1
|
Jin X, Chen L, Yang Y, Tan R, Jiang C. Adverse Effects of Nrf2 in Different Organs and the Related Diseases. Antioxid Redox Signal 2024. [PMID: 39723588 DOI: 10.1089/ars.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Significance: Under normal physiological conditions, Nrf2 undergoes ubiquitination and subsequent proteasome degradation to maintain its basal activity. Oxidative stress can trigger Nrf2 activation, prompting its translocation to the nucleus where it functions as a transcription factor, activating various antioxidant pathways, and conferring antioxidant properties. Recent Advances: While extensive research has shown Nrf2's protective role in various diseases, emerging evidence suggests that Nrf2 activation can also produce harmful effects. Critical Issues: This review examines the pathological contexts in which Nrf2 assumes different roles, emphasizing the mechanisms and conditions that result in adverse outcomes. Future Directions: Persistent Nrf2 activation may have deleterious consequences, necessitating further investigation into the specific conditions and mechanisms through which Nrf2 exerts its harmful effects. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Long Chen
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Yuelan Yang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- Department of Nephrology, The First Clinical College of Guangdong Medical University, Zhanjiang, China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Wang T, Chen J, Qu B, Zhou D, Hong Z. Scutellarin Alleviates Bone Marrow Mesenchymal Stromal Cellular Senescence via the Ezh2-Nrf2 Signalling Axis in Diabetes-Induced Bone Loss. Cell Prolif 2024:e13790. [PMID: 39668494 DOI: 10.1111/cpr.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Currently, there is no specific treatment for diabetes-induced osteoporosis (DOP). Our study identified diabetes-induced cellular senescence, marked by elevated activity of senescence-associated β-galactosidase. Targeting senescent cells holds promise for osteoporosis treatment. We demonstrated that scutellarin (SCU) effectively mitigated bone loss in DOP mice, and co-treatment with SCU significantly reduced diabetes-induced senescence in LepR+MSCs. Furthermore, our research highlighted the role of Nrf2 in SCU's anti-senescence effects on bone. The deletion of Nrf2 impaired SCU's ability to alleviate DOP. Mechanistically, SCU enhances Ezh2 expression and increases H3K27me3 activity at the Keap1 promoter region, leading to Keap1 repression and enhanced Nrf2-ARE signalling. Additionally, SCU notably inhibited cellular senescence and diabetes-related osteoporosis, these effects were significantly reduced in Ezh2LepRcre conditional knockout models. These findings suggest that the Ezh2-Nrf2 signalling axis is crucial for mediating SCU's beneficial effects in this context. Overall, our discoveries provide insights into the mechanisms underlying DOP and propose a potential preventive strategy for this condition.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, China
| | - Jiehao Chen
- Animal Laboratory Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Qu
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dong Zhou
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, China
| | - Zhen Hong
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, China
| |
Collapse
|
3
|
Zhu F, Li L, Chen Y, Pan Y, Zhang W, Li L, Cai L, Zhao X, Zhao H, Wang S, Jia L. CRL3 Keap1 E3 ligase facilitates ubiquitin-mediated degradation of oncogenic SRX to suppress colorectal cancer progression. Nat Commun 2024; 15:10536. [PMID: 39627198 PMCID: PMC11615322 DOI: 10.1038/s41467-024-54919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
The antioxidant protein sulfiredoxin-1 (SRX) is an oncogenic factor that promotes tumor progression, but the regulatory mechanism underlying SRX degradation remains to be understood. Herein, we report that Keap1, the substrate-specific adapter of CRL3 complex, specifically binds and promotes the ubiquitin-mediated degradation of SRX at residue K61. Keap1 knockdown accumulates SRX, which in turn facilitates colorectal cancer (CRC) metastasis by activating the activator protein-1/matrix metalloproteinase 9 (AP-1/MMP9) pathway. CRC-associated Keap1 mutants within the BACK domain lose the capability to ubiquitinate SRX and instead promote CRC metastasis. Moreover, inactivation of Keap1 facilitates CRC tumorigenesis and metastasis in mouse models of tumor xenograft due to SRX accumulation. Clinical sample analysis reveals that Keap1 is downregulated while SRX is overexpressed in CRC, which correlates with poor prognosis. Our findings elucidate a mechanism by which CRL3Keap1 ubiquitin ligase degrades SRX to suppress CRC progression, indicating that the Keap1-SRX axis will guide the targeted therapy towards CRC.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liangshan Li
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoxue Zhao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China.
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lijun Jia
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Bove M, Sikora V, Santoro M, Agosti LP, Palmieri MA, Dimonte S, Tucci P, Schiavone S, Morgese MG, Trabace L. Sex differences in the BTBR idiopathic mouse model of autism spectrum disorders: Behavioural and redox-related hippocampal alterations. Neuropharmacology 2024; 260:110134. [PMID: 39208979 DOI: 10.1016/j.neuropharm.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental diseases. Epidemiological data report that males have been diagnosed with autism more frequently than females. However, recent studies hypothesize that females' low incidence might be underestimated due to standard clinical measures of ASD behavioural symptoms, mostly derived from males. Indeed, up to now, ASD mouse models focused mainly on males, considering the prevalence of the diagnosis in that sex. Regarding ASD aetiopathogenesis, it has been recently reported that oxidative stress might be implicated in its onset and development, suggesting an association with ASD typical repetitive behaviours that still need to be disentangled. Here, we investigated possible behavioural and molecular sex-related differences by using the BTBR mouse model of idiopathic ASD. To this aim, animals were exposed to behavioural tests related to different ASD core symptoms and comorbidities, i.e. stereotyped repertoire, social dysfunctions, hyperlocomotion and risk-taking behaviours. Moreover, we analyzed hippocampal levels of pro-oxidant and anti-oxidant enzymes, together with biomarkers of oxidative stress and lipid peroxidation. Our results showed that BTBR females did not display the same patterns for repetitive behaviours as the male counterpart. From a biomolecular point of view, we found an increase in oxidative stress and pro-oxidant enzymes, accompanied by deficient enzymatic anti-oxidant response, only in BTBR males compared to C57BL/6 male mice, while no differences were retrieved in females. Overall, our study suggests that in females there is an urgent need to depict the distinct ASD symptomatology, accompanied by the identification of sex-specific pharmacological targets.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy; Department of Pathology, Sumy State University, 40007, Sumy, Ukraine
| | - Martina Santoro
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy.
| |
Collapse
|
5
|
Liu D, Zhu Y. Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion. Cells 2024; 13:1969. [PMID: 39682718 DOI: 10.3390/cells13231969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD). We specifically investigated how Smyd-2 regulates ferroptosis in CIR through its interaction with the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway. Smyd-2 knockout protects HT-22 cells from Erastin-induced ferroptosis but not TNF-α + Smac-mimetic-induced apoptosis/necroptosis. This neuroprotective effect of Smyd-2 knockout in HT-22 cells after Oxygen-Glucose Deprivation/Reperfusion (OGD/R) was reversed by Erastin. Smyd-2 knockout in HT-22 cells shows neuroprotection primarily via the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway, despite the concurrent upregulation of Smyd-2 and Nrf-2 observed in both the middle cerebral artery occlusion (MCAO) and OGD/R models. Interestingly, vivo experiments demonstrated that Smyd-2 knockout significantly reduced ferroptosis and lipid peroxidation in hippocampal neurons following CIR. Moreover, the Nrf-2 inhibitor ML-385 abolished the neuroprotective effects of Smyd-2 knockout, confirming the pivotal role of Nrf-2 in ferroptosis regulation. Cycloheximide (CHX) fails to reduce Nrf-2 expression in Smyd-2 knockout HT-22 cells. Smyd-2 knockout suppresses Nrf-2 lysine methylation, thereby promoting the Nrf-2/Keap-1 pathway without affecting the PKC-δ/Nrf-2 pathway. Conversely, Smyd-2 overexpression disrupts Nrf-2 nuclear translocation, exacerbating ferroptosis and oxidative stress, highlighting its dual regulatory role. This study underscores Smyd-2's potential for ischemic stroke treatment by disrupting the Smyd-2/Nrf-2-driven antioxidant capacity, leading to hippocampal neuronal ferroptosis. By clarifying the intricate interplay between ferroptosis and oxidative stress via the Nrf-2/Keap-1 pathway, our findings provide new insights into the molecular mechanisms of CIR and identify Smyd-2 as a promising therapeutic target.
Collapse
Affiliation(s)
- Daohang Liu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China
| | - Yizhun Zhu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
6
|
Fang M, Lu L, Lou J, Ou J, Yu Q, Tao X, Zhu J, Lin Z. FGF21 Alleviates Hypoxic-Ischemic White Matter Injury in Neonatal Mice by Mediating Inflammation and Oxidative Stress Through PPAR-γ Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04549-y. [PMID: 39485628 DOI: 10.1007/s12035-024-04549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
White matter injury (WMI), the most common type of brain damage in infants born preterm, is characterized by failure in oligodendrocyte progenitor cell maturation and myelination, thereby contributing to long-term neurological impairments. Regrettably, effective therapies for promoting remyelination and improving function are currently lacking for this growing population affected by WMI. Recombinant human fibroblast growth factor (rhFGF) 21 modulated microglial activation and then ameliorated brain damage and improved neurological deficits in several central nervous system diseases. However, the effects of rhFGF21 treatment on WMI in preterm infants remain uncertain. In this study, we established an in vivo mouse model of cerebral hypoxia-ischemia (HI)-induced brain WMI and an in vitro model using oxygen-glucose deprivation (OGD)-treated HMC3 cells to investigate the neuroprotective effects of rhFGF21 against WMI and elucidated the potential mechanism. Our findings demonstrated that administration of rhFGF21 significantly ameliorated the retardation of oligodendrocyte differentiation, promoted myelination, and mitigated axonal deficits, synaptic loss, and GFAP scarring, thereby improving lifelong cognitive and neurobehavioral dysfunction associated with WMI. Moreover, rhFGF21 modulated microglial polarization, promoted a shift from the M1 to the M2 microglial phenotype, and suppressed microglial activation, thus ameliorating inflammatory response and oxidative stress. Additionally, rhFGF21 treatment significantly inhibited the HMGB1/NF-κB pathway linked to inflammation, and activated the NRF2 pathway associated with oxidative stress through the upregulation of PPAR-γ. Importantly, the beneficial effects of rhFGF21 on HI-induced WMI and microglial activation were dramatically inhibited by PPAR-γ antagonist and its siRNA. Our findings provide compelling evidence that rhFGF21 treatment mitigated the inflammatory response and oxidative stress through the modulation of microglial polarization via the PPAR-γ-mediated HMGB1/NF-κB pathway and the NRF2 pathway, respectively, contributes to neuroprotection and the amelioration of WMI in neonatal mice. Thus, rhFGF21 represents a promising therapeutic agent for the treatment of neonatal WMI.
