1
|
Mardhiyyah MP, Zakaria MF, Amin-Safwan A, Nur-Syahirah M, Sung YY, Ma H, Ikhwanuddin M. Transcriptome Profile and Gene Expression During Different Ovarian Maturation Stages of Macrobrachium rosenbergii (De Man, 1879). Trop Life Sci Res 2024; 35:77-108. [PMID: 39464661 PMCID: PMC11507968 DOI: 10.21315/tlsr2024.35.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/26/2024] [Indexed: 10/29/2024] Open
Abstract
Macrobrachium rosenbergii, or giant river prawn, is the most economically crucial cultured freshwater crustacean. A predominant challenge in developing crustacean aquaculture is reproduction management, particularly ovary maturation, where identifying regulative mechanisms at the molecular level is critical. Ovary is the primary tissue for studying gene and protein expressions involved in crustacean growth and reproduction. Despite significant interest in M. rosenbergii, its gene discovery has been at a relatively small scale compared to other genera. In this study, comprehensive transcriptomic sequencing data for different maturation stages of the ovary of M. rosenbergii were observed. The 20 female M. rosenbergii samples evaluated were categorised into four maturation stages, 1 to 4. A total of 817,793,14, 841,670,70, 914,248,78 and 878,085,88 raw reads were obtained from stages 1, 2, 3 and 4, respectively. The assembled unique sequences (unigenes) post-clustering (n = 98013) was 131,093,546 bp with an average size of 1,338 bp. The BLASTX unigene search against National Centre for Biotechnology Information (NCBI), non-redundant (NR), nucleotide sequence (NT), Kyoto Encyclopaedia of Genes and Genomes Orthology (KO), Swiss-Prot, Protein Family (PFAM), Gene Ontology (GO), and euKaryotic Orthologous Groups (KOG) databases yielded 27,680 (28.24%), 7,449 (7.59%), 13,026 (13.29%), 22,606 (23.06%), 29,907 (30.51%), 30,025 (30.63%) and 14,368 (14.65%) significant matches, respectively, totalling to 37,338 annotated unigenes (38.09%). The differentially expressed genes (DEG) analysis conducted in this study led to identifying cyclin B, insulin receptor (IR), oestrogen sulfotransferase (ESULT) and vitellogenin (Vg), which are critical in ovarian maturation. Nevertheless, some M. rosenbergii ovarian maturation-related genes, such as small ubiquitin-like modifier (SUMO)-activating enzyme subunit 1, E3 ubiquitin-protein ligase RNF25, and neuroparsin, were first identified in this study. The data obtained in the present study could considerably contribute to understanding the gene expression and genome structure in M. rosenbergii ovaries throughout its developmental stage.
Collapse
Affiliation(s)
- Mohd Pauzi Mardhiyyah
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muhammad Faiz Zakaria
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Adnan Amin-Safwan
- Department of Applied Sciences and Agriculture, Tunku Abdul Rahman University of Management and Technology, 85000 Segamat, Johor, Malaysia
| | - Mamat Nur-Syahirah
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hongyu Ma
- UMT-STU Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Mhd Ikhwanuddin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- UMT-STU Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
- Faculty of Fisheries and Marine, Campus C, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
2
|
Liu J, Chen Y, Song Y, Xu D, Gu Y, Wang J, Song W, Sun B, Jiang Z, Xia B. Evidence of size-dependent toxicity of polystyrene nano- and microplastics in sea cucumber Apostichopus japonicus (Selenka, 1867) during the intestinal regeneration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124394. [PMID: 38901819 DOI: 10.1016/j.envpol.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 μm, 1 μm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 μg g-1 and 337.95 μg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.
Collapse
Affiliation(s)
- Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yize Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqi Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Baiqin Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zitan Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
3
|
Wang H, Wu P, Li F, Shin J, Ki JS. Molecular characterization of a catalase gene in the freshwater green alga Closterium ehrenbergii and its putative function against abiotic stresses. Eur J Protistol 2024; 95:126111. [PMID: 39137618 DOI: 10.1016/j.ejop.2024.126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Catalases (CATs) are ubiquitous antioxidant enzymes that prevent cellular oxidative damage through the decomposition of H2O2. However, there is relatively little information on CAT in the worldwide-distributed freshwater green alga Closterium ehrenbergii. Here, we cloned the full-length catalase cDNA from C. ehrenbergii (CeCAT) and characterized its structural features and expressional responses against aquatic contaminants. The open reading frame of CeCAT was determined to be 1476 bp, encoding 491 amino acids with a theoretical molecular mass of 56.1 kDa. The CeCAT protein belongs to the NADPH-binding CAT family and might be located in the cytosol. BLAST and phylogenetic results showed that CeCAT had a high identity with CAT proteins from other microalgae and the water lily Nymphaea colorata (Streptophyta). The transcriptional levels of CeCAT were significantly upregulated by the metal copper and herbicide atrazine, but little affected by other tested metals (Ni and Cr) and endocrine-disrupting chemicals (polychlorinated biphenyl, PCB). The maximum expression was registered under 0.1 mg/L CuCl2 and 0.2 mg/L CuSO4 exposures. In addition, excess copper considerably increased production of reactive oxygen species in the cells. These results suggest that CeCAT may function to defend against oxidative stress in green algae and can respond specifically to different kinds of metals and herbicides.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Peiling Wu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fengru Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jeongmin Shin
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
4
|
Biswas P, Singh SK, Debbarma R, Dey A, Waikhom G, Deb S, Patel AB. Effects of carotenoid supplementation on colour, growth and physiological function of the endemic dwarf chameleon fish (Badis badis). J Anim Physiol Anim Nutr (Berl) 2024; 108:126-138. [PMID: 37610038 DOI: 10.1111/jpn.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/24/2023]
Abstract
The global ornamental fish trade is expanding in response to increased demand for indigenous fish on the global market, while exogenous carotenoids can improve colouration. The 60-day trial investigated the effect of carotenoid supplementation, via Artemia, on colouration, growth and immunophysiology of Badis badis (dwarf chameleon fish). Carotenoid was enriched at 40 ppm (T1), 80 ppm (T2) and 120 ppm (T3) and compared with controls, C1 (unenriched) and C2 (oil-enriched). Fish larvae (average weight 0.12 g) were fed enriched-unenriched Artemia in triplicates (5 × 3) in aquarium tanks (15 L). C1 and T2 had better skin colour (lightness and whiteness) in the posterolateral and caudal fins respectively. The value of redness (a*) in the anterolateral region was higher in T2 and T3 (p < 0.05). The anterolateral red index was higher (p < 0.05) in T2 and T3, whereas in the posterolateral and caudal fins, T1 and T2 were higher (p < 0.05). Compared to C1 and C2, the hue angle in carotenoid groups was found to be low (p < 0.05). No significant change in the growth performance was noticed (p > 0.05). Immune scores such as lysozyme and alkaline protease were highest in T3 (p < 0.05), whereas protease activity was highest in T2 (80 ppm). Stress biomarkers, viz., superoxide dismutase, catalase and malondialdehyde were low in groups fed enriched Artemia (p < 0.05). The integrated biomarker response means and star plot area were lower in the enriched groups (T1-T3), while T2 was the lowest. Overall findings reveal that dietary carotenoid improves the colouration and immune status, but fail to promote growth. Furthermore, 80 ppm enrichment dose improves the overall performance. The findings can help fish keepers improve fish colour and health status through carotenoid supplementation.
Collapse
Affiliation(s)
- Pradyut Biswas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Reshmi Debbarma
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Abhipsha Dey
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Gusheinzed Waikhom
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Suparna Deb
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| |
Collapse
|
5
|
Parida S, Sahoo PK. Antioxidant Defence in Labeo rohita to Biotic and Abiotic Stress: Insight from mRNA Expression, Molecular Characterization and Recombinant Protein-Based ELISA of Catalase, Glutathione Peroxidase, CuZn Superoxide Dismutase, and Glutathione S-Transferase. Antioxidants (Basel) 2023; 13:18. [PMID: 38275638 PMCID: PMC10812468 DOI: 10.3390/antiox13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Fish possess numerous enzymatic antioxidant systems as part of their innate immunity. These systems have been poorly studied in Labeo rohita (rohu). The present study characterized and investigated the role of antioxidant genes in the defence mechanisms against two types of stressors, including infection and ammonia stress. Four key genes associated with antioxidant activity-catalase, glutathione peroxidase, glutathione S-transferase, and CuZn superoxide dismutase were successfully cloned and sequenced. These genes were found to be expressed in different tissues and developmental stages of rohu. The expression levels of these antioxidant genes in the liver and anterior kidney tissues of rohu juveniles were modulated in response to bacterial infection (Aeromonas hydrophila), parasite infection (Argulus siamensis), poly I:C stimulation and ammonia stress. Additionally, the recombinant proteins derived from these genes exhibited significant antioxidant and antibacterial activities. These proteins also demonstrated a protective effect against A. hydrophila infection in rohu and had an immunomodulatory role. Furthermore, indirect ELISA assay systems were developed to measure these protein levels in healthy as well as A. hydrophila and ammonia-induced rohu serum. Overall, this study characterized and emphasised the importance of the antioxidant mechanism in rohu's defence against oxidative damage and microbial diseases.
