1
|
Yu T, Xie M, Luo K, Zhang X, Gao W, Xu Q, Zhang S. Mechanism of Chinese sturgeon IFN-γ inhibition on Mycobacterium marinum (Acipenser sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109436. [PMID: 38369071 DOI: 10.1016/j.fsi.2024.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
IFN-γ plays a crucial role in both innate and adaptive immune responses and is a typical Th1 cytokine that promotes Th1 response and activates macrophages. When macrophages were incubated with IFN-γ, their phagocytosis ratio against Mycobacterium marinum increased significantly, as observed under fluorescence microscopy. The macrophages engulfed a large number of M. marinum. The proliferative ability of macrophages treated with IFN-γ was significantly weaker on the 4th and 7th day after phagocytosis and subsequent re-infection with marine chlamydia (P < 0.001). This suggests that IFN-γ enhances the phagocytosis and killing ability of macrophages against M. marinum. IFN-γ protein also significantly increased the production of reactive oxygen species (H2O2) and nitric oxide (NO) by macrophages. Additionally, the expression levels of toll-like receptor 2 (tlr2) and caspase 8 (casp8) were significantly higher in macrophages after IFN-γ incubation compared to direct infection after 12 h of M. marinum stimulation. Apoptosis was also observed to a higher degree in IFN-γ incubated macrophage. Moreover, mRNA expression of major histocompatibility complex (MHC) molecules produced by macrophages after IFN-γ incubation was significantly higher than direct infection. This indicates that IFN-γ enhances antigen presentation by upregulating MHC expression. It also upregulates tlr2 and casp8 expression through the TLR2 signaling pathway to induce apoptosis in macrophages. The pro-inflammatory cytokine showed an initial increase followed by a decline, suggesting that IFN-γ enhances the immune response of macrophages against M. marinum infection. On the other hand, the anti-inflammatory cytokine showed a delayed increase, significantly reducing the expression of pro-inflammatory cytokines. The expression of both cytokines balanced each other and together regulated the inflammatory reaction against M. marinum infection.
Collapse
Affiliation(s)
- Ting Yu
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China
| | - Meng Xie
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China
| | - Kai Luo
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China
| | - Xiao Zhang
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China
| | - Weihua Gao
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China; Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang 524088, China
| | - Qiaoqing Xu
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China.
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
2
|
Yu R, Zhang W, Yu P, Zhou J, Su J, Yuan G. IFN-γ enhances protective efficacy against Nocardia seriolae infection in largemouth bass ( Micropterus salmoides). Front Immunol 2024; 15:1361231. [PMID: 38545095 PMCID: PMC10965728 DOI: 10.3389/fimmu.2024.1361231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 04/17/2024] Open
Abstract
Introduction Nocardia seriolae adversely impacts a diverse range of fish species, exhibiting significant pathogenic characteristics that substantially impede the progress of aquaculture. N. seriolae infects in fish has a long incubation period, and clinical symptoms are not obvious in the early stages. There is presently no viable and eco-friendly approach to combat the spread of the disease. According to reports, N. seriolae primarily targets macrophages in tissues after infecting fish and can proliferate massively, leading to the death of fish. Interferon-gamma (IFN-γ) is a crucial molecule that regulates macrophage activation, but little is known about its role in the N. seriolae prevention. Methods IFN-γ was first defined as largemouth bass (Micropterus salmoides, MsIFN-γ), which has a highly conserved IFN-γ characteristic sequence through homology analysis. The recombinant proteins (rMsIFN-γ) were obtained in Escherichia coli (E. coli) strain BL21 (DE3). The inflammatory response-inducing ability of rMsIFN-γ was assessed in vitro using monocytes/macrophages. Meanwhile, the protective effect of MsIFN-γ in vivo was evaluated by N. seriolae infection largemouth bass model. Results In the inflammatory response of the monocytes/macrophages activated by rMsIFN-γ, various cytokines were significantly increased. Interestingly, interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-a) increased by 183- and 12-fold, respectively, after rMsIFN-γ stimulation. rMsIFN-γ improved survival by 42.1% compared with the control. The bacterial load in the liver, spleen and head kidney significantly decreased. rMsIFN-γ was also shown to better induce increased expression of IL-1β, TNF-α, hepcidin-1(Hep-1), major histocompatibility complex I (MHCI), and MHC II in head kidney, spleen and liver. The histopathological examination demonstrated the transformation of granuloma status from an early necrotic foci to fibrosis in the infection period. Unexpectedly, the development of granulomas was successfully slowed in the rMsIFN-γ group. Discussion This work paves the way for further research into IFN-γ of largemouth bass and identifies a potential therapeutic target for the prevention of N. seriolae.
