1
|
Ferrara F, Yan X, Pecorelli A, Guiotto A, Colella S, Pasqui A, Lynch S, Ivarsson J, Anderias S, Choudhary H, White S, Valacchi G. Combined exposure to UV and PM affect skin oxinflammatory responses and it is prevented by antioxidant mix topical application: Evidences from clinical study. J Cosmet Dermatol 2024; 23:2644-2656. [PMID: 38590207 DOI: 10.1111/jocd.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Exposure to environmental stressors like particulate matter (PM) and ultraviolet radiation (UV) induces cutaneous oxidative stress and inflammation and leads to skin barrier dysfunction and premature aging. Metals like iron or copper are abundant in PM and are known to contribute to reactive oxygen species (ROS) production. AIMS Although it has been suggested that topical antioxidants may be able to help in preventing and/or reducing outdoor skin damage, limited clinical evidence under real-life exposure conditions have been reported. The aim of the present study was to evaluate the ability of a topical serum containing 15% ascorbic acid, 0.5% ferulic acid, and 1% tocopherol (CF Mix) to prevent oxinflammatory skin damage and premature aging induced by PM + UV in a human clinical trial. METHODS A 4-day single-blinded, clinical study was conducted on the back of 15 females (18-40 years old). During the 4 consecutive days, the back test zones were treated daily with or without the CF Mix, followed by with/without 2 h of PM and 5 min of UV daily exposure. RESULTS Application of the CF Mix prevented PM + UV-induced skin barrier perturbation (Involucrin and Loricrin), lipid peroxidation (4HNE), inflammatory markers (COX2, NLRP1, and AhR), and MMP9 activation. In addition, CF Mix was able to prevent Type I Collagen loss. CONCLUSION This is the first human study confirming multipollutant cutaneous damage and suggesting the utility of a daily antioxidant topical application to prevent pollution induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Xi Yan
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Siena, Italy
| | | | - Stephen Lynch
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - John Ivarsson
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sara Anderias
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | | | | | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Pasqui A, Cicaloni V, Tinti L, Guiotto A, Tinti C, Mori A, Bruttini M, Hayek J, Pecorelli A, Salvini L, Valacchi G. A proteomic approach to investigate the role of the MECP2 gene mutation in Rett syndrome redox regulatory pathways. Arch Biochem Biophys 2024; 752:109860. [PMID: 38110111 DOI: 10.1016/j.abb.2023.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Mutations in the X-linked methyl-CpG-binding 2 (MECP2) gene lead to Rett Syndrome (RTT; OMIM 312750), a devasting neurodevelopmental disorder. RTT clinical manifestations are complex and with different degrees of severity, going from autistic-like behavior to loss of acquired speech, motor skills and cardiac problems. Furthermore, the correlation between the type of MECP2 mutation and the clinical phenotype is still not fully understood. Contextually, different genotypes can differently affect the patient's phenotype and omics methodologies such as proteomics could be an important tool for a molecular characterization of genotype/phenotype correlation. The aim of our study was focused on evaluating RTT oxidative stress (OS) responses related to specific MECP2 gene mutations by using proteomics and bioinformatics approaches. Primary fibroblasts isolated from patients affected by R133C and R255× mutations were compared to healthy controls (HC). After clustering primary dermal fibroblasts based on their specific MECP2 mutations, fibroblast-derived protein samples were qualitative and quantitative analyzed, using a label free quantification (LFQ) analysis by mass spectrometry (MS), achieving a preliminary correlation for RTT genotype/phenotype. Among the identified proteins involved in redox regulation pathways, NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) was found to be absent in R255× cells, while it was present in R133C and in HC fibroblasts. Moreover, NQO1 aberrant gene regulation was also confirmed when cells were challenged with 100 μM hydrogen peroxide (H2O2). In conclusion, by employing a multidisciplinary approach encompassing proteomics and bioinformatics analyses, as well as molecular biology assays, the study uncovered phenotypic responses linked to specific MECP2 gene mutations. These findings contribute to a better understanding of the complexity of RTT molecular pathways, confirming the high heterogeneity among the patients.
Collapse
Affiliation(s)
- Arianna Pasqui
- Toscana Life Science Foundation, Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | | - Laura Tinti
- Toscana Life Science Foundation, Siena, Italy
| | - Anna Guiotto
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | | | - Alessia Mori
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena 53100, Italy
| | - Marco Bruttini
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena 53100, Italy
| | | | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Fu M, Yang Y, Zhang X, Lei B, Chen T, Chen Y. In Vitro Profiling of Toxicity Effects of Different Environmental Factors on Skin Cells. TOXICS 2024; 12:108. [PMID: 38393203 PMCID: PMC10892983 DOI: 10.3390/toxics12020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
The skin is constantly exposed to a variety of environmental threats. Therefore, the influence of environmental factors on skin damage has always been a matter of concern. This study aimed to investigate the cytotoxic effects of different environmental factors, including cooking oil fumes (COFs), haze (PM2.5), and cigarette smoke (CS), on epidermal HaCaT cells and dermal fibroblast (FB) cells. Cell viability, intracellular reactive oxygen species (ROS) generation, inflammatory cytokine levels, and collagen mRNA expression were used as toxicity endpoints. Additionally, the effects of ozone (O3) on cell viability and release of inflammatory cytokines in 3D epidermal cells were also examined. The results showed that the organic extracts of CS, COFs, and PM2.5 significantly inhibited the viability of HaCaT and FB cells at higher exposure concentrations. These extracts also increased intracellular ROS levels in FB cells. Furthermore, they significantly promoted the release of inflammatory cytokines, such as IL-1α and TNF-α, in HaCaT cells and down-regulated the mRNA expression of collagen I, III, IV, and VII in FB cells. Comparatively, SC organic extracts exhibited stronger cytotoxicity to skin cells compared to PM2.5 and COFs. Additionally, O3 at all test concentrations significantly inhibited the viability of 3D epidermal cells in a concentration-dependent manner and markedly increased the levels of TNF-α and IL-1α in 3D epidermal cells. These findings emphasize the potential cytotoxicity of COFs, PM2.5, CS, and O3 to skin cells, which may lead to skin damage; therefore, we should pay attention to these environmental factors and take appropriate measures to protect the skin from their harmful effects.
Collapse
Affiliation(s)
- Minghui Fu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (M.F.); (Y.Y.); (X.Z.)
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (M.F.); (Y.Y.); (X.Z.)
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (M.F.); (Y.Y.); (X.Z.)
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (M.F.); (Y.Y.); (X.Z.)