Collapse
Affiliation(s)
- Mingchu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Lou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Ou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Hua Y, Wang H, Chen T, Zhou Y, Chen Z, Zhao X, Mo S, Mao H, Li M, Wang L, Hong M. Antioxidant 1,2,3,4,6-Penta- O-galloyl-β-D-glucose Alleviating Apoptosis and Promoting Bone Formation Is Associated with Estrogen Receptors. Molecules 2024; 29:5110. [PMID: 39519751 PMCID: PMC11547736 DOI: 10.3390/molecules29215110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) is the main phenolic active ingredient in Paeoniae Radix Alba, which is commonly used for the treatment of osteoporosis (OP). PGG is a potent natural antioxidant, and its effects on OP remain unknown. This study aimed to investigate the effects of PGG on promoting bone formation and explore its estrogen receptor (ER)-related mechanisms. A hydrogen peroxide-induced osteoblast apoptosis model was established in MC3T3-E1 cells. The effects of PGG were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, alkaline phosphatase (ALP) staining, RT-qPCR, and Western blot methods. Furthermore, a prednisolone-induced zebrafish OP model was employed to study the effects in vivo. ER inhibitors and molecular docking methods were used further to investigate the interactions between PGG and ERs. The results showed that PGG significantly enhanced cell viability and decreased cell apoptosis by restoring mitochondrial function, attenuating reactive oxygen species levels, decreasing the mitochondrial membrane potential, and enhancing ATP production. PGG enhanced ALP expression and activity and elevated osteogenic differentiation. PGG also promoted bone formation in the zebrafish model, and these effects were reversed by ICI182780. These results provide evidence that the effects of PGG in alleviating apoptosis and promoting bone formation may depend on ERs. As such, PGG is considered a valuable candidate for treating OP.
Collapse
Affiliation(s)
- Yongqing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yeru Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyuan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyue Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaoqin Mo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyun Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Miao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Linxia Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Hong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Chen W, Gao Y, Liu Y, Luo Y, Xue X, Xiao C, Wei K. Tanshinone IIA Loaded Inhaled Polymer Nanoparticles Alleviate Established Pulmonary Fibrosis. ACS Biomater Sci Eng 2024; 10:6250-6262. [PMID: 39288315 DOI: 10.1021/acsbiomaterials.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by chronic, progressive scarring of the lung parenchyma, leading to an irreversible decline in lung function. Apart from supportive care, there is currently no specific treatment available to reverse the disease. Based on the fact that tanshinone IIA (TAN) had an effect on protecting against TGF-β1-induced fibrosis through the inhibition of Smad and non-Smad signal pathways to avoid myofibroblasts activation, this study reported the development of the inhalable tanshinone IIA-loaded chitosan-oligosaccharides-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CPN@TAN) for enhancing the pulmonary delivery of tanshinone IIA to treat pulmonary fibrosis. The CPN@TAN with a size of 206.5 nm exhibited excellent in vitro aerosol delivery characteristics, featuring a mass median aerodynamic diameter (MMAD) of 3.967 ± 0.025 μm and a fine particle fraction (FPF) of 70.516 ± 0.929%. Moreover, the nanoparticles showed good stability during atomization and enhanced the mucosal penetration capabilities. The results of confocal spectroscopy confirmed the potential of the nanoparticles as carriers that facilitated the uptake of drugs by NIH3T3, A549, and MH-S cells. Additionally, the nanoparticles demonstrated good in vitro biocompatibility. In a mouse model of bleomycin-induced pulmonary fibrosis, noninvasive inhalation of aerosol CPN@TAN greatly suppressed collagen formation and facilitated re-epithelialization of the destroyed alveolar epithelium without causing systemic toxicity compared with intravenous administration. Consequently, our noninvasive inhalation drug delivery technology based on polymers may represent a promising paradigm and open the door to overcoming the difficulties associated with managing pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenyu Chen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanyuan Gao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanqi Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yujia Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinrui Xue
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chujie Xiao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Kun Wei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Manzhula K, Rebl A, Budde-Sagert K, Rebl H. Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells. Int J Mol Sci 2024; 25:10967. [PMID: 39456749 PMCID: PMC11507371 DOI: 10.3390/ijms252010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress.
Collapse
Affiliation(s)
- Kristina Manzhula
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
10
|
Qiu M, Ma K, Zhang J, Zhao Z, Wang S, Wang Q, Xu H. Isoliquiritigenin as a modulator of the Nrf2 signaling pathway: potential therapeutic implications. Front Pharmacol 2024; 15:1395735. [PMID: 39444605 PMCID: PMC11496173 DOI: 10.3389/fphar.2024.1395735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor responsible for cytoprotection, plays a crucial role in regulating the expression of numerous antioxidant genes, thereby reducing reactive oxygen species (ROS) levels and safeguarding cells against oxidative stress. Extensive research has demonstrated the involvement of Nrf2 in various diseases, prompting the exploration of Nrf2 activation as a potential therapeutic approach for a variety of diseases. Consequently, there has been a surge of interest in investigating the Nrf2 signaling pathway and developing compounds that can modulate its activity. Isoliquiritigenin (ISL) (PubChem CID:638278) exhibits a diverse range of pharmacological activities, including antioxidant, anticancer, and anti-tumor properties. Notably, its robust antioxidant activity has garnered significant attention. Furthermore, ISL has been found to possess therapeutic effects on various diseases, such as diabetes, cardiovascular diseases, kidney diseases, and cancer, through the activation of the Nrf2 pathway. This review aims to evaluate the potential of ISL in modulating the Nrf2 signaling pathway and summarize the role of ISL in diverse diseases prevention and treatment through modulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Mangmang Qiu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Kang Ma
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Junfeng Zhang
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Zhaohua Zhao
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Shan Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qing Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| |
Collapse
|
11
|
Xu S, Sun X, Zhu Z, Xin Y, Chen C, Luo J. The extract of buds of Chrysanthemum morifolium ramat alleviated UVB-induced skin photoaging by regulating MAPK and Nrf2/ARE pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118352. [PMID: 38762208 DOI: 10.1016/j.jep.2024.118352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum morifolium Ramat. is a commonly used Chinese herb and food homologous plant with traditional effects such as anti-inflammatory, antifebrile, antibacterial and antiviral. AIM OF STUDY Photoaging is one of the main causes of accelerated skin aging. Chrysanthemum morifolium Ramat. has reported to alleviate photodamage. In this study, we investigated the protective effect of the extract of buds of Chrysanthemum morifolium Ramat. (CE) on UVB-induced photoaging and further mechanism. MATERIALS AND METHODS The extract of buds of chrysanthemum was analyzed by HPLC-Q-TOF-MS/MS. Antioxidant activity was assessed by DPPH and ABTS assay. Cell viability examined by cell counting kit-8 assay. The ROS level was detected by fluorescent probe DCFH-DA. Protein expression evaluated by Western blotting. The skin tissue investigated by immunohistochemistry. RESULTS CE significantly reversed the decrease of cell viability that induced by UVB in HaCaT and HFF-1 cells. Further analysis showed that CE alleviated photoaging by inhibiting the expression of mitogen-activated protein kinase (MAPK) and activating the NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway to promote the expression of antioxidant enzymes. Moreover, CE effectively improved the reduced skin hydration, disordered collagen and thickening epidermis caused by UVB in mice. CONCLUSIONS All results demonstrated that CE had therapeutic effect on UVB-induced photoaging and provided theoretical basis for its further developing as a natural functional product with anti-photoaging effect.
Collapse
Affiliation(s)
- Shishu Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xuelei Sun
- Shanghai Cheermore Cosmetics Co., Ltd., Shanghai, 201401, China
| | - Zhiting Zhu
- Shanghai Cheermore Cosmetics Co., Ltd., Shanghai, 201401, China
| | - Yingxiang Xin
- Shanghai Cheermore Cosmetics Co., Ltd., Shanghai, 201401, China
| | - Chen Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
12
|
Wang LY, Zhang L, Bai XY, Qiang RR, Zhang N, Hu QQ, Cheng JZ, Yang YL, Xiang Y. The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment. Neurochem Res 2024; 49:2653-2667. [PMID: 38864944 DOI: 10.1007/s11064-024-04194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.
Collapse
Affiliation(s)
- Le Yi Wang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Rong Rong Qiang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Ning Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Jun Zhi Cheng
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China.
| |
Collapse
|
13
|
Han H, Zhang G, Zhang X, Zhao Q. Nrf2-mediated ferroptosis inhibition: a novel approach for managing inflammatory diseases. Inflammopharmacology 2024; 32:2961-2986. [PMID: 39126567 DOI: 10.1007/s10787-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Inflammatory diseases, including psoriasis, atherosclerosis, rheumatoid arthritis, and ulcerative colitis, are characterized by persistent inflammation. Moreover, the existing treatments for inflammatory diseases only provide temporary relief by controlling symptoms, and treatments of unstable and expensive. Therefore, new therapeutic solutions are urgently needed to address the underlying causes or symptoms of inflammatory diseases. Inflammation frequently coincides with a high level of (reactive oxygen species) ROS activation, serving as a fundamental element in numerous physiological and pathological phenotypes that can result in serious harm to the organism. Given its pivotal role in inflammation, oxidative stress, and ferroptosis, ROS represents a focal node for investigating the (nuclear factor E2-related factor 2) Nrf2 pathway and ferroptosis, both of which are intricately linked to ROS. Ferroptosis is mainly triggered by oxidative stress and involves iron-dependent lipid peroxidation. The transcription factor Nrf2 targets several genes within the ferroptosis pathway. Recent studies have shown that Nrf2 plays a significant role in three key ferroptosis-related routes, including the synthesis and metabolism of glutathione/glutathione peroxidase 4, iron metabolism, and lipid processes. As a result, ferroptosis-related treatments for inflammatory diseases have attracted much attention. Moreover, drugs targeting Nrf2 can be used to manage inflammatory conditions. This review aimed to assess ferroptosis regulation mechanism and the role of Nrf2 in ferroptosis inhibition. Therefore, this review article may provide the basis for more research regarding the treatment of inflammatory diseases through Nrf2-inhibited ferroptosis.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
14
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
15
|
Juszczak M, Tokarz P, Woźniak K. Potential of NRF2 Inhibitors-Retinoic Acid, K67, and ML-385-In Overcoming Doxorubicin Resistance in Promyelocytic Leukemia Cells. Int J Mol Sci 2024; 25:10257. [PMID: 39408587 PMCID: PMC11476837 DOI: 10.3390/ijms251910257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Drug resistance is one of the major obstacles to the clinical use of doxorubicin, an extensively used chemotherapeutic drug to treat various cancers, including leukemia. Inhibition of the nuclear factor erythroid 2-related factor 2 (NRF2) seems a promising strategy to reverse chemoresistance in cancer cells. NRF2 is a transcription factor that regulates both antioxidant defense and drug detoxification mechanisms. In this study, we investigated the potential of three inhibitors of NRF2-K67, retinoic acid and ML-385-to overcome doxorubicin resistance in promyelocytic leukemia HL-60 cells. For this purpose, low-dose doxorubicin was used to establish doxorubicin-resistant HL-60/DR cells. The expression of NRF2 and its main repressor, Kelch-like ECH-associated protein 1 (KEAP1), at mRNA and protein levels was examined. HL-60/DR cells overexpressed NRF2 at mRNA and protein levels and down-regulated KEAP1 protein compared to drug-sensitive HL-60 cells. The effects of NRF2 inhibitors on doxorubicin-resistant HL-60/DR cell viability, apoptosis, and intracellular reactive oxygen species (ROS) levels were analyzed. We observed that NRF2 inhibitors significantly sensitized doxorubicin-resistant HL-60/DR cells to doxorubicin, which was associated with increased intracellular ROS levels and the expression of CAS-9, suggesting the participation of the mitochondrial-dependent apoptosis pathway. Furthermore, ML-385 inhibitor was used to study the expression of NRF2-KEAP1 pathway genes. NRF2 gene and protein expression remained unchanged; however, we noted the down-regulation of KEAP1 protein upon ML-385 treatment. Additionally, the expression of NRF2-regulated antioxidant and detoxification genes including SOD2, HMOX2, and GSS was maintained upon ML-385 treatment. In conclusion, our results demonstrated that all the studied inhibitors, namely K67, retinoic acid, and ML-385, increased the efficacy of doxorubicin in doxorubicin-resistant HL-60/DR cells, and suggested a potential strategy of combination therapy using NRF2 inhibitors and doxorubicin in overcoming doxorubicin resistance in leukemia.