Collapse
Affiliation(s)
- Ruying Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan, China
| | - Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Penghui Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiancheng Zhou
- Jiangsu DABEINONG Group (DBN) Aquaculture Technology Co. LTD, Huai’an, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Yin B, Liu H, Tan B, Deng J, Xie S. The effects of sodium butyrate (NaB) combination with soy saponin dietary supplementation on the growth parameters, intestinal performance and immune-related genes expression of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109033. [PMID: 37640123 DOI: 10.1016/j.fsi.2023.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Soy saponins are generally known to have negative effects on growth and the intestines of aquatic animals, and appropriate levels of sodium butyrate (NaB) may provide some mitigating effects. We investigated the effects of low and high levels of soy saponin and the protective effects of NaB (based on high level of soy saponin) on growth, serum cytokines, distal intestinal histopathology, and inflammation in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). The experiment included four groups: fishmeal group (FM, 0.00% saponin and 0.00% NaB), low saponin group (SL, 0.30% saponin and 0.00% NaB), high saponin group (SH, 1.50% saponin and 0.00% NaB) and high saponin with NaB group (SH-NaB, 1.50% saponin and 0.13% NaB). The results showed compared to FM, the final body weight (FBW) and weight gain (WG) were significantly higher and lower in SL and SH, respectively (P < 0.05). Compared to SH, the FBW and WG were significant higher in SH-NaB (P < 0.05). In the serum, compared to FM, the interferon γ (IFN-γ) and interleukin-1β (IL-1β) levels in SH were significantly increased (P < 0.05). Compared to SH, the IFN-γ level was significantly decreased in SH-NaB (P < 0.05). In the distal intestine, based on Alcian Blue-Periodic Acid-Schiff (AB-PAS) observation, the goblet cell/μm was significantly increased and decreased in the SL and SH, respectively, compared to FM. The intestinal diameter/plica height ratio in the SH was significantly higher than those in the FM, SL and SH-NaB (P < 0.05). The NO and ONOO- levels in the SH were significantly higher than that in FM and SL (P < 0.05). At the transcriptional level in the distal intestine, compared to FM, the mRNA levels of tumor necrosis factor (tnfα), il1β, interleukin-8 (il8) and ifnγ were significantly up-regulated in the SH (P < 0.05). Compared to the SH, tnfα, il8 and ifnγ were significantly down-regulated in the SH-NaB (P < 0.05). Compared to the FM, the mRNA levels of claudin3, claudin15, zo2 and zo3 were significantly up-regulated in the SL (P < 0.05). The mRNA levels of occludin, claudin3, claudin12, claudin15, zo1, zo2 and zo3 were significantly down-regulated in the SH compared to the FM (P < 0.05). Additionally, compared to the SH, the mRNA levels of occludin, claudin3, claudin12, claudin15, zo1, zo2 and zo3 were significantly up-regulated in the SH-NaB (P < 0.05). After the 7-day Vibrio parahaemolyticus challenge test, the survival was significantly higher and lower in the SL and SH, respectively, compared to FM (P < 0.05). Overall, low and high levels of soy saponins had positive and negative effects on growth, disease resistance, serum cytokines, and distal intestinal development and anti-inflammation, respectively, in hybrid grouper. NaB effectively increased disease resistance and improved distal intestinal inflammation in hybrid grouper, but the effects of NaB were mainly observed in improving distal intestinal tight junctions.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China; Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Agricultural Development Co., Ltd., Chengdu, 610093, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China
| |
Collapse
|
4
|
Zhang M, Liu WQ, Wang Y, Yan X, Wang B, Wang GH. Identification, expression pattern and functional characterization of IFN-γ involved in activating JAK-STAT pathway in Sebastes schlegeli. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108936. [PMID: 37423401 DOI: 10.1016/j.fsi.2023.108936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
IFN-γ (interferon gamma) is a critical cytokine in the immune system involved both directly and indirectly in antiviral activity, stimulation of bactericidal activity, antigen presentation and activation of macrophages via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. The IFN-γ function is best described in cell defense against intracellular pathogens in mammals, but IFN-γ cytokine-induced metabolic change and its role in anti-infection remain unknown in teleost fish. In this study, a novel IFN-γ (SsIFN-γ) was identified from black rockfish (Sebastes schlegeli) by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of SsIFN-γ encoded a putative protein of 215 amino acids and shares 60.2%-93.5% overall sequence identities with other teleost IFN-γ. SsIFN-γ was distributed ubiquitously in all the detected tissues and immune cells, which was highly expressed in the spleen, gills, head kidney by quantitative real-time PCR. The mRNA expression of SsIFN-γ was significantly upregulated in the spleen, head kidney, head kidney (HK) macrophages and peripheral blood lymphocytes (PBLs) during pathogen infection. Meanwhile, the recombinant protein (rSsIFN-γ) exhibited an immunomodulatory function to enhance respiratory burst activity and nitric oxide response of HK macrophages. Furthermore, rSsIFN-γ could effectively upregulate the expression of macrophage proinflammatory cytokine, the expression of JAK-STAT signaling pathway related genes and interferon-related downstream genes in the head kidney and spleen. Luciferase assays showed ISRE and GAS activity were obviously enhanced after rSsIFN-γ treatment. These results indicated that SsIFN-γ possessed apparent immunoregulatory properties and played a role in fighting pathogen infection which will be helpful to further understanding of the immunologic mechanism of teleosts IFN-γ in innate immunity.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
5
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Cytokine networks provide sufficient evidence for the differentiation of CD4 + T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104627. [PMID: 36587713 DOI: 10.1016/j.dci.2022.104627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-β and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
6
|
He Z, Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Full-length transcriptome sequencing of lymphocytes respond to IFN-γ reveals a Th1-skewed immune response in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108636. [PMID: 36828199 DOI: 10.1016/j.fsi.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Interferon gamma (IFN-γ), the member of type II interferons, is a major driver and effector cytokine for Th1 cells and plays broad roles in regulating the function of immune cells. Teleost fish represents the oldest living bony vertebrates containing T-lymphocyte subsets. However, whether or how the regulatory mechanisms of IFN-γ on Th1 cells occur in teleost fish remain unknown. In this study, full-length transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and signaling pathways in the IFN-γ stimulated lymphocytes of flounder (Paralichthys olivaceus), the data showed 811 genes were upregulated and 1107 genes were downregulated, Th1 and Th2 cell differentiation pathway was remarkably enriched from DEGs, and the genes in the Th1 cell differentiation pathway were upregulated and verified. Accordingly, variations on Th1 cell differentiation marker genes and CD4+ cells were investigated after IFN-γ stimulation, the results confirmed that CD4+ T lymphocytes proliferated significantly after IFN-γ stimulation, accompanied by eight genes significant upregulation and increased T-bet expression in lymphocytes. In conclusion, the results revealed an induction of IFN-γ on Th1-type immune response, providing novel perspectives into the differentiation of CD4+ T lymphocytes in teleost.