| | - Tian Chen
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yuanqi Chen
- Skincare Research Center of Dr. YU, Shanghai Jahwa United Co., Ltd., Shanghai 200082, China;
| |
Collapse
|
4
|
Esposito E, Ferrara F, Drechsler M, Bortolini O, Ragno D, Toldo S, Bondi A, Pecorelli A, Voltan R, Secchiero P, Zauli G, Valacchi G. Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage. Life (Basel) 2024; 14:155. [PMID: 38276284 PMCID: PMC10817472 DOI: 10.3390/life14010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The skin's protective mechanisms, in some cases, are not able to counteract the destructive effects induced by UV radiations, resulting in dermatological diseases, as well as skin aging. Nutlin-3, a potent drug with antiproliferative activity in keratinocytes, can block UV-induced apoptosis by activation of p53. In the present investigation, ethosomes and transethosomes were designed as delivery systems for nutlin-3, with the aim to protect the skin against UV damage. Vesicle size distribution was evaluated by photon correlation spectroscopy and morphology was investigated by cryogenic transmission electron microscopy, while nutlin-3 entrapment capacity was evaluated by ultrafiltration and HPLC. The in vitro diffusion kinetic of nutlin-3 from ethosomes and transethosomes was studied by Franz cell. Moreover, the efficiency of ethosomes and transethosomes in delivering nutlin-3 and its protective role were evaluated in ex vivo skin explants exposed to UV radiations. The results indicate that ethosomes and transethosomes efficaciously entrapped nutlin-3 (0.3% w/w). The ethosome vesicles were spherical and oligolamellar, with a 224 nm mean diameter, while in transethosome the presence of polysorbate 80 resulted in unilamellar vesicles with a 146 nm mean diameter. The fastest nutlin-3 kinetic was detected in the case of transethosomes, with permeability coefficients 7.4-fold higher, with respect to ethosomes and diffusion values 250-fold higher, with respect to the drug in solution. Ex vivo data suggest a better efficacy of transethosomes to promote nutlin-3 delivery within the skin, with respect to ethosomes. Indeed, nutlin-3 loaded transethosomes could prevent UV effect on cutaneous metalloproteinase activation and cell proliferative response.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Olga Bortolini
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Sofia Toldo
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Rebecca Voltan
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, I-44121 Ferrara, Italy;
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| |
Collapse
|
5
|
Ferrara F, Pecorelli A, Pambianchi E, White S, Choudhary H, Casoni A, Valacchi G. Vitamin C compounds mixture prevents skin barrier alterations and inflammatory responses upon real life multi pollutant exposure. Exp Dermatol 2024; 33:e15000. [PMID: 38284201 DOI: 10.1111/exd.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Cutaneous tissues is among the main target of outdoor stressors such as ozone (O3 ), particulate matter (PM), and ultraviolet radiation (UV) all involved in inducing extrinsic skin aging. Only a few reports have studied the multipollutant interaction and its effect on skin damage. In the present work, we intended to evaluate the ability of pollutants such as O3 and PM to further aggravate cutaneous UV damage. In addition, the preventive properties of a cosmeceutical formulation mixture (AOX mix) containing 15% vitamin C (L-ascorbic acid), 1% vitamin E (α-tocopherol) and 0.5% ferulic acid was also investigated. Skin explants obtained from three different subjects were exposed to 200 mJ UV light, 0.25 ppm O3 for 2 h, and 30 min of diesel engine exhaust (DEE), alone or in combination for 4 days (time point D1 and D4). The results showed a clear additive effect of O3 and DEE in combination with UV in terms of keratin 10, Desmocollin and Claudin loss. In addition, the multipollutant exposure significantly induced the inflammatory response measured as NLRP1/ASC co-localization suggesting the activation of the inflammasome machinery. Finally, the loss of Aquaporin3 was also affected by the combined outdoor stressors. Furthermore, daily topical pre-treatment with the AOX Mix significantly prevented the cutaneous changes induced by the multipollutants. In conclusion, this study is among the first to investigate the combined effects of three of the most harmful outdoor stressors on human skin and confirms that daily topical of an antioxidant application may prevent pollution-induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | | | | | - Alice Casoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
6
|
Reali E, Ferrari D. From the Skin to Distant Sites: T Cells in Psoriatic Disease. Int J Mol Sci 2023; 24:15707. [PMID: 37958689 PMCID: PMC10648543 DOI: 10.3390/ijms242115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin has long been known as a protective organ, acting as a mechanical barrier towards the external environment. More recent is the acquisition that in addition to this fundamental role, the complex architecture of the skin hosts a variety of immune and non-immune cells playing preeminent roles in immunological processes aimed at blocking infections, tumor progression and migration, and elimination of xenobiotics. On the other hand, dysregulated or excessive immunological response into the skin leads to autoimmune reactions culminating in a variety of skin pathological manifestations. Among them is psoriasis, a multifactorial, immune-mediated disease with a strong genetic basis. Psoriasis affects 2-3% of the population; it is associated with cardiovascular comorbidities, and in up to 30% of the cases, with psoriatic arthritis. The pathogenesis of psoriasis is due to the complex interplay between the genetic background of the patient, environmental factors, and both innate and adaptive responses. Moreover, an autoimmune component and the comprehension of the mechanisms linking chronic skin inflammation with systemic and joint manifestations in psoriatic patients is still a major challenge. The understanding of these mechanisms may offer a valuable chance to find targetable molecules to treat the disease and prevent its progression to severe systemic conditions.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, 44100 Ferrara, Italy
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
7
|
Ferrara F, Pecorelli A, Valacchi G. Redox Regulation of Nucleotide-Binding and Oligomerization Domain-Like Receptors Inflammasome. Antioxid Redox Signal 2023; 39:744-770. [PMID: 37440315 DOI: 10.1089/ars.2022.0180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Inflammasomes are multimeric complexes that, as part of the innate immune response, sense a wide range of pathogenic and sterile stimuli. They consist of three components, namely a sensor protein, an adaptor, and procaspase-1, which once activated result in secretion of proinflammatory interleukin (IL)-1β and IL-18 and, eventually, in a gasdermin D-dependent lytic cell death called pyroptosis. Recent Advances: Since their discovery 20 years ago, the molecular mechanisms underlying the regulation of inflammasomes have been extensively studied. Oxidative stress appears as a major contributor to modulate inflammasomes, especially NLRP3 as well as NLRP1, NLRP6, and NLRC4. Growing evidence supports the idea that the positive feedback between redox imbalance and inflammasome-driven inflammation fuels an OxInflammatory state in a variety of human pathologies. Critical Issues: The current knowledge about the redox signaling pathways involved in inflammasomes activation and functions are here highlighted. In addition, we discuss the role of this complex molecular network interaction in the onset and progression of pathological conditions including neurological and metabolic diseases as well as skin disorders, also with an insight on COVID-19-related pathology. Finally, the therapeutic strategies able to mitigate the redox-mediated inflammasome activation with synthetic and natural compounds as well as by acting on inflammasome-related post-translational modifications and microRNAs are also addressed. Future Directions: Further investigations leading to a deeper understanding of the reciprocal interaction between inflammasomes and reactive oxygen species will help identify other molecular targets for modulating their hyperactivated state, and to design novel therapeutics for chronic OxInflammatory conditions. Antioxid. Redox Signal. 39, 744-770.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Pambianchi E, Hagenberg Z, Pecorelli A, Pasqui A, Therrien JP, Valacchi G. Tension as a key factor in skin responses to pollution. Sci Rep 2023; 13:16013. [PMID: 37749125 PMCID: PMC10519937 DOI: 10.1038/s41598-023-42629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Being the more apparent organ exposed to the outdoor stressors, the effect of pollution on the skin has been widely studied in the last few decades. Although UV light is known as the most aggressive stressor to which our cutaneous tissue is daily exposed, other components of the tropospheric pollution have also shown to affect skin health and functionality. Among them, ozone has been proven to be one of the most toxic due to its high reactivity with the epidermal lipids. Studying the cutaneous effect of pollution in a laboratory setting presents challenges, therefore it becomes critical to employ appropriate and tailored models that aim to answer specific questions. Several skin models are available nowadays: in vitro models (2D cell lines and 3D cutaneous tissues), ex vivo skin explants and in vivo approaches (animals and humans). Although in the last 20 years researchers developed skin models that closely resemble human skin (3D cutaneous tissues), ex vivo skin explants still remain one of the best models to study cutaneous responses. Unfortunately, one important cutaneous property that is not present in the traditional ex vivo human skin explants is the physiological tension, which has been shown to be a cardinal player in skin structure, homeostasis, functional properties and responses to external stimuli. For this reason, in this study, to confirm and further comprehend the harmful mechanism of ozone exposure on the integumentary system, we have performed experiments using the state of art in cutaneous models: the innovative TenSkin™ model in which ex vivo human skin explants are cultured under physiologically relevant tension during the whole experimental procedure. Specifically, we were interested in corroborating previous findings showing that ozone exposure modulates the expression of cutaneous antimicrobial peptides (AMPs). The present work demonstrates that cutaneous exposure to ozone induces AMPs gene and protein levels (CAMP/LL-37, hBD2, hBD3) and that the presence of tension can further modulate their expression. In addition, different responses between tension and non-tension cultured skin were also observed during the evaluation of OxInflammatory markers [cyclooxygenase-2 (COX2), aryl hydrocarbon receptor (AhR), matrix-metallo-proteinase 9 (MMP9) and 4-hydroxy-nonenal (4HNE)]. This current study supports our previous findings confirming the ability of pollution to induce the cutaneous expression of AMPs via redox signaling and corroborates the principle that skin explants are a good and reliable model to study skin responses even though it underlines the need to holistically consider the role of skin tension before extrapolating the data to real life.