Collapse
Affiliation(s)
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India;
| |
Collapse
|
6
|
Thangal SH, Nandhini Priya R, Vasuki C, Gayathri V, Anandhan K, Yogeshwaran A, Muralisankar T, Ramesh M, Rajaram R, Santhanam P, Venmathi Maran BA. The impact of ocean acidification and cadmium toxicity in the marine crab Scylla serrata: Biological indices and oxidative stress responses. CHEMOSPHERE 2023; 345:140447. [PMID: 37858766 DOI: 10.1016/j.chemosphere.2023.140447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/29/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Ocean acidification (OA) and heavy metal pollution in marine environments are potentially threatening marine life. The interactive effect of OA and heavy metals could be more vulnerable to marine organisms than individual exposures. In the current study, the effect of OA on the toxicity of cadmium (Cd) in the crab Scylla serrata was evaluated. Crab instars (0.07 cm length and 0.1 g weight) were subjected to pH 8.2, 7.8, 7.6, 7.4, 7.2, and 7.0 with and without 0.01 mg l-1 of Cd for 60 days. We noticed a significant decrease in growth, molting, protein, carbohydrate, amino acid, lipid, alkaline phosphatase, and haemocytes of crabs under OA + Cd compared to OA treatment. In contrast, the growth, protein, amino acid, and haemocyte levels were significantly affected by OA, Cd, and its interactions (OA + Cd). However, superoxide dismutase, catalase, lipid peroxidation, glutamic oxaloacetate transaminase, glutamic pyruvate transaminase, and accumulation of Cd in crabs were considerably elevated in OA + Cd treatments compared to OA alone treatments. The present investigation showed that the effect of Cd toxicity might be raised under OA on S. serrata. Our study demonstrated that OA significantly affects the biological indices and oxidative stress responses of S. serrata exposed to Cd toxicity.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | | | | | - Velusamy Gayathri
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Krishnan Anandhan
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Arumugam Yogeshwaran
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | | | - Mathan Ramesh
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Perumal Santhanam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Balu Alagar Venmathi Maran
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| |
Collapse
|
7
|
Kumar IP, Snega Priya P, Meenatchi R, Oyouni AAA, Al-Amer OM, Aljohani SAS, Pashameah RA, Hamadi A, Alanazi MA, Arockiaraj J. Potential mechanism of Jatropha gossypifolia phenolic derivatives in enhancing insulin-signalling cascades GLUT 4, IRβ and GSK-3β in streptozotocin nicotinamide induced type II diabetic in wistar rat model. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102223. [DOI: 10.1016/j.jksus.2022.102223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
8
|
Alhoshy M, Shehata AI, Habib YJ, Abdel-Latif HMR, Wang Y, Zhang Z. Nutrigenomics in crustaceans: Current status and future prospects. FISH & SHELLFISH IMMUNOLOGY 2022; 129:1-12. [PMID: 36031039 DOI: 10.1016/j.fsi.2022.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/23/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
In aquaculture, nutrigenomics or "nutritional genomics" is concerned with studying the impacts of nutrients and food ingredients on gene expressions and understanding the interactions that may occur between nutrients and dietary bioactive ingredients with the genome and cellular molecules of the treated aquatic animals at the molecular levels that will, in turn, mediate gene expression. This concept will throw light on or provide important information to recognize better how specific nutrients may influence the overall health status of aquatic organisms. In crustaceans, it is well known that the nutritional requirements vary among different species. Thus, studying the nutrigenomics in different crustacean species is of significant importance. Of interest, recognition of the actual mechanisms that may be associated with the effects of the nutrients on the immune responses of crustaceans will provide clear outstanding protection, build a solid immune system, and also decrease the possibilities of the emergence of infectious diseases in the culture systems. Similarly, the growth, molting, lipid metabolism, antioxidant capacity, and reproduction could be effectively enhanced by using specific nutrients. In the area of crustacean research, nutrigenomics has been rapidly grown for addressing several aspects related to the influences of nutrients on crustacean development. Several researchers have studied the relationships between several functional genes and their expression profile with several physiological functions of crustaceans. They found a close association between the effects of optimal feeding with efficient production, growth, reproduction development, and health status of several crustacean species. Moreover, they illustrated that regulation of the gene expression in individual cells by different nutrients and formulated feeds could improve the growth development and immunity-boosting of several crustacean species. The present review will spotlight on such relationships between the dietary nutrients and expression of genes linked with growth, metabolism, molting, antioxidant, reproduction, and immunity of several crustacean species. The literature included in this review article will provide references and future outlooks for the upcoming research plans. This will contribute positively for maintaining the sustainability of the sector of the crustacean industry.
Collapse
Affiliation(s)
- Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Akram Ismael Shehata
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, 361021, PR China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
9
|
He Z, Zhao J, Chen X, Liao M, Xue Y, Zhou J, Chen H, Chen G, Zhang S, Sun C. The Molecular Mechanism of Hemocyte Immune Response in Marsupenaeus japonicus Infected With Decapod Iridescent Virus 1. Front Microbiol 2021; 12:710845. [PMID: 34512588 PMCID: PMC8427283 DOI: 10.3389/fmicb.2021.710845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
As a new type of shrimp lethal virus, decapod iridescent virus 1 (DIV1) has caused huge economic losses to shrimp farmers in China. Up to now, DIV1 has been detected in a variety of shrimps, but there is no report in Marsupenaeus japonicus. In the current study, we calculated the LC50 to evaluate the toxicity of DIV1 to M. japonicus and determined through nested PCR that M. japonicus can be the host of DIV1. Through enzyme activity study, it was found that DIV1 can inhibit the activities of superoxide dismutase, catalase, lysozyme, and phenoloxidase, which could be a way for DIV1 to achieve immune evasion. In a comprehensive study on the transcriptomic changes of M. japonicus in response to DIV1 infection, a total of 52,287 unigenes were de novo assembled, and 20,342 SSR markers associated with these unigenes were obtained. Through a comparative transcriptomic analysis, 6,900 differentially expressed genes were identified, including 3,882 upregulated genes and 3,018 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that some GO terms related to virus invasion, replication, and host antiviral infection were promoted under DIV1 infection, such as carbohydrate binding, chitin binding, chitin metabolic process, and DNA replication initiation, and some KEGG pathways related to immune response were significantly influenced by DIV1 infection, including Toll and IMD signaling pathway, JAK-STAT signaling pathway, IL-17 signaling pathway, C-type lectin receptor signaling pathway, complement and coagulation cascades, antigen processing and presentation, necroptosis, apoptosis, NOD-like receptor signaling pathway, apoptosis-multiple species, and TNF signaling pathway. Further analysis showed that STAT, Dorsal, Relish, heat shock protein 70 (HSP70), C-type lectins, and caspase play an important role in DIV1 infection. This is the first detailed study of DIV1 infection in M. japonicus, which initially reveals the molecular mechanism of DIV1 infection in M. japonicus by using the transcriptome analysis of hemocytes combined with enzyme activity study.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jichen Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xieyan Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yuan Xue
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jianing Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Haozhen Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Guoliang Chen
- Haimao Seed Technology Group Co., Ltd., Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
10
|
Velayutham M, Ojha B, Issac PK, Lite C, Guru A, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arockiaraj J. NV14 from serine O-acetyltransferase of cyanobacteria influences the antioxidant enzymes in vitro cells, gene expression against H 2 O 2 and other responses in vivo zebrafish larval model. Cell Biol Int 2021; 45:2331-2346. [PMID: 34314086 DOI: 10.1002/cbin.11680] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 01/11/2023]
Abstract
In this study, we have identified a novel peptide NV14 with antioxidative functions from serine O-acetyltransferase (SAT) of Artrospira platensis (Ap). The full sequence of ApSAT and its derived NV14 peptide "NVRIGAGSVVLRDV" (141-154) was characterized using bioinformatics tools. To address the transcriptional activity of ApSAT in response to induce generic oxidative stress, the spirulina culture was exposed to H2 O2 (10 mM). The ApSAT expression was studied using RT-PCR across various time points and it was found that the expression of the ApSAT was significantly upregulated on Day 15. The in vitro cytotoxicity assay against NV14 was performed in human dermal fibroblast cells and human blood leukocytes. Results showed that NV14 treatment was non-cytotoxic to the cells. Besides, in vivo treatment of NV14 in zebrafish larvae did not exhibit the signs of developmental toxicity. Further, the in vitro antioxidant assays enhanced the activity of the antioxidant enzymes, such as SOD and CAT, due to NV14 treatment; and also significantly reduced the MDA levels, while increasing the superoxide radical and H2 O2 scavenging activity. The expression of antioxidant enzyme genes glutathione peroxidase, γ-glutamyl cysteine synthase, and glutathione S-transferase were found to be upregulated in the NV14 peptide pretreated zebrafish larvae when induced with generic oxidative stress, H2 O2 . Overall, the study showed that NV14 peptide possessed potent antioxidant properties, which were demonstrated over both in vitro and in vivo assays. NV14 enhanced the expression of antioxidant enzyme genes at the molecular level, thereby modulating and reversing the cellular antioxidant balance disrupted due to the H2 O2 -induced oxidative stress.
Collapse
Affiliation(s)
- Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Biswajeet Ojha
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Christy Lite
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha school of Technical and Medical Sciences, Chennai, Tamil Nadu, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Gayashani Sandamalika WM, Kwon H, Lim C, Yang H, Lee J. The possible role of catalase in innate immunity and diminution of cellular oxidative stress: Insights into its molecular characteristics, antioxidant activity, DNA protection, and transcriptional regulation in response to immune stimuli in yellowtail clownfish (Amphiprion clarkii). FISH & SHELLFISH IMMUNOLOGY 2021; 113:106-117. [PMID: 33826938 DOI: 10.1016/j.fsi.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Catalase, a key enzyme in the antioxidant defense grid of organisms, scavenges free radicals to curtail their harmful effects on the host, supporting proper immune function. Herein, we report the identification and characterization of a catalase homolog from Amphiprion clarkii (ClCat), followed by its functional characterization. An open reading frame was identified in the cDNA sequence of ClCat at 1581 bp, which encodes a protein of 527 amino acids (aa) with a molecular mass of 60 kDa. In silico analyses of ClCat revealed characteristic features of the catalase family and a lack of a signal peptide. Multiple sequence alignment of ClCat indicated the conservation of functionally important residues among its homologs. According to phylogenetic analysis, ClCat was of vertebrate origin, positioned within the teleost clade. During native conditions, ClCat mRNA was highly expressed in blood, followed by the liver and kidney. Moreover, significant changes in ClCat transcription were observed after stimulation with LPS, poly I:C, and Vibrio harveyi, in a time-dependent manner. Recombinant ClCat (rClCat) was characterized, and its peroxidase activity was determined. Furthermore, the optimum temperature and pH for rClCat were determined to be 30-40 °C and pH 7, respectively. Oxidative stress tolerance and chromatin condensation assays indicated enhanced cell survival and reduced apoptosis, resulting from reactive oxygen species scavenging by rClCat. The DNA-protective function of rClCat was further confirmed via a metal-catalyzed oxidation assay. Taken together, our findings propose that rClCat plays an essential role in maintaining cellular oxidative homeostasis and host immune protection.