Collapse
Affiliation(s)
- Ziyang He
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
7
|
Zhu X, Wang J, Jia Z, Feng J, Wang B, Wang Z, Liu Q, Wu K, Huang W, Zhao X, Dang H, Zou J. Novel Dimeric Architecture of an IFN-γ-Related Cytokine Provides Insights into Subfunctionalization of Type II IFNs in Teleost Fish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2203-2214. [PMID: 36426983 DOI: 10.4049/jimmunol.2200334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023]
Abstract
Gene duplication leads to subfunctionalization of paralogs. In mammals, IFN-γ is the sole member of the type II IFN family and binds to a receptor complex consisting of IFN-γR1 and IFN-γR2. In teleost fish, IFN-γ and its receptors have been duplicated due to the teleost-specific whole-genome duplication event. In this study, the functions of an IFN-γ-related (IFN-γrel) cytokine were found to be partially retained relative to IFN-γ in grass carp (Ctenopharyngodon idella [CiIFN-γrel]). CiIFN-γrel upregulated the expression of proinflammatory genes but had lost the ability to activate genes involved in Th1 response. The results suggest that CiIFN-γrel could have been subfunctionalized from CiIFN-γ. Moreover, CiIFN-γrel induced STAT1 phosphorylation via interaction with duplicated homologs of IFN-γR1 (cytokine receptor family B [CRFB] 17 and CRFB13). Strikingly, CiIFN-γrel did not bind to the IFN-γR2 homolog (CRFB6). To gain insight into the subfunctionalization, the crystal structure of CiIFN-γrel was solved at 2.26 Å, revealing that it forms a homodimer that is connected by two pairs of disulfide bonds. Due to the spatial positions of helix A, loop AB, and helix B, CiIFN-γrel displays a unique topology that requires elements from two identical monomers to form a unit that is similar to IFN-γ. Further, mutagenesis analyses identified key residues interacting with CiIFN-γrel receptors and those required for the biological functions. Our study can help understand the subfunctionalization of duplicated IFN-γ paralogs in fish.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Xu JR, Zheng PH, Zhang XX, Li JT, Chen HQ, Zhang ZL, Hao CG, Cao YL, Xian JA, Lu YP, Dai HF. Effects of Elephantopus scaber extract on growth, proximate composition, immunity, intestinal microbiota and resistance of the GIFT strain of Nile tilapia Oreochromis niloticus to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2022; 127:280-294. [PMID: 35752371 DOI: 10.1016/j.fsi.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effects of Elephantopus scaber extract on the GIFT (genetic improvement of farmed tilapia) strain of Nile tilapia Oreochromis niloticus. A total of 800 tilapia with an initial body weight of 1.34 ± 0.09 g each were randomly divided into five groups. The tilapia in the control group (E0 group) were fed on a basal diet only. Meanwhile, tilapia in the four experimental groups were fed on a basal diet supplemented with 1 g/kg (E1 group), 3 g/kg (E2 group), 5 g/kg (E3 group), and 7 g/kg (E4 group) of E. scaber extract for 10 weeks. Results showed that the survival rate was higher in the experimental groups than in the control group. Compared with the control group, some growth parameters (FW, WGR, SGR, VSI, and HSI) were significantly improved in the E1 group and E2 group. The crude lipid content in the dorsal muscle and liver was lower in the E1 group than in the control group. After E. scaber extract supplementation, activities of immunity-related enzymes (ACP, AKP, T-AOC, SOD, CAT, GSH-Px and LZM) in plasma, liver, spleen and head kidney, and expressions of immunity-related genes (IL-1β, IFN-γ, TNF-α, and CCL-3) in liver, spleen and head kidney showed various degrees of improvement, while MDA content and Hsp70 expression level were decreased. The survival rate of tilapia increased in all the supplementation groups after Streptococcus agalactiae treatment. E. scaber extract addition changed the species composition, abundance, and diversity of intestinal microbiota in tilapia. These results demonstrate that E. scaber extract supplementation in diet can improve the growth, immunity, and disease resistance of GIFT against S. agalactiae. E. scaber extract supplementation can also change intestinal microbiota and reduce crude lipid content in dorsal muscle and liver. The above indicators show that the optimal dose of E. scaber extract for GIFT is 1 g/kg.