Collapse
Affiliation(s)
- Erika Pambianchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Zachary Hagenberg
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Alessandra Pecorelli
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Toscana Life Sciences Foundation, 53100, Siena, Italy
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Arianna Pasqui
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Toscana Life Sciences Foundation, 53100, Siena, Italy
| | - Jean-Philippe Therrien
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121, Ferrara, Italy.
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
9
|
Shahi A, Afzali S, Amirzargar A, Mohaghegh P, Salehi S, Mansoori Y. Potential roles of inflammasomes in the pathophysiology of Psoriasis: A comprehensive review. Mol Immunol 2023; 161:44-60. [PMID: 37481828 DOI: 10.1016/j.molimm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Psoriasis is an inflammatory skin disease whose pathophysiology is attributed to both innate and adaptive immune cells and molecules. Despite the crucial roles of the immune system in psoriasis, it cannot be categorized as an autoimmune disease because of the lack of main signs of autoimmunity, such as specific antibodies, well-defined antigens, and autoimmune genetic risk factors. The presence of some cellular and molecular properties, such as the presence of neutrophils in skin lesions and the activation of the innate immune system, attributes psoriasis to a group of diseases called autoinflammatory disorders. Autoinflammatory diseases refer to a group of inherited disorders whose main manifestations are recurrent fever, a high level of acute-phase reactant, and a tendency for inflammation of the skin, joints, and other organs like the nervous system. In most autoinflammatory disorders, it has been seen that complexes of the high-molecular-weight protein named inflammasomes have significant roles. The inflammasome complex usually is formed and activated in the stimulated immune cell cytoplasm, and its activation consequently leads to inflammatory events such as producing of active caspase-1, mature interleukin-1β (IL-1β), and IL-18 and can cause an inflammatory programmed cell death called pyroptosis. Since the identification of inflammasomes, it has been shown that there are close links between them and hereditary and acquired autoinflammatory diseases like psoriasis. In this review, we aim to focus on well-defined inflammasome and their role in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
10
|
Benedusi M, Kerob D, Guiotto A, Cervellati F, Ferrara F, Pambianchi E. Topical Application of M89PF Containing Vichy Mineralising Water and Probiotic Fractions Prevents Cutaneous Damage Induced by Exposure to UV and O 3. Clin Cosmet Investig Dermatol 2023; 16:1769-1776. [PMID: 37448587 PMCID: PMC10337690 DOI: 10.2147/ccid.s414011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Purpose Exposure of the skin to ultraviolet radiation (UV) or ozone (O3) results in stressed skin, leading to the alteration of the skin physical barrier and defence functions. In this work, the preventive benefit of a dermocosmetic, M89PF, containing Vichy mineralising water, probiotic fractions, antioxidant vitamins and hyaluronic acid, in the alteration of skin physical barrier and skin defence functions after exposure to O3 and UV, alone or combined, was assessed. Methods Untreated and treated (M89PF) skin explants were exposed to O3, to UV rays or to O3+UV. Immunofluorescence was performed for skin barrier, oxidative stress, and inflammatory markers after one and four days of exposure to the pollutants. Results M89PF significantly (p≤0.05) prevented the decrease of the expression level of different skin barrier markers, and significantly (p≤0.05) prevented the induction of OxInflammatory markers and inflammasome components by UV, O3, or both combined. Conclusion M89PF prevents skin barrier damage, as well as oxidative stress and inflammatory markers induced by exposome factors, such as UV, O3, or both combined.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC, 28081, USA
| |
Collapse
|
11
|
Canella R, Benedusi M, Vallese A, Pecorelli A, Guiotto A, Ferrara F, Rispoli G, Cervellati F, Valacchi G. The role of potassium current in the pulmonary response to environmental oxidative stress. Arch Biochem Biophys 2023; 737:109534. [PMID: 36740034 DOI: 10.1016/j.abb.2023.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Exposure of human lung epithelial cells (A549 cell line) to the oxidant pollutant ozone (O3) alters cell membrane currents inducing its decrease, when the cell undergoes to a voltage-clamp protocol ranging from -90 to +70mV. The membrane potential of these cells is mainly maintained by the interplay of potassium and chloride currents. Our previous studies indicated the ability of O3 to activate ORCC (Outward Rectifier Chloride Channel) and consequently increases the chloride current. In this paper our aim was to understand the response of potassium current to oxidative stress challenge and to identify the kind potassium channel involved in O3 induced current changes. After measuring the total membrane current using an intracellular solution with or without potassium ions, we obtained the contribution of potassium to the overall membrane current in control condition by a mathematical approach. Repeating these experiments after O3 treatment we observed a significant decrease of Ipotassium. Treatment of the cells with Iberiotoxin (IbTx), a specific inhibitor of BK channel, we were able to verify the presence and the functionality of BK channels. In addition, the administration of 4-Aminopyridine (an inhibitor of voltage dependent K channels but not BK channels) and Tetraethylammonium (TEA) before and after O3 treatment we observed the formation of BK oxidative post-translation modifications. Our data suggest that O3 is able to inhibit potassium current by targeting BK channel. Further studies are needed to better clarify the role of this BK channel and its interplay with the other membrane channels under oxidative stress conditions. These findings can contribute to identify the biomolecular pathway induced by O3 allowing a possible pharmacological intervention against oxidative stress damage in lung tissue.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy.