Collapse
Affiliation(s)
- W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
12
|
Guru A, Issac PK, Saraswathi NT, Seshadri VD, Gabr GA, Arockiaraj J. Deteriorating insulin resistance due to WL15 peptide from cysteine and glycine-rich protein 2 in high glucose-induced rat skeletal muscle L6 cells. Cell Biol Int 2021; 45:1698-1709. [PMID: 33818831 DOI: 10.1002/cbin.11608] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
This study investigates the antioxidant and antidiabetic activity of the WL15 peptide derived from Channa striatus on regulating the antioxidant property in the rat skeletal muscle cell line (L6) and enhancing glucose uptake via glucose metabolism. Increased oxidative stress plays a major role in the development of diabetes and its complications. Strategies are needed to mitigate the oxidative stress that can reduce these pathogenic processes. Our results showed that with treatment with WL15 peptide, the reactive oxygen species significantly decreased in L6 myotubes in a dose-dependent manner, and increased antioxidant enzymes help to prevent the formation of lipid peroxidation in L6 myotubes. The cytotoxicity of WL15 is evaluated in the L6 cells and found to be non-cytotoxic at the tested concentration. Also, for the analysis of glucose uptake activity in L6 cells, the 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxy- d -glucose assay was performed in the presence of wortmannin and genistein inhibitors. WL15 demonstrated antidiabetic activities through a dose-dependent increase in glucose uptake (64%) and glycogen storage (7.8 mM). The optimal concentration for the maximum activity was found to be 50 µM. In addition, studies of gene expression in L6 myotubes demonstrated upregulation of antioxidant genes and genes involved in the pathway of insulin signaling. In cell-based assays, WL15 peptide decreased intracellular reactive oxygen species levels and demonstrated insulin mimic activity by enhancing the primary genes involved in the insulin signaling pathway by increased glucose uptake indicating that glucose transporter type 4 (GLUT4) is regulated from the intracellular pool to the plasma membrane.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Issac PK, Lite C, Guru A, Velayutham M, Kuppusamy G, Saraswathi NT, Al Olayan EM, Aloufi AS, Elokaby MA, Elumalai P, Arshad A, Arockiaraj J. Tryptophan-tagged peptide from serine threonine-protein kinase of Channa striatus improves antioxidant defence in L6 myotubes and attenuates caspase 3-dependent apoptotic response in zebrafish larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:293-311. [PMID: 33394283 DOI: 10.1007/s10695-020-00912-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 05/02/2023]
Abstract
This study reports the antioxidant property and molecular mechanism of a tryptophan-tagged peptide derived from a teleost fish Channa striatus of serine threonine-protein kinase (STPK). The peptide was tagged with tryptophan to enhance the antioxidant property of STPK and named as IW13. The antioxidant activity of IW13 peptide was investigated using in vitro methods such as DPPH, ABTS, superoxide anion radical scavenging and hydrogen peroxide scavenging assay. Furthermore, to investigate the toxicity and dose response of IW13 peptide on antioxidant defence in vitro, L6 myotubes were induced with generic oxidative stress due to exposure of hydrogen peroxide (H2O2). IW13 peptide exposure was found to be non-cytotoxic to L6 cells in the tested concentration (10, 20, 30, 40 and 50 μM). Also, the pre-treatment of IW13 peptide decreased the lipid peroxidation level and increased glutathione enzyme activity. IW13 peptide treatment upregulated the antioxidant enzyme genes: GPx (glutathione peroxidase), GST (glutathione S transferase) and GCS (glutamine cysteine synthase), in vitro in L6 myotubes and in vivo in zebrafish larvae against the H2O2-induced oxidative stress. The results demonstrated that IW13 renders protection against the H2O2-induced oxidative stress through a cellular antioxidant defence mechanism by upregulating the gene expression, thus enhancing the antioxidant activity in the cellular or organismal level. The findings exhibited that the tryptophan-tagged IW13 peptide from STPK of C. striatus could be a promising candidate for the treatment of oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, Tamil Nadu, 600 059, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Giva Kuppusamy
- Innovation and Technology Advancement Department, GK Aqua Sdn Bhd, Lot 563 Kg Sg Machang Ulu, 71750, Lenggeng, Negeri Sembilan, Malaysia
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Ebtesam M Al Olayan
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abeer S Aloufi
- Department of Zoology, Vaccines Research Unit, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Elokaby
- Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, 21556, Egypt
| | - Preetham Elumalai
- School of Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
14
|
Research progress on hosts and carriers, prevalence, virulence of infectious hypodermal and hematopoietic necrosis virus (IHHNV). J Invertebr Pathol 2021; 183:107556. [PMID: 33596435 DOI: 10.1016/j.jip.2021.107556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is one of the major viral pathogens of penaeid shrimp and it has spread worldwide. IHHNV causes substantial economic loss to the shrimp farming industry and has been listed as a notifiable crustacean disease pathogen by the World Organization for Animal Health (OIE). In this paper, we reviewed studies on the hosts and carriers, prevalence, genotypes and virulence of IHHNV. The pathogenesis mechanisms of IHHNV and the viral interference between IHHNV and white spot syndrome virus (WSSV) were also discussed. The mechanism of IHHNV infection and its virulence difference in different hosts and different developmental stages have not been fully studied yet. The mechanisms underlying viral interference between IHHNV and WSSV are not yet fully understood. Further studies are needed to elucidate the precise molecular mechanisms underlying IHHNV infection and to apply the insights gained from such studies for the effective control and prevention of IHHNV disease.
Collapse
|
15
|
Issac PK, Guru A, Chandrakumar SS, Lite C, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signalling cascade in glucose metabolism. Mol Biol Rep 2020; 47:6727-6740. [PMID: 32809102 DOI: 10.1007/s11033-020-05728-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Understanding the mechanism by which the exogenous biomolecule modulates the GLUT-4 signalling cascade along with the information on glucose metabolism is essential for finding solutions to increasing cases of diabetes and metabolic disease. This study aimed at investigating the effect of hamamelitannin on glycogen synthesis in an insulin resistance model using L6 myotubes. Glucose uptake was determined using 2-deoxy-D-[1-3H] glucose and glycogen synthesis were also estimated in L6 myotubes. The expression levels of key genes and proteins involved in the insulin-signaling pathway were determined using real-time PCR and western blot techniques. The cells treated with various concentrations of hamamelitannin (20 µM to 100 µM) for 24 h showed that, the exposure of hamamelitannin was not cytotoxic to L6 myotubes. Further the 2-deoxy-D-[1-3H] glucose uptake assay was carried out in the presence of wortmannin and Genistein inhibitor for studying the GLUT-4 dependent cell surface recruitment. Hamamelitannin exhibited anti-diabetic activity by displaying a significant increase in glucose uptake (125.1%) and glycogen storage (8.7 mM) in a dose-dependent manner. The optimum concentration evincing maximum activity was found to be 100 µm. In addition, the expression of key genes and proteins involved in the insulin signaling pathway was studied to be upregulated by hamamelitannin treatment. Western blot analysis confirmed the translocation of GLUT-4 protein from an intracellular pool to the plasma membrane. Therefore, it can be conceived that hamamelitannin exhibited an insulinomimetic effect by enhancing the glucose uptake and its further conversion into glycogen by regulating glucose metabolism.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Sri Snehaa Chandrakumar
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, Tamil Nadu, 600 059, India
| | - N T Saraswathi
- Molecular Biophysics Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, 71050, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
16
|
Chen M, Xi Y, Chen K, Xiao P, Li S, Sun X, Han Z. Upregulation Sestrin2 protects against hydrogen peroxide-induced oxidative damage bovine mammary epithelial cells via a Keap1-Nrf2/ARE pathway. J Cell Physiol 2020; 236:392-404. [PMID: 32519422 DOI: 10.1002/jcp.29867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023]
Abstract
Sestrin2 (SESN2) is a highly conservative oxidative stress protein that can regulate energy metabolism, cell proliferation, apoptosis, and mitochondria autophagy processes. It plays a role as an antioxidant in various diseases. The aims of the present study were to explore the underlying role of SESN2 after hydrogen peroxide (H2 O2 ) treatment in bovine mammary epithelial cells (MAC-T cells) by the methods of knockout or overexpression of SESN2. The results show that knockout of Sestrin2 exacerbate apoptosis, upregulate the expressions of Bax/Bcl2 in H2 O2 -treated MAC-T cells. Moreover, knockout of SESN2 also promoted reactive oxygen species (ROS) generation and exacerbated oxidative damage in H2 O2 -treated MAC-T cells. On the contrary, overexpression of SESN2 decreased apoptosis by downregulation of Bax/Bcl2 level decreased ROS generation and blocked oxidative damage in H2 O2 -treated MAC-T cells. In addition, results indicate that the Kelch-like ECH-associated protein-1 (Keap1)-nuclear factor (erythroid-derived 2) like2 (Nrf2)/antioxidant response element (ARE) signaling pathway was activated by H2 O2 ; upregulation of SESN2 could relieve oxidative stress by inducing the expression of Keap1, Nrf2, HO-1, and NDPH: quinone oxidoreductase-1 protein. In conclusion, this study demonstrates that expression of SESN2 was significantly increased after H2 O2 treatment and that SESN2 can alleviate oxidative stress and cell apoptosis in H2 O2 -treated MAC-T cells through activation of the Keap1-Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Mengjiao Chen