Collapse
Affiliation(s)
- Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Hui-Qin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Chen-Guang Hao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Yan-Lei Cao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China; Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Hao-Fu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| |
Collapse
|
9
|
Woo SJ, Jeong MG, Jeon EJ, Do MY, Kim NY. Antiparasitic potential of ethanolic extracts of Carpesii Fructus against Miamiensis avidus in hirame natural embryo cell line and their effects on immune response- and biotransformation-related genes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109214. [PMID: 34673250 DOI: 10.1016/j.cbpc.2021.109214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
Scuticociliatosis, caused by Miamiensis avidus, is a severe parasitic disease affecting marine organisms, particularly Paralichthys olivaceus. The aim of this study was to assess the antiparasitic potential of ethanolic extracts of Carpesii Fructus (EECF), the dried fruit of Carpesium abrotanoides L., which is used in traditional Chinese medicine, in vitro. We found that 50%, 70%, and 100% EECF induced morphological changes in M. avidus, including reduced motility, cell shrinkage, and lysis. Nearly 100% cell lysis was observed in M. avidus after 2 h of treating with 100% EECF. After 24 h, the survival rates of M. avidus treated with 100%, 70%, and 50% EECF were 10%, 20%, and 30%, respectively. Additionally, the mRNA levels of immune response-related (IL-1β, IL-8, TNF-α, and CD8-α) and biotransformation-related (CYP1A, CYP1B, CYP3A4, and UGT2B19) genes increased with 70% and 100% EECF treatment and decreased with 50% EECF treatment following pretreatment with concanavalin A. The viability of hirame natural embryo (HINAE) cells was reduced by 50%, 70%, and 100% EECF (100 mg/L) and was between 67 and 80%. The IC50 values of 50%, 70%, 90%, and 100% EECF in HINAE cells were 102.3, 42.93, 39.15, and 38.39 mg/L, respectively. These results indicated that 50% EECF was less toxic to HINAE cells than 70% or 100% EECF, while still exhibiting antiparasitic activity against M. avidus. Therefore, we demonstrated the role of EECF as a natural antiparasitic agent against M. avidus. Our findings suggest that Carpesii Fructus has potential use as an antiparasitic agent in the aquaculture industry.
Collapse
Affiliation(s)
- Soo Ji Woo
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Min Gyeong Jeong
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Eun Ji Jeon
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Mi Young Do
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Na Young Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea.
| |
Collapse
|
10
|
Xu D, Li Q, Zhou Y, Shen Y, Lai W, Hao T, Ding Y, Mai K, Ai Q. Functional analysis and regulation mechanism of interferon gamma in macrophages of large yellow croaker (Larimichthys crocea). Int J Biol Macromol 2022; 194:153-162. [PMID: 34863827 DOI: 10.1016/j.ijbiomac.2021.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022]
Abstract
Interferon gamma (IFN-γ) is a widely expressed cytokine that has potent antiviral and immunomodulatory effects. The expression and bioactivity of IFN-γ have been reported in several fish species. However, the molecular mechanism mediated by IFN-γ in fish macrophages has not been completely elucidated. This study used the macrophage cell line to investigate the functional activities and regulation mechanism of large yellow croaker IFN-γ (LcIFN-γ). Herein, the mRNA expression of Lcifn-γ was significantly upregulated in macrophages after LPS and poly(I:C) treatment. Recombinant LcIFN-γ protein (rLcIFN-γ) significantly enhanced the phagocytic ability and respiratory burst activity of macrophages. Meanwhile, rLcIFN-γ induced M1 phenotype polarization of macrophages with the upregulated expressions of pro-inflammatory gene. Moreover, rLcIFN-γ upregulated the IFN-stimulated genes (ISGs) expression and activated JAK (Janus tyrosine kinases)-STAT (signal transducer and activator of transcription) signaling pathway by causing the phosphorylation of JAK1 and STAT1Tyr701. Furthermore, the promoter activity of IFN-regulatory factor 1 (IRF1) was significantly upregulated by the phosphorylated transcription factor STAT1 through binding to its promoter region. In addition to the classical JAK-STAT pathway, rLcIFN-γ also activated multiple distinct signaling cascades such as mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) pathways. Overall, this study indicated the powerful effects of LcIFN-γ on macrophage activation of large yellow croaker and its molecular mechanism.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yan Zhou
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yi Ding
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
11
|
Yin L, Lv M, Qiu X, Wang X, Zhang A, Yang K, Zhou H. IFN-γ Manipulates NOD1-Mediated Interaction of Autophagy and Edwardsiella piscicida to Augment Intracellular Clearance in Fish. THE JOURNAL OF IMMUNOLOGY 2021; 207:1087-1098. [PMID: 34341174 DOI: 10.4049/jimmunol.2100151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Edwardsiella piscicida is an intracellular pathogenic bacterium accounting for significant losses in farmed fish. Currently, cellular and molecular mechanisms underlying E. piscicida-host cross-talk remain obscure. In this study, we revealed that E. piscicida could increase microtubule-associated protein L chain 3 (LC3) puncta in grass carp (Ctenopharyngodon idella) monocytes/macrophages and a carp cell line, Epithelioma papulosum cyprini The autophagic response was confirmed by detecting the colocalization of E. piscicida with LC3-positive autophagosomes and LysoTracker-probed lysosomes in the cells. Moreover, we unveiled the autophagic machinery targeting E. piscicida by which the nucleotide-binding oligomerization domain receptor 1 (NOD1) functioned as an intracellular sensor to interact and recruit autophagy-related gene (ATG) 16L1 to the bacteria. Meanwhile, E. piscicida decreased the mRNA and protein levels of NOD1 and ATG16L1 in an estrogen-related receptor-α-dependent manner, suggesting a possible mechanism for this bacterium escaping autophagy. Subsequently, we examined the effects of various E. piscicida virulence factors on NOD1 expression and found that two of them, EVPC and ESCB, could reduce NOD1 protein expression via ubiquitin-dependent proteasomal degradation. Furthermore, an intrinsic regulator IFN-γ was found to enhance the colocalization of E. piscicida with NOD1 or autophagosomes, suggesting its involvement in the interaction between autophagy and E. piscicida Along this line, a short-time treatment of IFN-γ caused intracellular E. piscicida clearance through an autophagy-dependent mechanism. Collectively, our works demonstrated NOD1-mediated autophagy-E. piscicida dialogues and uncovered the molecular mechanism involving autophagy against intracellular bacteria in fish.