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy; NC State University, Plants for Human Health Institute, Animal Science Dept. NC Research Campus 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
12
|
Sarkar P, Pecorelli A, Woodby B, Pambianchi E, Ferrara F, Duary RK, Valacchi G. Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii). Nutrients 2023; 15:1035. [PMID: 36839393 PMCID: PMC9964498 DOI: 10.3390/nu15041035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Food-derived bioactive peptides (BAPs) obtained from edible insect-protein hold multiple activities promising the potential to target complex pathological mechanisms responsible for chronic health conditions such as hypertension development. In this study, enzymatic protein hydrolysates from non-mulberry edible silkworm Antheraea assama (Muga) and Philosomia ricini (Eri) pupae, specifically Alcalase (A. assama) and Papain (P. ricini) hydrolysates obtained after 60 and 240 min, exhibited the highest ACE-inhibitory and antioxidant properties. The hydrolysates' fractions (<3, 3-10 and >10 kDa), specifically Alc_M60min_F3 (≤3 kDa) and Pap_E240min_F3 (≤3 kDa), showed the highest antioxidant and ACE-inhibitory activities, respectively. Further RP-HPLC purified sub-fractions F4 and F6 showed the highest ACE inhibition as well as potent anti-oxinflammatory activities in lipopolysaccharide (LPS)-treated endothelial cells. Indeed, F4 and F6 ACE-inhibitory peptide fractions were effective in preventing p65 nuclear translocation after 3 h of LPS stimulation along with the inhibition of p38 MAPK phosphorylation in HUVEC cells. In addition, pretreatment with F4 and F6 ACE-inhibitory peptide fractions significantly prevented the LPS-induced upregulation of COX-2 expression and IL-1β secretion, while the expression of NRF2 (nuclear factor erythroid 2-related factor 2)-regulated enzymes such as HO-1 and NQO1 was induced by both peptide fractions. The derived peptides from edible pupae protein hydrolysates have potentialities to be explored as nutritional approaches against hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- Preeti Sarkar
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam 784028, Assam, India
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Brittany Woodby
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Erika Pambianchi
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Francesca Ferrara
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam 784028, Assam, India
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Wang T, Xia Y, Zhang X, Qiao N, Ke S, Fang Q, Ye D, Fan Y. Short-term effects of air pollutants on outpatients with psoriasis in a Chinese city with a subtropical monsoon climate. Front Public Health 2022; 10:1071263. [PMID: 36620227 PMCID: PMC9817471 DOI: 10.3389/fpubh.2022.1071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Psoriasis is a common skin disease that seriously affects patients' quality of life. The association of air pollutants with psoriasis, and the extent of their effects remains unclear. Methods Based on a distributed lag non-linear model, this study explored the short-term effects of air pollutants on outpatients with psoriasis in Hefei, China, between 2015 and 2019 by analyzing the exposure-lag-response relationship, after controlling for confounding influences such as meteorological factors, long-term trends, day of the week, and holidays. Stratified analyses were performed for patients of different ages and genders. Results The maximum relative risks of psoriasis outpatients' exposure to SO2, NO2, and O3 were 1.023 (95% confidence intervals (CI): 1.004-1.043), 1.170 (95% CI: 1.046-1.307), and 1.059 (95% CI: 1.030-1.090), respectively. An increase of 10 μg/m 3 of NO2 was associated with a 2.1% (95% CI: 0.7-3.5%) increase in outpatients with psoriasis, and a decrease of 10 μg/m 3 of O3 was associated with an 0.8% (95% CI: 0.4-1.2%) increase in outpatients with psoriasis. Stratified analyses showed that male subjects were more sensitive to a change in meteorological factors, while female subjects and outpatients with psoriasis aged 0-17 years old were more sensitive to a change in air pollutants. Discussion Short-term air pollutant exposures were associated with outpatients having psoriasis, suggesting that patients and high-risk people with psoriasis should reduce their time spent outside and improve their skin protection gear when air quality is poor.
Collapse
Affiliation(s)
- Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yuanrui Xia
- Department of Health Education, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Xinhong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Nini Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Susu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Quan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China,*Correspondence: Dongqing Ye ✉
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Yinguang Fan ✉
| |
Collapse
|
14
|
Ferrara F, Cordone V, Pecorelli A, Benedusi M, Pambianchi E, Guiotto A, Vallese A, Cervellati F, Valacchi G. Ubiquitination as a key regulatory mechanism for O 3-induced cutaneous redox inflammasome activation. Redox Biol 2022; 56:102440. [PMID: 36027676 PMCID: PMC9425076 DOI: 10.1016/j.redox.2022.102440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/26/2022] Open
Abstract
NLRP1 is one of the major inflammasomes modulating the cutaneous inflammatory responses and therefore linked to a variety of cutaneous conditions. Although NLRP1 has been the first inflammasome to be discovered, only in the past years a significant progress was achieved in understanding the molecular mechanism and the stimuli behind its activation. In the past decades a crescent number of studies have highlighted the role of air pollutants as Particulate Matter (PM), Cigarette Smoke (CS) and Ozone (O3) as trigger stimuli for inflammasomes activation, especially via Reactive Oxygen Species (ROS) mediators. However, whether NLRP1 can be modulated by air pollutants via oxidative stress and the mechanism behind its activation is still poorly understood. Here we report for the first time that O3, one of the most toxic pollutants, activates the NLRP1 inflammasome in human keratinocytes via oxidative stress mediators as hydrogen peroxide (H2O2) and 4-hydroxy-nonenal (4HNE). Our data suggest that NLRP1 represents a target protein for 4HNE adduction that possibly leads to its proteasomal degradation and activation via the possible involvement of E3 ubiquitin ligase UBR2. Of note, Catalase (Cat) treatment prevented inflammasome assemble and inflammatory cytokines release as well as NLRP1 ubiquitination in human keratinocytes upon O3 exposure. The present work is a mechanistic study that follows our previous work where we have showed the ability of O3 to induce cutaneous inflammasome activation in humans exposed to this pollutant. In conclusion, our results suggest that O3 triggers the cutaneous NLRP1 inflammasome activation by ubiquitination and redox mechanism.
Collapse
Affiliation(s)
- Francesca Ferrara
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Dept. of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA
| | - Mascia Benedusi
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA.
| | - Anna Guiotto
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA
| | - Andrea Vallese
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA; Dept. of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Fitoussi R, Faure MO, Beauchef G, Achard S. Human skin responses to environmental pollutants: A review of current scientific models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119316. [PMID: 35469928 DOI: 10.1016/j.envpol.2022.119316] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Whatever the exposure route, chemical, physical and biological pollutants modify the whole organism response, leading to nerve, cardiac, respiratory, reproductive, and skin system pathologies. Skin acts as a barrier for preventing pollutant modifications. This review aims to present the available scientific models, which help investigate the impact of pollution on the skin. The research question was "Which experimental models illustrate the impact of pollution on the skin in humans?" The review covered a period of 10 years following a PECO statement on in vitro, ex vivo, in vivo and in silico models. Of 582 retrieved articles, 118 articles were eligible. In oral and inhalation routes, dermal exposure had an important impact at both local and systemic levels. Healthy skin models included primary cells, cell lines, co-cultures, reconstructed human epidermis, and skin explants. In silico models estimated skin exposure and permeability. All pollutants affected the skin by altering elasticity, thickness, the structure of epidermal barrier strength, and dermal extracellular integrity. Some specific models concerned wound healing or the skin aging process. Underlying mechanisms were an exacerbated inflammatory skin reaction with the modulation of several cytokines and oxidative stress responses, ending with apoptosis. Pathological skin models revealed the consequences of environmental pollutants on psoriasis, atopic dermatitis, and tumour development. Finally, scientific models were used for evaluating the safety and efficacy of potential skin formulations in preventing the skin aging process or skin irritation after repeated contact. The review gives an overview of scientific skin models used to assess the effects of pollutants. Chemical and physical pollutants were mainly represented while biological contaminants were little studied. In future developments, cell hypoxia and microbiota models may be considered as more representative of clinical situations. Models considering humidity and temperature variations may reflect the impact of these changes.
Collapse
Affiliation(s)
| | - Marie-Odile Faure
- Scientific Consulting For You, 266 avenue Daumesnil, 75012, PARIS, France
| | | | - Sophie Achard
- HERA Team (Health Environmental Risk Assessment), INSERM UMR1153, CRESS-INRAE, Université Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75270 CEDEX 06, PARIS, France.
| |
Collapse
|
16
|
Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel) 2022; 11:1484. [PMID: 36009203 PMCID: PMC9405175 DOI: 10.3390/antiox11081484] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Our current understanding of the pathogenesis of skin aging includes the role of ultraviolet light, visible light, infrared, pollution, cigarette smoke and other environmental exposures. The mechanism of action common to these exposures is the disruption of the cellular redox balance by the directly or indirectly increased formation of reactive oxygen species that overwhelm the intrinsic antioxidant defense system, resulting in an oxidative stress condition. Altered redox homeostasis triggers downstream pathways that contribute to tissue oxinflammation (cross-talk between inflammation and altered redox status) and accelerate skin aging. In addition, both ultraviolet light and pollution increase intracellular free iron that catalyzes reactive oxygen species generation via the Fenton reaction. This disruption of iron homeostasis within the cell further promotes oxidative stress and contributes to extrinsic skin aging. More recent studies have demonstrated that iron chelators can be used topically and can enhance the benefits of topically applied antioxidants. Thus, an updated, more comprehensive approach to environmental or atmospheric aging protection should include sun protective measures, broad spectrum sunscreens, antioxidants, chelating agents, and DNA repair enzymes.
