activity in many animals.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Chris Smith
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Clinical Research, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Fumito Ishibashi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Koushirou Suga
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
13
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Listeria exploits IFITM3 to suppress antibacterial activity in phagocytes. Nat Commun 2021; 12:4999. [PMID: 34404769 PMCID: PMC8371165 DOI: 10.1038/s41467-021-24982-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3-/- mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.
Collapse
|
15
|
Ewanchuk BW, Arnold CR, Balce DR, Premnath P, Orsetti TL, Warren AL, Olsen A, Krawetz RJ, Yates RM. A non-immunological role for γ-interferon-inducible lysosomal thiol reductase (GILT) in osteoclastic bone resorption. SCIENCE ADVANCES 2021; 7:7/17/eabd3684. [PMID: 33893096 PMCID: PMC8064644 DOI: 10.1126/sciadv.abd3684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The extracellular bone resorbing lacuna of the osteoclast shares many characteristics with the degradative lysosome of antigen-presenting cells. γ-Interferon-inducible lysosomal thiol reductase (GILT) enhances antigen processing within lysosomes through direct reduction of antigen disulfides and maintenance of cysteine protease activity. In this study, we found the osteoclastogenic cytokine RANKL drove expression of GILT in osteoclast precursors in a STAT1-dependent manner, resulting in high levels of GILT in mature osteoclasts, which could be further augmented by γ-interferon. GILT colocalized with the collagen-degrading cysteine protease, cathepsin K, suggesting a role for GILT inside the osteoclastic resorption lacuna. GILT-deficient osteoclasts had reduced bone-resorbing capacity, resulting in impaired bone turnover and an osteopetrotic phenotype in GILT-deficient mice. We demonstrated that GILT could directly reduce the noncollagenous bone matrix protein SPARC, and additionally, enhance collagen degradation by cathepsin K. Together, this work describes a previously unidentified, non-immunological role for GILT in osteoclast-mediated bone resorption.
Collapse
Affiliation(s)
- Benjamin W Ewanchuk
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Corey R Arnold
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Priyatha Premnath
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tanis L Orsetti
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Amy L Warren
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexandra Olsen
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roman J Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robin M Yates
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
16
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
17
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
18
|
Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants. Int J Mol Sci 2020; 21:ijms21061944. [PMID: 32178437 PMCID: PMC7139492 DOI: 10.3390/ijms21061944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Besides their primary involvement in the recycling and degradation of proteins in endo-lysosomal compartments and also in specialized biological functions, cysteine cathepsins are pivotal proteolytic contributors of various deleterious diseases. While the molecular mechanisms of regulation via their natural inhibitors have been exhaustively studied, less is currently known about how their enzymatic activity is modulated during the redox imbalance associated with oxidative stress and their exposure resistance to oxidants. More specifically, there is only patchy information on the regulation of lung cysteine cathepsins, while the respiratory system is directly exposed to countless exogenous oxidants contained in dust, tobacco, combustion fumes, and industrial or domestic particles. Papain-like enzymes (clan CA, family C1, subfamily C1A) encompass a conserved catalytic thiolate-imidazolium pair (Cys25-His159) in their active site. Although the sulfhydryl group (with a low acidic pKa) is a potent nucleophile highly susceptible to chemical modifications, some cysteine cathepsins reveal an unanticipated resistance to oxidative stress. Besides an introductory chapter and peculiar attention to lung cysteine cathepsins, the purpose of this review is to afford a concise update of the current knowledge on molecular mechanisms associated with the regulation of cysteine cathepsins by redox balance and by oxidants (e.g., Michael acceptors, reactive oxygen, and nitrogen species).