Collapse
Affiliation(s)
- Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Swain B, Powell CT, Curtiss R. Pathogenicity and immunogenicity of Edwardsiella piscicida ferric uptake regulator (fur) mutations in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2020; 107:497-510. [PMID: 33176201 DOI: 10.1016/j.fsi.2020.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella piscicida is the etiological agent of edwardsiellosis in fish and causes severe economic losses in global aquaculture. Vaccination would be the most effective method to prevent infectious diseases and their associated economic losses. The ferric uptake regulator (Fur) is an important transcriptional global regulator of Gram-negative bacteria. In this study, we examined the regulatory function of Fur in E. piscicida. We designed a strain that displays features of the wild-type virulent strain of E. piscicida at the time of immunization to enable strains first to effectively colonize lymphoid tissues and then to exhibit a regulated delayed attenuation in vivo to preclude inducing disease symptoms. Regulated delayed attenuation in vivo is based on the substitution of a tightly regulated araC ParaBAD cassette for the promoter of the fur gene such that expression of this gene is dependent on arabinose provided during growth. Thus, following E. piscicida mutant colonization of lymphoid tissues, the Fur protein ceases to be synthesized due to the absence of arabinose such that attenuation is gradually manifest in vivo to preclude induction of diseases symptoms. We deleted the promoter, including all sequences that interact with activator or repressor proteins, for the fur gene, and substituted the improved araC ParaBAD cassette to yield an E. piscicida strain with the ΔPfur170:TT araC ParaBADfur deletion-insertion mutation (χ16012). Compared to the wild-type strain J118, χ16012 exhibited retarded growth and enhanced siderophore production in the absence of arabinose. mRNA levels of Fur-regulated genes were analyzed in iron deplete or replete condition in wild-type and fur mutant strains. We observed zebrafish immunized with χ16012 showed better colonization and protection compared to the Δfur (χ16001). Studies showed that E. piscicida strain χ16012 is attenuated and induces systemic and mucosal IgM titer in zebrafish. In addition, we found an increase in transcript levels of tnf-α, il-1β, il-8 and ifn-γ in different tissues of zebrafish immunized with χ16012 compared to the unimmunized group. We conclude that, E. piscicida with regulated delayed attenuation could be an effective immersion vaccine for the aquaculture industry.
Collapse
Affiliation(s)
- Banikalyan Swain
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA.
| | - Cole T Powell
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Roy Curtiss
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| |
Collapse
|
13
|
Li L, Chen SN, Laghari ZA, Huang B, Huo HJ, Li N, Nie P. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:98-112. [PMID: 30922782 DOI: 10.1016/j.dci.2019.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
IFN-γ, as the sole member of mammalian type II IFN, is a multifunctional cytokine which exerts its effects through two distinct IFN-γ receptors, IFNGR1 and IFNGR2. However, in teleost fish, another IFN-γ homologous gene, namely IFN-γ related gene (IFN-γrel), has been identified. Although IFN-γ and IFN-γrel genes have been described in some fish species, many important aspects remain poorly understood in relation with their signalling and function. In the present study, IFN-γ and IFN-γrel, as well as their receptors, cytokine receptor family B (CRFB) 17, CRFB13, two of which are homologous to IFNGR1 in mammals, and CRFB6, homolomous to IFNGR2, have been characterized in mandarin fish, Siniperca chuatsi. It was revealed that the two type IFN members exhibit antiviral activity, and IFN-γ transduces downstream signalling through CRFB13 and CRFB6, while IFN-γrel interacts with CRFB17 to activate downstream signalling. Moreover, IFN-γ and IFN-γrel have been shown to exert antiviral biological activity in a STAT1-dependent manner. Intracellular domain analysis of CRFB17 and CRFB13 demonstrated that the Y386 tyrosine residue of CRFB13 is required for the activation of the IFN-γ-mediated biologic response, and the Y324 and Y370 residues in CRFB17 are required to activate IFN-γrel signalling.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
14
|
Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: An update. FISH & SHELLFISH IMMUNOLOGY 2019; 90:150-164. [PMID: 31028897 DOI: 10.1016/j.fsi.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain; Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain.