Collapse
Affiliation(s)
- Patricia K. Farris
- Department of Dermatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| |
Collapse
|
17
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
18
|
Yousefi B, Banihashemian SZ, Feyzabadi ZK, Hasanpour S, Kokhaei P, Abdolshahi A, Emadi A, Eslami M. Potential therapeutic effect of oxygen-ozone in controlling of COVID-19 disease. Med Gas Res 2022; 12:33-40. [PMID: 34677149 PMCID: PMC8562402 DOI: 10.4103/2045-9912.325989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/29/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022] Open
Abstract
Atmospheric ozone is produced when nitrogen oxides react with volatile organic compounds. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome contains a unique N-terminal fragment in the Spike protein, which allows it to bind to air pollutants in the environment. 'Our approach in this review is to study ozone and its effect on the SARS-CoV-2 virus and patients with coronavirus disease 2019 (COVID-19). Article data were collected from PubMed, Scopus, and Google Scholar databases. Ozone therapy has antiviral properties, improves blood flow, facilitates the transfer of oxygen in hypoxemic tissues, and reduces blood coagulation phenomena in COVID-19 patients. Ozone has immunomodulatory effects by modulating cytokines (reduction of interleukin-1, interleukin-6, tumor necrosis factor-α, and interleukin-10), induction of interferon-γ, anti-inflammatory properties by modulating NOD-, LRR- and pyrin domain-containing protein 3, inhibition of cytokine storm (blocking nuclear factor-κB and stimulating nuclear factor erythroid 2-related factor 2 pathway), stimulates cellular/humoral immunity/phagocytic function and blocks angiotensin-converting enzyme 2. In direct oxygen-ozone injection, oxygen reacts with several biological molecules such as thiol groups in albumin to form ozonoids. Intravenous injection of ozonated saline significantly increases the length of time a person can remain hypoxic. The rectal ozone protocol is rectal ozone insufflation, resulting in clinical improvement in oxygen saturation and biochemical improvement (fibrinogen, D-dimer, urea, ferritin, LDH, interleukin-6, and C-reactive protein). In general, many studies have shown the positive effect of ozone therapy as a complementary therapy in the recovery of COVID-19 patients. All the findings indicate that systemic ozone therapy is nontoxic and has no side effects in these patients.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Sahar Hasanpour
- Department of Microbiology and Mycology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Anna Abdolshahi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Emadi
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
19
|
Prieux R, Ferrara F, Cervellati F, Guiotto A, Benedusi M, Valacchi G. Inflammasome involvement in CS-induced damage in HaCaT keratinocytes. In Vitro Cell Dev Biol Anim 2022; 58:335-348. [PMID: 35428946 PMCID: PMC9076721 DOI: 10.1007/s11626-022-00658-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS) alters cutaneous biological processes such as redox homeostasis and inflammation response that might be involved in promoting skin inflammatory conditions. Exposure to CS has also been linked to a destabilization of the NLRP3 inflammasome in pollution target tissues such as the lung epithelium, resulting in a more vulnerable immunological response to several exogenous and endogenous stimuli related to oxidative stress. Thus, CS has an adverse effect on host defense, increasing the susceptibility to develop lung infections and pathologies. In the skin, another direct target of pollution, inflammasome disorders have been linked to an increasing number of diseases such as melanoma, psoriasis, vitiligo, atopic dermatitis, and acne, all conditions that have been connected directly or indirectly to pollution exposure. The inflammasome machinery is an important innate immune sensor in human keratinocytes. However, the role of CS in the NLRP1 and NLRP3 inflammasome in the cutaneous barrier has still not been investigated. In the present study, we were able to determine in keratinocytes exposed to CS an increased oxidative damage evaluated by 4-HNE protein adduct and carbonyl formation. Of note is that, while CS inhibited NLRP3 activation, it was able to activate NLRP1, leading to an increased secretion of the proinflammatory cytokines IL-1β and IL-18. This study highlights the importance of the inflammasome machinery in CS that more in general, in pollution, affects cutaneous tissues and the important cross-talk between different members of the NLRP inflammasome family.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy.
| | - Giuseppe Valacchi
- Department of Environment and Prevention, University of Ferrara, Ferrara, Italy.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
20
|
Pozzetti L, Ferrara F, Marotta L, Gemma S, Butini S, Benedusi M, Fusi F, Ahmed A, Pomponi S, Ferrari S, Perini M, Ramunno A, Pepe G, Campiglia P, Valacchi G, Carullo G, Campiani G. Extra Virgin Olive Oil Extracts of Indigenous Southern Tuscany Cultivar Act as Anti-Inflammatory and Vasorelaxant Nutraceuticals. Antioxidants (Basel) 2022; 11:antiox11030437. [PMID: 35326088 PMCID: PMC8944769 DOI: 10.3390/antiox11030437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Extra virgin olive oil (EVOO) is the typical source of fats in the Mediterranean diet. While fatty acids are essential for the EVOO nutraceutical properties, multiple biological activities are also due to the presence of polyphenols. In this work, autochthonous Tuscany EVOOs were chemically characterized and selected EVOO samples were extracted to obtain hydroalcoholic phytocomplexes, which were assayed to establish their anti-inflammatory and vasorelaxant properties. The polar extracts were characterized via 1H-NMR and UHPLC-HRMS to investigate the chemical composition and assayed in CaCo-2 cells exposed to glucose oxidase or rat aorta rings contracted by phenylephrine. Apigenin and luteolin were found as representative flavones; other components were pinoresinol, ligstroside, and oleuropein. The extracts showed anti-inflammatory and antioxidant properties via modulation of NF-κB and Nrf2 pathways, respectively, and good vasorelaxant activity, both in the presence and absence of an intact endothelium. In conclusion, this study evaluated the nutraceutical properties of autochthonous Tuscany EVOO cv., which showed promising anti-inflammatory and vasorelaxant effects.
Collapse
Affiliation(s)
- Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Francesca Ferrara
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Ludovica Marotta
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
| | - Amer Ahmed
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Serena Pomponi
- Società Agricola Olivicoltori delle Colline del Cetona Società Cooperativa, 53100 Siena, Italy;
| | | | - Matteo Perini
- Fondazione Emund Mach, 38098 San Michele all’Adige (TN), Italy;
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (A.R.); (G.P.); (P.C.)
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA;
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
- Correspondence: (G.C.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018–2022, University of Siena, 53100 Siena, Italy; (L.P.); (L.M.); (S.G.); (S.B.); (F.F.)
- Correspondence: (G.C.); (G.C.)