- Institute of Dairy Science, Nanjing Agricultural University, Nanjing, China.,Department of Animal Science and Technology, Guangxi Agricultural Vocational Technical College, Nanning, China
| | - Yumeng Xi
- Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kunlin Chen
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Jiangsu Academy of Agricultural Sciences, Ministry of Science and Technology, Nanjing, China
| | - Peng Xiao
- Department of Animal Science and Technology, Guangxi Agricultural Vocational Technical College, Nanning, China
| | - Shujie Li
- Institute of Dairy Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaochun Sun
- Institute of Dairy Science, Nanjing Agricultural University, Nanjing, China
| | - Zhaoyu Han
- Institute of Dairy Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Cui Y, Hou Z, Ren Y, Men X, Zheng B, Liu P, Xia B. Effects of aerial exposure on oxidative stress, antioxidant and non-specific immune responses of juvenile sea cucumber Apostichopus japonicus under low temperature. FISH & SHELLFISH IMMUNOLOGY 2020; 101:58-65. [PMID: 32224279 DOI: 10.1016/j.fsi.2020.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
Desiccation is a commonly stressful situation experienced by sea cucumber during transportation without/less water. The present study was conducted to investigate the effects of aerial exposure on the survival, oxidative damage, antioxidant capacity, immune-related response and gene expression of Apostichopus japonicus at different low temperatures. After acclimation, sea cucumbers were randomly divided into 3 groups, which were exposed to 5 °C, 10 °C and 15 °C in the closed laboratory condition, respectively. Each group has three parallel replicates. During the experiment, coelomic fluid and respiratory tree of A. japonicus were sampled at the time points of 0, 3, 6, 12, 24 and 48 h post-desiccation for further analysis. The results showed that the survival rates of sea cucumber significantly decreased as time prolonged, and those of 5 °C at 6-48 h of desiccation were significantly higher than 15 °C. Most oxidative damage parameters (e.g., O2- production, MDA, LPO and PC contents) significant increased after 6-12 h of desiccation. Antioxidant enzyme activities and T-AOC in coelomic fluid firstly increased and then decreased during aerial exposure, indicating that sea cucumber could adjust antioxidant defense to reduce the concentrations of ROS and MDA as a strategy for protecting organisms from oxidative damage in the early stage (0-6 h) of desiccation. The relative expression levels of Hsp90 and Hsp70 mRNA in respiratory tree of sea cucumber exhibited similar rise-fall trends with antioxidant parameters, while immune enzyme activities of ACP, AKP, LSZ and T-NOS, and gene expression of TLR, Rel and p105 all significantly decreased as time prolonged. Overall, low temperature postponed the process of ROS formation and the depression of antioxidant and non-specific immune responses of sea cucumber within a certain extent, which implied that it might play a positive role in improvement of desiccation tolerance. This study not only contribute to better understand the adaption mechanisms of A. japonicus to desiccation stress, but also provide valuable information for sea cucumber culture and transportation.
Collapse
Affiliation(s)
- Yanting Cui
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Zhumei Hou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xianhui Men
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Bo Zheng
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Peng Liu
- Shandong Fisheries Technology Extension Station, Jinan, Shandong, 250013, China.
| | - Bin Xia
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
18
|
Effects of Dietary Clostridium butyricum on the Growth, Digestive Enzyme Activity, Antioxidant Capacity, and Resistance to Nitrite Stress of Penaeus monodon. Probiotics Antimicrob Proteins 2020; 11:938-945. [PMID: 29858778 DOI: 10.1007/s12602-018-9421-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study investigated the effects of the dietary probiotic Clostridium butyricum (CB) on the growth, intestine digestive enzyme activity, antioxidant capacity and resistance to nitrite stress, and body composition of Penaeus monodon. For 56 days, shrimps were fed diets containing different levels of C. butyricum (1 × 109 CFU g-1), 0% (control), 0.5% (CB1), 1.0% (CB2), and 2.0% (CB3), as treatment groups, followed by an acute nitrite stress test for 48 h. The results indicated that dietary supplementation of C. butyricum increased the growth of shrimp in the CB2 and CB3 groups. The survival rate of shrimp increased after nitrite stress for 24 and 48 h. The intestine amylase and trypsin activities increased in all three C. butyricum groups, while the lipase activity was only affected in the CB3 group. The superoxide dismutase (SOD) activity as well as heat shock protein 70 (hsp70) and ferritin gene expression levels were increased in the intestines of shrimps cultured under normal conditions for 56 days, while the catalase (CAT) activity was not changed and glutathione peroxidase (GPx) activity was only increased in the CB2 and CB3 groups. After exposure to nitrite stress for 24 and 48 h, the intestine antioxidant enzyme (SOD, CAT, and GPx) activity and gene (hsp70 and ferritin) expression levels in the three C. butyricum groups were higher than those of the control. C. butyricum had no effects on the whole body composition of the shrimp. These results revealed that C. butyricum improved the growth as well as enhanced the intestine digestive enzyme and antioxidant activities of P. monodon against nitrite stress, and C. butyricum may be a good probiotic for shrimp aquaculture.
Collapse
|
19
|
Pedrosa-Gerasmio IR, Kondo H, Hirono I. Molecular cloning, characterization and gene expression analysis of aminolevulinic acid synthase in Litopenaeus vannamei. Gene 2020; 736:144421. [PMID: 32018014 DOI: 10.1016/j.gene.2020.144421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 02/01/2023]
Abstract
5-Aminolevulinic acid synthase (ALAS) is the rate-limiting enzyme in the biosynthesis of heme, a prosthetic group that is found in hemoproteins, including those involved in molting. To better understand the roles of ALAS in L. vannamei (LvALAS), we analyzed its sequence and tissue distribution, the effects of age and bacterial infection on its gene expression, and the effects of LvALAS gene silencing. We also examined the expressions of three hemoproteins, the cytochrome oxidase subunit I (COX I) and subunit IV (COX IV) and catalase. Three LvALAS splicing variants were found in the hepatopancreas, with the main splicing variant having an open reading frame that encodes 532 aa. LvALAS transcripts were found in each of the eleven tissues tested in this study, with the highest gene expression in the intestine. The transcript abundances of LvALAS, COX I and COX IV in the hepatopancreas and stomach tended to decrease with age. LvALAS and catalase gene expressions significantly increased in the stomach after V. parahaemolyticus infection. LvALAS gene expression in the hepatopancreas, stomach and intestine (12- and 24-hours post-injection) was relatively lower in dsALAS-injected shrimp than in PBS-injected shrimp. All the PBS-injected shrimp molted after 8-10 days while no molting activity was observed in the dsALAS-injected shrimp group within the 14 days post-injection period. Our results provide evidence that (1) only the housekeeping form of ALAS exists in L. vannamei; LvALAS gene expression (2) decreases with age and (3) increases after bacterial infection; and (4) an ALAS-dependent pathway is necessary for proper molting in L. vannamei.
Collapse
Affiliation(s)
- Ivane R Pedrosa-Gerasmio
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan; Department of Marine Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| |
Collapse
|
20
|
Chen YH, He JG. Effects of environmental stress on shrimp innate immunity and white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:744-755. [PMID: 30393174 DOI: 10.1016/j.fsi.2018.10.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
The shrimp aquaculture industry is plagued by disease. Due to the lack of deep understanding of the relationship between innate immune mechanism and environmental adaptation mechanism, it is difficult to prevent and control the diseases of shrimp. The shrimp innate immune system has received much recent attention, and the functions of the humoral immune response and the cellular immune response have been preliminarily characterized. The role of environmental stress in shrimp disease has also been investigated recently, attempting to clarify the interactions among the innate immune response, the environmental stress response, and disease. Both the innate immune response and the environmental stress response have a complex relationship with shrimp diseases. Although these systems are important safeguards, allowing shrimp to adapt to adverse environments and resist infection, some pathogens, such as white spot syndrome virus, hijack these host systems. As shrimp lack an adaptive immune system, immunization therapy cannot be used to prevent and control shrimp disease. However, shrimp diseases can be controlled using ecological techniques. These techniques, which are based on the innate immune response and the environmental stress response, significantly reduce the impact of shrimp diseases. The object of this review is to summarize the recent research on shrimp environmental adaptation mechanisms, innate immune response mechanisms, and the relationship between these systems. We also suggest some directions for future research.