| |
Collapse
|
15
|
Wu H, Zhang Y, Lu X, Xiao J, Feng P, Feng H. STAT1a and STAT1b of black carp play important roles in the innate immune defense against GCRV. FISH & SHELLFISH IMMUNOLOGY 2019; 87:386-394. [PMID: 30703549 DOI: 10.1016/j.fsi.2019.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) plays an important role in the Janus kinase (JAK)-STAT signaling of human and mammals; however, the mechanism of STAT1 in innate immune activation of teleost fishes remains largely unknown. In this study, two STAT1 homologues (bcSTAT1a and bcSTAT1b) of black carp (Mylopharyngodon piceus) have been cloned and characterized. Both bcSTAT1a and bcSTAT1b transcription in host cells was obviously increased in response to the stimulation of poly (I:C), lipopolysaccharide (LPS), grass carp reovirus (GCRV) and interferon (IFN); however, the increase rate of bcSTAT1b transcription post stimulation was obviously higher than that of bcSTAT1a. bcSTAT1a and bcSTAT1b were distributed in both cytoplasm and nucleus in the immunofluorescence staining assay. Self-association of bcSTAT1a and bcSTAT1b, and the interaction between bcSTAT1a and bcSTAT1b have been detected through co-immunoprecipitation (co-IP) assay; and the data of native polyacrylamide gel electrophoresis (PAGE) implied that bcSTAT1a and bcSTAT1b might form homodimer and heterodimer in vivo like their mammalian counterparts. Both bcSTAT1a and bcSTAT1b presented IFN-inducing ability in report assay, and both bcSTAT1a and bcSTAT1b showed antiviral activities against GCRV in EPC cells. Our data support the conclusion that both bcSTAT1a and bcSTAT1b play important roles in host antiviral innate immune activation initiated by GCRV.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yinyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xingyu Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Pinghui Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
16
|
Guan XL, Zhang BC, Sun L. pol-miR-194a of Japanese flounder (Paralichthys olivaceus) suppresses type I interferon response and facilitates Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:220-225. [PMID: 30641186 DOI: 10.1016/j.fsi.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that participate in diverse cellular processes including microbial invasion and immune defense. In a previous study, we identified a large amount of Japanese flounder (Paralichthys olivaceus) miRNAs responsive to megalocytivirus infection. In the present study, we examined the function of one of these miRNAs, pol-miR-194a, in association with the infectivity of Edwardsiella tarda, an intracellular bacterial pathogen to many fish species including flounder. We found that pol-miR-194a was induced in expression to a significant extent in the spleen, liver, and gill of Japanese flounder infected by E. tarda. Transfection of flounder cells with pol-miR-194a mimic significantly enhanced the intracellular replication of E. tarda. pol-miR-194a was able to interact specifically with the 3'UTR of IRF7 in a negative manner, resulting in inhibition of IRF7 expression. Consistently, pol-miR-194a significantly blocked the promoter activity of type Ⅰ interferon. Taken together, these results indicate that pol-miR-194a plays an important role in the regulation of flounder immune response as well as microbial infection, and that pol-miR-194a probably serves as a target for E. tarda to manipulate and escape host immune defense.
Collapse
Affiliation(s)
- Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Cun Zhang
- Department of Biomedicine and Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
Peng W, Sun Y, Li GF, He LG, Li RZ, Liang YS, Ding X, Yu X, Zhang Y, Lin HR, Lu DQ. Two Distinct Interferon-γ in the Orange-Spotted Grouper ( Epinephelus coioides): Molecular Cloning, Functional Characterization, and Regulation in Toll-Like Receptor Pathway by Induction of miR-146a. Front Endocrinol (Lausanne) 2018; 9:41. [PMID: 29535680 PMCID: PMC5834515 DOI: 10.3389/fendo.2018.00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interferon gamma (IFNγ) is a Th1 cytokine that is critical for innate and adaptive immunity. Toll-like receptors (TLRs) signaling pathways are critical in early host defense against invading pathogens. miR-146a has been reported to participate in the regulation of host immunity. The known mechanisms of integrations between the IFNγ and TLR signaling pathways are incompletely understood, especially in teleosts. In this study, orange-spotted grouper (Epinephelus coioides) IFNγ1 and IFNγ2, their biological activities, especially their involvements in TLR pathway, were explored. We identified and cloned two IFNγ genes of E. coioides, namely EcIFNγ1 and EcIFNγ2. The produced recombinant E. coioides IFNγ1 (rEcIFNγ1) and IFNγ2 (rEcIFNγ2) proteins showed functions, which are similar to those of other bony fishes, such as enhancing nitric oxide responses and respiratory burst response. rEcIFNγ2 could regulate TLR pathway by enhancing the promoter activity of miR-146a upstream sequence and thus increasing the expression level of miR-146a, which possibly targets TNF receptor-associated factor 6 (TRAF6), a key adapter molecule in TLR signaling pathway. Taken together, these findings unravel a novel regulatory mechanism of anti-inflammatory response by IFNγ2, which could mediate TLR pathway through IFNγ2-miR-146a-TRAF6 negative regulation loop. It is suggested that IFNγ2 may provide a promising therapeutic, which may help to fine tune the immune response.
Collapse
Affiliation(s)
- Wan Peng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Gao-Fei Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liang-Ge He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Zhu Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Si Liang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xu Ding
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hao-Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Qi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Dan-Qi Lu,
| |
Collapse
|
18
|
Velázquez J, Acosta J, Herrera N, Morales A, González O, Herrera F, Estrada MP, Carpio Y. Novel IFNγ homologue identified in Nile tilapia (Oreochromis niloticus) links with immune response in gills under different stimuli. FISH & SHELLFISH IMMUNOLOGY 2017; 71:275-285. [PMID: 29017941 DOI: 10.1016/j.fsi.2017.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFN-γ) has important roles in both innate and adaptive immune responses. This cytokine plays a very important role in defining Th1 immune response in all vertebrates. In the present study, we identified and isolated for the first time the gene coding for Nile tilapia (Oreochromis niloticus) IFNγ from spleen lymphocytes. The isolated tilapia IFNγ has between 24 and 62% of amino acid identity as compared to reported sequences for other teleost fishes. It has close phylogenetic relationships with IFNγ molecules belonging to the group of Perciforms and presents the typical structural characteristics of gamma interferon molecules. The tissue expression analysis showed that IFNγ is expressed constitutively in head kidney, skin, intestine, muscle and brain. Its expression was not detected in gills by conventional RT-PCR. However, under conditions of stimulation with Poly I:C and LPS, IFNγ expression was up-regulated in gills after 24 h post-stimulation. IFNγ expression was also induced in gills 24 h after Edwardsiella tarda infection suggesting its important role in immunity against intracellular bacteria. The recombinant protein produced in Escherichia coli induced Mx gene transcription in head kidney primary culture cells. These results are the first steps to characterize the role of tilapia IFNγ in the defense against pathogens in tilapia. Furthermore, the isolation of this molecule provides a new tool to characterize the cellular immune response to various stimuli in this organism.