| |
Collapse
|
21
|
Gruber JV, Holtz R. Pyrroloquinoline Quinone Disodium (PQQ2Na) Has an NLRP Inflammasome-Induced Caspase-1 Release Influence in UVB-Irradiated but Not ATP-Treated Human Keratinocytes but Has No Influence in Increasing Skin Cell Mitochondrial Biogenesis in Either Human Keratinocytes or Fibroblasts. Clin Cosmet Investig Dermatol 2022; 15:107-115. [PMID: 35087283 PMCID: PMC8789319 DOI: 10.2147/ccid.s343123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022]
Abstract
Introduction Pyrroloquinoline quinone is a bacterial-derived redox factor that has been shown to have numerous benefits in humans. Recently, a model for examining the ability of normal human epidermal keratinocytes (NHEKs) to demonstrate anti-inflammatory benefits via nod-like receptor protein (NLRP)-activated caspase-1 release was reported. The question of whether PQQ2Na might have anti-inflammatory benefits that function through NLRP-activated release of active caspase-1 has not been explored. In addition, it has been reported that PQQ2Na will induce mitochondrial biogenesis in humans when taken orally. Whether or not this effect occurs in skin cells is presently unknown. Methods The inflammation studies followed previously published methods that demonstrated both UVB and ATP were able to upregulate the NLRP-activated release of caspase-1 in NHEKs. In addition, NHEK and normal dermal human fibroblasts (NHDF) were treated with PQQ2Na to see if the molecule might stimulate mitochondrial biogenesis measured by increased expression of cyclooxygenase-1 (COX-1) and succinate dehydrogenase complex, subunit A (SDHA). Results At non-cytotoxic concentrations between 5 µg/mL and 100 µg/mL in NHEKs and between 0.1 µg/mL and 5 µg/mL in fibroblasts, the PQQ2Na had no influence on cellular mitochondrial biogenesis. In ATP-activated NHEKs at concentrations of PQQ2Na between 0.05 µg/mL and 50 µg/mL, there was no influence of PQQ2Na on release of active caspase-1. In NHEKs irradiated with 60mJ/cm2 of UVB radiation as previously described and treated with 0.05 µg/mL to 50 µg/mL of PQQ2Na, the molecule showed a dose-dependent benefit at reducing the expression of active caspase-1 in the irradiated cells. Discussion Benefits of PQQ2Na on various skin cell types which had not been investigated previously were addressed. Surprisingly, the PPQ2Na had no apparent influence on skin cell mitochondrial biogenesis. However, the molecule has a strong suppressing influence on UVB-induced active caspase-1 release in UVB-irradiated NHEKs.
Collapse
Affiliation(s)
| | - Robert Holtz
- BioInnovation Laboratories, Inc., Denver, CO, USA
| |
Collapse
|
22
|
Ding J, Cheng F, Meng Z, Cao Y, Han F, Chen D, Cao M, Zhang G, Kang J, Xu S, Xu Q. Core-Shell-Like Structured Co 3O 4@SiO 2 Catalyst for Highly Efficient Catalytic Elimination of Ozone. Front Chem 2021; 9:803464. [PMID: 34957055 PMCID: PMC8695612 DOI: 10.3389/fchem.2021.803464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Co3O4 is an environmental catalyst that can effectively decompose ozone, but is strongly affected by water vapor. In this study, Co3O4@SiO2 catalysts with a core-shell-like structure were synthesized following the hydrothermal method. At 60% relative humidity and a space velocity of 720,000 h−1, the prepared Co3O4@SiO2 obtained 95% ozone decomposition for 40 ppm ozone after 6 h, which far outperformed that of the 25wt% Co3O4/SiO2 catalysts. The superiority of Co3O4@SiO2 is ascribed to its core@shell structure, in which Co3O4 is wrapped inside the SiO2 shell structure to avoid air exposure. This research provides important guidance for the high humidity resistance of catalysts for ozone decomposition.
Collapse
Affiliation(s)
- Jingya Ding
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Feng Cheng
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, China
| | - Zhen Meng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yan Cao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Fennv Han
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Dongbin Chen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Mingxiang Cao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Guolin Zhang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Jiahao Kang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Shuxiang Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Qi Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
23
|
Deferoxamine Treatment Improves Antioxidant Cosmeceutical Formulation Protection against Cutaneous Diesel Engine Exhaust Exposure. Antioxidants (Basel) 2021; 10:antiox10121928. [PMID: 34943031 PMCID: PMC8750544 DOI: 10.3390/antiox10121928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
Skin is one of the main targets of the outdoor stressors. Considering that pollution levels are rising progressively, it is not surprising that several cutaneous conditions have been associated with its exposure. Among the pollutants, diesel engine exhaust (DEE) represents one of the most toxic, as it is composed of a mixture of many different noxious chemicals generated during the compression cycle, for ignition rather than an electrical spark as in gasoline engines. The toxic chemicals of most concern in DEE, besides the oxides of nitrogen, sulfur dioxide and various hydrocarbons, are metals that can induce oxidative stress and inflammation. The present study aimed to evaluate the effects of topical application, singularly or in combination, of the iron-chelator deferoxamine and a commercially available formulation, CE Ferulic, in up to 4-day DEE-exposed skin. DEE induced a significant increase in the oxidative marker 4-hydroxy-nonenal (4HNE) and matrix-metallopeptidase-9 (MMP-9), the loss of cutaneous-barrier-associated proteins (filaggrin and involucrin) and a decrease in collagen-1, while the formulations prevented the cutaneous damage in an additive manner. In conclusion, this study suggests that iron plays a key role in DEE-induced skin damage and its chelation could be an adjuvant strategy to reinforce antioxidant topical formulations.
Collapse
|
24
|
Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. Int J Mol Sci 2021; 22:ijms22179449. [PMID: 34502368 PMCID: PMC8430580 DOI: 10.3390/ijms22179449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease of the skin associated with systemic and joint manifestations and accompanied by comorbidities, such as metabolic syndrome and increased risk of cardiovascular disease. Psoriasis has a strong genetic basis, but exacerbation requires additional signals that are still largely unknown. The clinical manifestations involve the interplay between dendritic and T cells in the dermis to generate a self-sustaining inflammatory loop around the TNFα/IL-23/IL-17 axis that forms the psoriatic plaque. In addition, in recent years, a critical role of keratinocytes in establishing the interplay that leads to psoriatic plaques’ formation has re-emerged. In this review, we analyze the most recent evidence of the role of keratinocytes and danger associates molecular patterns, such as extracellular ATP in the generation of psoriatic skin lesions. Particular attention will be given to purinergic signaling in inflammasome activation and in the initiation of psoriasis. In this phase, keratinocytes’ inflammasome may trigger early inflammatory pathways involving IL-1β production, to elicit the subsequent cascade of events that leads to dendritic and T cell activation. Since psoriasis is likely triggered by skin-damaging events and trauma, we can envisage that intracellular ATP, released by damaged cells, may play a role in triggering the inflammatory response underlying the pathogenesis of the disease by activating the inflammasome. Therefore, purinergic signaling in the skin could represent a new and early step of psoriasis; thus, opening the possibility to target single molecular actors of the purinome to develop new psoriasis treatments.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
25
|
Sguizzato M, Ferrara F, Mariani P, Pepe A, Cortesi R, Huang N, Simelière F, Boldrini P, Baldisserotto A, Valacchi G, Esposito E. "Plurethosome" as Vesicular System for Cutaneous Administration of Mangiferin: Formulative Study and 3D Skin Tissue Evaluation. Pharmaceutics 2021; 13:1124. [PMID: 34452085 PMCID: PMC8398752 DOI: 10.3390/pharmaceutics13081124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Human skin is dramatically exposed to toxic pollutants such as ozone. To counteract the skin disorders induced by the air pollution, natural antioxidants such as mangiferin could be employed. A formulative study for the development of vesicular systems for mangiferin based on phosphatidylcholine and the block copolymer pluronic is described. Plurethosomes were designed for mangiferin transdermal administration and compared to ethosome and transethosome. Particularly, the effect of vesicle composition was investigated on size distribution, inner and outer morphology by photon correlation spectroscopy, small angle X-ray diffraction, and transmission electron microscopy. The potential of selected formulations as vehicles for mangiferin was studied, evaluating encapsulation efficiency and in vitro diffusion parameters by Franz cells. The mangiferin antioxidant capacity was verified by the 2,2-diphenyl-1-picrylhydrazyl assay. Vesicle size spanned between 200 and 550 nm, being influenced by phosphatidylcholine concentration and by the presence of polysorbate or pluronic. The vesicle supramolecular structure was multilamellar in the case of ethosome or plurethosome and unilamellar in the case of transethosome. A linear diffusion of mangiferin in the case of ethosome and transethosomes and a biphasic profile in the case of plurethosomes indicated the capability of multilamellar vesicles to retain the drug more efficaciously than the unilamellar ones. The antioxidant and anti-inflammatory potential effect of mangiferin against pollutants was evaluated on 3D human skin models exposed to O3. The protective effect exerted by plurethosomes and transethosomes suggests their possible application to enhance the cutaneous antioxidant defense status.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (R.C.)
| | - Francesca Ferrara
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy;
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (P.M.); (A.P.)
| | - Alessia Pepe
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (P.M.); (A.P.)