Collapse
Affiliation(s)
- Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| |
Collapse
|
21
|
Kumaresan V, Palanisamy R, Pasupuleti M, Arockiaraj J. Impacts of environmental and biological stressors on immune system of Macrobrachium rosenbergii. REVIEWS IN AQUACULTURE 2017; 9:283-307. [DOI: 10.1111/raq.12139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 10/16/2023]
Abstract
AbstractMacrobrachium rosenbergii commonly called giant freshwater prawn is a widely farmed crustacean in freshwater. Similar to other aquatic organisms, their growth and well‐being is influenced by various physical, chemical and biological factors. We discuss about the critical growth limiting factors as well as disease causing agents and the potential immune molecules of M. rosenbergii that are proved to involve in preventing and/or responding to those limiting factors.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| | - Mukesh Pasupuleti
- Lab PCN 206 Microbiology Division CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| |
Collapse
|
22
|
Duan Y, Zhang Y, Dong H, Wang Y, Zhang J. Effect of the dietary probiotic Clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus. J Therm Biol 2017; 66:93-100. [PMID: 28477915 DOI: 10.1016/j.jtherbio.2017.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022]
Abstract
A 56-day feeding trial followed by an acute high temperature stress test were performed to evaluate the effect of dietary probiotic Clostridium butyricum (CB) on growth performance and intestine antioxidant capacity of kuruma shrimp Marsupenaeus japonicus. Shrimp were randomly allocated in 9 tanks (30 shrimp per tank) and triplicate tanks were fed with diets containing different levels of C. butyricum (1×109 cfu/g): 0mgg-1 feed (Control), 100mgg-1 feed (CB-100), 200mgg-1 feed (CB-200) as treatment groups. The results indicated that dietary supplementation of C. butyricum increased the growth performance and decreased the feed conversion rate (FCR) of shrimp in the CB-100 group. HE stain showed that C. butyricum increased the intestine epithelium height of M. japonicus. C. butyricum supplemented in diets decreased·O2- generation capacity and malondialdehyde (MDA) content, and increased total antioxidant capacity (T-AOC), catalase (CAT) and peroxidase (POD) activity and the expression level of heat shock protein 70 (hsp70) and metallothionein (mt) gene in intestine of shrimp cultured under normal condition for 56 d, while no significant changes in glutathione peroxidase (GPx) activity and ferritin gene expression level. After shrimp exposed to high temperature stress 48h, the lower level of·O2- generation capacity and MDA content, and the higher level survival, activities of T-AOC, CAT, GPx and POD, as well as hsp70, ferritin and mt gene expression level were found in intestine of two C. butyricum groups. These results revealed that C. butyricum could improve the growth performance, increase intestine antioxidant capacity of M. japonicus against high temperature stress, and could be a potential feed additive in shrimp aquaculture.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yue Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
23
|
Sathyamoorthy A, Chaurasia MK, Arasu MV, Al-Dhabi NA, Harikrishnan R, Arockiaraj J. Differences in structure and changes in gene regulation of murrel molecular chaperone HSP family during epizootic ulcerative syndrome (EUS) infection. FISH & SHELLFISH IMMUNOLOGY 2017; 60:129-140. [PMID: 27876624 DOI: 10.1016/j.fsi.2016.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Heat shock proteins (HSPs) are immunogenic, ubiquitous class of molecular chaperones, which are induced in response to various environmental and microbial stressful conditions. It plays a vital role in maintaining cellular protein homeostasis in eukaryotic cells. In this study, we described a comprehensive comparative data by bioinformatics approach on three different full length cDNA sequences of HSP family at molecular level. The cDNA sequences of three HSPs were identified from constructed cDNA library of Channa striatus and named as CsCPN60, CsHSP60 and CsHSP70. We have conducted various physicochemical study, which showed that CsHSP70 (666 amino acid) possessed a larger polypeptides followed by CsCPN60 (575) and CsCPN60 (542). Three dimensional structural analysis of these HSPs showed maximum residues in α-helices and least in β-sheets; also CsHSP60 lacks β-sheet and formed helix-turn-helix structure. Further analysis indicated that each HSP carried distinct domains and gene specific signature motif, which showed that each HSP are structurally diverse. Homology and phylogenetic study showed that the sequences taken for analysis shared maximum identity with fish HSP family. Tissue specific mRNA expression analysis revealed that all the HSPs showed maximum expression in one of the major immune organ such as CsCPN60 in kidney, CsHSP60 in spleen and CsHSP70 in head kidney. To understand the function of HSPs in murrel immune system, the elevation in mRNA expression level was analyzed against microbial oxidative stressors such as fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila). It is interesting to note that all the HSP showed a different expression pattern and reached maximum up-regulation at 48 h post-infection (p.i) during fungal stress, whereas in bacterial stress only CsCPN60 showed maximum up-regulation at 48 h p.i, but CsHSP60 and CsHSP70 showed maximum up-regulation at 24 h p.i. The differential expression pattern showed that each HSP is diverse in function. Overall, the elevation in expression levels showed that HSPs might have potential involvement in murrel immune protection thus, protecting the organism against various external stimuli including environmental and microbial stress.
Collapse
Affiliation(s)
- Akila Sathyamoorthy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
24
|
Duan Y, Zhang Y, Dong H, Zhang J. Effect of desiccation on oxidative stress and antioxidant response of the black tiger shrimp Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2016; 58:10-17. [PMID: 27623339 DOI: 10.1016/j.fsi.2016.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/04/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
In the present study, the oxidative stress and antioxidant response in hepatopancreas of the black tiger shrimp Penaeus monodon under desiccation stress were studied, such as activities of antioxidant enzymes (SOD, CAT, GPx and POD), oxidative damage to lipid and protein which indexed by contents of LPO, MDA, protein carbonyl (PC) and ROS production, and the expression of HSP70 and ferritin gene. The duration of desiccation significantly influenced the shrimp survival, and the mortality rates were 10% and 55.0% after desiccation 0.5 h and 3 h, respectively. Compared with the control group, after exposed to desiccation stress, the content of LPO, MDA, PC and ROS production in hepatopancreas increased significantly. SOD, CAT and POD activity in hepatopancreas increased significantly at 0.5 h, but decreased markedly at 1 h. GPx activity in hepatopancreas increased significantly at 0.5 h and 1 h, then decreased significantly at 3 h. The transcript levels of HSP70 and ferritin gene in hepatopancreas increased significantly at 1 h. HE staining showed that desiccation induced damage symptoms in hepatopancreas of P. monodon. These results revealed that desiccation could induce oxidative stress and antioxidant response via confusion of antioxidant enzymes activity and gene transcript level in hepatopancreas of P. monodon, and the time of shrimp under desiccation should lower than 0.5 h.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yue Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
25
|
Rao R, Bhassu S, Bing RZY, Alinejad T, Hassan SS, Wang J. A transcriptome study on Macrobrachium rosenbergii hepatopancreas experimentally challenged with white spot syndrome virus (WSSV). J Invertebr Pathol 2016; 136:10-22. [PMID: 26880158 DOI: 10.1016/j.jip.2016.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
The world production of shrimp such as the Malaysian giant freshwater prawn, Macrobrachium rosenbergii is seriously affected by the white spot syndrome virus (WSSV). There is an urgent need to understand the host pathogen interaction between M. rosenbergii and WSSV which will be able to provide a solution in controlling the spread of this infectious disease and lastly save the aquaculture industry. Now, using Next Generation Sequencing (NGS), we will be able to capture the response of the M. rosenbergii to the pathogen and have a better understanding of the host defence mechanism. Two cDNA libraries, one of WSSV-challenged M. rosenbergii and a normal control one, were sequenced using the Illumina HiSeq™ 2000 platform. After de novo assembly and clustering of the unigenes from both libraries, 63,584 standard unigenes were generated with a mean size of 698bp and an N50 of 1137bp. We successfully annotated 35.31% of all unigenes by using BLASTX program (E-value <10-5) against NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genome pathway (KEGG) and Orthologous Groups of proteins (COG) databases. Gene Ontology (GO) assessment was conducted using BLAST2GO software. Differentially expressed genes (DEGs) by using the FPKM method showed 8443 host genes were significantly up-regulated whereas 5973 genes were significantly down-regulated. The differentially expressed immune related genes were grouped into 15 animal immune functions. The present study showed that WSSV infection has a significant impact on the transcriptome profile of M. rosenbergii's hepatopancreas, and further enhanced the knowledge of this host-virus interaction. Furthermore, the high number of transcripts generated in this study will provide a platform for future genomic research on freshwater prawns.
Collapse
Affiliation(s)
- Rama Rao
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Subha Bhassu
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Robin Zhu Ya Bing
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen 518083, China.
| | - Tahereh Alinejad
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Building 3, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| | - Jun Wang
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Duan Y, Zhang J, Dong H, Wang Y, Liu Q, Li H. Effect of desiccation and resubmersion on the oxidative stress response of the kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 49:91-99. [PMID: 26700171 DOI: 10.1016/j.fsi.2015.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/06/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
In the present study, the oxidative stress response in hepatopancreas of Marsupenaeus japonicus to desiccation stress and resubmersed in seawater were studied, such as respiratory burst, ROS production ( [Formula: see text] ), activities of antioxidant enzymes (CAT, GPx, SOD, POD and GST) and oxidative damage to lipid and protein (indexed by contents of MDA). The duration of desiccation significantly influenced shrimp survival, and the mortality rates were 37.5% and 87.5% after desiccation 5 h and 10 h, respectively. After desiccation stress 3 h, the respiratory burst, ROS production, and the activity of SOD and CAT were up-regulated significantly. The activity of GPx and POD, and the content of MDA decreased significantly at 0.5 h and 1 h, and then increased significantly at 3 h. But GST activity was no significant change after desiccation. During the resubmersion period, most of the antioxidant enzymes activities could recover to the control level at 24 h, but a small quantity of the oxidative stress still existed in tissues. HE staining showed that desiccation stress induced damage symptoms in hepatopancreas of M. japonicus. These results revealed that desiccation influenced the antioxidative status and caused oxidative stress and tissue damage via confusion of antioxidant enzymes in M. japonicus, but the oxidative stress could be eliminated within a certain range after the shrimps were resubmersed in seawater.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Qingsong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
27
|
Activity and Transcriptional Responses of Hepatopancreatic Biotransformation and Antioxidant Enzymes in the Oriental River Prawn Macrobrachium nipponense Exposed to Microcystin-LR. Toxins (Basel) 2015; 7:4006-22. [PMID: 26457718 PMCID: PMC4626717 DOI: 10.3390/toxins7104006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 11/17/2022] Open
Abstract
Microcystins (MCs) are a major group of cyanotoxins with side effects in many organisms; thus, compounds in this group are recognized as potent stressors and health hazards in aquatic ecosystems. In order to assess the toxicity of MCs and detoxification mechanism of freshwater shrimp Macrobrachium nipponense, the full-length cDNAs of the glutathione S-transferase (gst) and catalase (cat) genes were isolated from the hepatopancreas. The transcription level and activity changes in the biotransformation enzyme (glutathione S-transferase (GST)) and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)) in the hepatopancreas of M. nipponense exposed to MC-LR (0.2, 1, 5, and 25 μg/L) for 12, 24, 72 and 96 h were analyzed. The results showed that the isolated full-length cDNAs of cat and gst genes from M. nipponense displayed a high similarity to other crustaceans, and their mRNAs were mainly expressed in the hepatopancreas. MC-LR caused significant increase of GST activity following 48-96 h (p < 0.05) and an increase in SOD activity especially in 24- and 48-h exposures. CAT activity was activated when exposed to MC-LR in 12-, 24- and 48-h exposures and then it was inhibited at 96-h exposure. There was no significant effect on GPx activity after the 12- and 24-h exposures, whereas it was significantly stimulated after the 72- and 96-h exposures (p < 0.05). The transcription was altered similarly to enzyme activity, but the transcriptional response was generally more immediate and had greater amplitude than enzymatic response, particularly for GST. All of the results suggested that MC-LR can induce antioxidative modulation variations in M. nipponense hepatopancreas in order to eliminate oxidative damage.