Collapse
Affiliation(s)
- Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.T.); (K.W.)
| | | | | |
Collapse
|
16
|
Fournier LA, Kalantari F, Wells JP, Lee JS, Trigo-Gonzalez G, Moksa MM, Smith T, White J, Shanks A, Wang SL, Su E, Wang Y, Huntsman DG, Hirst M, Stirling PC. Genome-Wide CRISPR Screen Identifies KEAP1 Perturbation as a Vulnerability of ARID1A-Deficient Cells. Cancers (Basel) 2024; 16:2949. [PMID: 39272807 PMCID: PMC11394604 DOI: 10.3390/cancers16172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
ARID1A is the core DNA-binding subunit of the BAF chromatin remodeling complex and is mutated in about 8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at > 50% of cases. Despite a growing understanding of the consequences of ARID1A loss in cancer, there remains limited targeted therapeutic options for ARID1A-deficient cancers. Using a genome-wide CRISPR screening approach, we identify KEAP1 as a genetic dependency of ARID1A in CCOC. Depletion or chemical perturbation of KEAP1 results in selective growth inhibition of ARID1A-KO cell lines and edited primary endometrial epithelial cells. While we confirm that KEAP1-NRF2 signalling is dysregulated in ARID1A-KO cells, we suggest that this synthetic lethality is not due to aberrant NRF2 signalling. Rather, we find that KEAP1 perturbation exacerbates genome instability phenotypes associated with ARID1A deficiency. Together, our findings identify a potentially novel synthetic lethal interaction of ARID1A-deficient cells.
Collapse
Affiliation(s)
- Louis-Alexandre Fournier
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V5L1Z3, Canada
| | - Forouh Kalantari
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Joon Seon Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Genny Trigo-Gonzalez
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - Michelle M Moksa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Theodore Smith
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Justin White
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Alynn Shanks
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Siyun L Wang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Edmund Su
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Martin Hirst
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
17
|
Alieva RT, Ulasov AV, Khramtsov YV, Slastnikova TA, Lupanova TN, Gribova MA, Georgiev GP, Rosenkranz AA. Optimization of a Modular Nanotransporter Design for Targeted Intracellular Delivery of Photosensitizer. Pharmaceutics 2024; 16:1083. [PMID: 39204428 PMCID: PMC11360004 DOI: 10.3390/pharmaceutics16081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Modular nanotransporters (MNTs) are drug delivery systems for targeted cancer treatment. As MNTs are composed of several modules, they offer the advantage of high specificity and biocompatibility in delivering drugs to the target compartment of cancer cells. The large carrier module brings together functioning MNT modules and serves as a platform for drug attachment. The development of smaller-sized MNTs via truncation of the carrier module appears advantageous in facilitating tissue penetration. In this study, two new MNTs with a truncated carrier module containing either an N-terminal (MNTN) or a C-terminal (MNTC) part were developed by genetic engineering. Both new MNTs demonstrated a high affinity for target receptors, as revealed by fluorescent-labeled ligand-competitive binding. The liposome leakage assay proved the endosomolytic activity of MNTs. Binding to the importin heterodimer of each truncated MNT was revealed by a thermophoresis assay, while only MNTN possessed binding to Keap1. Finally, the photodynamic efficacy of the photosensitizer attached to MNTN was significantly higher than when attached to either MNTC or the original MNTs. Thus, this work reveals that MNT's carrier module can be truncated without losing MNT functionality, favoring the N-terminal part of the carrier module due to its ability to bind Keap1.
Collapse
Affiliation(s)
- Rena T. Alieva
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Maria A. Gribova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
18
|
Lorenz L, Zenz T, Oliinyk D, Meier-Rosar F, Jenke R, Aigner A, Büch T. Vorinostat Treatment of Gastric Cancer Cells Leads to ROS-Induced Cell Inhibition and a Complex Pattern of Molecular Alterations in Nrf2-Dependent Genes. Pharmaceuticals (Basel) 2024; 17:1080. [PMID: 39204185 PMCID: PMC11357633 DOI: 10.3390/ph17081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Histone deacetylase inhibitors (HDACi) show high antineoplastic potential in preclinical studies in various solid tumors, including gastric carcinoma; however, their use in clinical studies has not yet yielded convincing efficacies. Thus, further studies on cellular/molecular effects of HDACi are needed, for improving clinical efficacy and identifying suitable combination partners. Here, we investigated the role of oxidative stress in gastric cancer cells upon treatment with HDACi. A particular focus was laid on the role of the Nrf2 pathway, which can mediate resistance to cell-inhibitory effects of reactive oxidative species (ROS). Using fluorescence-based ROS sensors, oxidative stress was measured in human gastric cancer cell lines. Activation of the Nrf2 pathway was monitored in luciferase reporter assays as well as by mRNA and proteomic expression analyses of Nrf2 regulators and Nrf2-induced genes. Furthermore, the effects of ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2-knockdown on HDACi-dependent antiproliferative effects were investigated in colorimetric formazan-based and clonogenic survival assays. HDACi treatment led to increased oxidative stress levels and consequently, treatment with NAC reduced cytotoxicity of HDACi. In addition, vorinostat treatment stimulated expression of a luciferase reporter under the control of an antioxidative response element, indicating activation of the Nrf2 system. This Nrf2 activation was only partially reversible by treatment with NAC, suggesting ROS independent pathways to contribute to HDACi-promoted Nrf2 activation. In line with its cytoprotective role, Nrf2 knockdown led to a sensitization against HDACi. Accordingly, the expression of antioxidant and detoxifying Nrf2 target genes was upregulated upon HDACi treatment. In conclusion, oxidative stress induction upon HDAC inhibition contributes to the antitumor effects of HDAC inhibitors, and activation of Nrf2 represents a potentially important adaptive response of gastric cancer cells in this context.
Collapse
Affiliation(s)
- Leoni Lorenz
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
| | - Tamara Zenz
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
| | - Denys Oliinyk
- Functional Proteomics, Research Center Lobeda, Jena University Hospital, 07747 Jena, Germany; (D.O.); (F.M.-R.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| | - Florian Meier-Rosar
- Functional Proteomics, Research Center Lobeda, Jena University Hospital, 07747 Jena, Germany; (D.O.); (F.M.-R.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| | - Robert Jenke
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, 04103 Leipzig, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| |
Collapse
|
19
|
Ajuwon OR, Nsole-Biteghe FA, Ndong JD, Davids LM, Ajiboye BO, Brai B, Bamisaye FA, Falode JA, Odoh IM, Adegbite KI, Adegoke BO, Ntwasa M, Lebelo SL, Ayeleso AO. Nrf2-Mediated Antioxidant Response and Drug Efflux Transporters Upregulation as Possible Mechanisms of Resistance in Photodynamic Therapy of Cancers. Onco Targets Ther 2024; 17:605-627. [PMID: 39131905 PMCID: PMC11313505 DOI: 10.2147/ott.s457749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Photodynamic therapy (PDT) is a groundbreaking approach involving the induction of cytotoxic reactive oxygen species (ROS) within tumors through visible light activation of photosensitizers (PS) in the presence of molecular oxygen. This innovative therapy has demonstrated success in treating various cancers. While PDT proves highly effective in most solid tumors, there are indications that certain cancers exhibit resistance, and some initially responsive cancers may develop intrinsic or acquired resistance to PDT. The molecular mechanisms underlying this resistance are not fully understood. Recent evidence suggests that, akin to other traditional cancer treatments, the activation of survival pathways, such as the KEAP1/Nrf2 signaling pathway, is emerging as an important mechanism of post-PDT resistance in many cancers. This article explores the dual role of Nrf2, highlighting evidence linking aberrant Nrf2 expression to treatment resistance across a range of cancers. Additionally, it delves into the specific role of Nrf2 in the context of photodynamic therapy for cancers, emphasizing evidence that suggests Nrf2-mediated upregulation of antioxidant responses and induction of drug efflux transporters are potential mechanisms of resistance to PDT in diverse cancer types. Therefore, understanding the specific role(s) of Nrf2 in PDT resistance may pave the way for the development of more effective cancer treatments using PDT.