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (R.C.)
| | - Nicolas Huang
- Institut Galien Paris-Saclay, CNRS, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Fanny Simelière
- Institut Galien Paris-Saclay, CNRS, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, I-44121 Ferrara, Italy;
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy;
| | - Giuseppe Valacchi
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy;
- Animal Science Department, NC Research Campus, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (R.C.)
| |
Collapse
|
26
|
Abstract
SUMMARY Exposure to air pollutants has been now associated with detrimental effects on a variety of organs, including the heart, lungs, GI tract, and brain. However, recently it has become clear that pollutant exposure can also promote the development/exacerbation of a variety of skin conditions, including premature aging, psoriasis, acne, and atopic dermatitis. Although the molecular mechanisms by which pollutant exposure results in these cutaneous pathological manifestations, it has been noticed that an inflammatory status is a common denominator of all those skin conditions. For this reason, recently, the activation of a cytosolic multiprotein complex involved in inflammatory responses (the inflammasome) that could promote the maturation of proinflammatory cytokines interleukin-1β and interleukin-18 has been hypothesized to play a key role in pollution-induced skin damage. In this review, we summarize and propose the cutaneous inflammasome as a novel target of pollutant exposure and the eventual usage of inflammasome inhibitor as new technologies to counteract pollution-induced skin damage. Possibly, the ability to inhibit the inflammasome activation could prevent cutaneous inflammaging and ameliorate the health and appearance of the skin.
Collapse
|
27
|
Passeron T, Zouboulis CC, Tan J, Andersen ML, Katta R, Lyu X, Aguilar L, Kerob D, Morita A, Krutmann J, Peters EMJ. Adult skin acute stress responses to short-term environmental and internal aggression from exposome factors. J Eur Acad Dermatol Venereol 2021; 35:1963-1975. [PMID: 34077579 PMCID: PMC8519049 DOI: 10.1111/jdv.17432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022]
Abstract
Exposome factors that lead to stressed skin can be defined as any disturbance to homeostasis from environmental (meteorological factors, solar radiation, pollution or tobacco smoke) and/or internal exposure (unhealthy diet, hormonal variations, lack of sleep, psychosocial stress). The clinical and biological impact of chronic exposome effects on skin functions has been extensively reviewed, whereas there is a paucity of information on the impact of short‐term acute exposure. Acute stress, which would typically last minutes to hours (and generally no more than a week), provokes a transient but robust neuroendocrine‐immune and tissue remodelling response in the skin and can alter the skin barrier. Firstly, we provide an overview of the biological effects of various acute stressors on six key skin functions, namely the skin physical barrier, pigmentation, defences (antioxidant, immune cell‐mediated, microbial and microbiome maintenance), structure (extracellular matrix and appendages), neuroendocrine and thermoregulation functions. Secondly, we describe the biological and clinical effects on adult skin from individual exposome factors that elicit an acute stress response and their consequences in skin health maintenance. Clinical manifestations of acutely stressed skin may include dry skin that might accentuate fine lines, oily skin, sensitive skin, pruritus, erythema, pale skin, sweating, oedema and flares of inflammatory skin conditions such as acne, rosacea, atopic dermatitis, pigmentation disorders and skin superinfection such as viral reactivation. Acute stresses can also induce scalp sensitivity, telogen effluvium and worsen alopecia.
Collapse
Affiliation(s)
- T Passeron
- Department of Dermatology, University Hospital Centre Nice, Côte d'Azur University, Nice, France.,INSERM U1065, team 12, C3M, Nice, France
| | - C C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - J Tan
- Windsor Clinical Research Inc., Windsor, ON, Canada.,Department of Medicine, University of Western Ontario, London, Canada
| | - M L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP)/Escola Paulista de Medicina, São Paulo, Brazil
| | - R Katta
- Volunteer Clinical Faculty, Baylor College of Medicine, Houston, Texas, USA.,McGovern Medical School at UT Health, Houston, Texas, USA
| | - X Lyu
- Department of Dermatology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - L Aguilar
- L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - D Kerob
- Laboratoires Vichy, Levallois Perret, France
| | - A Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - J Krutmann
- IUF Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany.,Medical faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - E M J Peters
- Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University, Gießen, Germany.,Charité Center 12 (CC12) for Internal Medicine and Dermatology, Berlin, Germany
| |
Collapse
|
28
|
Ethosomes and Transethosomes for Mangiferin Transdermal Delivery. Antioxidants (Basel) 2021; 10:antiox10050768. [PMID: 34066018 PMCID: PMC8150765 DOI: 10.3390/antiox10050768] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.
Collapse
|
29
|
Woodby B, Pambianchi E, Ferrara F, Therrien JP, Pecorelli A, Messano N, Lila MA, Valacchi G. Cutaneous antimicrobial peptides: New "actors" in pollution related inflammatory conditions. Redox Biol 2021; 41:101952. [PMID: 33839421 PMCID: PMC8059092 DOI: 10.1016/j.redox.2021.101952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Ozone (O3) exposure has been reported to contribute to various cutaneous inflammatory conditions, such as eczema, psoriasis, rush etc. via a redox-inflammatory pathway. O3 is too reactive to penetrate cutaneous tissue; it interacts with lipids present in the outermost layer of skin, resulting in formation of oxidized molecules and hydrogen peroxide (H2O2). Interestingly, several inflammatory skin pathologies demonstrate altered levels of antimicrobial peptides (AMPs). These small, cationic peptides are found in various cells, including keratinocytes, eccrine gland cells, and seboctyes. Classically, AMPs function as antimicrobial agents. Recent studies indicate that AMPs also play roles in inflammation, angiogenesis, and wound healing. Since altered levels of AMPs have been detected in pollution-associated skin pathologies, we hypothesized that exposure to O3 could affect the levels of AMPs in the skin. We examined levels of AMPs using qRT-PCR, Western blotting, and immunofluorescence in vitro (human keratinocytes), ex vivo (human skin explants), and in vivo (human volunteer subjects exposed to O3) and observed increased levels of all the measured AMPs upon O3 exposure. In addition, in vitro studies have confirmed the redox regulation of AMPs in keratinocytes. This novel finding suggests that targeting AMPs could be a possible defensive strategy to combat pollution-associated skin conditions. AMPs (hBDs1-3, CAMP) increase in O3 exposed human skin by a redox mechanism. Transcriptional upregulation of AMPs in response to O3 exposure is due to an altered redox status. Pollution increase AMPs could be the connection between pollution exposure and the development/exacerbation of inflammatory skin conditions.
Collapse
Affiliation(s)
- Brittany Woodby
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Erika Pambianchi
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Francesca Ferrara
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Nicolo' Messano
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Mary Ann Lila
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; JP Therrien Consulting, LLC, USA; Kyung Hee University, Department of Food and Nutrition, South Korea.
| |
Collapse
|
30
|
Petracca B, Rothen-Rutishauser B, Valacchi G, Eeman M. Bench approaches to study the detrimental cutaneous impact of tropospheric ozone. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:137-148. [PMID: 33127990 DOI: 10.1038/s41370-020-00275-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Being exposed to ground-level ozone (O3), as it is often the case in polluted cities, is known to have a detrimental impact on skin. O3 induces antioxidant depletion and lipid peroxidation in the upper skin layers and this effect has repercussions on deeper cellular layers, triggering a cascade of cellular stress and inflammatory responses. Repetitive exposure to high levels of O3 may lead to chronic damages of the cutaneous tissue, cause premature skin aging and aggravate skin diseases such as contact dermatitis and urticaria. This review paper debates about the most relevant experimental approaches that must be considered to gather deeper insights about the complex biological processes that are activated when the skin is exposed to O3. Having a better understanding of O3 effects on skin barrier properties and stress responses could help the whole dermato-cosmetic industry to design innovative protective solutions and develop specific cosmetic regime to protect the skin of every citizen, especially those living in areas where exposure to high levels of O3 is of concern to human health.