Collapse
|
28
|
Duan Y, Zhang J, Dong H, Wang Y, Liu Q, Li H. Oxidative stress response of the black tiger shrimp Penaeus monodon to Vibrio parahaemolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2015; 46:354-365. [PMID: 26142143 DOI: 10.1016/j.fsi.2015.06.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
Vibrio parahaemolyticus is a virulent pathogen that affects shrimp aquaculture. Reactive oxygen species are produced by the immune system that defends the host against foreign microorganisms. In the present study, the oxidative stress response in hepatopancreas and gills of Penaeus monodon to V. parahaemolyticus challenge were studied, such as respiratory burst, ROS production (·O2(-) and ·OH), activities of antioxidant enzymes (CAT, GPx, SOD, POD and GST) and oxidative damage to lipid and protein (indexed by contents of MDA). Compared with the control group, after V. parahaemolyticus challenge, respiratory burst and ROS production were up-regulated significantly. GPx and POD activity increased significantly in hepatopancreas and gills of the shrimps at 12 h, but CAT activity decreased markedly at 12 h and 24 h. SOD and GST activity in hepatopancreas of the shrimps increased significantly at 1.5 h, but decreased markedly at 12 h-48 h. MDA content increased significantly after 6 h-24 h challenge. HE staining showed that V. parahaemolyticus challenge induced damage symptoms in hepatopancreas of P. monodon. Our study revealed that V. parahaemolyticus influenced the antioxidative status and caused oxidative stress and tissue damage via confusion of antioxidant enzymes in P. monodon.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Qingsong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
29
|
Elvitigala DAS, Priyathilaka TT, Whang I, Nam BH, Lee J. A teleostan homolog of catalase from black rockfish (Sebastes schlegelii): insights into functional roles in host antioxidant defense and expressional responses to septic conditions. FISH & SHELLFISH IMMUNOLOGY 2015; 44:321-331. [PMID: 25707597 DOI: 10.1016/j.fsi.2015.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Antioxidative defense renders a significant protection against environmental stress in organisms and maintains the correct redox balance in cells, thereby supporting proper immune function. Catalase is an indispensable antioxidant in organisms that detoxifies hydrogen peroxides produced in cellular environments. In this study, we sought to molecularly characterize a homolog of catalase (RfCat), identified from black rockfish (Sebastes schlegelii). RfCat consists of a 1581 bp coding region for a protein of 527 amino acids, with a predicted molecular weight of 60 kD. The protein sequence of RfCat harbored similar domain architecture to known catalases, containing a proximal active site signature and proximal heme ligand signature, and further sharing prominent homology with its teleostan counterparts. As affirmed by multiple sequence alignments, most of the functionally important residues were well conserved in RfCat. Furthermore, our phylogenetic analysis indicates its common vertebrate ancestral origin and a close evolutionary relationship with teleostan catalases. Recombinantly expressed RfCat demonstrated prominent peroxidase activity that varied with different substrate and protein concentrations, and protected against DNA damage. RfCat mRNA was ubiquitously expressed among different tissues examined, as detected by qPCR. In addition, RfCat mRNA expression was modulated in response to pathogenic stress elicited by Streptococcus iniae and poly I:C in blood and spleen tissues. Collectively, our findings indicate that RfCat may play an indispensable role in host response to oxidative stress and maintain a correct redox balance after a pathogen invasion.
Collapse
Affiliation(s)
- Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 619-705, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
30
|
Rao R, Bing Zhu Y, Alinejad T, Tiruvayipati S, Lin Thong K, Wang J, Bhassu S. RNA-seq analysis of Macrobrachium rosenbergii hepatopancreas in response to Vibrio parahaemolyticus infection. Gut Pathog 2015; 7:6. [PMID: 25922623 PMCID: PMC4411767 DOI: 10.1186/s13099-015-0052-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/13/2015] [Indexed: 11/23/2022] Open
Abstract
Background The Malaysian giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean worldwide. However, production of this prawn is facing a serious threat from Vibriosis disease caused by Vibrio species such as Vibrio parahaemolyticus. Unfortunately, the mechanisms involved in the immune response of this species to bacterial infection are not fully understood. We therefore used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the hepatopancreas from this freshwater prawn infected with V. parahaemolyticus to gain an increased understanding of the molecular mechanisms underlying the species’ immune response to this pathogenic bacteria. Result A total of 59,122,940 raw reads were obtained from the control group, and 58,385,094 reads from the Vibrio-infected group. Via de novo assembly by Trinity assembler, 59,050 control unigenes and 73,946 Vibrio-infected group unigenes were obtained. By clustering unigenes from both libraries, a total of 64,411 standard unigenes were produced. The standard unigenes were annotated against the NCBI non-redundant, Swiss-Prot, Kyoto Encyclopaedia of Genes and Genome pathway (KEGG) and Orthologous Groups of Proteins (COG) databases, with 19,799 (30.73%), 16,832 (26.13%), 14,706 (22.83%) and 7,856 (12.19%) hits respectively, giving a final total of 22,455 significant hits (34.86% of all unigenes). A Gene Ontology (GO) analysis search using the Blast2GO program resulted in 6,007 unigenes (9.32%) being categorized into 55 functional groups. A differential gene expression analysis produced a total of 14,569 unigenes aberrantly expressed, with 11,446 unigenes significantly up-regulated and 3,103 unigenes significantly down-regulated. The differentially expressed immune genes fall under various processes of the animal immune system. Conclusion This study provided an insight into the antibacterial mechanism in M. rosenbergii and the role of differentially expressed immune genes in response to V. parahaemolyticus infection. Furthermore, this study has generated an abundant list of transcript from M.rosenbergii which will provide a fundamental basis for future genomics research in this field. Electronic supplementary material The online version of this article (doi:10.1186/s13099-015-0052-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rama Rao
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ya Bing Zhu
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen, 518083 China
| | - Tahereh Alinejad
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Microbiology Unit, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jun Wang
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen, 518083 China
| | - Subha Bhassu
- Genomic Research and Breeding Laboratory and Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Striped murrel S1 family serine protease: immune characterization, antibacterial property and enzyme activities. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0410-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Arockiaraj J, Palanisamy R, Arasu A, Sathyamoorthi A, Kumaresan V, Bhatt P, Chaurasia MK, Pasupuleti M, Gnanam AJ. An anti-apoptotic B-cell lymphoma-2 (BCL-2) from Channa striatus: Sequence analysis and delayed and advanced gene expression in response to fungal, bacterial and poly I:C induction. Mol Immunol 2014; 63:586-94. [PMID: 25128157 DOI: 10.1016/j.molimm.2014.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
B-cell lymphoma-2 (BCL-2) is a suppressor of apoptosis and inhibits the caspase dependent apoptosis pathway. In this study, we report molecular characterization of a cDNA sequence encoded of BCL-2 from striped murrel, Channa striatus. A partial cDNA sequence of CsBCL-2 was identified from the striped murrel cDNA library during annotation. Subsequently, the full length CsBCL-2 cDNA sequence was obtained by an internal sequencing method using a forward primer. The sequence contains 699 nucleotide base pairs which encode 232 amino acid residues. The domain and motif analysis revealed that the CsBCL-2 polypeptide consists of BCL-2 homologous domain BH4 at the N-terminal region between 4 and 21 and the BCL-2 homologous domains BH1, BH2 and BH3 between 87 and 187. The CsBCL-2 polypeptide sequence does not have a signal peptide region, but it consists of two novel transmembrane regions at 134-152 and 209-226. The sequence analysis showed that the CsBCL-2 has highest sequence identity (70%) with BCL-2 like protein 1 (BCL-2 L1) from pufferfish Takifugu rubripes. The phylogenetic analysis showed that the CsBCL-2 was situated in the BCL-2 L1 fish clade. The secondary analysis showed that the CsBCL-2 protein consists of 132 amino acid residues in the α-helical region and 100 amino acid residues in the random coil region. The validated 3D structure of CsBCL-2 showed the active residues Gly(135) and Arg(136) in the 7th α-helical position, whereas Trp(178) is in the 9th α-helical region. CsBCL-2 mRNA transcription is predominately present in spleen and is upregulated upon being induced with fungus Aphanomyces invadans, bacteria Aeromonas hydrophila, Escherichia coli LPS, Laminaria digitata beta-1,3-glucan and poly I:C. Overall, the CsBCL-2 mRNA transcription results indicate the potential involvement of CsBCL-2 in immune system of C. striatus. However, further research at proteomic level is necessary to examine these predictions.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| |