Collapse
Affiliation(s)
- Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Jannel Acosta
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Naylin Herrera
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Antonio Morales
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Osmany González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Fidel Herrera
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba.
| |
Collapse
|
19
|
Yang S, Li Q, Mu Y, Ao J, Chen X. Functional activities of interferon gamma in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2017; 70:545-552. [PMID: 28939528 DOI: 10.1016/j.fsi.2017.09.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFN-γ) is a T helper cell type 1 (Th1) cytokine that plays important roles in almost all phases of immune and inflammatory responses. Although IFN-γ gene in large yellow croaker Larimichthys crocea has been reported, little is known about its bioactivity. In this study, large yellow croaker IFN-γ (LycIFN-γ) gene was found to be constitutively expressed in all tissues tested, with the highest levels in blood and heart. Based on stimulation with polyinosinic-polycytidylic acid [poly (I:C)] or inactivated trivalent bacterial vaccine, LycIFN-γ mRNA was significantly increased in spleen and head kidney tissues. LycIFN-γ transcripts were also detected in head kidney granulocytes, primary head kidney macrophages (PKM), head kidney leukocytes, and large yellow croaker head kidney cell line (LYCK), and were significantly up-regulated by poly(I:C) or lipopolysaccharide (LPS) in head kidney leukocytes. Recombinant LycIFN-γ protein (rLycIFN-γ) produced in Escherichia coli could enhance respiratory burst responses in PKM. Furthermore, rLycIFN-γ not only induced the expression of iNOS gene and release of NO, but also up-regulated the expression of proinflammatory cytokines TNF-α and IL-1β in PKM. These findings therefore indicated that LycIFN-γ has a role in mediating inflammatory response. In addition, rLycIFN-γ could significantly up-regulate expression of IFN-γ receptor CRFB13, signal transduction factor STAT1, transcription factors IRF1 and T-bet, and Th1-related cytokines IFN-γ and IL-2 in head kidney leukocytes, suggesting that LycIFN-γ may have the potential to promote Th1 immune response in large yellow croaker. Taken together, our results show that LycIFN-γ may be involved in inflammatory response and promote Th1 immune response as its mammalian counterpart.
Collapse
Affiliation(s)
- Sisi Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Qiuhua Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
20
|
Yoon S, Alnabulsi A, Wang TY, Lee PT, Chen TY, Bird S, Zou J, Secombes CJ. Analysis of interferon gamma protein expression in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2016; 57:79-86. [PMID: 27539703 DOI: 10.1016/j.fsi.2016.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
IFN-γ is a major effector cytokine, produced to induce type I immune responses. It has been cloned in several fish species including zebrafish, however to date few studies have looked at IFN-γ protein expression and bioactivity in fish. Hence, the current study focused on developing a monoclonal antibody (moAb) against zfIFN-γ. We show that the zfIFN-γ moAb specifically recognises E. coli produced recombinant IFN-γ protein and zfIFN-γ produced in transfected HEK293 cells, by Western blot analysis. Next we analysed the production of the native protein following expression induced by PHA stimulation of leukocytes in vitro or antigen re-stimulation in vivo. We show the IFN-γ protein is produced as a dimer, and that a good correlation exists between transcript expression levels and protein levels.
Collapse
Affiliation(s)
- Sohye Yoon
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, UK.
| | | | - Ting Yu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, UK
| | - Po Tsang Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, UK
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, College of Bioscience and Biotechnology, National Cheng Kung University, Taiwan
| | - Steve Bird
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, UK; Molecular Genetics, Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, UK.
| |
Collapse
|
21
|
Zou J, Secombes CJ. The Function of Fish Cytokines. BIOLOGY 2016; 5:biology5020023. [PMID: 27231948 PMCID: PMC4929537 DOI: 10.3390/biology5020023] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
22
|
Two distinct interferon-γ genes in Tetraodon nigroviridis : Functional analysis during Vibrio parahaemolyticus infection. Mol Immunol 2016; 70:34-46. [DOI: 10.1016/j.molimm.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023]
|
23
|
Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2827567. [PMID: 26779301 PMCID: PMC4686725 DOI: 10.1155/2016/2827567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 01/30/2023]
Abstract
Farmed fish are exposed to a continuous antigenic pressure by microbial and environmental agents, which may lead to a condition of chronic inflammation. In view of the notion that polyphenols, largely contained in fruits and vegetables, are endowed with antioxidant and anti-inflammatory activities, farmed sea bass (Dicentrarchus labrax L.) have been administered with red grape polyphenol-enriched feed. Polyphenols were extracted from the seeds of Canosina Nero di Troia Vitis vinifera and mixed with conventional feed at two different concentrations (100 and 200 mg/kg, resp.). Fish samples collected at days 223 and 273, respectively, were evaluated for intestinal and spleen cytokine release as well as for spleen macrophage (MØ) and melanomacrophage center (MMC) areas and distribution. Data will show that in treated fish decrease of intestinal interleukin- (IL-) 1β and IL-6 and increase of splenic interferon- (IFN-) γ occur. On the other hand, in the spleen reduction of MØ number seems to parallel increase in MMCs. Collectively, these data suggest that polyphenol-administered sea bass generate lower levels of intestinal proinflammatory cytokines, while producing larger amounts of spleen IFN-γ, as an expression of a robust and protective adaptive immune response. Increase of MMCs corroborates the evidence for a protective spleen response induced by feed enriched with polyphenols.