Collapse
Affiliation(s)
| | | | | | | | | | - Bartholomew Brai
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | | | - John Adeolu Falode
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Ikenna Maximillian Odoh
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
- Medical Center, Federal University, Oye-Ekiti, Ekiti-State, Nigeria
| | - Kabirat Iyabode Adegbite
- Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, Osun State, Nigeria
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
- Biochemistry Programme, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
20
|
Hamblet C, Björhall K, Busch S, Gehrmann U, Öberg L, Kubisch-Dohmen R, Haas S, Aneja MK, Geiger J, Rudolph C, Hornberg E. Transcriptional Dynamics of NRF2 Overexpression and KEAP1-NRF2 Inhibitors in Human Cell Line and Primary Lung Cells. Antioxidants (Basel) 2024; 13:924. [PMID: 39199170 PMCID: PMC11351141 DOI: 10.3390/antiox13080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress in the human lung is caused by both internal (e.g., inflammation) and external stressors (smoking, pollution, and infection) to drive pathology in a number of lung diseases. Cellular damage caused by oxidative damage is reversed by several pathways, one of which is the antioxidant response. This response is regulated by the transcriptional factor NRF2, which has the ability to regulate the transcription of more than 250 genes. In disease, this balance is overwhelmed, and the cells are unable to return to homeostasis. Several pharmacological approaches aim to improve the antioxidant capacity by inhibiting the interaction of NRF2 with its key cytosolic inhibitor, KEAP1. Here, we evaluate an alternative approach by overexpressing NRF2 from chemically modified RNAs (cmRNAs). Our results demonstrate successful expression of functional NRF2 protein in human cell lines and primary cells. We establish a kinetic transcriptomic profile to compare antioxidant response gene expression after treatment of primary human bronchial epithelial cells with either KEAP1 inhibitors or cmRNAs. The key gene signature is then applied to primary human lung fibroblasts and alveolar macrophages to uncover transcriptional preferences in each cell system. This study provides a foundation for the understanding of NRF2 dynamics in the human lung and provides initial evidence of alternative ways for pharmacological interference.
Collapse
Affiliation(s)
- Corinne Hamblet
- Bioscience Chronic Obstructive Pulmonary Disease & Idiopathic Pulmonary Fibrosis, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Karin Björhall
- Bioscience Chronic Obstructive Pulmonary Disease & Idiopathic Pulmonary Fibrosis, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Susann Busch
- Respiratory & Immunology, Neuroscience, Vaccines and Immune Therapies Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine Research, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Lisa Öberg
- Translational Science and Experimental Medicine Research, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | | | | | | | | | | | - Ellinor Hornberg
- Projects and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
21
|
Ma J, Liu L, Yang H, Wan Y, Zhang Y, Wang F. Melatonin regulates the antioxidant capacity of sheep granulosa cells through a novel uORF-Nrf2aa mediated Nrf2/KEAP1 pathway. Life Sci 2024; 349:122693. [PMID: 38710277 DOI: 10.1016/j.lfs.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Ovarian dysfunction stands as a prevalent contributor to female infertility, with its etiology intertwined with genetic, autoimmune, and environmental factors. Within the ovarian follicles, granulosa cells (GCs) represent the predominant cell population. Alterations in GCs, notably oxidative stress (OS) and the consequential surge in reactive oxygen species (ROS), play pivotal roles in the orchestration of ovarian function. Nrf2aa, a newly identified upstream open reading frame (uORF), is situated within the 5' untranslated region (5'UTR) of sheep Nrf2 mRNA and is regulated by melatonin, a crucial intrafollicular antioxidant. In this study, we have noted that Nrf2aa has the capacity to encode a peptide and exerts a negative regulatory effect on the translation efficiency (TE) of the Nrf2 CDs region. Further in vitro experiments, we observed that interfering with Nrf2aa can enhance the cellular functionality of GCs under 3-np-induced oxidative stress, while overexpressing Nrf2aa has the opposite effect. Furthermore, overexpression of Nrf2aa counteracts the rescuing effect of melatonin on the cellular functions of GCs under oxidative stress conditions, including estrogen secretion, proliferation, apoptosis, and many more. Finally, we confirmed that Nrf2aa, by regulating the expression of key proteins in the Nrf2/KEAP1 signaling pathway, further modulates the antioxidant levels in GCs.
Collapse
Affiliation(s)
- Jianyu Ma
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Liang Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Hua Yang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
22
|
Dahabieh MS, DeCamp LM, Oswald BM, Kitchen-Goosen SM, Fu Z, Vos M, Compton SE, Longo J, Williams KS, Ellis AE, Johnson A, Sodiya I, Vincent M, Lee H, Sheldon RD, Krawczyk CM, Yao C, Wu T, Jones RG. NRF2-dependent regulation of the prostacyclin receptor PTGIR drives CD8 T cell exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600279. [PMID: 38979360 PMCID: PMC11230227 DOI: 10.1101/2024.06.23.600279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The progressive decline of CD8 T cell effector function-also known as terminal exhaustion-is a major contributor to immune evasion in cancer. Yet, the molecular mechanisms that drive CD8 T cell dysfunction remain poorly understood. Here, we report that the Kelch-like ECH-associated protein 1 (KEAP1)-Nuclear factor erythroid 2-related factor 2 (NRF2) signaling axis, which mediates cellular adaptations to oxidative stress, directly regulates CD8 T cell exhaustion. Transcriptional profiling of dysfunctional CD8 T cells from chronic infection and cancer reveals enrichment of NRF2 activity in terminally exhausted (Texterm) CD8 T cells. Increasing NRF2 activity in CD8 T cells (via conditional deletion of KEAP1) promotes increased glutathione production and antioxidant defense yet accelerates the development of terminally exhausted (PD-1+TIM-3+) CD8 T cells in response to chronic infection or tumor challenge. Mechanistically, we identify PTGIR, a receptor for the circulating eicosanoid prostacyclin, as an NRF2-regulated protein that promotes CD8 T cell dysfunction. Silencing PTGIR expression restores the anti-tumor function of KEAP1-deficient T cells. Moreover, lowering PTGIR expression in CD8 T cells both reduces terminal exhaustion and enhances T cell effector responses (i.e. IFN-γ and granzyme production) to chronic infection and cancer. Together, these results establish the KEAP1-NRF2 axis as a metabolic sensor linking oxidative stress to CD8 T cell dysfunction and identify the prostacyclin receptor PTGIR as an NRF2-regulated immune checkpoint that regulates CD8 T cell fate decisions between effector and exhausted states.
Collapse
Affiliation(s)
- Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Lisa M. DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Brandon M. Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Susan M. Kitchen-Goosen
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Zhen Fu
- Bioinformatics and Biostatistics Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew Vos
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Shelby E. Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S. Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Abigail E. Ellis
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Amy Johnson
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Ibukunoluwa Sodiya
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael Vincent
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Hyoungjoo Lee
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Chen Yao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
23
|
Zhao Y, Han C, Wu Y, Sun Q, Ma M, Xie Z, Sun R, Pei H. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172567. [PMID: 38643871 DOI: 10.1016/j.scitotenv.2024.172567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chun Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yangyingdong Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qianchen Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
24
|
Hu Y, Hao R, Li D, Lu Y, Yu G. Experimental verification about treatment of Bu-Shen-Yi-Jing-Fang in Alzheimer's disease by the analysis of the feasible signaling pathway of network pharmacology. BMC Complement Med Ther 2024; 24:222. [PMID: 38851758 PMCID: PMC11162075 DOI: 10.1186/s12906-024-04527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
CONTEXT Bu-shen-yi-jing-fang (BSYJF) has been reported to reduce amyloid-β (Aβ)1-42 deposition in the brain of APP/PS1 mice and ameliorate cognitive function. However, its neuroprotective mechanism remains unclear. OBJECTIVE This study aims to investigate whether BSYJF exerts a protective effect on Aβ1-42-induced oxidative stress injury and explore its possible mechanism. MATERIALS AND METHODS The platform databases TCMSP, Swiss, TTD, DrugBank, and GeneCards were used to mine the targets of Alzheimer's disease (AD) and BSYJF. The platform databases STRING and Metascape were used to build the interaction network of the target protein, and Cytoscape software was used to analyze this network and screen out the key pathways. Aβ1-42-treated SKNMC cells were established to verify the mechanism of BSYJF and the key proteins. The downstream proteins and antioxidants as well as apoptosis and ferroptosis of the PI3K/AKT/Nrf2 signaling pathway were validated using an in vitro SKNMC cell model experiment. The expression levels of related proteins were detected using Western blotting. Flow cytometry and immunofluorescence staining were used to analyze apoptosis and ferroptosis. RESULTS Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis considered the key signal pathways, mainly involving the PI3K/AKT signaling pathway. Experimental validation demonstrated that BSYJF treatment markedly increased the activity of the PI3K/AKT pathway, which could exert anti-AD effects. CONCLUSIONS Our data provided compelling evidence that the protective effects of BSYJF might be associated with their regulation of the PI3K/AKT/Nrf2 signaling pathway. These studies offered a potential therapy for natural herbal medicine treatment of AD.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Renjuan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Deyu Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Yunwei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Guran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China.
| |
Collapse
|
25
|
Fandiño-Devia E, Brankiewicz A, Santa-González GA, Guevara-Lora I, Manrique-Moreno M. Comparative Study of the Potential Cell-Penetrating Peptide ∆M4 on Apoptosis Cell Signaling in A375 and A431 Cancer Cell Lines. Pharmaceutics 2024; 16:775. [PMID: 38931896 PMCID: PMC11207241 DOI: 10.3390/pharmaceutics16060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In recent yearsjajajj, peptide-based therapeutics have attracted increasing interest as a potential approach to cancer treatment. Peptides are characterized by high specificity and low cytotoxicity, but they cannot be considered universal drugs for all types of cancer. Of the numerous anticancer-reported peptides, both natural and synthetic, only a few have reached clinical applications. However, in most cases, the mechanism behind the anticancer activity of the peptide is not fully understood. For this reason, in this work, we investigated the effect of the novel peptide ∆M4, which has documented anticancer activity, on two human skin cancer cell lines. A novel approach to studying the potential induction of apoptosis by anticancer peptides is the use of protein microarrays. The results of the apoptosis protein study demonstrated that both cell types, skin malignant melanoma (A375) and epidermoid carcinoma (A431), exhibited markers associated with apoptosis and cellular response to oxidative stress. Additionally, ∆M4 induced concentration- and time-dependent moderate ROS production, triggering a defensive response from the cells, which showed decreased activation of cytoplasmic superoxide dismutase. However, the studied cells exhibited a differential response in catalase activity, with A375 cells showing greater resistance to the peptide action, possibly mediated by the Nrf2 pathway. Nevertheless, both cell types showed moderate activity of caspases 3/7, suggesting that they may undergo partial apoptosis, although another pathway of programmed death cannot be excluded. Extended analysis of the mechanisms of action of anticancer peptides may help determine their effectiveness in overcoming chemoresistance in cancerous cells.