Collapse
|
33
|
Bhatt P, Chaurasia MK, Palanisamy R, Kumaresan V, Arasu A, Sathyamoorthi A, Gnanam AJ, Kasi M, Pasupuleti M, Ramaswamy H, Arockiaraj J. Molecular cloning, characterization and gene expression of murrel CXC chemokine receptor 3a against sodium nitrite acute toxicity and microbial pathogens. FISH & SHELLFISH IMMUNOLOGY 2014; 39:245-253. [PMID: 24861891 DOI: 10.1016/j.fsi.2014.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
CXCR3 is a CXC chemokine receptor 3 which binds to CXC ligand 4 (CXCL4), 9, 10 and 11. CXC chemokine receptor 3a (CXCR3a) is one of the splice variants of CXCR3. It plays crucial role in defense and other physiological processes. In this study, we report the molecular cloning, characterization and gene expression of CXCR3a from striped murrel Channa striatus (Cs). The full length CsCXCR3a cDNA sequence was obtained from the constructed cDNA library of striped murrel by cloning and sequencing using an internal sequencing primer. The full length sequence is 1425 nucleotides in length including an open reading frame of 1086 nucleotides which is encoded with a polypeptide of 361 amino acids (mol. wt. 40 kDa). CsCXCR3a domain analysis showed that the protein contains a G protein coupled receptor between 55 and 305 along with its family signature at 129-145. The transmembrane prediction analysis showed that CsCXCR3a protein contains 7 transmembrane helical regions at 34-65, 80-106, 113-146, 154-181, 208-242, 249-278 and 284-308. The 'DRY' motif from CsCXCR3a protein sequence at (140)Asp-(141)Arg-(142)Tyr which is responsible for G-protein binding is also highly conserved with CXCR3 from other species. Phylogenetic tree showed that the CXC chemokine receptors 3, 4, 5 and 6, each formed a separate clade, but 1 and 2 were clustered together, which may be due to the high similarity between these receptors. The predicted 3D structure revealed cysteine residues, which are responsible for 'CXC' motif at 116 and 198. The CsCXR3a transcript was found to be high in kidney, further its expression was up-regulated by sodium nitrite acute toxicity exposure, fungal, bacterial and poly I:C challenges. Overall, these results supported the active involvement of CsCXCR3a in inflammatory process of striped murrel during infection. However, further study is necessary to explore the striped murrel chemokine signaling pathways and their roles in defense system.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur, 603 203 Chennai, India
| | - Akila Sathyamoorthi
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur 603 203 Chennai, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | - Marimuthu Kasi
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR - Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Harikrishnan Ramaswamy
- PG and Research Department of Biotechnology, Bharath College of Science and Management, Thanjavur 613 005, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
34
|
Arockiaraj J, Gnanam AJ, Palanisamy R, Bhatt P, Kumaresan V, Chaurasia MK, Pasupuleti M, Ramaswamy H, Arasu A, Sathyamoorthi A. A cytosolic glutathione s-transferase, GST-theta from freshwater prawn Macrobrachium rosenbergii: molecular and biochemical properties. Gene 2014; 546:437-42. [DOI: 10.1016/j.gene.2014.05.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
|
35
|
Arockiaraj J, Sathyamoorthi A, Kumaresan V, Palanisamy R, Chaurasia MK, Bhatt P, Gnanam AJ, Pasupuleti M, Arasu A. A murrel interferon regulatory factor-1: molecular characterization, gene expression and cell protection activity. Mol Biol Rep 2014; 41:5299-309. [PMID: 24859976 DOI: 10.1007/s11033-014-3401-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/06/2014] [Indexed: 01/27/2023]
Abstract
In this study, we have reported a first murrel interferon regulatory factor-1 (designated as Murrel IRF-1) which is identified from a constructed cDNA library of striped murrel Channa striatus. The identified sequence was obtained by internal sequencing method from the library. The Murrel IRF-1 varies in size of the polypeptide from the earlier reported fish IRF-1. It contains a DNA binding domain along with a tryptophan pentad repeats, a nuclear localization signal and a transactivation domain. The homologous analysis showed that the Murrel IRF-1 had a significant sequence similarity with other known fish IRF-1 groups. The phylogenetic analysis exhibited that the Murrel IRF-1 clustered together with IRF-1 members, but the other members including IRF-2, 3, 4, 5, 6, 7, 8, 9 and 10 were clustered individually. The secondary structure of Murrel IRF-1 contains 27% α-helices (85 aa residues), 5.7% β-sheets (19 aa residues) and 67.19% random coils (210 aa residues). Furthermore, we predicted a tertiary structure of Murrel IRF-1 using I-Tasser program and analyzed the structure on PyMol surface view. The RNA structure of the Murrel IRF-1 along with its minimum free energy (-284.43 kcal/mol) was also predicted. The highest gene expression was observed in spleen and its expression was inducted with pathogenic microbes which cause epizootic ulcerative syndrome in murrels such as fungus, Aphanomyces invadans and bacteria, Aeromonas hydrophila, and poly I:C, a viral RNA analog. The results of cell protection assay suggested that the Murrel IRF-1 regulates the early defense response in C. striatus. Moreover, it showed Murrel IRF-1 as a potential candidate which can be developed as a therapeutic agent to control microbial infections in striped murrel. Overall, these results indicate the immune importance of IRF-1, however, the interferon signaling mechanism in murrels upon infection is yet to be studied at proteomic level.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai, 603 203, Tamil Nadu, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Immunological role of C4 CC chemokine-1 from snakehead murrel Channa striatus. Mol Immunol 2013; 57:292-301. [PMID: 24231766 DOI: 10.1016/j.molimm.2013.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
In this study, we have reported a cDNA sequence of C4 CC chemokine identified from snakehead murrel (also known as striped murrel) Channa striatus (named as CsCC-Chem-1) normalized cDNA library constructed by Genome Sequencing FLX™ Technology (GS-FLX™). CsCC-Chem-1 is 641 base pairs (bp) long that contain 438 bp open reading frame (ORF). The ORF encodes a polypeptide of 146 amino acids with a molecular mass of 15 kDa. The polypeptide contains a small cytokine domain at 30-88. The domain carries the CC motif at Cys(33)-Cys(34). In addition, CsCC-Chem-1 consists of another two cysteine residues at C(59) and C(73), which, together with C(33) and C(34), make CsCC-Chem-1 as a C4-CC chemokine. CsCC-Chem-1 also contains a 'TCCT' motif at 32-35 as CC signature motif; this new motif may represent new characteristic features, which may lead to some unknown function that needs to be further focused on. Phylogenitically, CsCC-Chem-1 clustered together with CC-Chem-1 from rock bream Oplegnathus fasciatus and European sea bass Dicentrarchus labrax. Significantly (P<0.05) highest gene expression was noticed in spleen and is up-regulated upon fungus (Aphanomyces invadans), bacteria (Aeromonas hydrophila) and virus (poly I:C) infection at various time points. The gene expression results indicate the influence of CsCC-Chem-1 in the immune system of murrel. Overall, the gene expression study showed that the CsCC-Chem-1 is a capable gene to increase the cellular response against various microbial infections. Further, we cloned the coding sequence of CsCC-Chem-1 in pMAL vector and purified the recombinant protein to study the functional properties. The cell proliferation activity of recombinant CsCC-Chem-1 protein showed a significant metabolic activity in a concentration dependent manner. Moreover, the chemotaxis assay showed the capability of recombinant CsCC-Chem-1 protein which can induce the migration of spleen leukocytes in C. striatus. However, this remains to be verified further at molecular and proteomic level.