Collapse
|
19
|
Freund C, Höfer T. A Missing Switch in Peptide Exchange for MHC Class II Molecules. Front Immunol 2019; 10:2513. [PMID: 31708929 PMCID: PMC6820466 DOI: 10.3389/fimmu.2019.02513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
20
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
21
|
Biguanide is a modifiable pharmacophore for recruitment of endogenous Zn 2+ to inhibit cysteinyl cathepsins: review and implications. Biometals 2019; 32:575-593. [PMID: 31044334 PMCID: PMC6647370 DOI: 10.1007/s10534-019-00197-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/13/2019] [Indexed: 01/28/2023]
Abstract
Excessive activities of cysteinyl cathepsins (CysCts) contribute to the progress of many diseases; however, therapeutic inhibition has been problematic. Zn2+ is a natural inhibitor of proteases with CysHis dyads or CysHis(Xaa) triads. Biguanide forms bidentate metal complexes through the two imino nitrogens. Here, it is discussed that phenformin (phenylethyl biguanide) is a model for recruitment of endogenous Zn2+ to inhibit CysHis/CysHis(X) peptidolysis. Phenformin is a Zn2+-interactive, anti-proteolytic agent in bioassay of living tissue. Benzoyl-L-arginine amide (BAA) is a classical substrate of papain-like proteases; the amide bond is scissile. In this review, the structures of BAA and the phenformin-Zn2+ complex were compared in silico. Their chemistry and dimensions are discussed in light of the active sites of papain-like proteases. The phenyl moieties of both structures bind to the "S2" substrate-binding site that is typical of many proteases. When the phenyl moiety of BAA binds to S2, then the scissile amide bond is directed to the position of the thiolate-imidazolium ion pair, and is then hydrolyzed. However, when the phenyl moiety of phenformin binds to S2, then the coordinated Zn2+ is directed to the identical position; and catalysis is inhibited. Phenformin stabilizes a "Zn2+ sandwich" between the drug and protease active site. Hundreds of biguanide derivatives have been synthesized at the 1 and 5 nitrogen positions; many more are conceivable. Various substituent moieties can register with various arrays of substrate-binding sites so as to align coordinated Zn2+ with catalytic partners of diverse proteases. Biguanide is identified here as a modifiable pharmacophore for synthesis of therapeutic CysCt inhibitors with a wide range of potencies and specificities. Phenformin-Zn2+ Complex.
Collapse
|
22
|
Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G. The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. iScience 2018; 11:160-177. [PMID: 30612035 PMCID: PMC6319320 DOI: 10.1016/j.isci.2018.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Antigen presentation to T cells in major histocompatibility complex class II (MHC class II) requires the conversion of early endo/phagosomes into lysosomes by a process called maturation. Maturation is driven by the phosphoinositide kinase PIKfyve. Blocking PIKfyve activity by small molecule inhibitors caused a delay in the conversion of phagosomes into lysosomes and in phagosomal acidification, whereas production of reactive oxygen species (ROS) increased. Elevated ROS resulted in reduced activity of cathepsin S and B, but not X, causing a proteolytic defect of MHC class II chaperone invariant chain Ii processing. We developed a novel universal MHC class II presentation assay based on a bio-orthogonal "clickable" antigen and showed that MHC class II presentation was disrupted by the inhibition of PIKfyve, which in turn resulted in reduced activation of CD4+ T cells. Our results demonstrate a key role of PIKfyve in the processing and presentation of antigens, which should be taken into consideration when targeting PIKfyve in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Frans Bianchi
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Anastasiya Schirmacher
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Melissa A C van Aart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Elke M Muntjewerff
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Ilse Dingjan
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | | | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
23
|
Pearson JD, Mason JC. Reactive oxygen species as drivers of autoimmune pathology: an Introduction to Special Issue "Oxidative stress and altered redox signalling in autoimmune and connective tissue diseases". Free Radic Biol Med 2018; 125:1-2. [PMID: 30217269 DOI: 10.1016/j.freeradbiomed.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jeremy D Pearson
- Department of Vascular Biology, School of Cardiovascular Medicine & Sciences, King's College London, London SE1 9NH, UK.
| | - Justin C Mason
- Vascular Sciences, National Heart & Lung Institute, Imperial College, London W12 0NN.
| |
Collapse
|