Collapse
Affiliation(s)
- Estefanía Fandiño-Devia
- Group of Structural Biochemistry of Macromolecules, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| | - Aleksandra Brankiewicz
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, A.A. 54959, Medellin 050010, Colombia;
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Marcela Manrique-Moreno
- Group of Structural Biochemistry of Macromolecules, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
26
|
Lei W, Chen MH, Huang ZF, Chen XY, Wang JX, Zheng J, Zhu YZ, Lan XZ, He Y. Salidroside protects pulmonary artery endothelial cells against hypoxia-induced apoptosis via the AhR/NF-κB and Nrf2/HO-1 pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155376. [PMID: 38503152 DOI: 10.1016/j.phymed.2024.155376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The apoptosis of pulmonary artery endothelial cells (PAECs) is an important factor contributing to the development of pulmonary hypertension (PH), a serious cardio-pulmonary vascular disorder. Salidroside (SAL) is a bioactive compound derived from an herb Rhodiola, but the potential protective effects of SAL on PAECs and the underlying mechanisms remain elusive. PURPOSE The objective of this study was to determine the role of SAL in the hypoxia-induced apoptosis of PAECs and to dissect the underlying mechanisms. STUDY DESIGN Male Sprague-Dawley (SD) rats were subjected to hypoxia (10% O2) for 4 weeks to establish a model of PH. Rats were intraperitoneally injected daily with SAL (2, 8, and 32 mg/kg/d) or vehicle. To define the molecular mechanisms of SAL in PAECs, an in vitro model of hypoxic cell injury was also generated by exposed PAECs to 1% O2 for 48 h. METHODS Various techniques including hematoxylin and eosin (HE) staining, immunofluorescence, flow cytometry, CCK-8, Western blot, qPCR, molecular docking, and surface plasmon resonance (SPR) were used to determine the role of SAL in rats and in PAECs in vitro. RESULTS Hypoxia stimulation increases AhR nuclear translocation and activates the NF-κB signaling pathway, as evidenced by upregulated expression of CYP1A1, CYP1B1, IL-1β, and IL-6, resulting in oxidative stress and inflammatory response and ultimately apoptosis of PAECs. SAL inhibited the activation of AhR and NF-κB, while promoted the nuclear translocation of Nrf2 and increased the expression of its downstream antioxidant proteins HO-1 and NQO1 in PAECs, ameliorating the hypoxia-induced oxidative stress in PAECs. Furthermore, SAL lowered right ventricular systolic pressure, and decreased pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-exposed rats. CONCLUSIONS SAL may attenuate the apoptosis of PAECs by suppressing NF-κB and activating Nrf2/HO-1 pathways, thereby delaying the progressive pathology of PH.
Collapse
Affiliation(s)
- Wei Lei
- TAAHC-GDMU Biomedical and Health Joint R&D Center, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agriculture and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resource Scientific Protection and Utilization, Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, PR China; Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, GDMU-TAAHC Biomedical and Health Joint R&D Center, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Mei-Hong Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, GDMU-TAAHC Biomedical and Health Joint R&D Center, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Zu-Feng Huang
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xiao-Ying Chen
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Jin-Xia Wang
- TAAHC-GDMU Biomedical and Health Joint R&D Center, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agriculture and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resource Scientific Protection and Utilization, Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, PR China; Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| | - Xiao-Zhong Lan
- TAAHC-GDMU Biomedical and Health Joint R&D Center, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agriculture and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resource Scientific Protection and Utilization, Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, PR China.
| | - Yuan He
- TAAHC-GDMU Biomedical and Health Joint R&D Center, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agriculture and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resource Scientific Protection and Utilization, Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, PR China; Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, GDMU-TAAHC Biomedical and Health Joint R&D Center, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|
27
|
Abdo AI, Kopecki Z. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Curr Issues Mol Biol 2024; 46:4885-4923. [PMID: 38785562 PMCID: PMC11120013 DOI: 10.3390/cimb46050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.
Collapse
Affiliation(s)
- Adrian I. Abdo
- Richter Lab, Surgical Specialties, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Surgery, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, STEM Academic Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
28
|
Liang Y, Shi Y, Guo R, Xu C, Fu M, Shen J, Gao X, Li W, Qin K. Wine- and stir-frying processing of Cuscutae Semen enhance its ability to alleviate oxidative stress and apoptosis via the Keap 1-Nrf2/HO-1 and PI3K/AKT pathways in H 2O 2-challenged KGN human granulosa cell line. BMC Complement Med Ther 2024; 24:189. [PMID: 38750475 PMCID: PMC11094956 DOI: 10.1186/s12906-024-04491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. METHODS In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. RESULTS The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. CONCLUSIONS The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.
Collapse
Affiliation(s)
- Yusha Liang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yun Shi
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Rong Guo
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Changli Xu
- Department of Pharmacy, Xinyi People's Hospital, Xinyi Jiangsu, 221400, China
| | - Mian Fu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jinyang Shen
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xun Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Weidong Li
- Engineering Research Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kunming Qin
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
29
|
Luo W, Bu W, Chen H, Liu W, Lu X, Zhang G, Liu C, Li X, Ren H. Electroacupuncture reduces oxidative stress response and improves secondary injury of intracerebral hemorrhage in rats by activating the peroxisome proliferator-activated receptor-γ/nuclear factor erythroid2-related factor 2/γ-glutamylcysteine synthetase pathway. Neuroreport 2024; 35:499-508. [PMID: 38597270 PMCID: PMC11045547 DOI: 10.1097/wnr.0000000000002026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype. Secondary injury is a key factor leading to neurological deficits after ICH. Electroacupuncture (EA) can improve the neurological function after ICH, however, its internal mechanism is still unclear. The aim of this study is to investigate whether EA could ameliorate secondary injury after ICH through antioxidative stress and its potential regulatory mechanism. A rat model of ICH was established by injecting autologous blood into striatum. After the intervention of EA and EA combined with peroxisome proliferator-activated receptor-γ (PPARγ) blocker, Zea-longa scores, modified neurological severity scores and open field tests were used to evaluate the neurological function of the rats. Flow cytometry detected tissue reactive oxygen species (ROS) levels. Tissue tumor necrosis factor-α (TNF-α) levels were analyzed by enzyme-linked immunosorbent assays. The protein expressions of PPAR γ, nuclear factor erythroid2-related factor 2 (Nrf2) and γ-glutamylcysteine synthetase (γ-GCS) were detected by Western blot. Immunohistochemistry was used to observe the activation of microglia. The demyelination degree of axon myelin was observed by transmission electron microscope. Compared with the model group, EA intervention improved neurological function, decreased ROS and TNF-α levels, increased the protein expression of PPARγ, Nrf2 and γ-GCS, and reduced the activation of microglia, it also alleviated axonal myelin sheath damage. In addition, the neuroprotective effect of EA was partially attenuated by PPARγ blocker. EA ameliorated the neurological function of secondary injury after ICH in rats, possibly by activating the PPARγ/Nrf2/γ-GCS signaling pathway, reducing microglia activation, and inhibiting oxidative stress, thus alleviating the extent of axonal demyelination plays a role.
Collapse
Affiliation(s)
| | - Wei Bu
- Department of Neurosurgery, The Third Hospital of Hebei Medical University
| | - Hequn Chen
- Department of Neurosurgery, The Third Hospital of Hebei Medical University
| | | | - Xudong Lu
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
30
|
Huang YL, Huang DY, Klochkov V, Chan CM, Chen YS, Lin WW. NLRX1 Inhibits LPS-Induced Microglial Death via Inducing p62-Dependent HO-1 Expression, Inhibiting MLKL and Activating PARP-1. Antioxidants (Basel) 2024; 13:481. [PMID: 38671928 PMCID: PMC11047433 DOI: 10.3390/antiox13040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The activation of microglia and the production of cytokines are key factors contributing to progressive neurodegeneration. Despite the well-recognized neuronal programmed cell death regulated by microglial activation, the death of microglia themselves is less investigated. Nucleotide-binding oligomerization domain, leucine-rich repeat-containing X1 (NLRX1) functions as a scaffolding protein and is involved in various central nervous system diseases. In this study, we used the SM826 microglial cells to understand the role of NLRX1 in lipopolysaccharide (LPS)-induced cell death. We found LPS-induced cell death is blocked by necrostatin-1 and zVAD. Meanwhile, LPS can activate poly (ADP-ribose) polymerase-1 (PARP-1) to reduce DNA damage and induce heme oxygenase (HO)-1 expression to counteract cell death. NLRX1 silencing and PARP-1 inhibition by olaparib enhance LPS-induced SM826 microglial cell death in an additive manner. Less PARylation and higher DNA damage are observed in NLRX1-silencing cells. Moreover, LPS-induced HO-1 gene and protein expression through the p62-Keap1-Nrf2 axis are attenuated by NLRX1 silencing. In addition, the Nrf2-mediated positive feedback regulation of p62 is accordingly reduced by NLRX1 silencing. Of note, NLRX1 silencing does not affect LPS-induced cellular reactive oxygen species (ROS) production but increases mixed lineage kinase domain-like pseudokinase (MLKL) activation and cell necroptosis. In addition, NLRX1 silencing blocks bafilomycin A1-induced PARP-1 activation. Taken together, for the first time, we demonstrate the role of NLRX1 in protecting microglia from LPS-induced cell death. The underlying protective mechanisms of NLRX1 include upregulating LPS-induced HO-1 expression via Nrf2-dependent p62 expression and downstream Keap1-Nrf2 axis, mediating PARP-1 activation for DNA repair via ROS- and autophagy-independent pathway, and reducing MLKL activation.
Collapse
Affiliation(s)
- Yu-Ling Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Vladlen Klochkov
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University, Yunlin Branch, Yunlin 640203, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
31
|
Kasimanickam R, Kasimanickam V. MicroRNAs in the Pathogenesis of Preeclampsia-A Case-Control In Silico Analysis. Curr Issues Mol Biol 2024; 46:3438-3459. [PMID: 38666946 PMCID: PMC11048894 DOI: 10.3390/cimb46040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective of this secondary analysis was to elucidate the pathogenesis of PE by probing protein-protein interactions from in silico analysis of transcriptomes between PE and normal placenta from Gene Expression Omnibus (GSE149812). The pathogenesis of PE is apparently determined by associations of miRNA molecules and their target genes and the degree of changes in their expressions with irregularities in the functions of hemostasis, vascular systems, and inflammatory processes at the fetal-maternal interface. These irregularities ultimately lead to impaired placental growth and hypoxic injuries, generally manifesting as placental insufficiency. These differentially expressed miRNAs or genes in placental tissue and/or in blood can serve as novel diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Ramanathan Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Vanmathy Kasimanickam
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
32
|
Chen F, Xiao M, Hu S, Wang M. Keap1-Nrf2 pathway: a key mechanism in the occurrence and development of cancer. Front Oncol 2024; 14:1381467. [PMID: 38634043 PMCID: PMC11021590 DOI: 10.3389/fonc.2024.1381467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway is a major regulator of the cytoprotective response, participating in endogenous and exogenous stress caused by ROS (reactive oxygen species). Nrf2 is the core of this pathway. We summarized the literature on Keap1-Nrf2 signaling pathway and summarized the following three aspects: structure, function pathway, and cancer and clinical application status. This signaling pathway is similar to a double-edged sword: on the one hand, Nrf2 activity can protect cells from oxidative and electrophilic stress; on the other hand, increasing Nrf2 activity can enhance the survival and proliferation of cancer cells. Notably, oxidative stress is also considered a marker of cancer in humans. Keap1-Nrf2 signaling pathway, as a typical antioxidant stress pathway, is abnormal in a variety of human malignant tumor diseases (such as lung cancer, liver cancer, and thyroid cancer). In recent years, research on the Keap1-Nrf2 signaling pathway has become increasingly in-depth and detailed. Therefore, it is of great significance for cancer prevention and treatment to explore the molecular mechanism of the occurrence and development of this pathway.