Collapse
|
24
|
Hodgkinson JW, Grayfer L, Belosevic M. Biology of Bony Fish Macrophages. BIOLOGY 2015; 4:881-906. [PMID: 26633534 PMCID: PMC4690021 DOI: 10.3390/biology4040881] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
25
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
26
|
Bird S, Tafalla C. Teleost Chemokines and Their Receptors. BIOLOGY 2015; 4:756-84. [PMID: 26569324 PMCID: PMC4690017 DOI: 10.3390/biology4040756] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specifically zebrafish (Daniorerio), rainbow trout (Oncorhynchusmykiss) and catfish (Ictaluruspunctatus), outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.
Collapse
Affiliation(s)
- Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Waikato 3240, New Zealand.
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, Madrid 28130, Spain.
| |
Collapse
|
27
|
Interferon-γ-producing B cells induce the formation of gastric lymphoid follicles after Helicobacter suis infection. Mucosal Immunol 2015; 8:279-95. [PMID: 25073677 DOI: 10.1038/mi.2014.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Helicobacter (H.) suis is capable of infecting various animals including humans, and H. suis infections can lead to gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Recently, we reported that interferon-γ (IFN-γ) was highly expressed in the stomachs of H. suis-infected mice, but the direct relationship between the upregulation of IFN-γ expression and the formation of gastric lymphoid follicles after H. suis infection remains unclear. Here, we demonstrated that the IFN-γ produced by B cells plays an important role in the formation of gastric lymphoid follicles after H. suis infection. In addition, IFN-γ-producing B cells evoked gastric lymphoid follicle formation independent of T-cell help, suggesting that they are crucial for the development of gastric MALT induced by Helicobacter infection.
Collapse
|
28
|
Nayak SK, Shibasaki Y, Nakanishi T. Immune responses to live and inactivated Nocardia seriolae and protective effect of recombinant interferon gamma (rIFN γ) against nocardiosis in ginbuna crucian carp, Carassius auratus langsdorfii. FISH & SHELLFISH IMMUNOLOGY 2014; 39:354-364. [PMID: 24882019 DOI: 10.1016/j.fsi.2014.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
Looking into the fact that substantial mortality and morbidity is associated with intracellular Gram +ve bacterium, Nocardia seriolae infection, an effective vaccine against this pathogen is necessary to control the significant losses in aquaculture practices. Therefore, an attempt was made to evaluate the effect of live (sub-lethal) and inactivated (antigenic form) N. seriolae on cellular and humoral immunity in ginbuna crucian carp, Carassius auratus langsdorfii as well as the therapeutic potency of recombinant interferon gamma (rIFN γ) against N. seriolae infection. Effect of live and inactivated N. seriolae immunisation on the proliferation of CD4(+) T cells, CD8α(+) T cells and surface Ig M(+) cells in peripheral blood leucocytes, spleen, head kidney and trunk kidney of ginbuna was studied after 1st, 3rd, 7th, 15th and 30th day post immunisation. The percentage of CD8α(+) T cells in spleen and head kidney of ginbuna was significantly higher at 3rd day post immunisation. Similarly, surface Ig M(+) cells level was found to increase in both live and inactivated N. seriolae immunised groups. On the contrary, high percentage of CD4(+) T cells was observed in live N. seriolae immunised group in both the head and trunk kidneys at 30th day post immunisation. The humoral immune response to live and inactivated N. seriolae immunised ginbuna showed high antibody titre at 15th day post immunisation but the level declined subsequently in both the immunised groups. On challenge with virulent N. seriolae (1.2 × 10(8) CFU/ml), the relative percent survival was 62.5 and 75 in live and inactivated N. seriolae immunised groups, respectively. Furthermore, we have also studied the therapeutic potency of rIFN γ and found the possible involvement of IFN γ in resistance mechanism in fish. Administration of rIFN γ into ginbuna (at 10 μg/fish) one day before challenge study was found to protect ginbuna. The relative percent survival of ginbuna was 43.75 and 60 when challenged with 2 different doses of N. seriolae i.e., 1.2 × 10(8) CFU/ml and 5 × 10(7) CFU/ml, respectively. In summary, this study indicates that both forms of N. seriolae immunisation as well as rIFN γ indeed elicit an effective protective immunity which will help in designing suitable vaccine and/or adjunct therapy against N. seriolae infection in fish.
Collapse
Affiliation(s)
- Sukanta Kumar Nayak
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, 751002 Bhubaneswar, Odisha, India.
| | - Yasuhiro Shibasaki
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
29
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
30
|
Yamasaki M, Araki K, Nakanishi T, Nakayasu C, Yoshiura Y, Iida T, Yamamoto A. Adaptive immune response to Edwardsiella tarda infection in ginbuna crucian carp, Carassius auratus langsdorfii. Vet Immunol Immunopathol 2013; 153:83-90. [DOI: 10.1016/j.vetimm.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/24/2013] [Accepted: 02/07/2013] [Indexed: 12/24/2022]
|