Collapse
Affiliation(s)
- Benedetta Petracca
- Dow Silicones Belgium SRL, Seneffe, Belgium
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | | | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Animal Sciences, Kannapolis Research Campus, North Carolina State University, Raleigh, NC, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Marc Eeman
- Dow Silicones Belgium SRL, Seneffe, Belgium.
| |
Collapse
|
31
|
Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486:15-38. [PMID: 33022781 PMCID: PMC7675684 DOI: 10.1111/nyas.14512] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.
Collapse
Affiliation(s)
- Brittany Woodby
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
| | - Michelle M. Arnold
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLouisiana
| | - Giuseppe Valacchi
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
32
|
Circadian Deregulation as Possible New Player in Pollution-Induced Tissue Damage. ATMOSPHERE 2021. [DOI: 10.3390/atmos12010116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms are 24-h oscillations driven by a hypothalamic master oscillator that entrains peripheral clocks in almost all cells, tissues and organs. Circadian misalignment, triggered by industrialization and modern lifestyles, has been linked to several pathological conditions, with possible impairment of the quality or even the very existence of life. Living organisms are continuously exposed to air pollutants, and among them, ozone or particulate matters (PMs) are considered to be among the most toxic to human health. In particular, exposure to environmental stressors may result not only in pulmonary and cardiovascular diseases, but, as it has been demonstrated in the last two decades, the skin can also be affected by pollution. In this context, we hypothesize that chronodistruption can exacerbate cell vulnerability to exogenous damaging agents, and we suggest a possible common mechanism of action in deregulation of the homeostasis of the pulmonary, cardiovascular and cutaneous tissues and in its involvement in the development of pathological conditions.
Collapse
|
33
|
Nieman DC, Ferrara F, Pecorelli A, Woodby B, Hoyle AT, Simonson A, Valacchi G. Postexercise Inflammasome Activation and IL-1β Production Mitigated by Flavonoid Supplementation in Cyclists. Int J Sport Nutr Exerc Metab 2020; 30:396-404. [PMID: 32932235 DOI: 10.1123/ijsnem.2020-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Inflammasomes are multiprotein signaling platforms of the innate immune system that detect markers of physiological stress and promote the maturation of caspase-1 and interleukin 1 beta (IL-1β), IL-18, and gasdermin D. This randomized, cross-over trial investigated the influence of 2-week mixed flavonoid (FLAV) versus placebo (PL) supplementation on inflammasome activation and IL-1β and IL-18 production after 75-km cycling in 22 cyclists (42 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr postexercise (176 ± 5.4 min, 73.4 ± 2.0 %VO2max). The supplement (678 mg FLAVs) included quercetin, green tea catechins, and bilberry anthocyanins. The pattern of change in the plasma levels of the inflammasome adaptor oligomer ASC (apoptosis-associated speck-like protein containing caspase recruitment domain) was different between the FLAV and PL trials, with the FLAV ASC levels 52% lower (Cohen's d = 1.06) than PL immediately following 75-km cycling (interaction effect, p = .012). The plasma IL-1β levels in FLAV were significantly lower than PL (23-42%; Cohen's d = 0.293-0.644) throughout 21 hr of recovery (interaction effect, p = .004). The change in plasma gasdermin D levels were lower immediately postexercise in FLAV versus PL (15% contrast, p = .023; Cohen's d = 0.450). The patterns of change in plasma IL-18 and IL-37 did not differ between the FLAV and PL trials (interaction effects, p = .388, .716, respectively). These data indicate that 2-week FLAV ingestion mitigated inflammasome activation, with a corresponding decrease in IL-1β release in cyclists after a 75-km cycling time trial. The data from this study support the strategy of ingesting high amounts of FLAV to mitigate postexercise inflammation.
Collapse
|
34
|
Pambianchi E, Ferrara F, Pecorelli A, Woodby B, Grace M, Therrien JP, Lila MA, Valacchi G. Blueberry Extracts as a Novel Approach to Prevent Ozone-Induced Cutaneous Inflammasome Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9571490. [PMID: 32855770 PMCID: PMC7443250 DOI: 10.1155/2020/9571490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/24/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
The World Health Organization estimates that 7 million people die every year due to pollution exposure. Among the different pollutants to which living organism are exposed, ozone (O3) represents one of the most toxic, because its location which is the skin is one of the direct tissues exposed to the outdoor environment. Chronic exposure to outdoor stressors can alter cutaneous redox state resulting in the activation of inflammatory pathways. Recently, a new player in the inflammation mechanism was discovered: the multiprotein complex NLRP1 inflammasome, which has been shown to be also expressed in the skin. The topical application of natural compounds has been studied for the last 40 years as a possible approach to prevent and eventually cure skin conditions. Recently, the possibility to use blueberry (BB) extract to prevent pollution-induced skin toxicity has been of great interest in the cosmeceutical industry. In the present study, we analyzed the cutaneous protective effect of BB extract in several skin models (2D, 3D, and human skin explants). Specifically, we observed that in the different skin models used, BB extracts were able to enhance keratinocyte wound closure and normalize proliferation and migration responses previously altered by O3. In addition, pretreatment with BB extracts was able to prevent ozone-induced ROS production and inflammasome activation measured as NRLP1-ASC scaffold formation and also prevent the transcripts of key inflammasome players such as CASP1 and IL-18, suggesting that this approach as a possible new technology to prevent cutaneous pollution damage. Our data support the hypothesis that BB extracts can effectively reduce skin inflammation and be a possible new technology against cutaneous pollution-induced damage.
Collapse
Affiliation(s)
- Erika Pambianchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Francesca Ferrara
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Brittany Woodby
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Mary Grace
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | | | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Particulate Matter Decreases Intestinal Barrier-Associated Proteins Levels in 3D Human Intestinal Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093234. [PMID: 32384765 PMCID: PMC7246573 DOI: 10.3390/ijerph17093234] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
(1) Background: The gastrointestinal tract (GI) tract is one of the main organs exposed to particulate matter (PM) directly through ingestion of contaminated food or indirectly through inhalation. Previous studies have investigated the effects of chronic PM exposure on intestinal epithelia in vitro using Caco-2 cells and in vivo using mice. In this study, we hypothesized that chronic PM exposure would increase epithelial permeability and decrease barrier function due to altered redox homeostasis, which alters levels and/or localization of barrier-associated proteins in human three-dimensional (3D) intestinal tissues. (2) Methods: Transepithelial electrical resistance (TEER) in tissues exposed to 50, 100, 150, 250, and 500 µg/cm2 of PM for 1 week and 2 weeks was analyzed. Levels and localization of tight junction proteins zonula occludens protein 1 (ZO-1) and claudin-1 and desmosome-associated desmocollin were analyzed using immunofluorescence. As a marker of oxidative stress, levels of 4-hydroxy-nonenal (4HNE) adducts were measured. (3) Results: No differences in TEER measurements were observed between exposed and un-exposed tissues. However, increased levels of 4HNE adducts in exposed tissues were observed. Additionally, decreased levels of ZO-1, claudin-1, and desmocollin were demonstrated. (4) Conclusion: These data suggest that chronic PM exposure results in an increase of oxidative stress; modified levels of barrier-associated proteins could possibly link to GI tract inflammatory conditions.
Collapse
|