Collapse
Affiliation(s)
- Feilong Chen
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Mei Xiao
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Shaofan Hu
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
33
|
Zhai DS, Wang XS, Yang L, Jiang YL, Jin YC, Yan YX, Song DK, Zhang K, Han ZK, Liu MY, Wu YM, Ma X, Qi JY, Yang F, Tian F, Li XB, Liu SB. TOM40 mediates the effect of TSPO on postpartum depression partially through regulating calcium homeostasis in microglia. J Affect Disord 2024; 348:283-296. [PMID: 38159656 DOI: 10.1016/j.jad.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
AIMS To assess the effect of the translocator protein 18 kDa (TSPO) on postpartum depression and explore its mechanism. METHODS Postpartum depression (PPD) mouse model was established, and flow cytometry, immunofluorescence, Western blot analysis, real-time quantitative PCR, adeno-associated virus (AAV), co-immunoprecipitation-mass spectrometry and immunofluorescence co-staining were used to detect the effect of TSPO ligand ZBD-2 on PPD mice. RESULTS ZBD-2 inhibits the overactivation of microglia in the hippocampus and amygdala of PPD model mice. ZBD-2 not only inhibited the inflammation but also repressed the burst of reactive oxygen species (ROS) and mitochondrial ROS (mtROS). Meanwhile, ZBD-2 protects mitochondria from LPS-induced damages through inhibiting the influx of calcium. ZBD-2 modulated the calcium influx by increasing the level of translocase of the outer mitochondrial membrane 40 (TOM40) and reducing the interaction of TSPO and TOM40. In addition, the effect of ZBD-2 was partially dependent on anti-oxidative process. Knockdown of TOM40 by adeno-associated virus (AAV) in the hippocampus or amygdala dramatically reduced the effect of ZBD-2 on PPD, indicating that TOM40 mediates the effect of ZBD-2 on PPD. CONCLUSIONS TOM40 is required for the effect of ZBD-2 on treating anxiety and depression in PPD mice. This study reveals the role of microglia TSPO in PPD development and provides the new therapeutic strategy for PPD.
Collapse
Affiliation(s)
- Dong-Sheng Zhai
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Chen Jin
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-Xuan Yan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zu-Kang Han
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-Ying Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Fan Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Tian
- Teaching Experimental Center, Fourth Military Medical University, Xi'an, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
34
|
Jiang HY, Ma RA, Ji FL, Liu Y, Wang B, Fu SQ, Ma LS, Wang S, Liu CX, Guo Z, Li R, Wang YC, Sun W, Dong L, Dong CX, Sun DQ. Structure characterization of polysaccharides from Cistanche deserticola and their neuroprotective effects against oxidative stress in slow transit constipation mice. Int J Biol Macromol 2024; 260:129527. [PMID: 38246435 DOI: 10.1016/j.ijbiomac.2024.129527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Oxidative stress-induced enteric neuropathy is an important factor in slow transit constipation (STC). Cistanche deserticola crude polysaccharides (CDCP) are natural antioxidants with various biological activities. We prepared CDCP through water-extract and alcohol-precipitation methods. The structural characteristics of CDCP were analyzed by infrared spectroscopy and methylation analysis. The results showed that CDCP was primarily composed of (1 → 4)-linked glucans with minor amounts of pectic polysaccharides. Different doses of CDCP (100, 200, and 400 mg/kg) were administered to loperamide-induced STC mice to explore the therapeutic effects of CDCP. Compared with the untreated group, CDCP treatment significantly improved constipation symptoms, relevant gut-regulating peptides levels, colonic pathological damage, and colonic myenteric nerons injury. CDCP enhanced the antioxidant capacity by decreasing Malondialdehyde (MDA) content, increasing Superoxide Dismutase (SOD) activity and Reduced Glutathione (GSH) content. CDCP significantly reduced oxidative stress-induced injury by preserving mitochondrial function in the colonic myenteric plexus. Furthermore, the neuroprotective effects of CDCP might be associated with the Nrf2/Keap1 pathway. Thus, our findings first revealed the potential of CDCP to protect the colonic myenteric plexus against oxidative stress-induced damage in STC, establishing CDCP as promising candidates for natural medicine in the clinical management of STC.
Collapse
Affiliation(s)
- Hong-Yu Jiang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300074, China
| | - Rui-An Ma
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Fu-Long Ji
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bo Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Si-Qi Fu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu-Shun Ma
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chun-Xiang Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Chao Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Liang Dong
- Department of General Surgery, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300074, China.
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Da-Qing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
35
|
Díaz M, Valdés-Baizabal C, de Pablo DP, Marin R. Age-Dependent Changes in Nrf2/Keap1 and Target Antioxidant Protein Expression Correlate to Lipoxidative Adducts, and Are Modulated by Dietary N-3 LCPUFA in the Hippocampus of Mice. Antioxidants (Basel) 2024; 13:206. [PMID: 38397804 PMCID: PMC10886099 DOI: 10.3390/antiox13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The brain has a high metabolism rate that may generate reactive oxygen and nitrogen species. Consequently, nerve cells require highly efficient antioxidant defenses in order to prevent a condition of deleterious oxidative stress. This is particularly relevant in the hippocampus, a highly complex cerebral area involved in processing superior cognitive functions. Most current evidence points to hippocampal oxidative damage as a causal effect for neurodegenerative disorders, especially Alzheimer's disease. Nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) is a master key for the transcriptional regulation of antioxidant and detoxifying systems. It is ubiquitously expressed in brain areas, mainly supporting glial cells. In the present study, we have analyzed the relationships between Nrf2 and Keap1 isoforms in hippocampal tissue in response to aging and dietary long-chain polyunsaturated fatty acids (LCPUFA) supplementation. The possible involvement of lipoxidative and nitrosative by-products in the dynamics of the Nrf2/Keap1 complex was examined though determination of protein adducts, namely malondialdehyde (MDA), 4-hydroxynonenal (HNE), and 3-nitro-tyrosine (NTyr) under basal conditions. The results were correlated to the expression of target proteins heme-oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPx4), whose expressions are known to be regulated by Nrf2/Keap1 signaling activation. All variables in this study were obtained simultaneously from the same preparations, allowing multivariate approaches. The results demonstrate a complex modification of the protein expression patterns together with the formation of adducts in response to aging and diet supplementation. Both parameters exhibited a strong interaction. Noticeably, LCPUFA supplementation to aged animals restored the Nrf2/Keap1/target protein patterns to the status observed in young animals, therefore driving a "rejuvenation" of hippocampal antioxidant defense.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of Sciences, University of La Laguna, 38200 Tenerife, Spain
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38320 Tenerife, Spain; (C.V.-B.); (D.P.d.P.); (R.M.)
| | - Catalina Valdés-Baizabal
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38320 Tenerife, Spain; (C.V.-B.); (D.P.d.P.); (R.M.)
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Tenerife, Spain
| | - Daniel Pereda de Pablo
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38320 Tenerife, Spain; (C.V.-B.); (D.P.d.P.); (R.M.)
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Tenerife, Spain
| | - Raquel Marin
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38320 Tenerife, Spain; (C.V.-B.); (D.P.d.P.); (R.M.)
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Tenerife, Spain
- Associate Research Unit ULL-CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”, 38200 Tenerife, Spain
| |
Collapse
|
36
|
Belfiori LF, Dueñas Rey A, Ralbovszki DM, Jimenez-Ferrer I, Fredlund F, Balikai SS, Ahrén D, Brolin KA, Swanberg M. Nigral transcriptomic profiles in Engrailed-1 hemizygous mouse models of Parkinson's disease reveal upregulation of oxidative phosphorylation-related genes associated with delayed dopaminergic neurodegeneration. Front Aging Neurosci 2024; 16:1337365. [PMID: 38374883 PMCID: PMC10875038 DOI: 10.3389/fnagi.2024.1337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disorder, increasing both in terms of prevalence and incidence. To date, only symptomatic treatment is available, highlighting the need to increase knowledge on disease etiology in order to develop new therapeutic strategies. Hemizygosity for the gene Engrailed-1 (En1), encoding a conserved transcription factor essential for the programming, survival, and maintenance of midbrain dopaminergic neurons, leads to progressive nigrostriatal degeneration, motor impairment and depressive-like behavior in SwissOF1 (OF1-En1+/-). The neurodegenerative phenotype is, however, absent in C57Bl/6j (C57-En1+/-) mice. En1+/- mice are thus highly relevant tools to identify genetic factors underlying PD susceptibility. Methods Transcriptome profiles were defined by RNAseq in microdissected substantia nigra from 1-week old OF1, OF1- En1+/-, C57 and C57- En1+/- male mice. Differentially expressed genes (DEGs) were analyzed for functional enrichment. Neurodegeneration was assessed in 4- and 16-week old mice by histology. Results Nigrostriatal neurodegeneration was manifested in OF1- En1+/- mice by increased dopaminergic striatal axonal swellings from 4 to 16 weeks and decreased number of dopaminergic neurons in the SNpc at 16 weeks compared to OF1. In contrast, C57- En1+/- mice had no significant increase in axonal swellings or cell loss in SNpc at 16 weeks. Transcriptomic analyses identified 198 DEGs between OF1- En1+/- and OF1 mice but only 52 DEGs between C57- En1+/- and C57 mice. Enrichment analysis of DEGs revealed that the neuroprotective phenotype of C57- En1+/- mice was associated with a higher expression of oxidative phosphorylation-related genes compared to both C57 and OF1- En1+/- mice. Discussion Our results suggest that increased expression of genes encoding mitochondrial proteins before the onset of neurodegeneration is associated with increased resistance to PD-like nigrostriatal neurodegeneration. This highlights the importance of genetic background in PD models, how different strains can be used to model clinical and sub-clinical pathologies and provides insights to gene expression mechanisms associated with PD susceptibility and progression.