Collapse
|
37
|
Arockiaraj J, Gnanam AJ, Kumaresan V, Palanisamy R, Bhatt P, Thirumalai MK, Roy A, Pasupuleti M, Kasi M. An unconventional antimicrobial protein histone from freshwater prawn Macrobrachium rosenbergii: analysis of immune properties. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1511-1522. [PMID: 23994279 DOI: 10.1016/j.fsi.2013.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
In this study, we have reported the first histone characterized at molecular level from freshwater prawn Macrobrachium rosenbergii (MrHis). A full length cDNA of MrHis (751 base pairs) was identified from an established M. rosenbergii cDNA library using GS-FLX technique. It encodes 137 amino acid residues with a calculated molecular mass of 15 kDa and an isoelectric point of 10.5. MrHis peptide contains a histone H2A signature between 21 and 27 amino acids. Homologous analysis showed that MrHis had a significant sequence identity (99%) with other known histone H2A groups especially from Penaeus monodon. Phylogenetic analysis of MrHis showed a strong relationship with other amino acid sequences from histone H2A arthropod groups. Further phylogenetic analysis showed that the MrHis belongs to histone H2A superfamily and H2A1A sub-family. Secondary structure of MrHis showed that the protein contains 50.36% α-helical region and 49.64% coils. The 3D model of MrHis was predicted by I-Tasser program and the model was evaluated for quality analysis including C-score analysis, Ramachandran plot analysis and RMSD analysis. The surface view analysis of MrHis showed the active domain at the N terminal. The antimicrobial property of MrHis protein was confirmed by the helical structure and the total hydrophobic surface along with its net charge. The MFE of the predicted RNA structure of MrHis is -128.62 kcal/mol, shows its mRNA stability. Schiffer-Edmundson helical wheel analysis of the N-terminal of MrHis showed a perfect amphipathic nature of the peptide. Significantly (P < 0.05) highest gene expression was noticed in the hemocyte and is induced with viral (WSBV and MrNV) and bacteria (A eromonas hydrophila and Vibrio harveyi) infections. The coding sequence of recombinant MrHis protein was expressed in a pMAL vector and purified to study the antimicrobial properties. The recombinant product showed antimicrobial activity against both Gram negative and Gram positive bacteria. In this study, the recombinant MrHis protein displayed antimicrobial activity in its entirety. Hence, it is possible to suggest that the activity may be due to the direct defense role of histone or its N-terminal antimicrobial property. However, this remains to be verified by detailed investigations.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603 203, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Macrobrachium rosenbergii cathepsin L: molecular characterization and gene expression in response to viral and bacterial infections. Microbiol Res 2013; 168:569-79. [PMID: 23669240 DOI: 10.1016/j.micres.2013.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
Cathepsin L (MrCathL) was identified from a constructed cDNA library of freshwater prawn Macrobrachium rosenbergii. MrCathL full-length cDNA is 1161 base pairs (bp) with an ORF of 1026bp which encodes a polypeptide of 342 amino acid (aa) long. The eukaryotic cysteine proteases, histidine and asparagine active site residues were identified in the aa sequence of MrCathL at 143-154, 286-296 and 304-323, respectively. The pair wise clustalW analysis of MrCathL showed the highest similarity (97%) with the homologous cathepsin L from Macrobrachium nipponense and the lowest similarity (70%) from human. Phylogenetic analysis revealed two distinct clusters of the invertebrates and vertebrates cathepsin L in the phylogenetic tree. MrCathL and cathepsin L from M. nipponense were clustered together, formed a sister group to cathepsin L of Penaeus monodon, and finally clustered to Lepeophtheirus salmonis. High level of (P<0.05) MrCathL gene expression was noticed in haemocyte and lowest in eyestalk. Furthermore, the MrCathL gene expression in M. rosenbergii was up-regulated in haemocyte by virus [M. rosenbergii nodovirus (MrNV) and white spot syndrome baculovirus (WSBV)] and bacteria (Vibrio harveyi and Aeromonas hydrophila). The recombinant MrCathL exhibited a wide range of activity in various pH between 3 and 10 and highest at pH 7.5. Cysteine proteinase (stefin A, stefin B and antipain) showed significant influence (100%) on recombinant MrCathL enzyme activity. The relative activity and residual activity of recombinant MrCathL against various metal ions or salts and detergent tested at different concentrations. These results indicated that the metal ions, salts and detergent had an influence on the proteinase activity of recombinant MrCathL. Conclusively, the results of this study imply that MrCathL has high pH stability and is fascinating object for further research on the function of cathepsin L in prawn innate immune system.
Collapse
|
39
|
Vera-Jimenez NI, Pietretti D, Wiegertjes GF, Nielsen ME. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1216-1222. [PMID: 23454430 DOI: 10.1016/j.fsi.2013.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/10/2012] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
The respiratory burst is an important feature of the immune system. The increase in cellular oxygen uptake that marks the initiation of the respiratory burst is followed by the production of reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide which plays a role in the clearance of pathogens and tissue regeneration processes. Therefore, the respiratory burst and associated ROS constitute important indicators of fish health status. This paper compares two methods for quantitation of ROS produced during the respiratory burst in common carp: the widely used, single-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head kidney cell fractions and total head kidney cell suspensions and proved to be a fast, reliable, automated multiwell microplate assay to quantitate fish health status modulated by β-glucans.
Collapse
Affiliation(s)
- N I Vera-Jimenez
- DTU Food, National Food Institute, Division for Industrial Food Technology, Biological Quality Research Group, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
40
|
Xiong W, Sun Y, Zou M, Muhammad RUH. Molecular cloning, characterization of CAT, and eco-toxicological effects of dietary zinc oxide on antioxidant enzymes in Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1746-1755. [PMID: 23263762 DOI: 10.1007/s11356-012-1408-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
The full-length cDNA of catalase (EfCAT) from Eisenia fetida was cloned (GenBank accession no. JN617999). Sequence characterization revealed that EfCAT protein sequence contained proximal heme-ligand signature sequence ((351)RLFSYSDTH(359)), two glycosylation sites (N(145) and N(436)), the proximal active site signature ((61)FDRERIPERVVHAKGAGA(78)), and 12 amino acids (N(145), H(191), F(195), S(198), R(200), N(210), Y(212), K(234), I(299), W(300), Q(302), and Y(355)), which were identified as putative residues involved in NADPH binding. These conserved motifs and catalase signature sequences were essential for the structure and function of EfCAT. The present study also investigated the effect of the veterinary food additive zinc oxide on antioxidant processes in E. fetida, at different concentrations and exposure durations. A significant increase (by 106.0 % compared to controls) in CAT activity at 500 mg/kg was registered at day 15. The superoxide dismutase (SOD) activity at 500 mg/kg increased to the maximum value (by 44.0 %) measured at day 15. There was a significant increase in glutathione peroxidase (GPx) activity for all concentrations after 5 days. The results showed that dietary Zn (500 mg/kg) causes oxidative damage to earthworms. At early stages of earthworms exposed to ZnO, GPx is the main enzyme to impair the oxidative status; while at later stages the enzymes CAT and SOD were the main indicators of oxidative stress. The antioxidant enzymatic variations may be an adaptive response of earthworms to survive in contaminated soils.
Collapse
Affiliation(s)
- Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
41
|
Arockiaraj J, Gnanam AJ, Muthukrishnan D, Gudimella R, Milton J, Singh A, Muthupandian S, Kasi M, Bhassu S. Crustin, a WAP domain containing antimicrobial peptide from freshwater prawn Macrobrachium rosenbergii: immune characterization. FISH & SHELLFISH IMMUNOLOGY 2013; 34:109-118. [PMID: 23069787 DOI: 10.1016/j.fsi.2012.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/21/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
Crustin (MrCrs) was sequenced from a freshwater prawn Macrobrachium rosenbergii. The MrCrs protein contains a signal peptide region at N-terminus between 1 and 22 and a long whey acidic protein domain (WAP domain) at C-terminus between 57 and 110 along with a WAP-type 'four-disulfide core' motif. Phylogenetic results show that MrCrs is clustered together with other crustacean crustin groups. MrCrs showed high sequence similarity (77%) with crustin from Pacific white shrimp Litopenaeus vannamei and Japanese spiny lobster Panulirus japonicas. I-TASSER uses the best structure templates to predict the possible structures of MrCrs along with PDB IDs such as 2RELA and 1FLEI. The gene expressions of MrCrs in both healthy M. rosenbergii and those infected with virus including infectious hypodermal and hematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) and bacteria Aeromonas hydrophila (Gram-negative) and Enterococcus faecium (Gram-positive) were examined using quantitative real time PCR. To understand its biological activity, the recombinant MrCrs gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCrs protein agglutinated with the bacteria considered for analysis at a concentration of 25 μg/ml, except Lactococcus lactis. The bactericidal results showed that the recombinant MrCrs protein destroyed all the bacteria after incubation, even less than 6 h. These results suggest that MrCrs is a potential antimicrobial peptide, which is involved in the defense system of M. rosenbergii against viral and bacterial infections.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, SRM Nagar, Kattankulathur, Chennai, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arockiaraj J, Avin FA, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S. Immune role of MrNFκBI-α, an IκB family member characterized in prawn M. rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2012; 33:619-625. [PMID: 22750025 DOI: 10.1016/j.fsi.2012.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
NF kappa B inhibitor alpha (MrNFκBI-α) was sequenced from a freshwater prawn Macrobrachium rosenbergii. The MrNFκBI-α protein contains a long ankyrin repeat region circular domain between 193 and 413 along with its 6 repeats (ankyrin repeat 1,2,3,4,5 and 6). An IκB degradation motif and a putative PEST motif is present at 37-64 and 418-471 of the N- and C-terminal regions of MrNFκBI-α respectively. The gene expressions of MrNFκBI-α in healthy and infectious hematopoietic and hypodermal necrosis virus (IHHNV), poly I:C, Aeromonas hydrophila and Enterococcus faecium injected M. rosenbergii were examined using quantitative real time PCR. The MrNFκBI-α is expressed in all the tissues taken for examination and the highest is observed in hemocytes. The MrNFκBI-α gene expression is strongly up-regulated in hemocytes of prawn after IHHNV, poly I:C, A. hydrophila and E. faecium infection. This result indicates an important role of MrNFκBI-α in M. rosenbergii immune system. This, however, remains to be verified by further studies.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, SRM Nagar, Kattankulathur 603203, Chennai, Tamil Nadu, India.
| | | | | | | | | | | | | |
Collapse
|
43
|
Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S. Molecular functions of chaperonin gene, containing tailless complex polypeptide 1 from Macrobrachium rosenbergii. Gene 2012; 508:241-9. [PMID: 22903032 DOI: 10.1016/j.gene.2012.07.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/25/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Chaperonin (MrChap) was identified from a constructed transcriptome dataset of freshwater prawn Macrobrachium rosenbergii. The MrChap peptide contains a long chaperone super family domain between 11 and 525. Three chaperone tailless complex polypeptide (TCP-1) signatures are present in the MrChap peptide sequence at 36-48, 57-73 and 85-93. The gene expressions of MrChap in both healthy M. rosenbergii and those infected with infectious hypodermal and hematopoietic necrosis virus (IHHNV) were examined using qRT-PCR. To understand its biological activity, the recombinant MrChap gene was constructed and expressed in Escherichia coli BL21 (DE3). The results of ATPase assay showed that the recombinant MrChap protein exhibited apparent ATPase activity. Chaperone activity assay showed that the recombinant MrChap protein is an active chaperone. These results suggest that MrChap is potentially involved in the immune responses against viral infection in M. rosenbergii. These findings indicate that the recombinant MrChap protein may be used in immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, SRM Nagar, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|