Collapse
Affiliation(s)
- Lautaro Francisco Belfiori
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alfredo Dueñas Rey
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dorottya Mária Ralbovszki
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Filip Fredlund
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sagar Shivayogi Balikai
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Dag Ahrén
- Department of Biology, National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Stockholm, Sweden
| | - Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Ibrahim IH. Metalloproteins and metalloproteomics in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:123-176. [PMID: 38960472 DOI: 10.1016/bs.apcsb.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
38
|
Franco C, Canzoniero LMT. Zinc homeostasis and redox alterations in obesity. Front Endocrinol (Lausanne) 2024; 14:1273177. [PMID: 38260166 PMCID: PMC10800374 DOI: 10.3389/fendo.2023.1273177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Impairment of both cellular zinc and redox homeostasis is a feature of several chronic diseases, including obesity. A significant two-way interaction exists between redox metabolism and the relatively redox-inert zinc ion. Redox metabolism critically influences zinc homeostasis and controls its cellular availability for various cellular functions by regulating zinc exchange from/to zinc-binding proteins. Zinc can regulate redox metabolism and exhibits multiple pro-antioxidant properties. On the other hand, even minor disturbances in zinc status and zinc homeostasis affect systemic and cellular redox homeostasis. At the cellular level, zinc homeostasis is regulated by a multi-layered machinery consisting of zinc-binding molecules, zinc sensors, and two selective families of zinc transporters, the Zinc Transporter (ZnT) and Zrt, Irt-like protein (ZIP). In the present review, we summarize the current state of knowledge on the role of the mutual interaction between zinc and redox homeostasis in physiology and pathophysiology, pointing to the role of zinc in the alterations responsible for redox stress in obesity. Since zinc transporters primarily control zinc homeostasis, we describe how changes in the expression and activity of these zinc-regulating proteins are associated with obesity.
Collapse
|
39
|
Song Y, Qu Y, Mao C, Zhang R, Jiang D, Sun X. Post-translational modifications of Keap1: the state of the art. Front Cell Dev Biol 2024; 11:1332049. [PMID: 38259518 PMCID: PMC10801156 DOI: 10.3389/fcell.2023.1332049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway plays a crucial role in cellular defense against oxidative stress-induced damage. Its activation entails the expression and transcriptional regulation of several proteins involved in detoxification and antioxidation processes within the organism. Keap1, serving as a pivotal transcriptional regulator within this pathway, exerts control over the activity of Nrf2. Various post-translational modifications (PTMs) of Keap1, such as alkylation, glycosylation, glutathiylation, S-sulfhydration, and other modifications, impact the binding affinity between Keap1 and Nrf2. Consequently, this leads to the accumulation of Nrf2 and its translocation to the nucleus, and subsequent activation of downstream antioxidant genes. Given the association between the Keap1-Nrf2 signaling pathway and various diseases such as cancer, neurodegenerative disorders, and diabetes, comprehending the post-translational modification of Keap1 not only deepens our understanding of Nrf2 signaling regulation but also contributes to the identification of novel drug targets and biomarkers. Consequently, this knowledge holds immense importance in the prevention and treatment of diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
40
|
de Souza MDGC, Cyrino FZGA, Bouskela E. Protective effects of Ruscus extract in combination with ascorbic acid and hesperidine methylchalcone on increased leukocyte-endothelial interaction and macromolecular permeability induced by ischemia reperfusion injury. Clin Hemorheol Microcirc 2024; 88:135-155. [PMID: 38995768 DOI: 10.3233/ch-242111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
BACKGROUND Despite the well-recognized effectiveness of Ruscus aculetus extract combined or not with ascorbic acid (AA) and hesperidine methyl chalcone (HMC) on ischemia reperfusion (I/R) injury protection, little is known about the contribution of each constituent for this effect. OBJECTIVE To investigate the effects of AA and HMC combined or not with Ruscus extract on increased macromolecular permeability and leukocyte-endothelium interaction induced by I/R injury. METHODS Hamsters were treated daily during two weeks with filtered water (placebo), AA (33, 100 and 300 mg/kg/day) and HMC (50, 150 and 450 mg/kg/day) combined or not with Ruscus extract (50, 150 and 450 mg/kg/day). On the day of experiment, the cheek pouch microcirculation underwent 30 min of ischemia, and the number of rolling and adherent leukocytes and leaky sites were evaluated before ischemia and during 45 min of reperfusion. RESULTS Ruscus extract combined with AA and HMC (Ruscus extract mixture) significantly prevented post-ischemic increase in leukocyte rolling and adhesion and macromolecular permeability compared to placebo and these effects were more prominent than AA and HMC alone on leukocyte adhesion and macromolecular leakage. CONCLUSION Ruscus extract mixture were more effective than its isolated constituents in protect the hamster cheek pouch microcirculation against I/R injury.
Collapse
Affiliation(s)
- Maria das Graças C de Souza
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular (BioVasc), Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Fatima Z G A Cyrino
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular (BioVasc), Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular (BioVasc), Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Pei XD, He YN, Wu QL, Zhang YM, Li F, Jiao DQ, Liu XL, Wang CH. Novel Antioxidant Peptides Derived from Feather Keratin Alleviate H 2O 2-Induced Oxidative Damage in HepG2 Cells via Keap1/Nrf2 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20062-20072. [PMID: 38078849 DOI: 10.1021/acs.jafc.3c05088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are crucial for signal transduction and the maintenance of cellular homeostasis. However, superfluous ROS may engender chronic pathologies. Feather keratin is a promising new source of antioxidant peptides that can eliminate excess ROS and potentially treat oxidative stress-related diseases, but the underlying mechanisms have remained elusive. This study investigated the antioxidant effects and mechanisms against H2O2-induced oxidative damage in HepG2 cells of the two latest discovered antioxidant peptides, CRPCGPTP (CP-8) and ANSCNEPCVR (AR-10), first decrypted from feather keratin. The results revealed that CP-8 and AR-10 did not exhibit cytotoxicity to HepG2 cells while reducing intracellular ROS accumulation. Simultaneously, they enhanced the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), thus alleviating H2O2-induced cell apoptosis. Molecular docking analysis demonstrated that CP-8, AR-10 interacted well with the key amino acids in the Kelch domain of Keap1, thereby directly disrupting the Keap1-Nrf2 interaction. The peptides' biosafety and antioxidant activity via Keap1/Nrf2 signaling lay the groundwork for further animal studies and applications as functional food additives.
Collapse
Affiliation(s)
- Xiao-Dong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Yi-Ning He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Qing-Ling Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Yan-Mei Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Fan Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dao-Quan Jiao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiao-Ling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
42
|
Han X, Wang H, Du F, Zeng X, Guo C. Nrf2 for a key member of redox regulation: A novel insight against myocardial ischemia and reperfusion injuries. Biomed Pharmacother 2023; 168:115855. [PMID: 37939614 DOI: 10.1016/j.biopha.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2), a nuclear transcription factor, modulates genes responsible for antioxidant responses against toxic and oxidative stress to maintain redox homeostasis and participates in varieties of cellular processes such as metabolism and inflammation during myocardial ischemia and reperfusion injuries (MIRI). The accumulation of reactive oxygen species (ROS) from damaged mitochondria, xanthine oxidase, NADPH oxidases, and inflammation contributes to depraved myocardial ischemia and reperfusion injuries. Considering that Nrf2 played crucial roles in antagonizing oxidative stress, it is reasonable to delve into the up or down-regulated molecular mechanisms of Nrf2 in the progression of MIRI to provide the possibility of new therapeutic medicine targeting Nrf2 in cardiovascular diseases. This review systematically describes the generation of ROS, the regulatory metabolisms of Nrf2 as well as several natural or synthetic compounds activating Nrf2 during MIRI, which might provide novel insights for the anti-oxidative stress and original ideas targeting Nrf2 for the prevention and treatment in cardiovascular diseases.
Collapse
Affiliation(s)
- Xuejie Han
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing 100069, PR China
| | - Fenghe Du
- Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, PR China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing 100069, PR China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing 100730, PR China.
| |
Collapse
|
43
|
Lapenna D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res Rev 2023; 92:102066. [PMID: 37683986 DOI: 10.1016/j.arr.2023.102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, U.O.C. Medicina Generale 2, Ospedale Clinicizzato "Santissima Annunziata", Via dei Vestini, 66100 Chieti, Italy.
| |
Collapse
|
44
|
Khramtsov YV, Ulasov AV, Slastnikova TA, Rosenkranz AA, Lupanova TN, Georgiev GP, Sobolev AS. Modular Nanotransporters Delivering Biologically Active Molecules to the Surface of Mitochondria. Pharmaceutics 2023; 15:2687. [PMID: 38140028 PMCID: PMC10748074 DOI: 10.3390/pharmaceutics15122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Treatment of various diseases, in particular cancer, usually requires the targeting of biologically active molecules at a selected subcellular compartment. We modified our previously developed modular nanotransporters (MNTs) for targeting mitochondria. The new MNTs are capable of binding to the protein predominantly localized on the outer mitochondrial membrane, Keap1. These MNTs possessing antiKeap1 monobody co-localize with mitochondria upon addition to the cells. They efficiently interact with Keap1 both in solution and within living cells. A conjugate of the MNT with a photosensitizer, chlorin e6, demonstrated significantly higher photocytotoxicity than chlorin e6 alone. We assume that MNTs of this kind can improve efficiency of therapeutic photosensitizers and radionuclides emitting short-range particles.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.A.S.); (A.A.R.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
45
|
Wang X, Tian X, Yan H, Zhu T, Ren H, Zhou Y, Zhao D, Xu D, Lian X, Fang L, Yu Y, Liao X, Liu Y, Sun J. Exposure to salinomycin dysregulates interplay between mitophagy and oxidative response to damage the porcine jejunal cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166441. [PMID: 37604367 DOI: 10.1016/j.scitotenv.2023.166441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Salinomycin (SAL) has caused widespread pollution as a feed additive and growth promoter in livestock such as pigs, exerting a negative impact on public health. The toxicity mechanism of SAL has been widely studied in chickens, but the underlying mechanisms of SAL-induced toxicity to pigs and the ecosystem remain undefined. In this study, we explored the potential damage of SAL in IPEC-J2 cells to identify the effects of excessive SAL on the interplay between mitophagy and oxidative stress. The results showed that a concentration-dependent response was observed for SAL in altering cellular morphology and inducing cell death in IPEC-J2 cells, including the induction of cell cycle arrest and lactic dehydrogenase (LDH) release. Meanwhile, we found that excessive SAL led to oxidative damage by activating the Nrf2/Keap1/HO-1 pathway, accompanied by reactive oxygen species (ROS) elevation and the reduction of antioxidant enzyme activity. We also found that PINK1/Parkin-dependent mitophagy was activated by SAL exposure, particularly with mitochondrial membrane potential reduction. Interestingly, SAL-induced oxidative damages were prevented after the autophagy inhibitor 3-methyladenine (3-MA) treatment, and mitophagy was alleviated following ROS scavenger (N-acetylcysteine, NAC) treatment. Overall, our findings showed that SAL stimulated oxidative stress and mitophagy in IPEC-J2 cells resulting in cellular injury, and there was a strong connection between SAL-induced oxidative stress and mitophagy. Targeting ROS/PINK1/Parkin-dependent mitophagy and oxidative stress could be a novel protective mechanism in SAL-induced cell damage.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaomin Tian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Huilin Yan
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Tingting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yufeng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Donghao Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Dan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Liangxing Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yang Yu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China.; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China..
| |
Collapse
|
46
|
Lin BH, Ma RX, Wu JT, Du SQ, Lv YY, Yu HN, Zhang W, Mao SM, Liu GY, Bu YT, Chen ZH, Jin C, Wu ZY, Yang L. Cinnamaldehyde Alleviates Bone Loss by Targeting Oxidative Stress and Mitochondrial Damage via the Nrf2/HO-1 Pathway in BMSCs and Ovariectomized Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37917162 DOI: 10.1021/acs.jafc.3c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Osteoporosis (OP) is typically brought on by disruption of bone homeostasis. Excessive oxidative stress and mitochondrial dysfunction are believed to be the primary mechanisms underlying this disorder. Therefore, in order to restore bone homeostasis effectively, targeted treatment of oxidative stress and mitochondrial dysfunction is necessary. Cinnamaldehyde (CIN), a small molecule that acts as an agonist for the nuclear factor erythroid 2-related factor (Nrf2), has been found to possess antiapoptotic, anti-inflammatory, and antioxidant properties. We found that CIN, while rescuing apoptosis, can also reduce the accumulation of reactive oxygen species (ROS) to improve mitochondrial dysfunction and thus restore the osteogenic differentiation potential of BMSCs disrupted by hydrogen peroxide (H2O2) exposure. The role of CIN was preliminarily considered to be a consequence of Nrf2/HO-1 axis activation. The ovariectomized mice model further demonstrated that CIN treatment ameliorated oxidative stress in vivo, partially reversing OVX-induced bone loss. This improvement was seen in the trabecular microarchitecture and bone biochemical indices. However, when ML385 was concurrently injected with CIN, the positive effects of CIN were largely blocked. In conclusion, this study sheds light on the intrinsic mechanisms by which CIN regulates BMSCs and highlights the potential therapeutic applications of these findings in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Bing-Hao Lin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Run-Xun Ma
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Jing-Tao Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Shi-Qi Du
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Yi-Yun Lv
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Hao-Nan Yu
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Zhang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Shu-Ming Mao
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Guang-Yao Liu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Yi-Tian Bu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Zi-Hao Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Chen Jin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Zong-Yi Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Lei Yang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| |
Collapse
|
47
|
Fan W, Zhou J. Icariside II suppresses ferroptosis to protect against MPP +-Induced Parkinson's disease through Keap1/Nrf2/GPX4 signaling. CHINESE J PHYSIOL 2023; 66:437-445. [PMID: 38149556 DOI: 10.4103/cjop.cjop-d-23-00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Parkinson's disease (PD) is recognized as a degenerative and debilitating neurodegenerative disorder. The novel protective role of icariside II (ICS II) as a plant-derived flavonoid compound in neurodegenerative diseases has aroused much attention. Herein, the definite impacts of ICS II on the process of PD and the relevant action mechanism were studied. Human neuroblastoma SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium ion (MPP+) to construct the PD cell model. MTT assay and flow cytometry analysis, respectively, appraised cell viability and apoptosis. Caspase 3 Activity Assay examined caspase 3 activity. Corresponding kits examined oxidative stress levels. BODIPY 581/591 C11 assay evaluated lipid reactive oxygen species. Iron Assay Kit assessed iron content. Western blot tested the expression of apoptosis-, ferroptosis- and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling-associated proteins. Molecular docking verified the binding of ICS II with Keap1. The existing experimental results unveiled that ICS II elevated the viability whereas reduced the apoptosis, oxidative stress, and ferroptosis in MPP+-treated SK-N-SH cells in a concentration-dependent manner. Furthermore, ICS II declined Keap1 expression while raised Nrf2, heme oxygenase 1, and GPX4 expression. In addition, ICS II had a strong binding with Keap1 and Nrf2 inhibitor ML385 partially abolished the suppressive role of ICS II in MPP+-triggered apoptosis, oxidative stress, and ferroptosis in SK-N-SH cells. To summarize, ICS II might inhibit apoptosis, oxidative stress, and ferroptosis in the MPP+-stimulated PD cell model, which might be due to the activation of Keap1/Nrf2/GPX4 signaling.
Collapse
Affiliation(s)
- Wenbo Fan
- Pharmaceutical Technology Department, Chemical Engineering School, Jiuquan Vocational Technical College, Jiuquan, Gansu, China
| | - Jianwu Zhou
- Laboratory of Medical Test, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| |
Collapse
|
48
|
Onodera A, Shimomura T, Ochi H, Sunada R, Fukutomi E, Hidaka K, Kawai Y. The Cellular Accumulation of Vehicle Exhaust Particulates Changes the Acidic pH Environment of Lysosomes in BEAS-2B Airway Epithelial Cells. J Xenobiot 2023; 13:653-661. [PMID: 37987443 PMCID: PMC10660702 DOI: 10.3390/jox13040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Many people are exposed every day to vehicle exhaust particulates (VEPs), which are thought to be taken up by epithelial cells that are the first barrier in our biological defense. The study aim was to investigate how VEPs are processed in the lysosomal degradation system. BEAS-2B airway epithelial cells easily ingest VEPs and have been shown to accumulate in cells for several days, but no elevated cytotoxicity was observed over that time period. An analysis of 3D images confirmed the presence of VEPs in or near lysosomes, and an accumulation of VEPs resulted in an increase in the normal acidic pH in lysosomes and the extracellular release of the lysosomal enzyme β-hexosaminidase. Epithelial cells were thought to activate the lysosome-mediated secretion of extracellular vesicles to avoid damage caused by non-degradable foreign substances, such as VEPs, and as a side reaction, the acidic pH environment of the lysosomes could not be maintained.
Collapse
Affiliation(s)
- Akira Onodera
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Takuya Shimomura
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Hirohisa Ochi
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Ryuto Sunada
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Eiko Fukutomi
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| | - Koushi Hidaka
- Research Facility Center for Science and Technology, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
| | - Yuichi Kawai
- Department of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; (T.S.); (H.O.); (R.S.); (E.F.); (Y.K.)
| |
Collapse
|
49
|
Talebi M, Sadoughi MM, Ayatollahi SA, Ainy E, Kiani R, Zali A, Miri M. Therapeutic potentials of cannabidiol: Focus on the Nrf2 signaling pathway. Biomed Pharmacother 2023; 168:115805. [PMID: 39491419 DOI: 10.1016/j.biopha.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024] Open
Abstract
Cannabidiol (CBD), a cannabinoid that does not create psychoactive activities, has been identified as having a multitude of therapeutic benefits. This study delves into the chemical properties, pharmacokinetics, safety and toxicity, pharmacological effects, and most importantly, the association between the therapeutic potential of CBD and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The relationship between Nrf2 and CBD is closely linked to certain proteins that are associated with cardiovascular dysfunctions, cancers, and neurodegenerative conditions. Specifically, Nrf2 is connected to the initiation and progression of diverse health issues, including nephrotoxicity, bladder-related diseases, oral mucositis, cancers, obesity, myocardial injury and angiogenesis, skin-related inflammations, psychotic disorders, neuropathic pain, Huntington's disease, Alzheimer's disease, Parkinson's disease, neuroinflammation, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. The association between CBD and Nrf2 is a zone of great interest in the medical field, as it has the potential to significantly impact the treatment and prevention of wide-ranging health conditions. Additional investigation is necessary to entirely apprehend the mechanisms underlying this crucial interplay and to develop effective therapeutic interventions.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sadoughi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elaheh Ainy
- Safety Promotion and Injury Prevention Research Center, Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Kiani
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Zali
- Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - MirMohammad Miri
- Department of Anesthesiology and Critical Care, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Wang M, Tang J, Zhang S, Pang K, Zhao Y, Liu N, Huang J, Kang J, Dong S, Li H, Tian Z, Duan B, Lu F, Zhang W. Exogenous H 2S initiating Nrf2/GPx4/GSH pathway through promoting Syvn1-Keap1 interaction in diabetic hearts. Cell Death Discov 2023; 9:394. [PMID: 37875467 PMCID: PMC10598017 DOI: 10.1038/s41420-023-01690-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Excessive ROS accumulation contributes to cardiac injury in type 2 diabetes mellitus. Hydrogen sulfide (H2S) is a vital endogenous gasotransmitter to alleviate cardiac damage in diabetic cardiomyopathy (DCM). However, the underlying mechanisms remain unclear. In this study, we investigated the effects of NaHS administration in db/db mice via intraperitoneal injection for 20 weeks and the treatment of high glucose (HG), palmitate (PA) and NaHS in HL-1 cardiomyocytes for 48 h, respectively. H2S levels were decreased in hearts of db/db mice and HL-1 cardiomyocytes exposed to HG and PA, which were restored by NaHS. Exogenous H2S activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4)/glutathione (GSH) pathway, suppressed ferroptosis and mitigated mitochondrial apoptosis in db/db mice. However, these effects were abrogated after Nrf2 knockdown. NaHS treatment elevated the ubiquitination level of Kelch-like ECH-associated protein (Keap1) by preserving its E3 ligase synoviolin (Syvn1), resulting in Nrf2 nuclear translocation. H2S facilitated the sulfhydration of Syvn1-cys115 site, a post-translational modification. Transfecting Syvn1 C115A in cardiomyocytes exposed to HG and PA partially attenuated the effects of NaHS on Nrf2 and cell death. Our findings suggest that exogenous H2S regulates Nrf2/GPx4/GSH pathway by promoting the Syvn1-Keap1 interaction to reduce ferroptosis and mitochondrial apoptosis in DCM.
Collapse
Affiliation(s)
- Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Jingyuan Tang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Kemiao Pang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Jiayi Huang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Jiaxin Kang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Hongxia Li
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Zhen Tian
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Binhong Duan
- Department of Endocrinology, Heilongjiang Provincial Hospital, 150036, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China.
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China.
| |
Collapse
|